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2. Overall Objectives

2.1. Overall Objectives

Motion planning is not only a crucial issue in control theory, but also a widespread task of all sort of human
activities. The aim of the project-team is to study the various aspects preceding and framing motion planning:
accessibility analysis (determining which configurations are attainable), criteria to make choice among
possible trajectories, trajectory tracking (fixing a possibly unfeasible trajectory and following it as closely
as required), performance analysis (determining the cost of a tracking strategy), design of implementable
algorithms, robustness of a control strategy with respect to computationally motivated discretizations, etc.
The viewpoint that we adopt comes from geometric control: our main interest is in qualitative and intrinsic
properties and our focus is on trajectories (either individual ones or families of them).

The main application domain of GECO is quantum control. The importance of designing efficient transfers
between different atomic or molecular levels in atomic and molecular physics is due to its applications to
photochemistry (control by laser pulses of chemical reactions), nuclear magnetic resonance (control by a
magnetic field of spin dynamics) and, on a more distant time horizon, the strategic domain of quantum
computing.

A second application area concerns the control interpretation of phenomena appearing in neurophysiology. It
studies the modeling of the mechanisms supervising some biomechanics actions or sensorial reactions such as
image reconstruction by the primary visual cortex, eyes movement and body motion. All these problems can
be seen as motion planning tasks accomplished by the brain.

As a third applicative domain we propose a system dynamics approach to switched systems. Switched
systems are characterized by the interaction of continuous dynamics (physical system) and discrete/logical
components. They provide a popular modeling framework for heterogeneous aspects issuing from automotive
and transportation industry, energy management and factory automation.
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3. Research Program

3.1. Geometric control theory

The main research topic of the project-team will be geometric control, with a special focus on control design.
The application areas that we target are control of quantum mechanical systems, neurogeometry and switched
systems.

Geometric control theory provides a viewpoint and several tools, issued in particular from differential geom-
etry, to tackle typical questions arising in the control framework: controllability, observability, stabilization,
optimal control... [32], [66] The geometric control approach is particularly well suited for systems involving
nonlinear and nonholonomic phenomena. We recall that nonholonomicity refers to the property of a velocity
constraint that is not equivalent to a state constraint.

The expression control design refers here to all phases of the construction of a control law, in a mainly open-
loop perspective: modeling, controllability analysis, output tracking, motion planning, simultaneous control
algorithms, tracking algorithms, performance comparisons for control and tracking algorithms, simulation and
implementation.

‘We recall that

e controllability denotes the property of a system for which any two states can be connected by a
trajectory corresponding to an admissible control law ;

e output tracking refers to a control strategy aiming at keeping the value of some functions of the
state arbitrarily close to a prescribed time-dependent profile. A typical example is configuration
tracking for a mechanical system, in which the controls act as forces and one prescribes the position
variables along the trajectory, while the evolution of the momenta is free. One can think for instance
at the lateral movement of a car-like vehicle: even if such a movement is unfeasible, it can be tracked
with arbitrary precision by applying a suitable control strategy;

e motion planning is the expression usually denoting the algorithmic strategy for selecting one control
law steering the system from a given initial state to an attainable final one;

e simultaneous control concerns algorithms that aim at driving the system from two different initial
conditions, with the same control law and over the same time interval, towards two given final states
(one can think, for instance, at some control action on a fluid whose goal is to steer simultaneously
two floating bodies.) Clearly, the study of which pairs (or n-uples) of states can be simultaneously
connected thanks to an admissible control requires an additional controllability analysis with respect
to the plain controllability mentioned above.

At the core of control design is then the notion of motion planning. Among the motion planning methods, a
preeminent role is played by those based on the Lie algebra associated with the control system ( [86], [73],
[79]), those exploiting the possible flatness of the system ( [60]) and those based on the continuation method
( [98]). Optimal control is clearly another method for choosing a control law connecting two states, although
it generally introduces new computational and theoretical difficulties.

Control systems with special structure, which are very important for applications are those for which the
controls appear linearly. When the controls are not bounded, this means that the admissible velocities form a
distribution in the tangent bundle to the state manifold. If the distribution is equipped with a smoothly varying
norm (representing a cost of the control), the resulting geometrical structure is called sub-Riemannian. Sub-
Riemannian geometry thus appears as the underlying geometry of the nonholonomic control systems, playing
the same role as Euclidean geometry for linear systems. As such, its study is fundamental for control design.
Moreover its importance goes far beyond control theory and is an active field of research both in differential
geometry ( [85]), geometric measure theory ( [61], [36]) and hypoelliptic operator theory ( [48]).
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Other important classes of control systems are those modeling mechanical systems. The dynamics are naturally
defined on the tangent or cotangent bundle of the configuration manifold, they have Lagrangian or Hamiltonian
structure, and the controls act as forces. When the controls appear linearly, the resulting model can be seen
somehow as a second-order sub-Riemannian structure (see [53]).

The control design topics presented above naturally extend to the case of distributed parameter control systems.
The geometric approach to control systems governed by partial differential equations is a novel subject with
great potential. It could complement purely analytical and numerical approaches, thanks to its more dynamical,
qualitative and intrinsic point of view. An interesting example of this approach is the paper [33] about the
controllability of Navier—Stokes equation by low forcing modes.

4. Application Domains

4.1. Quantum control

The issue of designing efficient transfers between different atomic or molecular levels is crucial in atomic
and molecular physics, in particular because of its importance in those fields such as photochemistry (control
by laser pulses of chemical reactions), nuclear magnetic resonance (NMR, control by a magnetic field of
spin dynamics) and, on a more distant time horizon, the strategic domain of quantum computing. This last
application explicitly relies on the design of quantum gates, each of them being, in essence, an open loop
control law devoted to a prescribed simultaneous control action. NMR is one of the most promising techniques
for the implementation of a quantum computer.

Physically, the control action is realized by exciting the quantum system by means of one or several external
fields, being them magnetic or electric fields. The resulting control problem has attracted increasing attention,
especially among quantum physicists and chemists (see, for instance, [91], [96]). The rapid evolution of the
domain is driven by a multitude of experiments getting more and more precise and complex (see the recent
review [52]). Control strategies have been proposed and implemented, both on numerical simulations and on
physical systems, but there is still a large gap to fill before getting a complete picture of the control properties
of quantum systems. Control techniques should necessarily be innovative, in order to take into account the
physical peculiarities of the model and the specific experimental constraints.

The area where the picture got clearer is given by finite dimensional linear closed models.

o Finite dimensional refers to the dimension of the space of wave functions, and, accordingly, to the
finite number of energy levels.

e Linear means that the evolution of the system for a fixed (constant in time) value of the control is
determined by a linear vector field.

o  Closed refers to the fact that the systems are assumed to be totally disconnected from the environ-
ment, resulting in the conservation of the norm of the wave function.

The resulting model is well suited for describing spin systems and also arises naturally when infinite
dimensional quantum systems of the type discussed below are replaced by their finite dimensional Galerkin
approximations. Without seeking exhaustiveness, let us mention some of the issues that have been tackled for
finite dimensional linear closed quantum systems:

e controllability [34],

e bounds on the controllability time [30],
e STIRAP processes [101],

e simultaneous control [74],

e optimal control ( [70], [43], [54]),

e numerical simulations [80].
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Several of these results use suitable transformations or approximations (for instance the so-called rotating
wave) to reformulate the finite-dimensional Schrodinger equation as a sub-Riemannian system. Open systems
have also been the object of an intensive research activity (see, for instance, [35], [71], [92], [49]).

In the case where the state space is infinite dimensional, some optimal control results are known (see, for
instance, [39], [50], [67], [40]). The controllability issue is less understood than in the finite dimensional
setting, but several advances should be mentioned. First of all, it is known that one cannot expect exact
controllability on the whole Hilbert sphere [100]. Moreover, it has been shown that a relevant model, the
quantum oscillator, is not even approximately controllable [93], [83]. These negative results have been
more recently completed by positive ones. In [41], [42] Beauchard and Coron obtained the first positive
controllability result for a quantum particle in a 1D potential well. The result is highly nontrivial and is based
on Coron’s return method (see [56]). Exact controllability is proven to hold among regular enough wave
functions. In particular, exact controllability among eigenfunctions of the uncontrolled Schrodinger operator
can be achieved. Other important approximate controllability results have then been proved using Lyapunov
methods [82], [87], [68]. While [82] studies a controlled Schrodinger equation in R for which the uncontrolled
Schrodinger operator has mixed spectrum, [87], [68] deal mainly with general discrete-spectrum Schrodinger
operators.

In all the positive results recalled in the previous paragraph, the quantum system is steered by a single external
field. Different techniques can be applied in the case of two or more external fields, leading to additional
controllability results [59], [46].

The picture is even less clear for nonlinear models, such as Gross—Pitaevski and Hartree—Fock equations. The
obstructions to exact controllability, similar to the ones mentioned in the linear case, have been discussed
in [65]. Optimal control approaches have also been considered [38], [51]. A comprehensive controllability
analysis of such models is probably a long way away.

4.2. Neurophysiology

At the interface between neurosciences, mathematics, automatics and humanoid robotics, an entire new
approach to neurophysiology is emerging. It arouses a strong interest in the four communities and its
development requires a joint effort and the sharing of complementary tools.

A family of extremely interesting problems concerns the understanding of the mechanisms supervising some
sensorial reactions or biomechanics actions such as image reconstruction by the primary visual cortex, eyes
movement and body motion.

In order to study these phenomena, a promising approach consists in identifying the motion planning problems
undertaken by the brain, through the analysis of the strategies that it applies when challenged by external
inputs. The role of control is that of a language allowing to read and model neurological phenomena. The
control algorithms would shed new light on the brain’s geometric perception (the so-called neurogeometry
[89]) and on the functional organization of the motor pathways.

e A challenging problem is that of the understanding of the mechanisms which are responsible for the
process of image reconstruction in the primary visual cortex V1.

The visual cortex areas composing V1 are notable for their complex spatial organization and their
functional diversity. Understanding and describing their architecture requires sophisticated modeling
tools. At the same time, the structure of the natural and artificial images used in visual psychophysics
can be fully disclosed only using rather deep geometric concepts. The word “geometry” refers here
to the internal geometry of the functional architecture of visual cortex areas (not to the geometry of
the Euclidean external space). Differential geometry and analysis both play a fundamental role in
the description of the structural characteristics of visual perception.

A model of human perception based on a simplified description of the visual cortex V1, involving
geometric objects typical of control theory and sub-Riemannian geometry, has been first proposed
by Petitot ( [90]) and then modified by Citti and Sarti ( [55]). The model is based on experimental
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observations, and in particular on the fundamental work by Hubel and Wiesel [64] who received the
Nobel prize in 1981.

In this model, neurons of V1 are grouped into orientation columns, each of them being sensitive to
visual stimuli arriving at a given point of the retina and oriented along a given direction. The retina
is modeled by the real plane, while the directions at a given point are modeled by the projective line.
The fiber bundle having as base the real plane and as fiber the projective line is called the bundle of
directions of the plane.

From the neurological point of view, orientation columns are in turn grouped into hypercolumns,
each of them sensitive to stimuli arriving at a given point, oriented along any direction. In the same
hypercolumn, relative to a point of the plane, we also find neurons that are sensitive to other stimuli
properties, such as colors. Therefore, in this model the visual cortex treats an image not as a planar
object, but as a set of points in the bundle of directions of the plane. The reconstruction is then
realized by minimizing the energy necessary to activate orientation columns among those which are
not activated directly by the image. This gives rise to a sub-Riemannian problem on the bundle of
directions of the plane.

e Another class of challenging problems concern the functional organization of the motor pathways.

The interest in establishing a model of the motor pathways, at the same time mathematically rigorous
and biologically plausible, comes from the possible spillovers in robotics and neurophysiology. It
could help to design better control strategies for robots and artificial limbs, yielding smoother and
more progressive movements. Another underlying relevant societal goal (clearly beyond our domain
of expertise) is to clarify the mechanisms of certain debilitating troubles such as cerebellar disease,
chorea and Parkinson’s disease.

A key issue in order to establish a model of the motor pathways is to determine the criteria underlying
the brain’s choices. For instance, for the problem of human locomotion (see [37]), identifying
such criteria would be crucial to understand the neural pathways implicated in the generation of
locomotion trajectories.

A nowadays widely accepted paradigm is that, among all possible movements, the accomplished
ones satisfy suitable optimality criteria (see [99] for a review). One is then led to study an inverse
optimal control problem: starting from a database of experimentally recorded movements, identify
a cost function such that the corresponding optimal solutions are compatible with the observed
behaviors.

Different methods have been taken into account in the literature to tackle this kind of problems, for
instance in the linear quadratic case [69] or for Markov processes [88]. However all these methods
have been conceived for very specific systems and they are not suitable in the general case. Two
approaches are possible to overcome this difficulty. The direct approach consists in choosing a cost
function among a class of functions naturally adapted to the dynamics (such as energy functions) and
to compare the solutions of the corresponding optimal control problem to the experimental data. In
particular one needs to compute, numerically or analytically, the optimal trajectories and to choose
suitable criteria (quantitative and qualitative) for the comparison with observed trajectories. The
inverse approach consists in deriving the cost function from the qualitative analysis of the data.

4.3. Switched systems

Switched systems form a subclass of hybrid systems, which themselves constitute a key growth area in
automation and communication technologies with a broad range of applications. Existing and emerging areas
include automotive and transportation industry, energy management and factory automation. The notion of
hybrid systems provides a framework adapted to the description of the heterogeneous aspects related to the
interaction of continuous dynamics (physical system) and discrete/logical components.
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The characterizing feature of switched systems is the collective aspect of the dynamics. A typical question is
that of stability, in which one wants to determine whether a dynamical system whose evolution is influenced
by a time-dependent signal is uniformly stable with respect to all signals in a fixed class ( [76]).

The theory of finite-dimensional hybrid and switched systems has been the subject of intensive research in
the last decade and a large number of diverse and challenging problems such as stabilizability, observability,
optimal control and synchronization have been investigated (see for instance [97], [77]).

The question of stability, in particular, because of its relevance for applications, has spurred a rich literature.
Important contributions concern the notion of common Lyapunov function: when there exists a Lyapunov
function that decays along all possible modes of the system (that is, for every possible constant value of the
signal), then the system is uniformly asymptotically stable. Conversely, if the system is stable uniformly with
respect to all signals switching in an arbitrary way, then a common Lyapunov function exists [78]. In the
linear finite-dimensional case, the existence of a common Lyapunov function is actually equivalent to the
global uniform exponential stability of the system [84] and, provided that the admissible modes are finitely
many, the Lyapunov function can be taken polyhedral or polynomial [44], [45], [57]. A special role in the
switched control literature has been played by common quadratic Lyapunov functions, since their existence
can be tested rather efficiently (see [58] and references therein). Algebraic approaches to prove the stability of
switched systems under arbitrary switching, not relying on Lyapunov techniques, have been proposed in [75],
[31].

Other interesting issues concerning the stability of switched systems arise when, instead of considering
arbitrary switching, one restricts the class of admissible signals, by imposing, for instance, a dwell time
constraint [63].

Another rich area of research concerns discrete-time switched systems, where new intriguing phenomena
appear, preventing the algebraic characterization of stability even for small dimensions of the state space [72].
It is known that, in this context, stability cannot be tested on periodic signals alone [47].

Finally, let us mention that little is known about infinite-dimensional switched system, with the exception of
some results on uniform asymptotic stability ( [81], [94], [95]) and some recent papers on optimal control (
[62], [102]).

5. New Software and Platforms

5.1. IRHD

We develop a software for reconstruction of corrupted and damaged images, named IRHD (for Image
Reconstruction via Hypoelliptic Diffusion). One of the main features of the algorithm on which the software
is based is that it does not require any information about the location and character of the corrupted
places. Another important advantage is that this method is massively parallelizable; this allows to work with
sufficiently large images. Theoretical background of the presented method is based on the model of geometry
of vision due to Petitot, Citti and Sarti. The main step is numerical solution of the equation of 3D hypoelliptic
diffusion. IRHD is based on Fortran.

6. New Results

6.1. Highlights of the Year

We organized a thematic trimester on “Geometry, analysis and dynamics on sub-Riemannian manifolds” at the
Institut Henri Poincaré (IHP), including 4 workshops, 4 research courses, 8 thematic days, several seminars.
We also organized an associated school at CIRM with 4 introductory courses. The web pages of the events
are:
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http://www.cmap.polytechnique.fr/subriemannian/
http://www.cmap.polytechnique.fr/subriemannian/cirm/

6.2. New results: geometric control

Let us list some new results in sub-Riemannian geometry and hypoelliptic diffusion obtained by GECO’s
members.

e The article [14] presents simple controls that generate motion in the direction of high order Lie
brackets. Whereas the naive use of piecewise constant controls requires the number of switchings
to grow exponentially with the length of the bracket, we show that such motion is possible with
sinusoidal controls whose sum of frequencies equals the length of the bracket. This work is closely
related and motivated by the study of the complexity of sub-Riemannian geodesics for generic
regular distributions, i.e., whose derived flag has maximal growth vector. Of particular interest is
the approximation of curves transversal to the distribution by admissible curves. We also present
a surprising example that shows that it is possible to simultaneously kill higher moments without
increasing the number of self-intersections of the base curve.

e The curvature discussed in [18] is a rather far going generalization of the Riemann sectional
curvature. We define it for a wide class of optimal control problems: a unified framework including
geometric structures such as Riemannian, sub-Riemannian, Finsler and sub-Finsler structures;
a special attention is paid to the sub-Riemannian (or Carnot-Caratheodory) metric spaces. Our
construction of the curvature is direct and naive, and it is similar to the original approach by Riemann.
Surprisingly, it works in a very general setting and, in particular, for all sub-Riemannian spaces.

e In [19] we prove sectional and Ricci-type comparison theorems for the existence of conjugate
points along sub-Riemannian geodesics. In order to do that, we regard sub-Riemannian structures
as a special kind of variational problems. In this setting, we identify a class of models, namely
linear quadratic optimal control systems, that play the role of the constant curvature spaces. As an
application, we prove a version of sub-Riemannian Bonnet—-Myers theorem and we obtain some new
results on conjugate points for 3D left-invariant sub-Riemannian structures.

e In the study of conjugate times in sub-Riemannian geometry, linear quadratic optimal control
problems show up as model cases. In [1] we consider a dynamical system with a constant, quadratic
Hamiltonian h, and we characterize the number of conjugate times in terms of the spectrum of the
Hamiltonian vector field H. We prove the following dichotomy: the number of conjugate times
is identically zero or grows to infinity. The latter case occurs if and only if H has at least one
Jordan block of odd dimension corresponding to a purely imaginary eigenvalue. As a byproduct, we
obtain bounds from below on the number of conjugate times contained in an interval in terms of the
spectrum of H.

e A 3D almost-Riemannian manifold is a generalized Riemannian manifold defined locally by 3 vector
fields that play the role of an orthonormal frame, but could become collinear on some set called the
singular set. Under the Hormander condition, a 3D almost-Riemannian structure still has a metric
space structure, whose topology is compatible with the original topology of the manifold. Almost-
Riemannian manifolds were deeply studied in dimension 2. In [21] we start the study of the 3D case
which appear to be reacher with respect to the 2D case, due to the presence of abnormal extremals
which define a field of directions on the singular set. We study the type of singularities of the metric
that could appear generically, we construct local normal forms and we study abnormal extremals.
We then study the nilpotent approximation and the structure of the corresponding small spheres. We
finally give some preliminary results about heat diffusion on such manifolds.

e In [22] we study spectral properties of the Laplace-Beltrami operator on two relevant almost-
Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. As for
general almost-Riemannian structures (under certain technical hypothesis), the singular set acts as
a barrier for the evolution of the heat and of a quantum particle, although geodesics can cross it.
This is a consequence of the self-adjointness of the Laplace-Beltrami operator on each connected
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component of the manifolds without the singular set. We get explicit descriptions of the spectrum, of
the eigenfunctions and their properties. In particular in both cases we get a Weyl law with dominant
term E'log E/. We then study the effect of an Aharonov-Bohm non-apophantic magnetic potential
that has a drastic effect on the spectral properties. Other generalized Riemannian structures including
conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic
potential may affect the self-adjointness of the Laplace-Beltrami operator.

e In [28] we investigate the number of geodesics between two points p and ¢ on a contact sub-
Riemannian manifold M. We show that the count of geodesics on M is controlled by the count
on its nilpotent approximation at p (a contact Carnot group). For contact Carnot groups we give
sharp bounds for a generic point g. Removing the genericity condition for ¢, geodesics might
appear in families and we prove a similar statement for their topology. We study these families,
and in particular we focus on the unexpected appearance of isometrically non-equivalent geodesics:
families on which the action of isometries is not transitive. We apply the previous study to contact
sub-Riemannian manifolds: we prove that for any given point p € M there is a sequence of points p,
such that p,, — p and that the number of geodesics between p and p,, grows unbounded (moreover
these geodesics have the property of being contained in a small neighborhood of p).

New results on automatic control and motion planning for various type of applicative domains are the
following.

e [8] is devoted to the problem of model-based prognostics for a Waste Water Treatment Plant
(WWTP). Our aim is to predict degradation of certain parameters in the process, in order to anticipate
malfunctions and to schedule maintenance. It turns out that a WWTP, together with the possible
malfunction, has a specific structure: mostly, the malfunction appears in the model as an unknown
input function. The process is observable whatever this unknown input is, and the unknown input can
itself be identified through the observations. Due to this property, our method does not require any
assumption of the type “slow dynamics degradation", as is usually assumed in ordinary prognostic
methods. Our system being unknown-input observable, standard observer-based methods are enough
to solve prognostic problems. Simulation results are shown for a typical WWTP.

e In [9] we study the problem of controlling an unmanned aerial vehicle (UAV) to provide a target
supervision and/or to provide convoy protection to ground vehicles. We first present a control
strategy based upon a Lyapunov-LaSalle stabilization method to provide supervision of a stationary
target. The UAV is expected to join a predesigned admissible circular trajectory around the target
which is itself a fixed point in the space. Our strategy is presented for both high altitude long
endurance (HALE) and medium altitude long endurance (MALE) types of UAVs.

e In [12] we study how a particular spatial structure with a buffer impacts the number of equilibria
and their stability in the chemostat model. We show that the occurrence of a buffer can allow a
species to setup or on the opposite to go to extinction, depending on the characteristics of the buffer.
For non-monotonic response function, we characterize the buffered configurations that make the
chemostat dynamics globally asymptotically stable, while this is not possible with single, serial or
parallel vessels of the same total volume and input flow. These results are illustrated with the Haldane
kinetic function.

e In [15] and [25] we present new results on the path planning problem in the case study of the car
with trailers. We formulate the problem in the framework of optimal nonholonomic interpolation and
we use standard techniques of nonlinear optimal control theory for deriving hyperelliptic signals as
controls for driving the system in an optimal way. The hyperelliptic curves contain as many loops as
the number of nonzero Lie brackets generated by the system. We compare the hyperelliptic signals
with the ordinary Lissajous-like signals that appear in the literature, we conclude that the former
have better performance.

e In[27] we consider affine-control systems, i.e., systems in the form ¢(¢) = fo(q(t)) + >y ui (¢) fi(q(2)).
Here, the point ¢ belongs to a smooth manifold M, the f;’s are smooth vector fields on M. This type
of system appears in many applications for mechanical systems, quantum control, microswimmers,
neuro-geometry of vision...



Project-Team GECO 9

We conclude the section by mentioning the book [17] that we edited, collecting some papers in honour of
Andrei A. Agrachev for his 60th birthday. The book contains new results on sub-Riemannian geometry and
more generally on the geometric theory of control.

6.3. New results: quantum control

New results have been obtained for the control of the bilinear Schrodinger equation.

e In [2] we present a sufficient condition for approximate controllability of the bilinear discrete-
spectrum Schrodinger equation in the multi-input case. The controllability result extends to simul-
taneous controllability, approximate controllability in H°, and tracking in modulus. The sufficient
condition is more general than those present in the literature even in the single-input case and allows
the spectrum of the uncontrolled operator to be very degenerate (e.g. to have multiple eigenvalues
or equal gaps among different pairs of eigenvalues). We apply the general result to a rotating polar
linear molecule, driven by three orthogonal external fields. A remarkable property of this model is
the presence of infinitely many degeneracies and resonances in the spectrum.

e In [5] we consider the minimum time population transfer problem for a two level quantum system
driven by two external fields with bounded amplitude. The controls are modeled as real functions
and we do not use the Rotating Wave Approximation. After projection on the Bloch sphere, we
treat the time-optimal control problem with techniques of optimal synthesis on 2D manifolds.
Based on the Pontryagin Maximum Principle, we characterize a restricted set of candidate optimal
trajectories. Properties on this set, crucial for complete optimal synthesis, are illustrated by numerical
simulations. Furthermore, when the two controls have the same bound and this bound is small with
respect to the difference of the two energy levels, we get a complete optimal synthesis up to a small
neighborhood of the antipodal point of the initial condition.

e In[11] we investigate the controllability of quantum electrons trapped in a two-dimensional device,
typically a metal oxide semiconductor (MOS) field-effect transistor. The problem is modeled by
the Schrodinger equation in a bounded domain coupled to the Poisson equation for the electrical
potential. The controller acts on the system through the boundary condition on the potential, on a
part of the boundary modeling the gate. We prove that, generically with respect to the shape of the
domain and boundary conditions on the gate, the device is controllable. We also consider control
properties of a more realistic nonlinear version of the device, taking into account the self-consistent
electrostatic Poisson potential.

e In [29] we prove the approximate controllability of a bilinear Schrédinger equation modelling a two
trapped ions system. A new spectral decoupling technique is introduced, which allows to analyze the
controllability of the infinite-dimensional system through finite-dimensional considerations.

6.4. New results: neurophysiology

e [3] presents a semidiscrete alternative to the theory of neurogeometry of vision, due to Citti, Petitot,
and Sarti. We propose a new ingredient, namely, working on the group of translations and discrete
rotations SE(2, N). The theoretical side of our study relates the stochastic nature of the problem
with the Moore group structure of S E(2, N'). Harmonic analysis over this group leads to very simple
finite dimensional reductions. We then apply these ideas to the inpainting problem which is reduced
to the integration of a completely parallelizable finite set of Mathieu-type diffusions (indexed by
the dual of SE(2, N) in place of the points of the Fourier plane, which is a drastic reduction). The
integration of the the Mathieu equations can be performed by standard numerical methods for elliptic
diffusions and leads to a very simple and efficient class of inpainting algorithms. We illustrate the
performances of the method on a series of deeply corrupted images.

e In [4] and [7] we consider the problem of minimizing fé \VE+ K (s)zds for a planar curve having
fixed initial and final positions and directions. The total length [ is free. Here s is the arclength
parameter, K (s) is the curvature of the curve and £ > 0 is a fixed constant. This problem comes
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from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and
global minimizers for this problem. In [7] we characterize sub-Riemannian geodesics and the range
of the exponential map. In [4] we prove that if for a certain choice of boundary conditions there is no
global minimizer, then there is neither a local minimizer nor a geodesic. We finally give properties
of the set of boundary conditions for which there exists a solution to the problem.

6.5. New results: switched systems

e In [6] we consider a family of linear control systems & = Az + aBu on RY, where o belongs
to a given class of persistently exciting signals. We seek maximal a-uniform stabilization and
destabilization by means of linear feedbacks v = Kx. We extend previous results obtained for
bidimensional single-input linear control systems to the general case as follows: if there exists at
least one K such that the Lie algebra generated by A and BK is equal to the set of all d x d
matrices, then the maximal rate of convergence of (A, B) is equal to the maximal rate of divergence
of (A, B). We also provide more precise results in the general single-input case, where the above
result is obtained under the simpler assumption of controllability of the pair (A, B).

e The paper [10] considers the stabilization to the origin of a persistently excited linear system
by means of a linear state feedback, where we suppose that the feedback law is not applied
instantaneously, but after a certain positive delay (not necessarily constant). The main result is that,
under certain spectral hypotheses on the linear system, stabilization by means of a linear delayed
feedback is indeed possible, generalizing a previous result already known for non-delayed feedback
laws.

e In [16] and [26] we give a collection of converse Lyapunov—Krasovskii theorems for uncer-
tain retarded differential equations. We show that the existence of a weakly degenerate Lya-
punov—Krasovskii functional is a necessary and sufficient condition for the global exponential sta-
bility of the linear retarded functional differential equations. This is carried out using the switched
system transformation approach.

e Consider a continuous-time linear switched system on R™ associated with a compact convex set
of matrices. When it is irreducible and its largest Lyapunov exponent is zero there always exists a
Barabanov norm associated with the system. In [23] we deal with two types of issues: (a) properties
of Barabanov norms such as uniqueness up to homogeneity and strict convexity; (b) asymptotic
behaviour of the extremal solutions of the linear switched system. Regarding Issue (a), we provide
partial answers and propose four related open problems. As for Issue (b), we establish, when n = 3,
a Poincaré-Bendixson theorem under a regularity assumption on the set of matrices. We then revisit a
noteworthy result of N.E. Barabanov describing the asymptotic behaviour of linear switched system
on R3 associated with a pair of Hurwitz matrices {A, A + bc’ }. After pointing out a fatal gap in
Barabanov’s proof we partially recover his result by alternative arguments.

e In [24] we address the exponential stability of a system of transport equations with intermittent
damping on a network of N > 2 circles intersecting at a single point O. The N equations are coupled
through a linear mixing of their values at O, described by a matrix M. The activity of the intermittent
damping is determined by persistently exciting signals, all belonging to a fixed class. The main result
is that, under suitable hypotheses on M and on the rationality of the ratios between the lengths of
the circles, such a system is exponentially stable, uniformly with respect to the persistently exciting
signals. The proof relies on an explicit formula for the solutions of this system, which allows one to
track down the effects of the intermittent damping.

7. Partnerships and Cooperations

7.1. Regional Initiatives
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e Project Stabilité des systemes a excitation persistante, Program Mathlng, Labex LMH, 2013-2016.
This project is about different stability properties for systems whose damping is intermittently
activated. The coordinator is Mario Sigalotti. The other members are Yacine Chitour and Guilherme
Mazanti.

e Digitéo project 2012-061D SSyCoDyC. SSyCoDyC (2013-2014) is financed by Digitéo in the
framework of the DIM Hybrid Systems and Sensing Systems. It focuses on the application of
techniques of hybrid systems to the analysis of retarded equations with time-varying delays.
SSyCoDyC has financed the post-doc fellowship of Thab Haidar and was coordinated by Paolo
Mason and Mario Sigalotti.

o iCODE is the Institute for Control and Decision of the Idex Paris Saclay. It was launched in March
2014 for two years until June 2016. iCODE’s aims are fostering research, spin-offs creation, training
and diffusion of Control and Decision in Paris-Saclay. To those aims, iCODE has received a budget
of 980Keuros, supported by investissements d’avenir. The scientific topics addressed by iCODE are
organized in four research initiatives:

—  Control & Neuroscience

— Large-scale systems & Smart grids
— Behavioral Economics

—  White research initiative.

iCODE is coordinated by Yacine Chitour (L2S-Univ. Paris Sud), associated member and collaborator
of GECO. Mario Sigalotti is member of the Steering Committee.

7.2. European Initiatives

7.2.1. FP7 Projects

Program: ERC Starting Grant

Project acronym: GeCoMethods

Project title: Geometric Control Methods for the Heat and Schroedinger Equations
Duration: 1/5/2010 - 1/5/2015

Coordinator: Ugo Boscain

Abstract: The aim of this project is to study certain PDEs for which geometric control techniques
open new horizons. More precisely we plan to exploit the relation between the sub-Riemannian
distance and the properties of the kernel of the corresponding hypoelliptic heat equation and to study
controllability properties of the Schroedinger equation.

All subjects studied in this project are applications-driven: the problem of controllability of the
Schroedinger equation has direct applications in Laser spectroscopy and in Nuclear Magnetic
Resonance; the problem of nonisotropic diffusion has applications in cognitive neuroscience (in
particular for models of human vision).

Participants. Main collaborator: Mario Sigalotti. Other members of the team: Andrei Agrachev, Ric-
cardo Adami, Thomas Chambrion, Grégoire Charlot, Yacine Chitour, Jean-Paul Gauthier, Frédéric
Jean.

7.3. International Initiatives

7.3.1. Inria International Partners

7.3.1.1. Informal International Partners

SISSA (Scuola Internazionale Superiore di Studi Avanzati), Trieste, Italy.
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Sector of Functional Analysis and Applications, Geometric Control group. Coordinator: Andrei
A. Agracheyv.

We collaborate with the Geometric Control group at SISSA mainly on subjects related with sub-
Riemannian geometry. Thanks partly to our collaboration, SISSA has established an official research
partnership with Ecole Polytechnique.

7.3.2. Participation In other International Programs

Laboratoire Euro Maghrébin de Mathématiques et de leurs Interactions (LEM2I)
http://www.lem2i.cnrs.fr/

GDRE Control of Partial Differential Equations (CONEDP)
http://www.ceremade.dauphine.fr/~glass/GDRE/

8. Dissemination

8.1. Promoting Scientific Activities

8.1.1. Scientific events organisation

Davide Barilari, Ugo Boscain and Mario Sigalotti were organizers of the IHP trimester “Geometry,
Analysis and Dynamics on Sub-Riemannian Manifolds”, Fall 2014, Institut Henri Poincaré, Paris.

Ugo Boscain and Mario Sigalotti were organizers of the CIRM School (Marseille) “Sub-Riemannian
manifolds: from geodesics to hypoelliptic diffusion”, September 2014.

8.1.1.1. Member of editorial boards

Ugo Boscain is Associate Editor of SIAM Journal of Control and Optimization

Ugo Boscain is Managing Editor of Journal of Dynamical and Control Systems

Mario Sigalotti is Associate Editor of Journal of Dynamical and Control Systems

Ugo Boscain is Associate Editor of ESAIM Control, Optimisation and Calculus of Variations
Ugo Boscain is Associate Editor of Mathematical Control and Related Fields

Ugo Boscain is Associate editor of Analysis and Geometry in Metric Spaces

8.2. Teaching - Supervision - Juries

8.2.1. Supervision

PhD: Moussa Gaye, “Some problems of geometric analysis in almost-Riemannian geometry and of
stability of switching systems", supervisors: Ugo Boscain, Yacine Chitour, Paolo Mason, defended
in November 2014.

PhD in progress: Guiherme Mazanti, “Stabilité et taux de convergence pour les systemes a excitation
persistante", started in 1/9/2013, supervisors: Yacine Chitour, Mario Sigalotti.

8.2.2. Juries

Ugo Boscain was referee for the PhD thesis of Sylvain Arguillere, Paris 6, July 2014.

Ugo Boscain was member of the commission for the PhD defense of Laurent Sifre, Ecole Polytech-
nique, October 2014.

Mario Sigalotti was member of the commission for the PhD defense of Dolly Tatiana Manrique
Espindola, Université de Lorraine, December 2014.

Ugo Boscain was member of the commission for the HDR of Gregoire Charlot, Universite de
Grenoble, September 2014.

Mario Sigalotti was member of the commission for a MCF position at INPT ENSEEIHT, Toulouse.
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e Ugo Boscain was member of the jury for positions of CR at INSMI.

9. Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1] A. AGRACHEV, L. RizzI, P. SILVEIRA. On conjugate times of LQ optimal control problems, in "Journal of
Dynamical and Control Systems", 2014, 14 p. , https://hal.archives-ouvertes.fr/hal-01096715

[2] U. BOSCAIN, M. CAPONIGRO, M. SIGALOTTI. Multi-input Schrodinger equation: Controllability, tracking,
and application to the quantum angular momentum, in "Electronic Journal of Differential Equations", June
2014, vol. 256, n® 11, pp. 35243551 [DOI : 10.1016/1.1DE.2014.02.004], https://hal.archives-ouvertes.fr/
hal-01097161

[3] U. BoscAIN, R. A. CHERTOVSKIH, J. P. GAUTHIER, A. O. REMI1zoV. Hypoelliptic Diffusion and Human
Vision: A Semidiscrete New Twist, in "SIAM Journal on Imaging Sciences", 2014, vol. 7, n° 2, pp. 669-695
[DOI : 10.1137/130924731], https://hal.archives-ouvertes.fr/hal-01097156

[4] U. BoscAIN, R. DUITS, F. RoSSI, Y. SACHKOV. Curve cuspless reconstruction via sub-Riemannian geometry,
in "ESAIM: Control, Optimisation and Calculus of Variations", July 2014, vol. 20, n° 3, pp- 748-770
[DOI : 10.1051/cocv/2013082], https://hal.archives-ouvertes.fr/hal-01097159

[5] U. BoscAIN, F. GRONBERG, R. LONG, H. RABITZ. Minimal time trajectories for two-level quantum
systems with two bounded controls, in "Journal of Mathematical Physics", June 2014, vol. 55, n® 6, 062106
[DOI : 10.1063/1.4882158], https://hal.archives-ouvertes.fr/hal-01097154

[6] Y. CHITOUR, F. COLONIUS, M. SIGALOTTI. Growth rates for persistently excited linear systems,
in "Mathematics of Control, Signals, and Systems", December 2014, vol. 26, n° 4, pp. 589-616
[DOI : 10.1007/s00498-014-0131-0], https://hal.archives-ouvertes.fr/hal-01097163

[71 R. Duits, U. BOSCAIN, F. RoSSI1, Y. SACHKOV. Association Fields via Cuspless Sub-Riemannian Geodesics
in SE(2), in "Journal of Mathematical Imaging and Vision", June 2014, vol. 49, n® 2, pp- 384-417
[DOI : 10.1007/s10851-013-0475-Y], https://hal.archives-ouvertes.fr/hal-01097158

[8] F. LAFONT, N. PESSEL, J.-F. BALMAT, J.-P. GAUTHIER. Unknown-input observability with an application to
prognostics for Waste Water Treatment Plants, in "European Journal of Control", March 2014, vol. 20, n®2,9
p. [DOI:10.1016/3.EJCON.2014.01.002], https://hal.inria.fr/hal-01097078

[9] T. MAILLOT, U. BOSCAIN, J.-P. GAUTHIER, U. SERRES. Lyapunov and Minimum-Time Path Planning for
Drones, in "Journal of Dynamical and Control Systems", May 2014, pp. 1-34 [DOI : 10.1007/s10883-014-
9222-Y], https://hal.archives-ouvertes.fr/hal-01097155

[10] G. MAZANTI. Stabilization of Persistently Excited Linear Systems by Delayed Feedback Laws, in "Systems
and Control Letters", June 2014, vol. 68, pp. 57-67 [DOI : 10.1016/3.SYSCONLE.2014.03.006], https://hal.
archives-ouvertes.fr/hal-00850971


https://hal.archives-ouvertes.fr/hal-01096715
https://hal.archives-ouvertes.fr/hal-01097161
https://hal.archives-ouvertes.fr/hal-01097161
https://hal.archives-ouvertes.fr/hal-01097156
https://hal.archives-ouvertes.fr/hal-01097159
https://hal.archives-ouvertes.fr/hal-01097154
https://hal.archives-ouvertes.fr/hal-01097163
https://hal.archives-ouvertes.fr/hal-01097158
https://hal.inria.fr/hal-01097078
https://hal.archives-ouvertes.fr/hal-01097155
https://hal.archives-ouvertes.fr/hal-00850971
https://hal.archives-ouvertes.fr/hal-00850971

14 Activity Report INRIA 2014

[11] F. MEHATS, Y. PRIVAT, M. SIGALOTTI. On the Controllability of Quantum Transport in an Elec-
tronic Nanostructure, in "SIAM Journal on Applied Mathematics", 2014, vol. 74, n° 6, pp. 1870-1894
[DOI : 10.1137/130939328], https://hal.archives-ouvertes.fr/hal-01097162

[12] A. RAPAPORT, I. HAIDAR, J. HARMAND. Global dynamics of the buffered chemostat for a general class of
response functions, in "Journal of Mathematical Biology", 2014, 30 p. [DOI : 10.1007/s00285-014-0814-
71, https://hal.inria.fr/hal-00923826

International Conferences with Proceedings

[13] U. BOSCAIN, J.-P. GAUTHIER, D. PRANDI, A. REMIZOV. Image Reconstruction Via Non-Isotropic Diffusion
in Dubins/Reed-Shepp- Like Control Systems, in "53th IEEE Conference on Decision and Control", Los
Angeles, United States, 2014, https://hal.inria.fr/hal-01103516

[14] J.-P. GAUTHIER, M. KAWSKI. Minimal Complexity Sinusoidal Controls for Path Planning, in "IEEE
Conference on Decision and Control", Los Angeles, United States, December 2014, https://hal.archives-
ouvertes.fr/hal-01097149

[15] J.-P. GAUTHIER, F. MONROY-PEREZ, L. JONATHAN. Non-holonomic interpolation motion planning for
the car with trailers, in "X VI Congreso Latinoamericano de Control Automético", Canctin, Mexico, October
2014, https://hal.archives-ouvertes.fr/hal-01097150

[16] I. HAIDAR, P. MASON, M. SIGALOTTI. Converse Lyapunov—Krasovskii Theorems for Uncertain Time-Delay
Systems, in "19th IFAC World Congress", Cape Town, South Africa, Proceedings of the 19th IFAC World
Congress, 2014, August 2014, pp. 10096-10100 [DOI : 10.3182/20140824-6-ZA-1003.00561], https://
hal.archives-ouvertes.fr/hal-01101995

Scientific Books (or Scientific Book chapters)
[17] G. STEFANI, U. BOSCAIN, J.-P. GAUTHIER, A. SARYCHEV, M. SIGALOTTI. Geometric Control Theory and

sub-Riemannian Geometry, Springer INdAAM Series, Springer, 2014, 372 p. , https://hal.archives-ouvertes.fr/
hal-00923636

Other Publications

[18] A. AGRACHEV, D. BARILARI, L. R1z71. The curvature: a variational approach, July 2014, 76 pages, 9
figures, https://hal.archives-ouvertes.fr/hal-00838195

[19] D. BARILARI, L. R1zzI. Comparison theorems for conjugate points in sub-Riemannian geometry, January
2014, 35 pages, 5 figures, https://hal.archives-ouvertes.fr/hal-0093 1840

[20] U. BOSCAIN. Spectral conditions for the controllability of the Schroedinger equation, June 2014, NETCO
2014 - New Trends in Optimal Control, Parallel session, https://hal.inria.fr/hal-01028 145

[21] U. BosCAIN, G. CHARLOT, M. GAYE, P. MASON. Local properties of almost-Riemannian structures in
dimension 3, July 2014, https://hal.archives-ouvertes.fr/hal-01017378

[22] U. BOSCAIN, D. PRANDI, M. SERI. Spectral analysis and the Aharonov-Bohm effect on certain almost-
Riemannian manifolds, June 2014, 28 pages, 6 figures, https://hal.archives-ouvertes.fr/hal-01019955


https://hal.archives-ouvertes.fr/hal-01097162
https://hal.inria.fr/hal-00923826
https://hal.inria.fr/hal-01103516
https://hal.archives-ouvertes.fr/hal-01097149
https://hal.archives-ouvertes.fr/hal-01097149
https://hal.archives-ouvertes.fr/hal-01097150
https://hal.archives-ouvertes.fr/hal-01101995
https://hal.archives-ouvertes.fr/hal-01101995
https://hal.archives-ouvertes.fr/hal-00923636
https://hal.archives-ouvertes.fr/hal-00923636
https://hal.archives-ouvertes.fr/hal-00838195
https://hal.archives-ouvertes.fr/hal-00931840
https://hal.inria.fr/hal-01028145
https://hal.archives-ouvertes.fr/hal-01017378
https://hal.archives-ouvertes.fr/hal-01019955

Project-Team GECO 15

[23] Y. CHITOUR, M. GAYE, P. MASON. Geometric and asymptotic properties associated with linear switched
systems, 2014, 37 pages, https://hal.archives-ouvertes.fr/hal-01064241

[24] Y. CHITOUR, G. MAZANTI, M. SIGALOTTI. Persistently damped transport on a network of circles, June
2014, https://hal.inria.fr/hal-00999743

[25] J.-P. GAUTHIER, F. MONROY-PEREZ. On certain hyperelliptic signals that are natural controls for
nonholonomic motion planning, 2014, https://hal.archives-ouvertes.fr/hal-01097151

[26] I. HAIDAR, P. MASON, M. SIGALOTTI. Converse Lyapunov-Krasovskii theorems for uncertain retarded
differential equations, January 2014, https://hal.inria.fr/hal-00924252

[27] F. JEAN, D. PRANDI. Complexity in control-affine systems, 2014, NETCO 2014, Parallel session, https://hal.
inria.fr/hal-01024628

[28] A. LERARIO, L. R1zzI. How many geodesics join two points on a contact sub-Riemannian manifold?, 2014,
41 pages, 10 figures, https://hal.archives-ouvertes.fr/hal-01096718

[29] E. PADURO, M. SIGALOTTI. Approximate Controllability of the Two Trapped lons System, 2014, https://hal.
inria.fr/hal-01092509

References in notes

[30] A. A. AGRACHEV, T. CHAMBRION. An estimation of the controllability time for single-input systems on
compact Lie groups, in "ESAIM Control Optim. Calc. Var.", 2006, vol. 12, n° 3, pp- 409441

[31] A. A. AGRACHEV, D. LIBERZON. Lie-algebraic stability criteria for switched systems, in "SIAM J. Control
Optim.", 2001, vol. 40, n° 1, pp. 253-269, http://dx.doi.org/10.1137/S0363012999365704

[32] A. A. AGRACHEV, Y. L. SACHKOV. Control theory from the geometric viewpoint, Encyclopaedia of
Mathematical Sciences, Springer-VerlagBerlin, 2004, vol. 87, xiv+412 p. , Control Theory and Optimization,
I

[33] A. A. AGRACHEYV, A. V. SARYCHEV. Navier-Stokes equations: controllability by means of low modes forcing,
in "J. Math. Fluid Mech.", 2005, vol. 7, n® 1, pp. 108—152, http://dx.doi.org/10.1007/s00021-004-0110-1

[34] F. ALBERTINI, D. D’ ALESSANDRO. Notions of controllability for bilinear multilevel quantum systems, in
"IEEE Trans. Automat. Control", 2003, vol. 48, n° 8, pp- 1399-1403

[35] C. ALTAFINI. Controllability properties for finite dimensional quantum Markovian master equations, in "J.
Math. Phys.", 2003, vol. 44, n® 6, pp- 2357-2372

[36] L. AMBROSIO, P. TILLI. Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its
Applications, Oxford University PressOxford, 2004, vol. 25, viii+133 p.

[37] G. ARECHAVALETA, J.-P. LAUMOND, H. HICHEUR, A. BERTHOZ. An optimality principle governing human
locomotion, in "IEEE Trans. on Robotics", 2008, vol. 24, n° 1


https://hal.archives-ouvertes.fr/hal-01064241
https://hal.inria.fr/hal-00999743
https://hal.archives-ouvertes.fr/hal-01097151
https://hal.inria.fr/hal-00924252
https://hal.inria.fr/hal-01024628
https://hal.inria.fr/hal-01024628
https://hal.archives-ouvertes.fr/hal-01096718
https://hal.inria.fr/hal-01092509
https://hal.inria.fr/hal-01092509
http://dx.doi.org/10.1137/S0363012999365704
http://dx.doi.org/10.1007/s00021-004-0110-1

16 Activity Report INRIA 2014

[38] L. BAUDOUIN. A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled
with classical nuclear dynamics, in "Port. Math. (N.S.)", 2006, vol. 63, n° 3, pp. 293-325

[39] L. BAUDOUIN, O. KAVIAN, J.-P. PUEL. Regularity for a Schrodinger equation with singular potentials and
application to bilinear optimal control, in "J. Differential Equations”, 2005, vol. 216, n° 1, pp. 188-222

[40] L. BAUDOUIN, J. SALOMON. Constructive solution of a bilinear optimal control problem for a Schrodinger
equation, in "Systems Control Lett.", 2008, vol. 57, n® 6, pp. 453-464, http://dx.doi.org/10.1016/j.sysconle.
2007.11.002

[41] K. BEAUCHARD. Local controllability of a 1-D Schrodinger equation, in "J. Math. Pures Appl. (9)", 2005,
vol. 84, n° 7, pp. 851-956

[42] K. BEAUCHARD, J.-M. CORON. Controllability of a quantum particle in a moving potential well, in "J. Funct.
Anal.", 2006, vol. 232, n® 2, pp. 328-389

[43] M. BELHADIJ, J. SALOMON, G. TURINICI. A stable toolkit method in quantum control, in "J. Phys. A", 2008,
vol. 41, n® 36, 362001, 10 p. , http://dx.doi.org/10.1088/1751-8113/41/36/362001

[44] F. BLANCHINI. Nonquadratic Lyapunov functions for robust control, in "Automatica J. IFAC", 1995, vol. 31,
n° 3, pp. 451-461, http://dx.doi.org/10.1016/0005-1098(94)00133-4

[45] F. BLANCHINI, S. MIANI. A new class of universal Lyapunov functions for the control of uncertain linear
systems, in "IEEE Trans. Automat. Control", 1999, vol. 44, n® 3, pp. 641-647, http://dx.doi.org/10.1109/9.
751368

[46] A. M. BLOCH, R. W. BROCKETT, C. RANGAN. Finite Controllability of Infinite-Dimensional Quantum
Systems, in "IEEE Trans. Automat. Control", 2010

[47] V. D. BLONDEL, J. THEYS, A. A. VLADIMIROV. An elementary counterexample to the finiteness con-
jecture, in "SIAM J. Matrix Anal. Appl.", 2003, vol. 24, n° 4, pp- 963-970, http://dx.doi.org/10.1137/
S0895479801397846

[48] A. BONFIGLIOLI, E. LANCONELLI, F. UGUZZONI. Stratified Lie groups and potential theory for their sub-
Laplacians, Springer Monographs in Mathematics, SpringerBerlin, 2007, xxvi+800 p.

[49] B. BONNARD, D. SUGNY. Time-minimal control of dissipative two-level quantum systems: the integrable
case, in "SIAM J. Control Optim.", 2009, vol. 48, n° 3, pp- 1289-1308, http://dx.doi.org/10.1137/080717043

[50] A. BORZI, E. DECKER. Analysis of a leap-frog pseudospectral scheme for the Schrodinger equation, in "J.
Comput. Appl. Math.", 2006, vol. 193, n° 1, pp. 65-88

[51] A. Borzl, U. HOHENESTER. Multigrid optimization schemes for solving Bose-Einstein condensate control
problems, in "SIAM J. Sci. Comput.", 2008, vol. 30, n° 1, pp. 441-462, http://dx.doi.org/10.1137/070686135

[52] C. BRIF, R. CHAKRABARTI, H. RABITZ. Control of quantum phenomena: Past, present, and future,
Advances in Chemical Physics, S. A. Rice (ed), Wiley, New York, 2010


http://dx.doi.org/10.1016/j.sysconle.2007.11.002
http://dx.doi.org/10.1016/j.sysconle.2007.11.002
http://dx.doi.org/10.1088/1751-8113/41/36/362001
http://dx.doi.org/10.1016/0005-1098(94)00133-4
http://dx.doi.org/10.1109/9.751368
http://dx.doi.org/10.1109/9.751368
http://dx.doi.org/10.1137/S0895479801397846
http://dx.doi.org/10.1137/S0895479801397846
http://dx.doi.org/10.1137/080717043
http://dx.doi.org/10.1137/070686135

Project-Team GECO 17

[53] F. BULLO, A. D. LEWIS. Geometric control of mechanical systems, Texts in Applied Mathematics, Springer-
VerlagNew York, 2005, vol. 49, xxiv+726 p.

[54] R. CABRERA, H. RABITZ. The landscape of quantum transitions driven by single-qubit unitary transforma-
tions with implications for entanglement, in "J. Phys. A", 2009, vol. 42, n® 27, 275303, 9 p. , http://dx.doi.
org/10.1088/1751-8113/42/27/275303

[55] G. CITTI, A. SARTI. A cortical based model of perceptual completion in the roto-translation space, in "J.
Math. Imaging Vision", 2006, vol. 24, n® 3, pp. 307-326, http://dx.doi.org/10.1007/s10851-005-3630-2

[56] J.-M. CORON. Control and nonlinearity, Mathematical Surveys and Monographs, American Mathematical
SocietyProvidence, RI, 2007, vol. 136, xiv+426 p.

[57]1 W. P. DAYAWANSA, C. F. MARTIN. A converse Lyapunov theorem for a class of dynamical systems which
undergo switching, in "IEEE Trans. Automat. Control", 1999, vol. 44, n° 4, pp- 751760, http://dx.doi.org/
10.1109/9.754812

[58] L. EL GHAOUI, S.-I. NICULESCU. Robust decision problems in engineering: a linear matrix inequality
approach, in "Advances in linear matrix inequality methods in control", Philadelphia, PA, Adv. Des. Control,
SIAM, 2000, vol. 2, pp. 3-37

[59] S. ERVEDOZA, J.-P. PUEL. Approximate controllability for a system of Schrodinger equations modeling a
single trapped ion, in "Ann. Inst. H. Poincaré Anal. Non Linéaire", 2009, vol. 26, pp. 2111-2136

[60] M. FLIESS, J. LEVINE, P. MARTIN, P. ROUCHON. Flatness and defect of non-linear systems: introductory
theory and examples, in "Internat. J. Control", 1995, vol. 61, n® 6, pp- 1327-1361, http://dx.doi.org/10.1080/
00207179508921959

[61] B. FRANCHI, R. SERAPIONI, F. SERRA CASSANO. Regular hypersurfaces, intrinsic perimeter and implicit
function theorem in Carnot groups, in "Comm. Anal. Geom.", 2003, vol. 11, n° 5, pp- 909-944

[62] M. GUGAT. Optimal switching boundary control of a string to rest in finite time, in "ZAMM Z. Angew. Math.
Mech.", 2008, vol. 88, n® 4, pp. 283-305

[63] J. HESPANHA, S. MORSE. Stability of switched systems with average dwell-time, in "Proceedings of the 38th
IEEE Conference on Decision and Control, CDC 1999, Phoenix, AZ, USA", 1999, pp. 2655-2660

[64] D. HUBEL, T. WIESEL. Brain and Visual Perception: The Story of a 25-Year Collaboration, Oxford
University PressOxford, 2004

[65] R. ILLNER, H. LANGE, H. TEISMANN. Limitations on the control of Schrodinger equations, in "ESAIM
Control Optim. Calc. Var.", 2006, vol. 12, n® 4, pp. 615-635, http://dx.doi.org/10.1051/cocv:2006014

[66] A. ISIDORI. Nonlinear control systems, Communications and Control Engineering Series, Second, Springer-
VerlagBerlin, 1989, xii+479 p., An introduction

[67] K. ITo, K. KUNISCH. Optimal bilinear control of an abstract Schrodinger equation, in "SIAM J. Control
Optim.", 2007, vol. 46, n° 1, pp- 274-287


http://dx.doi.org/10.1088/1751-8113/42/27/275303
http://dx.doi.org/10.1088/1751-8113/42/27/275303
http://dx.doi.org/10.1007/s10851-005-3630-2
http://dx.doi.org/10.1109/9.754812
http://dx.doi.org/10.1109/9.754812
http://dx.doi.org/10.1080/00207179508921959
http://dx.doi.org/10.1080/00207179508921959
http://dx.doi.org/10.1051/cocv:2006014

18 Activity Report INRIA 2014

[68] K. ITO, K. KUNISCH. Asymptotic properties of feedback solutions for a class of quantum control problems,
in "SIAM J. Control Optim.", 2009, vol. 48, n® 4, pp. 2323-2343, http://dx.doi.org/10.1137/080720784

[69] R. KALMAN. When is a linear control system optimal?, in "ASME Transactions, Journal of Basic Engineer-
ing", 1964, vol. 86, pp. 51-60

[70] N. KHANEIJA, S. J. GLASER, R. W. BROCKETT. Sub-Riemannian geometry and time optimal control of three

spin systems: quantum gates and coherence transfer, in "Phys. Rev. A (3)", 2002, vol. 65, n® 3, part A,
032301, 11 p.

[71] N. KHANEJA, B. Luy, S. J. GLASER. Boundary of quantum evolution under decoherence, in "Proc. Natl.
Acad. Sci. USA", 2003, vol. 100, n® 23, pp. 13162-13166, http://dx.doi.org/10.1073/pnas.2134111100

[72] V. S. KOZYAKIN. Algebraic unsolvability of a problem on the absolute stability of desynchronized systems, in
"Avtomat. i Telemekh.", 1990, pp. 41-47

[73] G. LAFFERRIERE, H. J. SUSSMANN. A differential geometry approach to motion planning, in "Nonholonomic
Motion Planning (Z. Li and J. F. Canny, editors)", Kluwer Academic Publishers, 1993, pp. 235-270

[74]J.-S. L1, N. KHANEJA. Ensemble control of Bloch equations, in "IEEE Trans. Automat. Control", 2009, vol.
54,1n° 3, pp. 528-536, http://dx.doi.org/10.1109/TAC.2009.2012983

[75] D. LIBERZON, J. P. HESPANHA, A. S. MORSE. Stability of switched systems: a Lie-algebraic condition, in
"Systems Control Lett.", 1999, vol. 37, n° 3, pp- 117-122, http://dx.doi.org/10.1016/S0167-6911(99)00012-2

[76] D. LIBERZON. Switching in systems and control, Systems & Control: Foundations & Applications, Birkhduser
Boston Inc.Boston, MA, 2003, xiv+233 p.

[77] H. LIN, P. J. ANTSAKLIS. Stability and stabilizability of switched linear systems: a survey of recent results,
in "IEEE Trans. Automat. Control", 2009, vol. 54, n°® 2, pp- 308-322, http://dx.doi.org/10.1109/TAC.2008.
2012009

[78] Y. LIN, E. D. SONTAG, Y. WANG. A smooth converse Lyapunov theorem for robust stability, in "SIAM J.
Control Optim.", 1996, vol. 34, n° 1, pp- 124-160, http://dx.doi.org/10.1137/S0363012993259981

[79] W. L1U. Averaging theorems for highly oscillatory differential equations and iterated Lie brackets, in "SIAM
J. Control Optim.", 1997, vol. 35, n® 6, pp. 1989-2020, http://dx.doi.org/10.1137/S0363012994268667

[80] Y. MADAY, J. SALOMON, G. TURINICI. Monotonic parareal control for quantum systems, in "SIAM J.
Numer. Anal.", 2007, vol. 45, n® 6, pp. 2468-2482, http://dx.doi.org/10.1137/050647086

[81] A. N. MICHEL, Y. SUN, A. P. MOLCHANOV. Stability analysis of discountinuous dynamical systems
determined by semigroups, in "IEEE Trans. Automat. Control", 2005, vol. 50, n® 9, pp. 1277-1290, http://dx.
doi.org/10.1109/TAC.2005.854582

[82] M. MIRRAHIMI. Lyapunov control of a particle in a finite quantum potential well, in "Proceedings of the 45th
IEEE Conference on Decision and Control", 2006


http://dx.doi.org/10.1137/080720784
http://dx.doi.org/10.1073/pnas.2134111100
http://dx.doi.org/10.1109/TAC.2009.2012983
http://dx.doi.org/10.1016/S0167-6911(99)00012-2
http://dx.doi.org/10.1109/TAC.2008.2012009
http://dx.doi.org/10.1109/TAC.2008.2012009
http://dx.doi.org/10.1137/S0363012993259981
http://dx.doi.org/10.1137/S0363012994268667
http://dx.doi.org/10.1137/050647086
http://dx.doi.org/10.1109/TAC.2005.854582
http://dx.doi.org/10.1109/TAC.2005.854582

Project-Team GECO 19

[83] M. MIRRAHIMI, P. ROUCHON. Controllability of quantum harmonic oscillators, in "IEEE Trans. Automat.
Control", 2004, vol. 49, n°® 5, pp. 745-747

[84] A. P. MOLCHANOV, Y. S. PYATNITSKIY. Criteria of asymptotic stability of differential and difference
inclusions encountered in control theory, in "Systems Control Lett.", 1989, vol. 13, n® 1, pp. 59-64, http://
dx.doi.org/10.1016/0167-6911(89)90021-2

[85] R. MONTGOMERY. A tour of subriemannian geometries, their geodesics and applications, Mathematical
Surveys and Monographs, American Mathematical SocietyProvidence, RI, 2002, vol. 91, xx+259 p.

[86] R. M. MURRAY, S. S. SASTRY. Nonholonomic motion planning: steering using sinusoids, in "IEEE Trans.
Automat. Control", 1993, vol. 38, n® 5, pp. 700-716, http://dx.doi.org/10.1109/9.277235

[87] V. NERSESYAN. Growth of Sobolev norms and controllability of the Schrodinger equation, in "Comm. Math.
Phys.", 2009, vol. 290, n® 1, pp. 371-387

[88] A. Y. NG, S. RUSSELL. Algorithms for Inverse Reinforcement Learning, in "Proc. 17th International Conf. on
Machine Learning", 2000, pp. 663-670

[89] J. PETITOT. Neurogéometrie de la vision. Modeles mathématiques et physiques des architectures fonction-
nelles, Les Editions de I’Ecole Polythechnique, 2008

[90] J. PETITOT, Y. TONDUT. Vers une neurogéométrie. Fibrations corticales, structures de contact et contours
subjectifs modaux, in "Math. Inform. Sci. Humaines", 1999, n® 145, pp. 5-101

[91] H. RABITZ, H. DE VIVIE-RIEDLE, R. MOTZKUS, K. KOMPA. Wither the future of controlling quantum
phenomena?, in "SCIENCE", 2000, vol. 288, pp. 824-828

[92] D. RoSSINI, T. CALARCO, V. GIOVANNETTI, S. MONTANGERO, R. FAZ1O. Decoherence by engineered
quantum baths, in "J. Phys. A", 2007, vol. 40, n® 28, pp. 8033-8040, http://dx.doi.org/10.1088/1751-8113/
40/28/S12

[93] P. ROUCHON. Control of a quantum particle in a moving potential well, in "Lagrangian and Hamiltonian
methods for nonlinear control 2003", Laxenburg, IFAC, 2003, pp. 287-290

[94] A. SASANE. Stability of switching infinite-dimensional systems, in "Automatica J. IFAC", 2005, vol. 41, n®
1, pp. 75-78, http://dx.doi.org/10.1016/j.automatica.2004.07.013

[95] A. SAURABH, M. H. FALK, M. B. ALEXANDRE. Stability analysis of linear hyperbolic systems with

switching parameters and boundary conditions, in "Proceedings of the 47th IEEE Conference on Decision
and Control, CDC 2008, December 9-11, 2008, Canctin, Mexico", 2008, pp. 2081-2086

[96] M. SHAPIRO, P. BRUMER. Principles of the Quantum Control of Molecular Processes, Principles of the
Quantum Control of Molecular Processes, pp. 250. Wiley-VCH, February 2003

[97] R. SHORTEN, F. WIRTH, O. MASON, K. WULFF, C. KING. Stability criteria for switched and hybrid systems,
in "SIAM Rev.", 2007, vol. 49, n® 4, pp. 545-592, http://dx.doi.org/10.1137/05063516X


http://dx.doi.org/10.1016/0167-6911(89)90021-2
http://dx.doi.org/10.1016/0167-6911(89)90021-2
http://dx.doi.org/10.1109/9.277235
http://dx.doi.org/10.1088/1751-8113/40/28/S12
http://dx.doi.org/10.1088/1751-8113/40/28/S12
http://dx.doi.org/10.1016/j.automatica.2004.07.013
http://dx.doi.org/10.1137/05063516X

20 Activity Report INRIA 2014

[98] H. J. SUSSMANN. A continuation method for nonholonomic path finding, in "Proceedings of the 32th IEEE
Conference on Decision and Control, CDC 1993, Piscataway, NJ, USA", 1993, pp. 2718-2723

[99] E. TODOROV. /2, in "Optimal control theory", Bayesian Brain: Probabilistic Approaches to Neural Coding,
Doya K (ed), 2006, pp. 269-298

[100] G. TURINICI. On the controllability of bilinear quantum systems, in "Mathematical models and methods
for ab initio Quantum Chemistry", M. DEFRANCESCHI, C. LE BRIS (editors), Lecture Notes in Chemistry,
Springer, 2000, vol. 74

[101] L. YATSENKO, S. GUERIN, H. JAUSLIN. Topology of adiabatic passage, in "Phys. Rev. A", 2002, vol. 65,
043407, 7 p.

[102] E. ZUAZUA. Switching controls, in "Journal of the European Mathematical Society", 2011, vol. 13, n° 1,
pp. 85-117



