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2. Overall Objectives

2.1. An overview of geometric numerical integration
A fundamental and enduring challenge in science and technology is the quantitative prediction of time-
dependent nonlinear phenomena. While dynamical simulation (for ballistic trajectories) was one of the first
applications of the digital computer, the problems treated, the methods used, and their implementation have
all changed a great deal over the years. Astronomers use simulation to study long term evolution of the solar
system. Molecular simulations are essential for the design of new materials and for drug discovery. Simulation
can replace or guide experiment, which often is difficult or even impossible to carry out as our ability to
fabricate the necessary devices is limited.
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During the last decades, we have seen dramatic increases in computing power, bringing to the fore an ever
widening spectrum of applications for dynamical simulation. At the boundaries of different modeling regimes,
it is found that computations based on the fundamental laws of physics are under-resolved in the textbook
sense of numerical methods. Because of the vast range of scales involved in modeling even relatively simple
biological or material functions, this limitation will not be overcome by simply requiring more computing
power within any realistic time. One therefore has to develop numerical methods which capture crucial
structures even if the method is far from “converging" in the mathematical sense. In this context, we are forced
increasingly to think of the numerical algorithm as a part of the modeling process itself. A major step forward
in this area has been the development of structure-preserving or “geometric" integrators which maintain
conservation laws, dissipation rates, or other key features of the continuous dynamical model. Conservation of
energy and momentum are fundamental for many physical models; more complicated invariants are maintained
in applications such as molecular dynamics and play a key role in determining the long term stability of
methods. In mechanical models (biodynamics, vehicle simulation, astrodynamics) the available structure may
include constraint dynamics, actuator or thruster geometry, dissipation rates and properties determined by
nonlinear forms of damping.
In recent years the growth of geometric integration has been very noticeable. Features such as symplecticity
or time-reversibility are now widely recognized as essential properties to preserve, owing to their physical
significance. This has motivated a lot of research [65], [62], [61] and led to many significant theoretical
achievements (symplectic and symmetric methods, volume-preserving integrators, Lie-group methods, ...).
In practice, a few simple schemes such as the Verlet method or the Störmer method have been used for years
with great success in molecular dynamics or astronomy. However, they now need to be further improved in
order to fit the tremendous increase of complexity and size of the models.

2.2. Overall objectives
To become more specific, the project IPSO aims at finding and implementing new structure-preserving
schemes and at understanding the behavior of existing ones for the following type of problems:

• systems of differential equations posed on a manifold.

• systems of differential-algebraic equations of index 2 or 3, where the constraints are part of the
equations.

• Hamiltonian systems and constrained Hamiltonian systems (which are special cases of the first two
items though with some additional structure).

• highly-oscillatory systems (with a special focus of those resulting from the Schrödinger equation).

Although the field of application of the ideas contained in geometric integration is extremely wide (e.g.
robotics, astronomy, simulation of vehicle dynamics, biomechanical modeling, biomolecular dynamics, geo-
dynamics, chemistry...), IPSO will mainly concentrate on applications for molecular dynamics simulation and
laser simulation:

• There is a large demand in biomolecular modeling for models that integrate microscopic molecular
dynamics simulation into statistical macroscopic quantities. These simulations involve huge systems
of ordinary differential equations over very long time intervals. This is a typical situation where the
determination of accurate trajectories is out of reach and where one has to rely on the good qualitative
behavior of structure-preserving integrators. Due to the complexity of the problem, more efficient
numerical schemes need to be developed.

• The demand for new models and/or new structure-preserving schemes is also quite large in laser
simulations. The propagation of lasers induces, in most practical cases, several well-separated scales:
the intrinsically highly-oscillatory waves travel over long distances. In this situation, filtering the
oscillations in order to capture the long-term trend is what is required by physicists and engineers.
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3. Research Program

3.1. Structure-preserving numerical schemes for solving ordinary differential
equations
Participants: François Castella, Philippe Chartier, Erwan Faou, Vilmart Gilles.

ordinary differential equation, numerical integrator, invariant, Hamiltonian system, reversible system, Lie-
group system

In many physical situations, the time-evolution of certain quantities may be written as a Cauchy problem for a
differential equation of the form

y′(t) = f(y(t)),

y(0) = y0.
(1)

For a given y0, the solution y(t) at time t is denoted ϕt(y0). For fixed t, ϕt becomes a function of y0 called the
flow of (1). From this point of view, a numerical scheme with step size h for solving (1) may be regarded as an
approximation Φh of ϕh. One of the main questions of geometric integration is whether intrinsic properties
of ϕt may be passed on to Φh.

This question can be more specifically addressed in the following situations:

3.1.1. Reversible ODEs
The system (1) is said to be ρ-reversible if there exists an involutive linear map ρ such that

ρ ◦ ϕt = ϕ−1t ◦ ρ = ϕ−t ◦ ρ. (2)

It is then natural to require that Φh satisfies the same relation. If this is so, Φh is said to be symmetric.
Symmetric methods for reversible systems of ODEs are just as much important as symplectic methods for
Hamiltonian systems and offer an interesting alternative to symplectic methods.

3.1.2. ODEs with an invariant manifold
The system (1) is said to have an invariant manifold g whenever

M = {y ∈ Rn; g(y) = 0} (3)

is kept globally invariant by ϕt. In terms of derivatives and for sufficiently differentiable functions f and g,
this means that

∀ y ∈ M, g′(y)f(y) = 0.

As an example, we mention Lie-group equations, for which the manifold has an additional group structure.
This could possibly be exploited for the space-discretisation. Numerical methods amenable to this sort of
problems have been reviewed in a recent paper [60] and divided into two classes, according to whether they
use g explicitly or through a projection step. In both cases, the numerical solution is forced to live on the
manifold at the expense of some Newton’s iterations.
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3.1.3. Hamiltonian systems
Hamiltonian problems are ordinary differential equations of the form:

ṗ(t) = −∇qH(p(t), q(t)) ∈ Rd

q̇(t) = ∇pH(p(t), q(t)) ∈ Rd
(4)

with some prescribed initial values (p(0), q(0)) = (p0, q0) and for some scalar function H , called the
Hamiltonian. In this situation,H is an invariant of the problem. The evolution equation (4) can thus be regarded
as a differential equation on the manifold

M = {(p, q) ∈ Rd × Rd;H(p, q) = H(p0, q0)}.

Besides the Hamiltonian function, there might exist other invariants for such systems: when there exist d
invariants in involution, the system (4) is said to be integrable. Consider now the parallelogram P originating
from the point (p, q) ∈ R2d and spanned by the two vectors ξ ∈ R2d and η ∈ R2d, and let ω(ξ, η) be the sum
of the oriented areas of the projections over the planes (pi, qi) of P ,

ω(ξ, η) = ξTJη,

where J is the canonical symplectic matrix

J =

[
0 Id

−Id 0

]
.

A continuously differentiable map g from R2d to itself is called symplectic if it preserves ω, i.e. if

ω(g′(p, q)ξ, g′(p, q)η) = ω(ξ, η).

A fundamental property of Hamiltonian systems is that their exact flow is symplectic. Integrable Hamiltonian
systems behave in a very remarkable way: as a matter of fact, their invariants persist under small perturbations,
as shown in the celebrated theory of Kolmogorov, Arnold and Moser. This behavior motivates the introduction
of symplectic numerical flows that share most of the properties of the exact flow. For practical simulations of
Hamiltonian systems, symplectic methods possess an important advantage: the error-growth as a function of
time is indeed linear, whereas it would typically be quadratic for non-symplectic methods.

3.1.4. Differential-algebraic equations
Whenever the number of differential equations is insufficient to determine the solution of the system, it may
become necessary to solve the differential part and the constraint part altogether. Systems of this sort are
called differential-algebraic systems. They can be classified according to their index, yet for the purpose of
this expository section, it is enough to present the so-called index-2 systems

ẏ(t) = f(y(t), z(t)),

0 = g(y(t)),
(5)

where initial values (y(0), z(0)) = (y0, z0) are given and assumed to be consistent with the constraint
manifold. By constraint manifold, we imply the intersection of the manifold

M1 = {y ∈ Rn, g(y) = 0}
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and of the so-called hidden manifold

M2 = {(y, z) ∈ Rn × Rm,
∂g

∂y
(y)f(y, z) = 0}.

This manifold M = M1

⋂
M2 is the manifold on which the exact solution (y(t), z(t)) of (5) lives.

There exists a whole set of schemes which provide a numerical approximation lying on M1. Furthermore,
this solution can be projected on the manifold M by standard projection techniques. However, it it worth
mentioning that a projection destroys the symmetry of the underlying scheme, so that the construction of a
symmetric numerical scheme preserving M requires a more sophisticated approach.

3.2. Highly-oscillatory systems
Participants: François Castella, Philippe Chartier, Nicolas Crouseilles, Erwan Faou, Florian Méhats, Mo-
hammed Lemou, Gilles Vilmart.

second-order ODEs, oscillatory solutions, Schrödinger and wave equations, step size restrictions.

In applications to molecular dynamics or quantum dynamics for instance, the right-hand side of (1) involves
fast forces (short-range interactions) and slow forces (long-range interactions). Since fast forces are much
cheaper to evaluate than slow forces, it seems highly desirable to design numerical methods for which the
number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

A typical model of highly-oscillatory systems is the second-order differential equations

q̈ = −∇V (q) (6)

where the potential V (q) is a sum of potentials V = W + U acting on different time-scales, with ∇2W
positive definite and ‖∇2W‖ >> ‖∇2U‖. In order to get a bounded error propagation in the linearized
equations for an explicit numerical method, the step size must be restricted according to

hω < C,

whereC is a constant depending on the numerical method and where ω is the highest frequency of the problem,
i.e. in this situation the square root of the largest eigenvalue of∇2W . In applications to molecular dynamics for
instance, fast forces deriving from W (short-range interactions) are much cheaper to evaluate than slow forces
deriving from U (long-range interactions). In this case, it thus seems highly desirable to design numerical
methods for which the number of evaluations of slow forces is not (at least not too much) affected by the
presence of fast forces.

Another prominent example of highly-oscillatory systems is encountered in quantum dynamics where the
Schrödinger equation is the model to be used. Assuming that the Laplacian has been discretized in space, one
indeed gets the time-dependent Schrödinger equation:

iψ̇(t) =
1

ε
H(t)ψ(t), (7)

where H(t) is finite-dimensional matrix and where ε typically is the square-root of a mass-ratio (say
electron/ion for instance) and is small (ε ≈ 10−2 or smaller). Through the coupling with classical mechanics
(H(t) is obtained by solving some equations from classical mechanics), we are faced once again with two
different time-scales, 1 and ε. In this situation also, it is thus desirable to devise a numerical method able to
advance the solution by a time-step h > ε.
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3.3. Geometric schemes for the Schrödinger equation
Participants: François Castella, Philippe Chartier, Erwan Faou, Florian Méhats, Gilles Vilmart.

Schrödinger equation, variational splitting, energy conservation.

Given the Hamiltonian structure of the Schrödinger equation, we are led to consider the question of energy
preservation for time-discretization schemes.

At a higher level, the Schrödinger equation is a partial differential equation which may exhibit Hamiltonian
structures. This is the case of the time-dependent Schrödinger equation, which we may write as

iε
∂ψ

∂t
= Hψ, (8)

where ψ = ψ(x, t) is the wave function depending on the spatial variables x = (x1, · · · , xN ) with xk ∈ Rd

(e.g., with d = 1 or 3 in the partition) and the time t ∈ R. Here, ε is a (small) positive number representing the
scaled Planck constant and i is the complex imaginary unit. The Hamiltonian operator H is written

H = T + V

with the kinetic and potential energy operators

T = −
N∑

k=1

ε2

2mk
∆xk

and V = V (x),

where mk > 0 is a particle mass and ∆xk
the Laplacian in the variable xk ∈ Rd, and where the real-valued

potential V acts as a multiplication operator on ψ.

The multiplication by i in (8) plays the role of the multiplication by J in classical mechanics, and the energy
〈ψ|H|ψ〉 is conserved along the solution of (8), using the physicists’ notations 〈u|A|u〉 = 〈u,Au〉 where 〈 , 〉
denotes the Hermitian L2-product over the phase space. In quantum mechanics, the number N of particles is
very large making the direct approximation of (8) very difficult.

The numerical approximation of (8) can be obtained using projections onto submanifolds of the phase space,
leading to various PDEs or ODEs: see [64], [63] for reviews. However the long-time behavior of these
approximated solutions is well understood only in this latter case, where the dynamics turns out to be finite
dimensional. In the general case, it is very difficult to prove the preservation of qualitative properties of (8) such
as energy conservation or growth in time of Sobolev norms. The reason for this is that backward error analysis
is not directly applicable for PDEs. Overwhelming these difficulties is thus a very interesting challenge.

A particularly interesting case of study is given by symmetric splitting methods, such as the Strang splitting:

ψ1 = exp (−i(δt)V/2) exp (i(δt)∆) exp (−i(δt)V/2)ψ0 (9)

where δt is the time increment (we have set all the parameters to 1 in the equation). As the Laplace operator
is unbounded, we cannot apply the standard methods used in ODEs to derive long-time properties of these
schemes. However, its projection onto finite dimensional submanifolds (such as Gaussian wave packets space
or FEM finite dimensional space of functions in x) may exhibit Hamiltonian or Poisson structure, whose
long-time properties turn out to be more tractable.

3.4. High-frequency limit of the Helmholtz equation
Participant: François Castella.

waves, Helmholtz equation, high oscillations.
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The Helmholtz equation models the propagation of waves in a medium with variable refraction index. It is a
simplified version of the Maxwell system for electro-magnetic waves.

The high-frequency regime is characterized by the fact that the typical wavelength of the signals under
consideration is much smaller than the typical distance of observation of those signals. Hence, in the high-
frequency regime, the Helmholtz equation at once involves highly oscillatory phenomena that are to be
described in some asymptotic way. Quantitatively, the Helmholtz equation reads

iαεuε(x) + ε2∆xuε + n2(x)uε = fε(x). (10)

Here, ε is the small adimensional parameter that measures the typical wavelength of the signal, n(x) is the
space-dependent refraction index, and fε(x) is a given (possibly dependent on ε) source term. The unknown
is uε(x). One may think of an antenna emitting waves in the whole space (this is the fε(x)), thus creating at
any point x the signal uε(x) along the propagation. The small αε > 0 term takes into account damping of the
waves as they propagate.

One important scientific objective typically is to describe the high-frequency regime in terms of rays
propagating in the medium, that are possibly refracted at interfaces, or bounce on boundaries, etc. Ultimately,
one would like to replace the true numerical resolution of the Helmholtz equation by that of a simpler,
asymptotic model, formulated in terms of rays.

In some sense, and in comparison with, say, the wave equation, the specificity of the Helmholtz equation is
the following. While the wave equation typically describes the evolution of waves between some initial time
and some given observation time, the Helmholtz equation takes into account at once the propagation of waves
over infinitely long time intervals. Qualitatively, in order to have a good understanding of the signal observed
in some bounded region of space, one readily needs to be able to describe the propagative phenomena in the
whole space, up to infinity. In other words, the “rays” we refer to above need to be understood from the initial
time up to infinity. This is a central difficulty in the analysis of the high-frequency behaviour of the Helmholtz
equation.

3.5. From the Schrödinger equation to Boltzmann-like equations
Participant: François Castella.

Schrödinger equation, asymptotic model, Boltzmann equation.

The Schrödinger equation is the appropriate way to describe transport phenomena at the scale of electrons.
However, for real devices, it is important to derive models valid at a larger scale.

In semi-conductors, the Schrödinger equation is the ultimate model that allows to obtain quantitative informa-
tion about electronic transport in crystals. It reads, in convenient adimensional units,

i∂tψ(t, x) = −1

2
∆xψ + V (x)ψ, (11)

where V (x) is the potential and ψ(t, x) is the time- and space-dependent wave function. However, the size
of real devices makes it important to derive simplified models that are valid at a larger scale. Typically, one
wishes to have kinetic transport equations. As is well-known, this requirement needs one to be able to describe
“collisions” between electrons in these devices, a concept that makes sense at the macroscopic level, while
it does not at the microscopic (electronic) level. Quantitatively, the question is the following: can one obtain
the Boltzmann equation (an equation that describes collisional phenomena) as an asymptotic model for the
Schrödinger equation, along the physically relevant micro-macro asymptotics? From the point of view of
modelling, one wishes here to understand what are the “good objects”, or, in more technical words, what are the
relevant “cross-sections”, that describe the elementary collisional phenomena. Quantitatively, the Boltzmann
equation reads, in a simplified, linearized, form :
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∂tf(t, x, v) =

∫
R3

σ(v, v′) [f(t, x, v′)− f(t, x, v)]dv′. (12)

Here, the unknown is f(x, v, t), the probability that a particle sits at position x, with a velocity v, at time t.
Also, σ(v, v′) is called the cross-section, and it describes the probability that a particle “jumps” from velocity
v to velocity v′ (or the converse) after a collision process.

4. Application Domains

4.1. Laser physics
Laser physics considers the propagation over long space (or time) scales of high frequency waves. Typically,
one has to deal with the propagation of a wave having a wavelength of the order of 10−6m, over distances
of the order 10−2m to 104m. In these situations, the propagation produces both a short-scale oscillation and
exhibits a long term trend (drift, dispersion, nonlinear interaction with the medium, or so), which contains
the physically important feature. For this reason, one needs to develop ways of filtering the irrelevant high-
oscillations, and to build up models and/or numerical schemes that do give information on the long-term
behavior. In other terms, one needs to develop high-frequency models and/or high-frequency schemes.

Generally speaking, the demand in developing such models or schemes in the context of laser physics, or
laser/matter interaction, is large. It involves both modeling and numerics (description of oscillations, structure
preserving algorithms to capture the long-time behaviour, etc).

In a very similar spirit, but at a different level of modelling, one would like to understand the very coupling
between a laser propagating in, say, a fiber, and the atoms that build up the fiber itself.

The standard, quantum, model in this direction is called the Bloch model: it is a Schrödinger like equation that
describes the evolution of the atoms, when coupled to the laser field. Here the laser field induces a potential
that acts directly on the atom, and the link between this potential and the laser itself is given by the so-called
dipolar matrix, a matrix made up of physical coefficients that describe the polarization of the atom under the
applied field.

The scientific objective here is twofold. First, one wishes to obtain tractable asymptotic models that average out
the high oscillations of the atomic system and of the laser field. A typical phenomenon here is the resonance
between the field and the energy levels of the atomic system. Second, one wishes to obtain good numerical
schemes in order to solve the Bloch equation, beyond the oscillatory phenomena entailed by this model.

4.2. Molecular Dynamics
In classical molecular dynamics, the equations describe the evolution of atoms or molecules under the action
of forces deriving from several interaction potentials. These potentials may be short-range or long-range and
are treated differently in most molecular simulation codes. In fact, long-range potentials are computed at only a
fraction of the number of steps. By doing so, one replaces the vector field by an approximate one and alternates
steps with the exact field and steps with the approximate one. Although such methods have been known and
used with success for years, very little is known on how the “space" approximation (of the vector field) and
the time discretization should be combined in order to optimize the convergence. Also, the fraction of steps
where the exact field is used for the computation is mainly determined by heuristic reasons and a more precise
analysis seems necessary. Finally, let us mention that similar questions arise when dealing with constrained
differential equations, which are a by-product of many simplified models in molecular dynamics (this is the
case for instance if one replaces the highly-oscillatory components by constraints).
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4.3. Plasma physics
The development of efficient numerical methods is essential for the simulation of plasmas and beams at the
kinetic level of description (Vlasov type equations). It is well known that plasmas or beams give rise to
small scales (Debye length, Larmor radius, gyroperiod, mean free path...) which make numerical simulations
challenging. Instead of solving the limit or averaged models by considering these small scales equal to zero,
our aim is to explore a different strategy, which consists in using the original kinetic equation. Specific
numerical scheme called ‘Asymptotic Preserving" scheme is then built to discretize the original kinetic
equation. Such a scheme allows to pass to the limit with no stability problems, and provide in the limit a
consistent approximation of the limit or average model. A systematic and robust way to design such a scheme
is the micro-macro decomposition in which the solution of the original model is decomposed into an averaged
part and a remainder.

5. New Results

5.1. Highlights of the Year
• E. Faou was plenary speaker at the CANUM, Congrès d’analyse numérique, France, June 2014

• E. Faou was invited to give two presentations in the Analysis and applied mathematics seminars,
Cambridge, UK, February 2014.

5.2. Multi-revolution composition methods for highly oscillatory differential
equations
In [22], we introduce a new class of multi-revolution composition methods (MRCM) for the approximation of
the N th-iterate of a given near-identity map. When applied to the numerical integration of highly oscillatory
systems of differential equations, the technique benefits from the properties of standard composition methods:
it is intrinsically geometric and well-suited for Hamiltonian or divergence-free equations for instance. We
prove error estimates with error constants that are independent of the oscillatory frequency. Numerical
experiments, in particular for the nonlinear Schrödinger equation, illustrate the theoretical results, as well
as the efficiency and versatility of the methods.

5.3. Multiscale schemes for the BGK-Vlasov-Poisson system in the
quasi-neutral and fluid limits. Stability analysis and first order schemes
In [51], in collaboration with G. Dimarco (University of Ferrara, Italy) and M.-H. Vignal (University of
Toulouse), we deal with the development and the analysis of asymptotic stable and consistent schemes in
the joint quasi-neutral and fluid limits for the collisional Vlasov-Poisson system. In these limits, the classical
explicit schemes suffer from time step restrictions due to the small plasma period and Knudsen number. To
solve this problem, we propose a new scheme stable for choices of time steps independent from the small scales
dynamics and with comparable computational cost with respect to standard explicit schemes. In addition, this
scheme reduces automatically to consistent discretizations of the underlying asymptotic systems. In this first
work on this subject, we propose a first order in time scheme and we perform a relative linear stability analysis
to deal with such problems. The framework we propose permits to extend this approach to high order schemes
in the next future. We finally show the capability of the method in dealing with small scales through numerical
experiments.
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5.4. Asymptotic preserving scheme for a kinetic model describing
incompressible fluids
In [52], in collaboration with M. Lemou (CNRS, Université de Rennes 1) and R. Rao, A. Ruhi, M. Sekhar
(Indian Institute of Science, India), the kinetic theory of fluid turbulence modeling developed by Degond and
Lemou is considered for further study, analysis and simulation. Starting with the Boltzmann like equation
representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence.
In order to describe some important turbulence phenomenology, the relaxation time incorporates a dependency
on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods.
To investigate this problem, we focus here on a multi-dimensional prototype model and first propose an
appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle
the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests
are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.

5.5. Comparison of numerical solvers for anisotropic diffusion equations
arising in plasma physics
In [39], in collaboration G. Latu (IRFM, Cadarache), we performed a comparison of numerical schemes
to approximate anisotropic diffusion problems arising in tokamak plasma physics. We focus on the spatial
approximation by using finite volume method and on the time discretization. This latter point is delicate since
the use of explicit integrators leads to a severe restriction on the time step. Then, implicit and semi-implicit
schemes are coupled to finite volumes space discretization and are compared for some classical problems
relevant for magnetically confined plasmas. It appears that the semi-implicit approaches (using ARK methods
or directional splitting) turn out to be the most efficient on the numerical results, especially when nonlinear
problems are studied on refined meshes, using high order methods in space.

5.6. Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell
coupling for Boltzmann- BGK-like equations in the diffusion scaling
In [38], in collaboration with A. Crestetto (University of Nantes), we are concerned with the numerical
simulation of the collisional Vlasov equation in the diffusion limit using particles. To that purpose, we use
a micro-macro decomposition technique introduced by Bennoune, Lemou and Mieussens. Whereas a uniform
grid was used to approximate both the micro and the macro part of the full distribution function in their
article, we use here a particle approximation for the kinetic (micro) part, the fluid (macro) part being always
discretized by standard finite volume schemes. There are many advantages in doing so: (i) the so-obtained
scheme presents a much less level of noise compared to the standard particle method; (ii) the computational
cost of the micro-macro model is reduced in the diffusion limit since a small number of particles is needed
for the micro part; (iii) the scheme is asymptotic preserving in the sense that it is consistent with the kinetic
equation in the rarefied regime and it degenerates into a uniformly (with respect to the Knudsen number)
consistent (and deterministic) approximation of the limiting equation in the diffusion regime.

5.7. Hamiltonian splitting for the Vlasov-Maxwell equations
In [23], in collaboration with L. Einkemmer (University of Innsbruck), a new splitting is proposed for solving
the Vlasov-Maxwell system. This splitting is based on a decomposition of the Hamiltonian of the Vlasov-
Maxwell system and allows for the construction of arbitrary high order methods by composition (independent
of the specific deterministic method used for the discretization of the phase space). Moreover, we show that
for a spectral method in space this scheme satisfies Poisson’s equation without explicitly solving it. Finally,
we present some examples in the context of the time evolution of an electromagnetic plasma instability which
emphasizes the excellent behavior of the new splitting compared to methods from the literature.
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5.8. A hybrid transport-diffusion model for radiative transfer in absorbing
and scattering media
In [35], in collaboration with M. Roger (University of Lyon), C. Caliot (CNRS) and P. Coelho (Instituto Supe-
rior Tecnico of Lisboa), a new multi-scale hybrid transport-diffusion model for radiative transfer calculations
is proposed. In this model, the radiative intensity is decomposed into a macroscopic component calculated by
the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component
allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative
transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in
examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the
discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model al-
lows to improve the efficiency of the calculations when the medium is close to the diffusive regime. Moreover,
the development of methods for coupling the radiative transfer equation with the diffusion equation becomes
easier with this model than with the usual domain decomposition methods.

5.9. Charge conserving grid based methods for the Vlasov-Maxwell equations
In [26], in collaboration with P. Navaro (CNRS, Strasbourg) and E. Sonnendrücker (IPP Garching, Germany),
In this article we introduce numerical schemes for the Vlasov-Maxwell equations relying on different kinds
of grid based Vlasov solvers, as opposite to PIC schemes, that enforce a discrete continuity equation. The
idea underlying this schemes relies on a time splitting scheme between configuration space and velocity space
for the Vlasov equation and on the computation of the discrete current in a form that is compatible with the
discrete Maxwell solver.

5.10. Improving conservation properties of a 5D gyrokinetic semi-Lagrangian
code
In [32], in collaboration with G. Latu, V. Grandgirard, J. Abiteboul, G. Dif-Pradalier, X. Garbet, P. Ghendrih
Y. Sarazin (IRFM, Cadarache), M. Mehrenberger (University of Strasbourg) and E. Sonnendrücker (IPP
Garching, Germany), we are concerned with gyrokinetic turbulent simulations, where the knowledge of some
stationary states can help reducing numerical artifacts. Considering long-term simulations, the qualities of the
Vlasov solver and of the radial boundary conditions have an impact on the conservation properties. In order to
improve mass and energy conservation mainly, the following methods are investigated: fix the radial boundary
conditions on a stationary state, use a 4D advection operator that avoids a directional splitting, interpolate with
a delta-f approach. The combination of these techniques in the semi-Lagrangian code gysela leads to a net
improvement of the conservation properties in 5D simulations.

5.11. Simulations of Kinetic Electrostatic Electron Nonlinear (KEEN) Waves
with Variable Velocity Resolution Grids and High-Order Time-Splitting
In [16], in collaboration with B. Afeyan (Polymath Research, USA), F. Casa (University Jaume, Spain),
A. Dodhy, E. Sonnendrücker (IPP Garching, Germany) and M. Mehrenberger (University of Strasbourg),
we are concerned with KEEN waves which are non-stationary, nonlinear, self-organized asymptotic states
in Vlasov plasmas. They lie outside the precepts of linear theory or perturbative analysis, unlike electron
plasma waves or ion acoustic waves. Steady state, nonlinear constructs such as BGK modes also do not apply.
The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of
the ponderomotive force generated by two crossing laser beams, for instance, used to drive them. Smaller
amplitude drives manage to devolve into multiple highly-localized vorticlets, after the drive is turned off,
and may eventually succeed to coalesce into KEEN waves. Fragmentation once the drive stops, and potential
eventual remerger, is a hallmark of the weakly driven cases. A fully formed (more strongly driven) KEEN
wave has one dominant vortical core. But it also involves fine scale complex dynamics due to shedding and
merging of smaller vortical structures with the main one. Shedding and merging of vorticlets are involved in
either case, but at different rates and with different relative importance. The narrow velocity range in which
one must maintain sufficient resolution in the weakly driven cases, challenges
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fixed velocity grid numerical schemes. What is needed is the capability of resolving locally in velocity while
maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-
Lagrangian Vlasov-Poisson solver based on conservative non-uniform cubic splines in velocity that tackles
this problem head on. An additional feature of our approach is the use of a new high-order time-splitting
scheme which allows much longer simulations per computational effort. This is needed for low amplitude
runs. There, global coherent structures take a long time to set up, such as KEEN waves, if they do so at
all. The new code’s performance is compared to uniform grid simulations and the advantages are quantified.
The birth pains associated with weakly driven KEEN waves are captured in these simulations. Canonical
KEEN waves with ample drive are also treated using these advanced techniques. They will allow the efficient
simulation of KEEN waves in multiple dimensions, which will be tackled next, as well as generalizations to
Vlasov-Maxwell codes. These are essential for pursuing the impact of KEEN waves in high energy density
plasmas and in inertial confinement fusion applications. More generally, one needs a fully-adaptive grid-in-
phase-space method which could handle all small vorticlet dynamics whether pealing off or remerging. Such
fully adaptive grids would have to be computed sparsely in order to be viable. This two-velocity grid method
is a concrete and fruitful step in that direction.

5.12. Gyroaverage operator on polar mesh
In [36], in collaboration with C. Steiner, M. Mehrenberger (University of Strasbourg) V. Grandgirard, G.
Latu (IRFM, Cadarache). In this work, we are concerned with numerical approximation of the gyroaverage
operators arising in plasma physics to take into account the effects of the finite Larmor radius corrections.
The work initiated in [Crouseilles, Mehrenberger, Sellama, CiCP 2010] is extended here to polar geometries.
A direct method is proposed in the space configuration which consists in integrating on the gyrocircles using
interpolation operator (Hermite or cubic splines). Numerical comparisons with a standard method based on
a Pade approximation are performed: (i) with analytical solutions, (ii) considering the 4D drift-kinetic model
with one Larmor radius and (iii) on the classical linear DIII-D benchmark case [6]. In particular, we show that
in the context of a drift-kinetic simulation, the proposed method has similar computational cost as the standard
method and its precision is independent of the radius.

5.13. A new fully two-dimensional conservative semi-Lagrangian method:
applications on polar grids, from diocotron instability to ITG turbulence
In [25], in collaboration with P. Glanc, S. Hirstoaga, E. Madaule, M. Mehrenberger, J. Pétri (University of
Strasbourg), While developing a new semi-Lagrangian solver, the gap between a linear Landau run in 1dx1d
and a 5D gyrokinetic simulation in toroidal geometry is quite huge. Intermediate test cases are welcome for
checking the code. We consider here as building block, a 2D guiding-center type equation on an annulus. We
first revisit a 2D test case previously done with a PIC approach and detail the boundary conditions. We then
consider a 4D drift-kinetic slab simulation for which we give some first results of a new conservative method.

5.14. Uniformly accurate numerical schemes for highly oscillatory
Klein-Gordon and nonlinear Schrödinger equations
In [21], we are interested in the numerical simulation of nonlinear Schrödinger and Klein-Gordon equations.
We present a general strategy to construct numerical schemes which are uniformly accurate with respect to
the oscillation frequency. This is a stronger feature than the usual so called ”Asymptotic preserving" property,
the last being also satisfied by our scheme in the highly oscillatory limit. Our strategy enables to simulate
the oscillatory problem without using any mesh or time step refinement, and the orders of our schemes are
preserved uniformly in all regimes. In other words, since our numerical method is not based on the derivation
and the simulation of asymptotic models, it works in the regime where the solution does not oscillate rapidly, in
the highly oscillatory limit regime, and in the intermediate regime with the same order of accuracy. The method
is based on two main ingredients. First, we embed our problem in a suitable ”two-scale" reformulation with the
introduction of an additional variable. Then a link is made with classical strategies based on Chapman-Enskog
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expansions in kinetic theory despite the dispersive context of the targeted equations, allowing to separate the
fast time scale from the slow one. Uniformly accurate (UA) schemes are eventually derived from this new
formulation and their properties and performances are assessed both theoretically and numerically.

5.15. Asymptotic preserving schemes for the Wigner-Poisson-BGK equations
in the diffusion limit
In [24], we focus on the numerical simulation of the Wigner-Poisson-BGK equation in the diffusion asymp-
totics. Our strategy is based on a ”micro-macro" decomposition, which leads to a system of equations that
couple the macroscopic evolution (diffusion) to a microscopic kinetic contribution for the fluctuations. A
semi-implicit discretization provides a numerical scheme which is stable with respect to the small parameter ε
(mean free path) and which possesses the following properties: (i) it enjoys the asymptotic preserving property
in the diffusive limit; (ii) it recovers a standard discretization of the Wigner-Poisson equation in the collision-
less regime. Numerical experiments confirm the good behaviour of the numerical scheme in both regimes. The
case of a spatially dependent ε(x) is also investigated.

5.16. Models of dark matter halos based on statistical mechanics: II. The
fermionic King model
In [49] we study the fermionic King model which may provide a relevant model of dark matter halos.
The exclusion constraint can be due to quantum mechanics (for fermions such as massive neutrinos) or to
Lynden- Bells statistics (for collisionless systems undergoing violent relaxation). This model has a finite
mass. Dwarf and intermediate size halos are degenerate quantum objects stabilized against gravitational
collapse by the Pauli exclusion principle. Large halos at sufficiently high energies are in a gaseous phase
where quantum effects are negligible. They are stabilized by thermal motion. Below a critical energy Ec
they undergo gravitational collapse (gravothermal catastrophe). This may lead to the formation of a central
black hole that does not affect the structure of the halo. This may also lead to the formation of a compact
degenerate object surrounded by a hot massive atmosphere extending at large distances. We argue that
large dark matter halos should not contain a degenerate nucleus (fermion ball) because these nucleus-halo
structures are thermodynamically unstable. We compare the rotation curves of the classical King model to
observations of large dark matter halos (Burkert profile). Because of collisions and evaporation, the central
density increases while the slope of the halo density profile decreases until an in- stability takes place. We find
that the observations are compatible with a King profile at, or close to, the point of marginal stability in the
micro- canonical ensemble. At that point, the King profile can be fitted by the modified Hubble profile. This
is qualitatively similar to the Burkert profile and discrepancies between the King model and the observations
are interpreted as a result of incomplete relaxation.

5.17. Models of dark matter halos based on statistical mechanics: I. The
classical King model
In [48] we consider the possibility that dark matter halos are described by the Fermi-Dirac distribution at
finite temperature. This is the case if dark matter is a self-gravitating quantum gas made of massive neutrinos
at statistical equilibrium. This is also the case if dark matter can be treated as a self-gravitating collisionless
gas experiencing Lynden-Bell?s type of violent relaxation. In order to avoid the infinite mass problem and
carry out a rigorous stability analysis, we consider the fermionic King model. In this paper, we study the non-
degenerate limit leading to the classical King model. This model was initially introduced to describe globular
clusters and we propose to apply it also to large dark matter halos where quantum effects are negligible. We
study the thermodynamical stability of the different configurations and compare the prediction of the classical
King model to the observations of large dark matter halos. Because of collisions and evaporation, the central
density increases while the slope of the halo density profile decreases until an instability takes place. We show
that large dark matter halos are relatively well-described by the King model at, or close to, the point of marginal
microcanonical stability. At that point, the King model generates a density profile that can be approximated
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by the modified Hubble profile. This profile has a flat core and decreases as r?3 at large distances, like the
observational Burkert profile. For large halos, the flat core is due to finite temperature effects, not to quantum
mechanics. We argue that statistical mechanics may provide a good description of dark matter halos and
interpret the discrepancies as a result of incomplete relaxation like in the case of stellar systems.

5.18. Analysis of models for quantum transport of electrons in graphene layers
In [28], two mathematical models for the self consistent quantum transport of electrons in a graphene layer
are presented are analyzed. We treat two situations. First, when the particles can move in all the plane R2, the
model takes the form of a system of massless Dirac equations coupled together by a selfconsistent potential,
which is the trace in the plane of the graphene of the 3D Poisson potential associated to surface densities.
Second, we consider a situation where the particles are constrained in a regular bounded domain Ω. In order
to take into account Dirichlet boundary conditions which are not compatible with the Dirac Hamiltonian H0,
we propose a different model built on a modified Hamiltonian displaying the same energy band diagram as
H0 near the Dirac points.

5.19. Dimension reduction for anisotropic Bose-Einstein condensates in the
strong interaction regime
The work [44] deals with the problem of dimension reduction for the three dimensional Gross-Pitaevskii
equation (GPE) describing a Bose-Einstein condensate confined in a strongly anisotropic harmonic trap. Since
the gas is assumed to be in a strong interaction regime, we have to analyze two combined singular limits:
a semi-classical limit in the transport direction and the strong partial confinement limit in the transversal
direction.

5.20. Superconvergence of Strang splitting for NLS in T d

In [47], we investigate the convergence properties of semi-discretized approximations by Strang splitting
method applied to fast-oscillating nonlinear Schrödinger equations. Our main contribution is to show that
Strang splitting with constant step-sizes is unexpectedly more accurate by a factor ε as compared to established
results when the step-size is chosen as an integer fraction of the period, owing to an averaging effect.

5.21. Strong confinement limit for the nonlinear Schrödinger equation
constrained on a curve
The preprint [58] is devoted to the cubic nonlinear Schrödinger equation in a two dimensional waveguide with
shrinking cross section of order ε. For a Cauchy data living essentially on the first mode of the transverse
Laplacian, we provide a tensorial approximation of the solution ψε in the limit ε→ 0, with an estimate of the
approximation error, and derive a limiting nonlinear Schrödinger equation in dimension one with an additional
effective potential depending on the curvature.

5.22. The fermionic King model
In [50], we study the fermionic King model which may provide a relevant model of dark matter halos.

5.23. Landau damping in Sobolev spaces for the Vlasov-HMF model
In [56], we consider the Vlasov-HMF (Hamiltonian Mean-Field) model. We consider solutions starting in
a small Sobolev neighborhood of a spatially homogeneous state satisfying a linearized stability criterion
(Penrose criterion). We prove that these solutions exhibit a scattering behavior to a modified state, which
implies a nonlinear Landau damping effect with polynomial rate of damping.
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5.24. Collisions of vortex filament pairs
In [18], we consider the problem of collisions of vortex filaments for a model introduced by Klein, Majda and
Damodaran, and Zakharov to describe the interaction of almost parallel vortex filaments in three-dimensional
fluids. Since the results of Crow examples of collisions are searched as perturbations of antiparallel translating
pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most
results are numerical calculations. In this article we first consider a related model for the evolution of pairs of
filaments and we display another type of initial perturbation leading to collision in finite time. Moreover we
give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar
solutions of the model.

5.25. Asymptotic preserving schemes for the Klein-Gordon equation in the
non-relativistic limit regime
In [30], we consider the Klein-Gordon equation in the non-relativistic limit regime, i.e. the speed of light c
tending to infinity. We construct an asymptotic expansion for the solution with respect to the small parameter
depending on the inverse of the square of the speed of light. As the first terms of this asymptotic can easily be
simulated our approach allows us to construct numerical algorithms that are robust with respect to the large
parameter c producing high oscillations in the exact solution.

5.26. Analysis of a large number of Markov chains competing for transitions
In [17], we consider the behavior of a stochastic system composed of several identically distributed, but
non independent, discrete-time absorbing Markov chains competing at each instant for a transition. The
competition consists in determining at each instant, using a given probability distribution, the only Markov
chain allowed to make a transition. We analyze the first time at which one of the Markov chains reaches its
absorbing state. When the number of Markov chains goes to infinity, we analyze the asymptotic behavior
of the system for an arbitrary probability mass function governing the competition. We give conditions for
the existence of the asymptotic distribution and we show how these results apply to cluster-based distributed
systems when the competition between the Markov chains is handled by using a geometric distribution.

5.27. Coexistence phenomena and global bifurcation structure in a
chemostat-like model with species-dependent diffusion rates
In [20], we study the competition of two species for a single resource in a chemostat. In the simplest space-
homogeneous situation, it is known that only one species survives, namely the best competitor. In order to
exhibit coexistence phenomena, where the two competitors are able to survive, we consider a space dependent
situation: we assume that the two species and the resource follow a diffusion process in space, on top of the
competition process. Besides, and in order to consider the most general case, we assume each population is
associated with a distinct diffusion constant. This is a key difficulty in our analysis: the specific (and classical)
case where all diffusion constants are equal, leads to a particular conservation law, which in turn allows to
eliminate the resource in the equations, a fact that considerably simplifies the analysis and the qualitative
phenomena. Using the global bifurcation theory, we prove that the underlying 2-species, stationary, diffusive,
chemostat-like model, does possess coexistence solutions, where both species survive. On top of that, we
identify the domain, in the space of the relevant bifurcation parameters, for which the system does have
coexistence solutions.

5.28. Global behavior of N competing species with strong diffusion: diffusion
leads to exclusion
In [46], we study the following problem. For a large class of models involving several species competing for a
single resource in a homogeneous environment, it is known that the competitive exclusion principle holds: only
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one species survives eventually. Various works indicate though that coexistence of many species is possible
when the competition occurs in a heterogeneous environment. We propose here a spatially heterogeneous
system modeling several species competing for a single resource, and migrating in the spatial domain. For
this model, it is known, at least in particular cases, that if migrations are slow enough, then coexistence
occurs. In this paper we show at variance that if the spatial migrations are fast enough, then our system can be
approximated by a spatially homogeneous system, called aggregated model, which can be explicitly computed,
and we show that if the competitive exclusion principle holds for the aggregated model, then it holds as well
for the original, spatially heterogeneous model. In other words, we show the persistence of the competitive
exclusion principle in the spatially heterogeneous situation when migrations are fast. As a consequence, for
fast migrations only one species may survive, namely the best competitor in average. We last study which is
the best competitor in average on some examples, and draw some ecological consequences.

5.29. Randomized Message-Passing Test-and-Set
In [42] we present a solution to the well-known Test&Set operation in an asynchronous system prone to
process crashes. Test&Set is a synchronization operation that, when invoked by a set of processes, returns
yes to a unique process and returns no to all the others. Recently many advances in implementing Test&Set
objects have been achieved, however all of them target the shared memory model. In this paper we propose an
implementation of a Test&Set object in the message passing model. This implementation can be invoked
by any number p ≤ n of processes where n is the total number of processes in the system. It has an
expected individual step complexity in O(log p) against an oblivious adversary, and an expected individual
message complexity in O(n). The proposed Test&Set object is built atop a new basic building block, called
selector, that allows to select a winning group among two groups of processes. We propose a message-
passing implementation of the selector whose step complexity is constant. We are not aware of any other
implementation of the Test&Set operation in the message passing model.

5.30. Existence of densities for the 3D Navier–Stokes equations driven by
Gaussian noise
In [27], we prove three results on the existence of densities for the laws of finite dimensional functionals of the
solutions of the stochastic Navier-Stokes equations in dimension 3. In particular, under very mild assumptions
on the noise, we prove that finite dimensional projections of the solutions have densities with respect to the
Lebesgue measure which have some smoothness when measured in a Besov space. This is proved thanks to a
new argument inspired by an idea introduced by N. Fournier and J. Printems.

5.31. Diffusion limit for the radiative transfer equation perturbed by a
Markovian process
In [54], we study the stochastic diffusive limit of a kinetic radiative transfer equation, which is non linear,
involving a small parameter and perturbed by a smooth random term. Under an appropriate scaling for the
small parameter, using a generalization of the perturbed test-functions method, we show the convergence in
law to a stochastic non linear fluid limit.

5.32. Diffusion limit for the radiative transfer equation perturbed by a Wiener
process
In [55], we consider the rigorous derivation of a stochastic non-linear diffusion equation from a radiative
transfer equation perturbed with a random noise of white noise type. The proof of the convergence relies on
a formal Hilbert expansion and the estimation of the remainder. The Hilbert expansion has to be done up to
order 3 to overcome some difficulties caused by the random noise.
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6. Partnerships and Cooperations

6.1. National Initiatives
6.1.1. ANR Programme blanc international (BLAN) LODIQUAS 2012-2015

Participants: Philippe Chartier, Florian Méhats, Francois Castella, Mohammed Lemou.

The project, entitled "LODIQUAS" (for: Low DImensional QUANtum Systems), received fundings for 4
postdocs (48 months) and one pre-doc (36 months). The whole project involves the following researchers
: Norbert Mauser (Vienna), Erich Gornik (Vienna), Mechthild Thalhammer (Innsbruck), Christoph Naegerl
(Innsbruck), Jörg Schmiedmayer (Vienna), Hans-Peter Stimming (Vienna),Francis Nier (Rennes), Raymond
El Hajj (Rennes), Claudia Negulescu (Toulouse), Fanny Delebecque (Toulouse), Stéphane Descombes (Nice),
Christophe Besse (Lille).
Quantum technology as the application of quantum effects in macroscopic devices has an increasing impor-
tance, not only for far future goals like the quantum computer, but already now or in the near future. The
present project is mainly concerned with the mathematical and numerical analysis of these objects, in con-
junction with experimental physicists.

6.1.2. ANR MOONRISE: 2015-2019
Participants: Nicolas Crouseilles, Philippe Chartier, Florian Méhats, Francois Castella, Mohammed Lemou.

The project Moonrise submitted by F. Méhats has been funded by the ANR for 4 years, for the period
2015-2019. This project aims at exploring modeling, mathematical and numerical issues originating from
the presence of high-oscillations in nonlinear PDEs from the physics of nanotechnologies (quantum transport)
and from the physics of plasmas (magnetized transport in tokamaks). The partners of the project are the
IRMAR (Rennes), the IMT (Toulouse) and the CEA Cadarache. In the IPSO team, F. Castella, P. Chartier, N.
Crouseilles and M. Lemou are members of the project Moonrise.

6.1.3. ANR Programme blanc GYPSI: 2010-2014
Participant: Nicolas Crouseilles.

Leader: Ph. Gendrih.

The full description is available at https://sites.google.com/site/anrgypsi/

6.1.4. ANR Programme blanc E2T2: 2010-2014
Participant: Nicolas Crouseilles.

Leader: P. Beyer

6.2. European Initiatives
6.2.1. FP7 & H2020 Projects
6.2.1.1. Geopardi

Type: FP7

Defi: NC

Instrument: ERC Starting Grant

Objectif: NC

Duration: September 2011 - August 2016

Coordinator: E. Faou

Inria contact: E. Faou

https://sites.google.com/site/anrgypsi/
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6.2.2. Collaborations in European Programs, except FP7 & H2020
6.2.2.1. Verification of global gyrokinetic codes and development of new algorithms for gyrokinetic and kinetic codes

Project acronym: EUROFusion CfP-WP14-ER-01/IPP-03: 2014

Project title: verification of global gyrokinetic codes and development of new algorithms for
gyrokinetic and kinetic codes

Duration: 2013-2014

Participants: N. Crouseilles and M. Lemou

Coordinator:E. Sonnendrücker

6.2.2.2. Enabling Research Project for the implementation of the fusion roadmap

Project acronym: EUROFusion

Project title: Enabling Research Project for the implementation of the fusion roadmap

Duration: 2015-2017

Participants: N. Crouseilles and M. Lemou

Coordinator:E. Sonnendrücker

6.3. International Research Visitors
6.3.1. Visits of International Scientists

• L. Einkemmer, University of Innsbruck, two weeks, november 2014.

• Y. Zhang, WPI, Vienna, 3 months.

6.3.2. Visits to International Teams
6.3.2.1. Research stays abroad

• N. Crouseilles visited the group of P. Coelho (Universitad tecnico de Lisboa, Portugal), one week
(november 2014).

• M. Lemou and N. Crouseilles visited the India Institute of Science at Bangalore (India): from
december 2d to december 17th, 2013. Visited team: around Raghurama Rao.

• M. Lemou visited the Wisconsin university, Madison (USA): from February 1st to February 16th,
2014. Visited team: around Shi Jin.

• P. Chartier, M. Lemou and F. Méhats visited the university of San Sebastien, Pays Basque (Spain):
from June 8th to June 13th 2014.

7. Dissemination

7.1. Promoting Scientific Activities
7.1.1. Scientific events organisation
7.1.1.1. Member of the organizing committee

• F. Castella organised, jointly with P. Chartier, a meeting held in Saint-Malo (25 participants) in the
framework of the european ANR project Lodiquas.

7.1.2. Scientific events selection
7.1.2.1. Member of the conference program committee

• A. Debussche was member of the scientific committee of the conference Stochastic Partial Differ-
ential Equations and Applications - IX, Trento, Italy, january 7-11, 2014.
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7.1.3. Journal
7.1.3.1. Member of the editorial board

• N. Crouseilles is member of the editorial board of Hindawi review "International Journal of
Analysis"
http://www.hindawi.com/journals/analysis/

• M. Lemou is associate editor in the journal "Annales de la faculté des sciences de Toulouse"
• A. Debussche is editor in Chief of "Stochastic Partial Differential Equations: analysis and computa-

tions".
• A. Debussche is member of the editorial board of "Potential Analysis".
• A. Debussche is member of the editorial board of the "Journal of Evolution Equations".
• A. Debussche is member of the editorial board of "Differential and Integral Equations".
• A. Debussche is member of the editorial board of "ESAIM: Proceedings".
• A. Debussche is member of the editorial board of the collection: "Mathématiques et Applications",

SMAI, Springer.
• P. Chartier is member of the editorial board of M2AN (Mathematical Modelling and Numerical

Analysis).
• P. Chartier is member of the editorial board of ISRN Mathematical Analysis.

7.2. Teaching - Supervision - Juries
7.2.1. Teaching

Master 2 lectures: N. Crouseilles, Numerical methods for kinetic equations.
Master 1 lectures: M. Lemou, Theory of distributions, University of Rennes 1 and ENS Cachan (Ker
Lann), 24 hours.
Master 2: M. Lemou was the manager of Master 2 courses in "Analysis and Applications", university
of Rennes 1.
E. Faou gave a series of lectures on Stochastic methods for PDEs, Heriot-Watt University, Edinburgh,
UK, october 2014.
E. Faou gave a series of lectures on Geometric Numerical Integration for PDE, KIT, Karlsruhe,
Germany, August 2014.
E. Faou gave a series of lectures on Stochastic computation and on Geometric Numerical Integration
for PDE, Chinese Academy of Sciences, Beijing, May 2014
A. Debussche gave a mini-course on Introduction aux EDPS in the school EDP avec conditions
aleatoires, Toulouse, April 22-25, 2014.
Licence 3: P. Chartier gave a lecture on ODEs at ENS Rennes, september-december, 24 hours.

7.2.2. Supervision
N. Crouseilles and M. Lemou co-advise H. Hivert’s PhD (first year in Rennes university), ENS grant.
N. Crouseilles and M. Lemou co-advise (with R. Raghurama and M. Lemou) A. Ruhi’s PhD (third
year in IISc), Indian grant.
M. Lemou and F. Méhats co-advised P. Carcaud’s PhD: University of Rennes 1. Thesis defense on
june 2nd 2014.
P. Chartier and F. Méhats co-supervise the PhD thesis of G. Leboucher.
P. Chartier and F. Castella co-supervise the PhD thesis of J. Sauzeau.
A. Debussche and F. Méhats co-supervise the PhD thesis of M. Tusseau.
E. Faou co-supervises the PhD thesis of R. Horsin.

http://www.hindawi.com/journals/analysis/
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A. Debussche and E. Faou co-supervised the thesis of M. Kopec, ENS Rennes.

7.2.3. Juries
N. Crouseilles: member of the PHD jury of P. Glanc, 20 january 2014 (Strasbourg); co-advising
(with M. Mehrenberger) of Pierre Glanc PhD (Strasbourg University), Inria-Cordi grant.
N. Crouseilles: member of the PHD jury of Ch. Steiner, 11 december 2014 (Strasbourg); co-advising
(with M. Mehrenberger) of Christophe Steiner PhD (Strasbourg University), ministry grant.
N. Crouseilles: member of the PHD jury of M. Kuhn, 29 september 2014 (Strasbourg); co-advising
(with S. Genaud) of Matthieu Kuhn PhD (Strasbourg University and Inria IPSO), ANR "E2T2"
grant.
N. Crouseilles: member of the Master 2 jury of P. Pereira, 26 november 2014 (Lisboa, Portugal).
F. Méhats was referee of the thesis of L. Hari (Cergy, supervised by T. Duyckaerts and C. Ferma-
nian).
F. Méhats was referee of the thesis of X. Zhao (Singapore, supervised by W. Bao).
P. Chartier was referee of the PhD thesis of Philipp Bader, University of Valencia, june.
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