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2. Overall Objectives

2.1. Overall Objectives
The core endeavor of this team is to develop methods in control theory for finite-dimensional nonlinear
systems, as well as in optimal transport, and to be involved in applications of these techniques. Some
mathematical fields like dynamical systems and optimal transport may benefit from control theory techniques.
Our primary domain of industrial applications will be space engineering, namely designing trajectories
in space mechanics using optimal control and stabilization techniques: transfer of a satellite between two
Keplerian orbits, rendez-vous problem, transfer of a satellite from the Earth to the Moon or more complicated
space missions. A second field of applications is quantum control with applications to Nuclear Magnetic
Resonance and medical image processing.
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3. Research Program

3.1. Control Systems
Our effort is directed toward efficient methods for the control of real (physical) systems, based on a model
of the system to be controlled. System refers to the physical plant or device, whereas model refers to a
mathematical representation of it.

We mostly investigate nonlinear systems whose nonlinearities admit a strong structure derived from physics;
the equations governing their behavior are then well known, and the modeling part consists in choosing what
phenomena are to be retained in the model used for control design, the other phenomena being treated as
perturbations; a more complete model may be used for simulations, for instance. We focus on systems that
admit a reliable finite-dimensional model, in continuous time; this means that models are controlled ordinary
differential equations, often nonlinear.

Choosing accurate models yet simple enough to allow control design is in itself a key issue; however, modeling
or identification as a theory is not per se in the scope of our project.

The extreme generality and versatility of linear control do not contradict the often heard sentence “most real
life systems are nonlinear”. Indeed, for many control problems, a linear model is sufficient to capture the
important features for control. The reason is that most control objectives are local, first order variations around
an operating point or a trajectory are governed by a linear control model, and except in degenerate situations
(non-controllability of this linear model), the local behavior of a nonlinear dynamic phenomenon is dictated by
the behavior of first order variations. Linear control is the hard core of control theory and practice; it has been
pushed to a high degree of achievement –see for instance some classics: [45], [35]– that leads to big successes
in industrial applications (PID, Kalman filtering, frequency domain design, H∞ robust control, etc...). It must
be taught to future engineers, and it is still a topic of ongoing research.

Linear control by itself however reaches its limits in some important situations:
1. Non local control objectives. For instance, steering the system from a region to a reasonably remote

other one (path planning and optimal control); in this case, local linear approximation cannot be
sufficient.
It is also the case when some domain of validity (e.g. stability) is prescribed and is larger than the
region where the linear approximation is dominant.

2. Local control at degenerate equilibria. Linear control yields local stabilization of an equilibrium
point based on the tangent linear approximation if the latter is controllable. When it is not, and
this occurs in some physical systems at interesting operating points, linear control is irrelevant and
specific nonlinear techniques have to be designed.
This is in a sense an extreme case of the second paragraph in point 1: the region where the linear
approximation is dominant vanishes.

3. Small controls. In some situations, actuators only allow a very small magnitude of the effect of
control compared to the effect of other phenomena. Then the behavior of the system without control
plays a major role and we are again outside the scope of linear control methods.

4. Local control around a trajectory. Sometimes a trajectory has been selected (this appeals to
point 1), and local regulation around this reference is to be performed. Linearization in general
yields, when the trajectory is not a single equilibrium point, a time-varying linear system. Even if
it is controllable, time-varying linear systems are not in the scope of most classical linear control
methods, and it is better to incorporate this local regulation in the nonlinear design, all the more so
as the linear approximation along optimal trajectories is, by nature, often non controllable.

Let us discuss in more details some specific problems that we are studying or plan to study: classification and
structure of control systems in section 3.2, optimal control, and its links with feedback, in section 3.3, the
problem of optimal transport in section 3.4, and finally problems relevent to a specific class of systems where
the control is “small” in section 3.5.
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3.2. Structure of nonlinear control systems
In most problems, choosing the proper coordinates, or the right quantities that describe a phenomenon,
sheds light on a path to the solution. In control systems, it is often crucial to analyze the structure of the
model, deduced from physical principles, of the plant to be controlled; this may lead to putting it via some
transformations in a simpler form, or a form that is most suitable for control design. For instance, equivalence
to a linear system may allow to use linear control; also, the so-called “flatness” property drastically simplifies
path planning [40], [51].

A better understanding of the “set of nonlinear models”, partly classifying them, has another motivation than
facilitating control design for a given system and its model: it may also be a necessary step towards a theory of
“nonlinear identification” and modeling. Linear identification is a mature area of control science; its success
is mostly due to a very fine knowledge of the structure of the class of linear models: similarly, any progress in
the understanding of the structure of the class of nonlinear models would be a contribution to a possible theory
of nonlinear identification.

These topics are central in control theory, but raise very difficult mathematical questions: static feedback
classification is a geometric problem which is feasible in principle, although describing invariants explicitly
is technically very difficult; and conditions for dynamic feedback equivalence and linearization raise unsolved
mathematical problems, that make one wonder about decidability 1.

3.3. Optimal control and feedback control, stabilization
3.3.1. Optimal control.

Mathematically speaking, optimal control is the modern branch of the calculus of variations, rather well
established and mature [18], [49], [26], [58]. Relying on Hamiltonian dynamics is now prevalent, instead
of the standard Lagrangian formalism of the calculus of variations. Also, coming from control engineering,
constraints on the control (for instance the control is a force or a torque, which are naturally bounded) or the
state (for example in the shuttle atmospheric re-entry problem there is a constraint on the thermal flux) are
imposed; the ones on the state are usual but these on the state yield more complicated necessary optimality
conditions and an increased intrinsic complexity of the optimal solutions. Also, in the modern treatment, ad-
hoc numerical schemes have to be derived for effective computations of the optimal solutions.

What makes optimal control an applied field is the necessity of computing these optimal trajectories, or rather
the controls that produce these trajectories (or, of course, close-by trajectories). Computing a given optimal
trajectory and its control as a function of time is a demanding task, with non trivial numerical difficulties:
roughly speaking, the Pontryagin Maximum Principle gives candidate optimal trajectories as solutions of a two
point boundary value problem (for an ODE) which can be analyzed using mathematical tools from geometric
control theory or solved numerically using shooting methods. Obtaining the optimal synthesis –the optimal
control as a function of the state– is of course a more intricate problem [26], [31].

These questions are not only academic for minimizing a cost is very relevant in many control engineering
problems. However, modern engineering textbooks in nonlinear control systems like the “best-seller” [42]
hardly mention optimal control, and rather put the emphasis on designing a feedback control, as regular and
explicit as possible, satisfying some qualitative (and extremely important!) objectives: disturbance attenuation,
decoupling, output regulation or stabilization. Optimal control is sometimes viewed as disconnected from
automatic control... we shall come back to this unfortunate point.

1Consider the simple system with state (x, y, z) ∈ IR3 and two controls that reads ż = (ẏ − zẋ)
2
ẋ after elimination of the

controls; it is not known whether it is equivalent to a linear system, or flat; this is because the property amounts to existence of a formula
giving the general solution as a function of two arbitrary functions of time and their derivatives up to a certain order, but no bound on this
order is known a priori, even for this very particular example.
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3.3.2. Feedback, control Lyapunov functions, stabilization.
A control Lyapunov function (CLF) is a function that can be made a Lyapunov function (roughly speaking, a
function that decreases along all trajectories, some call this an “artificial potential”) for the closed-loop system
corresponding to some feedback law. This can be translated into a partial differential relation sometimes
called “Artstein’s (in)equation” [21]. There is a definite parallel between a CLF for stabilization, solution
of this differential inequation on the one hand, and the value function of an optimal control problem for the
system, solution of a HJB equation on the other hand. Now, optimal control is a quantitative objective while
stabilization is a qualitative objective; it is not surprising that Artstein (in)equation is very under-determined
and has many more solutions than HJB equation, and that it may (although not always) even have smooth
ones.

We have, in the team, a longstanding research record on the topic of construction of CLFs and stabilizing
feedback controls. This is all the more interesting as our line of research has been pointing in almost opposite
directions. [36], [55], [57] insist on the construction of continuous feedback, hence smooth CLFs whereas,
on the contrary, [34], [59], [60] proceed with a very fine study of non-smooth CLFs, yet good enough (semi-
concave) that they can produce a reasonable discontinuous feedback with reasonable properties.

3.4. Optimal Transport
We believe that matching optimal transport with geometric control theory is one originality of our team. We
expect interactions in both ways.

The study of optimal mass transport problems in the Euclidean or Riemannian setting has a long history
which goes from the pioneer works of Monge [53] and Kantorovitch [46] to the recent revival initiated by
fundamental contributions due to Brenier [32] and McCann [52].

Th same transportation problems in the presence of differential constraints on the set of paths —like being
an admissible trajectory for a control system— is quite new. The first contributors were Ambrosio and Rigot
[19] who proved the existence and uniqueness of an optimal transport map for the Monge problem associated
with the squared canonical sub-Riemannian distance on the Heisenberg groups. This result was extended later
by Agrachev and Lee [16], then by Figalli and Rifford [37] who showed that the Ambrosio-Rigot theorem
holds indeed true on many sub-Riemannian manifolds satisfying reasonable assumptions. The problem of
existence and uniqueness of an optimal transport map for the squared sub-Riemannian distance on a general
complete sub-Riemannian manifold remains open; it is strictly related to the regularity of the sub-Riemannian
distance in the product space, and remains a formidable challenge. Generalized notions of Ricci curvatures
(bounded from below) in metric spaces have been developed recently by Lott and Villani [50] and Sturm
[63], [64]. A pioneer work by Juillet [43] captured the right notion of curvature for subriemannian metric in
the Heisenberg group; Agrachev and Lee [17] have elaborated on this work to define new notions of curvatures
in three dimensional sub-Riemannian structures. The optimal transport approach happened to be very fruitful
in this context. Many things remain to do in a more general context.

3.5. Small controls and conservative systems, averaging
Using averaging techniques to study small perturbations of integrable Hamiltonian systems dates back to H.
Poincaré or earlier; it gives an approximation of the (slow) evolution of quantities that are preserved in the
non-perturbed system. It is very subtle in the case of multiple periods but more elementary in the single period
case, here it boils down to taking the average of the perturbation along each periodic orbit; see for instance
[20], [62].

When the “perturbation” is a control, these techniques may be used after deciding how the control will depend
on time and state and other quantities, for instance it may be used after applying the Pontryagin Maximum
Principle as in [23], [24], [33], [41]. Without deciding the control a priori, an “average control system” may
be defined as in [22].
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The focus is then on studying into details this simpler “averaged” problem, that can often be described by a
Riemannian metric for quadratic costs or by a Finsler metric for costs like minimum time.

This line of research stemmed out of applications to space engineering, see section 4.1. For orbit transfer in
the two-body problem, an important contribution was made by B. Bonnard, J.-B. Caillau and J. Gergaud
[24] in explicitly computing the solutions of the average system obtained after applying Pontryagin Maximum
Principle to minimizing a quadratic integral cost; this yields an explicit calculation of the optimal control law
itself. Studying the Finsler metric issued form the time-minimal case is in progress.

4. Application Domains

4.1. Space engineering, satellites, low thrust control
Space engineering is very demanding in terms of safe and high-performance control laws (for instance optimal
in terms of fuel consumption, because only a finite amount of fuel is onborad a sattelite for all its “life”). It is
therefore prone to real industrial collaborations.

We are especially interested in trajectory control of space vehicles using their own propulsion devices, outside
the atmosphere. Here we discuss “non-local” control problems (in the sense of section 3.1 point 1): orbit
transfer rather than station keeping; also we do not discuss attitude control.

In the geocentric case, a space vehicle is subject to
- gravitational forces, from one or more central bodies (the corresponding acceleration is denoted by Fgrav.

below),
- a thrust, the control, produced by a propelling device; it is the Gu term below; assume for simplicity that
control in all directions is allowed, i.e. G is an invertible matrix
- other “perturbating” forces (the corresponding acceleration is denoted by F2 below).

In position-velocity coordinates, its dynamics can be written as

ẍ = Fgrav.(x, t)

[
+ F2(x, ẋ, t)

]
+ G(x, ẋ)u , ‖u‖ ≤ umax. (1)

In the case of a single attracting central body (the earth) and in a geocentric frame, Fgrav. does not depend on
time, or consists of a main term that does not depend on time and smaller terms reflecting the action of the
moon or the sun, that depend on time. The second term is often neglected in the design of the control at first
sight; it contains terms like athmospheric drag or solar pressure. G could also bear an explicit dependence on
time (here we omit the variation of the mass, that decreases proportionnally to ‖u‖.

4.1.1. Low thrust
Low thrust means that umax is small, or more precisely that the maximum magnitude of Gu is small with
respect to the one of Fgrav. (but in genral not compared to F2). Hence the influence of the control is very
weak instantaneously, and trajectories can only be significantly modified by accumulating the effect of this
low thrust on a long time. Obviously this is possible only because the free system is somehow conservative.
This was “abstracted” in section 3.5.
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Why low thrust ? The common principle to all propulsion devices is to eject particles, with some relative
speed with respect to the vehicle; conservation of momentum then induces, from the point of view of the
vehicle alone, an external force, the “thrust” (and a mass decrease). Ejecting the same mass of particles with
a higher relative speed results in a proportionally higher thrust; this relative speed (specific impulse, Isp) is a
characteristic of the engine; the higher the Isp, the smaller the mass of particles needed for the same change in
the vehicle momentum. Engines with a higher Isp are highly desirable because, for the same maneuvers, they
reduce the mass of "fuel" to be taken on-board the satellite, hence leaving more room (mass) for the payload.
“Classical” chemical engines use combustion to eject particles, at a somehow limited speed even with very
efficient fuel; the more recent electric engines use a magnetic field to accelerate particles and eject them at
a considerably higher speed; however electrical power is limited (solar cells), and only a small amount of
particles can be accelerated per unit of time, inducing the limitation on thrust magnitude.

Electric engines theoretically allow many more maneuvers with the same amount of particles, with the
drawback that the instant force is very small; sophisticated control design is necessary to circumvent this
drawback. High thrust engines allow simpler control procedures because they almost allow instant maneuvers
(strategies consist in a few burns at precise instants).

4.1.2. Typical problems
Let us mention two.
• Orbit transfer or rendez-vous. It is the classical problem of bringing a satellite to its operating

position from the orbit where it is delivered by the launcher; for instance from a GTO orbit to
the geostationary orbit at a prescribed longitude (one says rendez-vous when the longitude, or the
position on the orbit, is prescribed, and transfer if it is free). In equation (1) for the dynamics, Fgrav.

is the Newtonian gravitation force of the earth (it then does not depend on time); F2 contains all the
terms coming either from the perturbations to the Newtonian potential or from external forces like
radiation pressure, and the control is usually allowed in all directions, or with some restrictions to be
made precise.

• Three body problem. This is about missions in the solar system leaving the region where the attraction
of the earth, or another single body, is preponderant. We are then no longer in the situation of a single
central body, Fgrav. contains the attraction of different planets and the sun. In regions where two
central bodies have an influence, say the earth and the moon, or the sun and a planet, the term Fgrav.

in (1) is the one of the restricted three body problem and dependence on time reflects the movement
of the two “big” attracting bodies.

An issue for future experimental missions in the solar system is interplanetary flight planning
with gravitational assistance. Tackling this global problem, that even contains some combinatorial
problems (itinerary), goes beyond the methodology developed here, but the above considerations are
a brick in this puzzle.

4.1.3. Properties of the control system.
If there are no restrictions on the thrust direction, i.e., in equation (1), if the control u has dimension 3 with an
invertible matrix G, then the control system is “static feedback linearizable”, and a fortiori flat, see section 3.2.
However, implementing the static feedback transformation would consist in using the control to “cancel” the
gravitation; this is obviously impossible since the available thrust is very small. As mentioned in section 3.1,
point 3, the problem remains fully nonlinear in spite of this “linearizable” structure 2.

4.1.4. Context for these applications
The geographic proximity of Thales Alenia Space, in conjunction with the “Pole de compétitivité” PEGASE
in PACA region is an asset for a long term collaboration between Inria - Sophia Antipolis and Thales Alenia
Space (Thales Alenia Space site located in Cannes hosts one of the very few European facilities for assembly,
integration and tests of satellites).

2However, the linear approximation around any feasible trajectory is controllable (a periodic time-varying linear system); optimal
control problems will have no singular or abnormal trajectories.
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B. Bonnard and J.-B. Caillau in Dijon have had a strong activity in optimal control for space, in collaboration
with the APO Team from IRIT at ENSEEIHT (Toulouse), and sometimes with EADS, for development of
geometric methods in numerical algorithms.

4.2. Quantum Control
These applications started by a collaboration between B. Bonnard and D. Sugny (a physicist from ICB) in
the ANR project Comoc, localized mainly at the University of Dijon. The problem was the control of the
orientation of a molecule using a laser field, with a model that does take into account the dissipation due to the
interaction with the environment, molecular collisions for instance. The model is a dissipative generalization
of the finite dimensional Schrödinger equation, known as Lindblad equation. It is a 3-dimensional system
depending upon 3 parameters, yielding a very complicated optimal control problem that we have solved for
prescribed boundary conditions. In particular we have computed the minimum time control and the minimum
energy control for the orientation or a two-level system, using geometric optimal control and appropriate
numerical methods (shooting and numerical continuation) [29], [28].

More recently, based on this project, we have reoriented our control activity towards Nuclear Magnetic
Resonance (MNR). In MNR medical imaging, the contrast problem is the one of designing a variation
of the magnetic field with respect to time that maximizes the difference, on the resulting image, between
two different chemical species; this is the “contrast”. This research is conducted with Prof. S. Glaser (TU-
München), whose group is performing both in vivo and in vitro experiments; experiments using our techniques
have successfully measured the improvement in contrast between materials chemical species that have an
importance in medicine, like oxygenated and de-oxygenated blood, see [27]; this is however still to be
investigated and improved. The model is the Bloch equation for spin 1

2 particles, that can be interpreted as
a sub-case of Lindblad equation for a two-level system; the control problem to solve amounts to driving in
minimum time the magnetization vector of the spin to zero (for parameters of the system corresponding to
one of the species), and generalizations where such spin 1

2 particles are coupled: double spin inversion for
instance.

Note that a reference book by B. Bonnard and D. Sugny has been published on the topic [30].

4.3. Applications of optimal transport
Optimal Transportation in general has many applications. Image processing, biology, fluid mechanics, mathe-
matical physics, game theory, traffic planning, financial mathematics, economics are among the most popular
fields of application of the general theory of optimal transport. Many developments have been made in all
these fields recently. Two more specific fields:
- In image processing, since a grey-scale image may be viewed as a measure, optimal transportation has been
used because it gives a distance between measures corresponding to the optimal cost of moving densities from
one to the other, see e.g. the work of J.-M. Morel and co-workers [54].
- In representation and approximation of geometric shapes, say by point-cloud sampling, it is also interesting to
associate a measure, rather than just a geometric locus, to a distribution of points (this gives a small importance
to exceptional “outlier” mistaken points); this was developed in Q. Mérigot’s PhD [56] in the GEOMETRICA
project-team. The relevant distance between measures is again the one coming from optimal transportation.
- A collaboration between Ludovic Rifford and Robert McCann from the University of Toronto aims at
applications of optimal transportation to the modeling of markets in economy; it was to subject of Alice
Erlinger’s PhD, unfortunately interrupted.

Applications specific to the type of costs that we consider, i.e. these coming from optimal control, are
concerned with evolutions of densities under state or velocity constraints. A fluid motion or a crowd movement
can be seen as the evolution of a density in a given space. If constraints are given on the directions in which
these densities can evolve, we are in the framework of non-holonomic transport problems.
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4.4. Applications to some domains of mathematics
Control theory (in particular thinking in terms of inputs and reachable set) has brought novel ideas and
progresses to mathematics. For instance, some problems from classical calculus of variations have been
revisited in terms of optimal control and Pontryagin’s Maximum Principle [44]; also, closed geodesics for
perturbed Riemannian metrics where constructed in [47], [48] using control techniques.

Inside McTAO, a work like [39], [38] is definitely in this line, applying techniques from control to construct
some perturbations under constraints of Hamiltonian systems to solve longstanding open questions in the field
of dynamical systems. Also, in [61], geometric control is applied successfully to obtain genericity properties
for Hamiltonian systems.

5. New Software and Platforms

5.1. Hampath
Participants: Jean-Baptiste Caillau, Olivier Cots [corresponding participant], Joseph Gergaud.

Hampath is a software developped to solve optimal control problems but also to study Hamiltonian flow. It
has been developped since 2009 by members of the APO team from Institut de Recherche en Informatique
de Toulouse, jointly with colleagues from the Université de Bourgogne. It is now updated with McTAO team
members. See more on http://cots.perso.math.cnrs.fr/hampath/.

6. New Results

6.1. Optimal control for quantum systems and NMR
Participants: Bernard Bonnard, Mathieu Claeys [Imperial College, UK], Olivier Cots, Thierry Combot, Pierre
Martinon [project team COMMANDS], Alain Jacquemard [Université de Bourgogne, IMB].

• The contrast imaging problem in nuclear magnetic resonance can be modeled as a Mayer problem,
in the terminology of optimal control. The candidates as minimizers are selected among a set of
extremals, solutions of a Hamiltonian system given by the Pontryagin Maximum Principle; sufficient
second order conditions are known; they form the geometric foundations of the HAMPATH code
which combines shooting and continuation methods.

In [4], based on these theoretical studies, a thorough analysis of the case of deoxygenated/oxygenated
blood samples is pursued, based on many numerical experiments.

• We initiated more than a year ago a program to compare and study the complementarities between
these methods based on the Pontryagin Maximum Principle are known as indirect methods,
- with the so-called direct methods where optimal control is seem as a generic optimization problem,
as implemented in the Bocop software, developed in the COMMANDS project-team,
- and with LMI techniques used to obtain global bounds on the extremum;
this was naturally done in collaboration with Pierre Martinon, an important contributor to Bocop and
with Mathieu Claeys (LAAS CNRS, a PhD student supervised by J.-B. Lasserre, now with Imperial
College). The results are very promising, and there is a gain, numerically, in using both direct and
indirect methods while working towards global optimality (in the contrast problem there are many
local optima and the global optimality is a complicated issue). This is presented in [3].

http://cots.perso.math.cnrs.fr/hampath/
http://cots.perso.enseeiht.fr/hampath/
http://commands.saclay.inria.fr/bocop
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This also led to use algebraic techniques to further analyse the equations and their dependance of the
materials to be discriminated [10].

• For time minimal control of a linear spin system with Ising coupling (more complex than the model
above), we also analysed integrability properties of extremal solutions of the Pontryagin Maximum
Principle, in relation with conjugate and cut loci computations. Restricting to the case of three
spins, as in [11], the problem is equivalent to analyze a family of almost-Riemannian metrics on
the sphere S2 , with Grushin equatorial singularity. The problem can be lifted into a SR-invariant
problem on SO(3), this leads to a complete understanding of the geometry of the problem and to
an explicit parametrization of the extremals using an appropriate chart as well as elliptic functions.
This approach is compared with the direct analysis of the Liouville metrics on the sphere where the
parametrization of the extremals is obtained by computing a Liouville normal form. This is backed
by an algebraic approach applying differential Galois theory to integrability.

6.2. Conjugate and cut loci computations and applications
Participants: Bernard Bonnard, Olivier Cots, Jean-Baptiste Caillau, Alessio Figalli [Univ. of Texas at Austin,
USA], Thomas Gallouët [MEPHYSTO project-team], Ludovic Rifford.
• Many optimal control problems from mechanics or quantum systems (see [11] and the last paragraph

of section 6.1) lead to studying some king of singular metrics, sometimes known as almost-
Riemannian. This led us to consider, in [2], metrics on the two-sphere of revolution of the following
find: they are Riemannian on each open hemisphere whereas one term of the corresponding tensor
becomes infinite on the equator. Length minimizing curves can be computed and structure results
on the cut and conjugate loci given, extending those in [25]. These results rely on monotonicity and
convexity properties of the quasi-period of the geodesics; such properties are studied on an example
with elliptic transcendency. A suitable deformation of the round sphere allows to reinterpretate the
equatorial singularity in terms of concentration of curvature and collapsing of the sphere.

• It is known that convexity of the injectivity domain (the boundary of which is sent by the exponential
map to the first cut locus) and the “Ma–Trudinger–Wang condition” (an positivity condition on the
Ma–Trudinger–Wang tensor) both play a very important role in the continuity of solutions of optimal
transport problems. This led to study these properties on their own, and it is still an open question
to decide under which conditions the latter implies the former. In [13], it is proved that the MTW
condition implies the convexity of injectivity domains on a smooth nonfocal compact Riemannian
manifold. This improves a previous result by Loeper and Villani.

6.3. Averaging in control and application to space mechanics
Participants: Bernard Bonnard, Helen-Clare Henninger, Jana Němcová [Instritute of Chemical Tech, Prague,
CZ], Jean-Baptiste Pomet, Jeremy Rouot.

As explained in sections 3.5 and 4.1, control problems where the non controlled system is conservative and the
control effect is small compared to the free dynamics lead to computing an average system. This computation
may be explicit or numerical.

Even though it will not be always the case that an explicit expression is available, it is interesting to study that
case thoroughly.
• In [23], [24], a smooth Riemannian metric was introduced to describe the energy minimizing orbital

transfer with low propulsion. We have pursued a study of its deformation due to the standard
perturbations in space mechanics, e.g. oblate spheroid shape of the Earth and lunar attraction. In [12],
using Hamiltonian formalism, we describe the effects of the perturbations on the orbital transfers and
the deformation of the conjugate and cut loci of the original metric. This is done using averaging
with respect to both the proper frequency of the space vehicle and the moon frequency.

• The average system has the advantage of being more controllable (it has new virtual controls), but
often displays singularities that were not present in the original system. It is the case when minimum
time is considered instead of the quadratic energy criterium. We are conducted an analysis of this
average minimum time Hamiltonian flow.
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In [6], we compare the two problems for planar transfers. While the energy case leads to analyze a
2D Riemannian metric using the standard tools of Riemannian geometry (curvature computations,
geodesic convexity), the time minimal case is associated to a Finsler metric which is not smooth.
Nevertheless a qualitative analysis of the geodesic flow is given in this article to describe the optimal
transfers. In particular we prove geodesic convexity of the elliptic domain.

6.4. Applications of control methods to dynamical systems
Participants: Gonzalo Contreras, Alessio Figalli, Ayadi Lazrag, Ludovic Rifford, Raffael Ruggiero.

Ludovic Rifford and collaborators have been applying with success, techniques from geometric control theory
to open problems in dynamical systems, mostly on genericity properties and using controllability methods to
build suitable perturbations.

This has been applied to closing geodesics and weak-KAM theory [39], [38].

Ayadi Lazrag’s PhD also deals with such problems; applying techniques close to these in [61], he established a
version of Francks’ lemma for geodesic flows; one goal is to apply this to persistence problems. The approach
relies on control theory results, with order 2 conditions. See [14] and [15], where a non trivial conjecture on
generic hyperbolicity of the so-called Aubry set of a Hamiltonian is solved on compact surfaces and in the C2

topology (for genericity).

7. Bilateral Contracts and Grants with Industry
7.1. Thales Alenia Space - Inria

“Transfert orbital dans le problème des deux et trois corps avec la technique de propulsion faible”.

This contract started October, 2012 for 3 years. It partially supports Helen Heninger’s PhD.

The goal is to improve transfer strategies for guidance of a spacecraft in the gravitation field of one central
body (the two-body problem) or two celestial bodies (three-body problem).

7.2. CNES - Inria - UMB
This three year contract will formally started in 2014. It involves CNES and McTAO both through Inria and
through Université de Bourgogne. It concerns averaging techniques in orbit transfers around the earth while
taking into acount many perturbation of the main force (gravity for the earth considered as circular). The
objective is to validate numerically and theoretically the approximations made by using averaging, and to
propose methods that refine the approximation.

8. Partnerships and Cooperations
8.1. Regional Initiatives

• The “région” Provence Alpes Côte d’Azur (PACA) partially supports Helen Heninger’s PhD . The
other part comes from Thales Alenia space, see section 7.1.

• The “région” Provence Alpes Côte d’Azur (PACA) partially supports Jérémy Rouot’s PhD.

8.2. National Initiatives
8.2.1. IMB - Université de Bourgogne, Dijon

The team is officially a common team with University of Nice, but also has very strong links with Université
de Bourgogne and IMB (Institute of Mathematics in Burgundy). Bernard Bonnard is currently on leave from
Université de Bourgogne; Jean-Baptiste Caillau collaborates actively with us; there is also an active common
seminar http://math.unice.fr/~rifford/publis/Journee_McTAO/J_McTAO.html . A formal convention between
Inria and Université de Bourgogne has been signed in 2014. It makes the IMB control team a part of McTAO
as of January, 2015.

http://math.unice.fr/~rifford/publis/Journee_McTAO/J_McTAO.html
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8.2.2. Explosys (franco-german ANR project)
Bernard Bonnard is a memebr of this project, accepted in October, 2014. The coordinators are Dominique
Sugny (Dijon) and Stefen Glaser (Munich). The budget is approximately 500 K¤.

8.2.3. Others
Bernard Bonnard and Ludovic Rifford participate in the GDR MOA, a CNRS network on Mathematics of
Optimization and Applications. http://gdrmoa.univ-perp.fr/.

Jean-Baptiste Caillau is in the board of governors of the group SMAI-MODE (http://smai.emath.fr/spip.
php?article338).

Jean-Baptiste Caillau is a member of the Centre de Compétences Techniques (CCT) Mécanique orbitale du
CNES

Jean-Baptiste Caillau is the corresponding member in Dijon for the Labex AMIES (http://www.agence-maths-
entreprises.fr/).

8.3. International Initiatives
There is a strong collaboration with the control group in the University of Hawaii around M. Chyba. The
purpose of the collaboration is to study the aspects of the contrast problem in Nuclear Magnetic Resonance.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation

Ludovic Rifford was in the scientific comitee of the “Conference of Calculus of Variations: Geometry,
Inequalities, and Design” within the Thematic Program on Variational Problems in Physics, Economics and
Geometry, Fields INstitute, Toronto.

9.1.2. Journals
9.1.2.1. Member of the editorial board

L. Rifford is a member of the editorial board of Discrete and Continuous Dynamical Systems - Series A (AIMS
Journal).

9.1.2.2. Reviewer

The members of the team reviewed numerous papers for international journals including: SIAM J. on
Control and Optimisation, International J. of Control, IEEE Trans. Automatic Control, Acta Applicandae
Mathematicae, Journal of Dynamical and Control Systems.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

B. Bonnard and L. Rifford did their teaching duty at Univ. Nice and Univ. Bourgogne (Esirem).

http://gdrmoa.univ-perp.fr/
http://smai.emath.fr/spip.php?article338
http://smai.emath.fr/spip.php?article338
http://www.agence-maths-entreprises.fr/
http://www.agence-maths-entreprises.fr/
http://www.fields.utoronto.ca/programs/scientific/14-15/variationalprob/design/index.html
http://www.fields.utoronto.ca/programs/scientific/14-15/variationalprob/design/index.html
http://www.aimsciences.org/journals/
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9.2.2. Supervision
Ph: Ayadi Lazrag, Théorie de contrôle et systèmes dynamiques (Control theory and dynamical
systems), defended September 25, 2014, University of Nice, advisor: Ludovic Rifford.

Ph: Lionel Jassionnesse, Contrôle optimal et métriques de Clairaut-Liouville avec applications,
Université de Bourgogne, started october, 2010, advisor: Bernard Bonnard.

PhD in progress: Helen Heninger, subject: Étude des solutions du transfert orbital avec poussée
faible dans le probleme des deux ou trois corps, Université de Nice Sophia Antipolis, started october,
2012, advisors: Bernard Bonnard and Jean-Baptiste Pomet.

PhD in progress: Jérémy Rouot, subject: Moyennisation en contrôle et en contrôle optimal, effet des
perturbations non périodiques, Université de Nice Sophia Antipolis, started october, 2013, advisors:
Bernard Bonnard and Jean-Baptiste Pomet.

PhD in progress: Zeinab Badredine, subject: Techniques d’intégrabilité en dynamique des spins et
applications au contrôle optimal, Université de Bourgogne, started october, 2014, advisors: Bernard
Bonnard and Ludovic Rifford.

MSc: Sofya Maslovskaya, Finsler metric associated with average minimum time problems, Ensta
ParisTech, supervisors: Jean-Baptiste Pomet.
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