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2. Overall Objectives

2.1. Presentation and overall objectives
In the context of the construction of the European landscape of research, Inria and ULB (Université Libre de
Bruxelles) signed in 2013 an agreement to foster joint research teams on topics of mutual interests. The team
MEPHYSTO, a joint project of Inria, the Université Lille 1 and CNRS, and the Université Libre de Bruxelles,
is the first such collaboration, in applied mathematics. It operates in two locations: Lille and Brussels. A. Gloria
spends one day a week in Lille, G. Dujardin spends one day a week in Brussels, and S. Armstrong visits both
Brussels and Lille on a monthly basis.

The main objective of the team is to develop mathematical and numerical tools to study in a quantitative way
some specific physical models which display random and/or multiscale features. The emphasis is put on the
interplay between analysis, probability, and numerics.

We focus our efforts on two prototypical examples: stochastic homogenization and the Schrödinger equations.
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2.2. Scientific context
Whereas many models in physics involve randomness, they behave deterministically in suitable asymptotic
regimes when stochastic effects average out. The qualitative and quantitative understanding of this determin-
istic behavior is the main challenge of this project.

From a mathematical point of view, our main fields of interest are stochastic homogenization of PDEs
and random or deterministic one-dimensional nonlinear Schrödinger equations. These topics involve two
challenges identified in the strategic plan of Inria “Objectif 2020": randomness and multiscale modeling.

From a physical point of view, the problems we shall consider find their origin in

• the statistical physics of random polymer-chain networks;

• light propagation in optical fibers.

Stochastic homogenization
Homogenization is a theory which deals with oscillations in PDEs. LetD be a smooth bounded domain of Rd.
The starting point is the fact that for linear elliptic equations, the oscillations of the weak solution uε ∈ H1

0 (D)
of

−∇ ·Aε∇uε = f (1)

for some suitable r. h. s. f are a (nonlinear) function of the oscillations of Aε. In particular, if Aε oscillates
at scale ε > 0, one expects uε to display oscillations at scale ε, and to be close to some function which does
not oscillate if in addition ε� 1. This is the case when Aε is the ε-rescaled version of a periodic function A.
Then Aε is ε-periodic, and there exists some fixed matrix Ahom depending only on A (and not on f ), such that
uε behaves as uhom ∈ H1

0 (D), the weak solution of

−∇ ·Ahom∇uhom = f. (2)

The homogenized coefficients Ahom are characterized by the so-called correctors φξ in direction ξ ∈ Rd,
distributional solutions in Rd of

−∇ ·A(ξ +∇φξ) = 0. (3)

In the periodic case, these correctors are well-behaved by standard PDE theory. The convergence of uε to
uhom is illustrated on Figure 1 (periodic checkerboard on the left, random checkerboard on the right), where
the isolines of the solutions to (1) and (2) (with f ≡ 1 on the unit square) are plotted for several values of ε
— the convergence of uε to uhom is weak in H1(D). Yet, naturally-occuring structures are rarely periodic.
If instead of considering some periodic A, we consider some random A, the story is different, cf. Figure 1
for results on the random checkerboard. In the early period of stochastic homogenization, in the seventies,
it was not clear if just the ergodicity and stationarity of the coefficients and ellipticity were enough to prove
convergence of uε almost surely and identify the limit uhom. The meaning to give to (3) was indeed quite
unclear (the equation is posed on the whole space). It was a surprise, therefore, that this was possible with
random coefficients, and that stochastic homogenization was indeed a new type of qualitative ergodic theory
( [54], [50]). The following natural question, asked more than thirty years ago, is whether one can develop an
associated quantitative ergodic theory.

One of our initial motivations to develop a quantitative stochastic homogenization theory is the derivation of
nonlinear elasticity from polymer physics, which is presented in the application section. We plan to develop
a complete quantitative theory of stochastic homogenization of elliptic equations. In particular we aim at
quantifying how well uhom approximates uε, and at identifying the asymptotic law of the solution uε in
function of the law of A.
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Figure 1. Solution uε for ε = 1/5, 1/10, 1/20, 1/40, 1/80 and solution uhom, periodic case (left) and random case
(right)

Schrödinger equations
The linear Schrödinger equation, with an appropriate choice of geometry and boundary conditions, has been
central to the description of all non-relativistic quantum mechanical systems for almost a century now. In
addition, its nonlinear variant arises in the mean field description of Bose-Einstein condensates, where it
is known as the Gross-Pitaevskii equation, but also in nonlinear classical optics, and in particular in fiber
optics. The quantitative and qualitative description of its solutions (for both the evolution and the stationary
equations), their time-asymptotic behavior, their stability or instability in terms of the parameters of the
initial conditions and/or the potentials and boundary conditions continue to pose numerous physical and
mathematical problems (see [55] and [35] for general references).

In view of our collaboration with the Lille laser physics laboratory PhLAM, we will focus more particularly
on the one-dimensional nonlinear Schrödinger equation (NLS). Indeed, (NLS) drives the envelope of the
propagation of a laser pulse in a Kerr medium, such as an optical fiber [55]. Many phenomena on (NLS) (and
variants thereof, with higher order derivatives, various types of initial conditions, external fields, etc.) are put
in evidence by physical experiments at PhLAM, are not fully understood, and raise exciting questions from
the numerical and analytical perspectives.

The same type of equation also describes Bose-Einstein condensates, for which questions related to Anderson
localization are also of interest theoretically and experimentally at PhLAM.

3. Research Program

3.1. From statistical physics to continuum mechanics
Whereas numerical methods in nonlinear elasticity are well-developed and reliable, constitutive laws used
for rubber in practice are phenomenological and generally not very precise. On the contrary, at the scale of
the polymer-chain network, the physics of rubber is very precisely described by statistical physics. The main
challenge in this field is to understand how to derive macroscopic constitutive laws for rubber-like materials
from statistical physics.

At the continuum level, rubber is modelled by an energy E defined as the integral over a domain
D of Rd of some energy density W depending only locally on the gradient of the deformation u:
E(u) =

∫
D
W (∇u(x))dx. At the microscopic level (say 100nm), rubber is a network of cross-linked and

entangled polymer chains (each chain is made of a sequence of monomers). At this scale the physics of poly-
mer chains is well-understood in terms of statistical mechanics: monomers thermally fluctuate according to
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the Boltzmann distribution [46]. The associated Hamiltonian of a network is typically given by a contribution
of the polymer chains (using self-avoiding random bridges) and a contribution due to steric effects (rubber is
packed and monomers are surrounded by an excluded volume). The main challenge is to understand how this
statistical physics picture yields rubber elasticity. Treloar assumed in [56] that for a piece of rubber undergo-
ing some macroscopic deformation, the cross-links do not fluctuate and follow the macroscopic deformation,
whereas between two cross-links, the chains fluctuate. This is the so-called affine assumption. Treloar’s model
is in rather good agreement with mechanical experiments in small deformation. In large deformation however,
it overestimates the stress. A natural possibility to relax Treloar’s model consists in relaxing the affine assump-
tion while keeping the network description, which allows one to distinguish between different rubbers. This
can be done by assuming that the deformation of the cross-links minimizes the free energy of the polymer
chains, the deformation being fixed at the boundary of the macroscopic domain D. This gives rise to a “varia-
tional model". The analysis of the asymptotic behavior of this model as the typical length of a polymer chain
vanishes has the same flavor as the homogenization theory of integral functionals in nonlinear elasticity (see
[41], [52] in the periodic setting, and [42] in the random setting).

Our aim is to relate qualitatively and quantitatively the (precise but unpractical) statistical physics picture to
explicit macroscopic constitutive laws that can be used for practical purposes.

In collaboration with R. Alicandro (Univ. Cassino, Italy) and M. Cicalese (Univ. Munich, Germany), A. Gloria
analyzed in [1] the (asymptotic) Γ-convergence of the variational model for rubber, in the case when the
polymer chain network is represented by some ergodic random graph. The easiest such graph is the Delaunay
tessellation of a point set generated as follows: random hard spheres of some given radius ρ are picked
randomly until the domain is jammed (the so-called random parking measure of intensity ρ). With M. Penrose
(Univ. Bath, UK), A. Gloria studied this random graph in this framework [6]. With P. Le Tallec (Mechanics
department, Ecole polytechnique, France), M. Vidrascu (project-team REO, Inria Paris-Rocquencourt), and A.
Gloria introduced and tested in [15] a numerical algorithm to approximate the homogenized energy density,
and observed that this model compares well to rubber elasticity qualitatively.

These preliminary results show that the variational model has the potential to explain qualitatively and
quantitatively how rubber elasticity emerges from polymer physics. In order to go further and obtain more
quantitative results and rigorously justify the model, we have to address several questions of analysis,
modelling, scientific computing, inverse problems, and physics.

3.2. Quantitative stochastic homogenization
Whereas the approximation of homogenized coefficients is an easy task in periodic homogenization, this is a
highly nontrivial task for stochastic coefficients. This is in order to analyze numerical approximation methods
of the homogenized coefficients that F. Otto (MPI for mathematics in the sciences, Leipzig, Germany) and A.
Gloria obtained the first quantitative results in stochastic homogenization [4]. The development of a complete
stochastic homogenization theory seems to be ripe for the analysis and constitutes the second major objective
of this section.

In order to develop a quantitative theory of stochastic homogenization, one needs to quantitatively understand
the corrector equation (3). Provided A is stationary and ergodic, it is known that there exists a unique random
field φξ which is a distributional solution of (3) almost surely, such that∇φξ is a stationary random field with
bounded second moment

〈
|∇φξ|2

〉
<∞, and with φ(0) = 0. Soft arguments do not allow to prove that φξ

may be chosen stationary (this is wrong in dimension d = 1). In [4], [5] F. Otto and A. Gloria proved that, in
the case of discrete elliptic equations with iid conductances, there exists a unique stationary corrector φξ with
vanishing expectation in dimension d > 2. Although it cannot be bounded, it has bounded finite moments of
any order:

〈|φξ|q〉 <∞ for all q ≥ 1. (4)
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They also proved that the variance of spatial averages of the energy density (ξ +∇φξ) ·A(ξ +∇φξ) on balls
of radius R decays at the rate R−d of the central limit theorem. These are the first optimal quantitative results
in stochastic homogenization.

The proof of these results, which is inspired by [53], is based on the insight that coefficients such as the Poisson
random inclusions are special in the sense that the associated probability measure satisfies a spectral gap
estimate. Combined with elliptic regularity theory, this spectral gap estimate quantifies ergodicity in stochastic
homogenization. This systematic use of tools from statistical physics has opened the way to the quantitative
study of stochastic homogenization problems, which we plan to fully develop.

3.3. Nonlinear Schrödinger equations
As well known, the (non)linear Schrödinger equation

∂tϕ(t, x) = −∆ϕ(t, x) + λV (x)ϕ(t, x) + g|ϕ|2ϕ(t, x), ϕ(0, x) = ϕ0(x) (5)

with coupling constants g ∈ R, λ ∈ R+ and real potential V (possibly depending also on time) models many
phenomena of physics.

When in the equation (5) above one sets λ = 0, g 6= 0, one obtains the nonlinear (focusing of defocusing)
Schrödinger equation. It is used to model light propagation in optical fibers. In fact, it then takes the following
form:

i∂zϕ(t, z) = −β(z)∂2t ϕ(t, z) + γ(z)|ϕ(t, z)|2ϕ(z, t), (6)

where β and γ are functions that characterize the physical properties of the fiber, t is time and z the position
along the fiber. Several issues are of importance here. Two that will be investigated within the MEPHYSTO
project are: the influence of a periodic modulation of the fiber parameters β and γ and the generation of
so-called “rogue waves” (which are solutions of unusually high amplitude) in such systems.

If g = 0, λ 6= 0, V is a random potential, and ϕ0 is deterministic, this is the standard random Schrödinger
equation describing for example the motion of an electron in a random medium. The main issue in this setting
is the determination of the regime of Anderson localization, a property characterized by the boundedness in
time of the second moment

∫
x2|ϕ(t, x)|2dx of the solution. If this second moment remains bounded in time,

the solution is said to be localized. Whereas it is known that the solution is localized in one dimension for
all (suitable) initial data, both localized and delocalized solutions exist in dimension 3 and it remains a major
open problem today to prove this, cf. [44].

If now g 6= 0, λ 6= 0 and V is still random, but |g| � λ, a natural question is whether, and in which
regime, one-dimensional Anderson localization perdures. Indeed, Anderson localization can be affected by
the presence of the nonlinearity, which corresponds to an interaction between the electrons or atoms. Much
numerical and some analytical work has been done on this issue (see for example [47] for a recent work at
PhLAM, Laser physics department, Univ. Lille 1), but many questions remain, notably on the dependence of
the result on the initial conditions, which, in a nonlinear system, may be very complex. The cold atoms team
of PhLAM (Garreau-Szriftgiser) is currently setting up an experiment to analyze the effect of the interactions
in a Bose-Einstein condensate on a closely related localization phenomenon called “dynamical localization”,
in the kicked rotor, see below.
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3.4. Dynamical localization and kicked rotors
The kicked rotor is a unitary discrete time dynamics proposed in the seventies in the context of studies on
quantum chaos, and used recently as a “quantum simulator” for the Anderson model. It is a quantum equivalent
of the standard map and is obtained by integrating a time-dependent linear Schrödinger equation with a time-
periodic, very singular (delta comb) potential. It continues to pose considerable mathematical challenges, in
particular the so-called “quantum suppression of classical chaos” in the presence of a strong potential, which
remains an open problem from the mathematical point of view. It can be rephrased as follows: show that the
H1 norm of the solution is uniformly bounded in time (see [36] for more background). In more recent years,
the question has arisen how the behavior of this system would change in the presence of a nonlinear term in
the Schrödinger equation.

This problem displays both numerical and analytical challenges, in particular because of the difficulty to
obtain long time simulations of the system and because of the presence of instabilities due to the nonlinearity.
Preliminary theoretical results motivate some conjectures on the behavior of these systems, that we plan to
validate empirically in a first step. Indeed, reliable long-time simulations of the system should allow us to get
more insight into the behavior of the exact solutions in the unstable cases. One of the main difficulties for
the numerical simulation is the intrinsic instability of the system, which magnifies quite rapidly the numerical
error due to machine precision. This requires the use of multiprecision techniques in order to handle reasonably
long times, even for moderate nonlinearities, and of the transparent boundary conditions recently introduced
by members of the former SIMPAF project-team.

4. Application Domains

4.1. Mechanics of heterogeneous media
The mechanics of heterogeneous materials aims at characterizing the macroscopic properties of heterogeneous
materials using the properties of their constituents.

The homogenization theory is a natural tool for this task. In particular, for linear problems (linear conductivity
or linear elasticity), the macroscopic properties are encoded into a single (conductivity or elasticity) homog-
enized tensor. The numerical approximation of this homogenized tensor is a typical objective of quantitative
homogenization.

For nonlinear problems, such as rubber elasticity, the macroscopic properties are no longer characterized by a
single tensor, but rather by a nonlinear energy density. Our aim is to relate qualitatively and quantitatively the
(precise but unpractical) statistical physics picture to explicit macroscopic constitutive laws that can be used
for practical purposes. This endeavor is relevant both in science and technology. The rigorous derivation of
rubber elasticity from polymer-physics was indeed emphasized by John Ball as an important open problem of
nonlinear elasticity in his survey [40] on the field. Its solution could shed light on some aspects of polymer-
physics. The associated ab initio derivation of constitutive laws (as an alternative to phenomenological laws)
would also be of interest to computational mechanics and rubber industry.

For this application domain, we work in close collaboration with physicists (François Lequeux, ESPCI) and
researchers from mechanics and computational mechanics (Patrick Le Tallec, Ecole polytechnique).

4.2. Numerical simulation in heterogeneous media
Solving numerically PDEs in highly heterogeneous media is a problem encountered in many situations, such
as the transport of pollutants or the design of oil extraction strategies in geological undergrounds. When such
problems are discretized by standard numerical methods the number of degrees of freedom may become
prohibitive in practice, whence the need for other strategies.
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Numerical solution methods inspired by asymptotic analysis are among the very few feasible alternatives,
and started fifteen years ago with the contributions of Hou and Wu [49], Arbogast [37] etc. We refer to [45],
[57],[3] for a recent state of the art. Numerical homogenization methods usually amount to looking for the
solution of the problem (1) in the form uε(x) ' u0(x) + ε∇u0(x) · Φ(x, xε ), where Φ(x, ·) is a proxy for the
corrector field computed locally at point x ∈ D (in particular, one does not use explicitly that the problem is
periodic so that the method can be used for more general coefficients) and u0 is a function which does not
oscillate at scale ε.

Relying on our quantitative insight in stochastic homogenization, a first task consists in addressing the three
following prototypical academic examples: periodic, quasi-periodic, and stationary ergodic coefficients with
short range dependence. The more ambitious challenge is to address more complex coefficients (of interest to
practioners), and design adaptive and efficient algorithms for diffusion in heterogeneous media.

4.3. Laser physics
Our contribution to the analysis of models in laser physics is motivated by the LabEx CEMPI (Centre Européen
pour les Mathématiques, la Physique et leurs Interactions, a large eight-year research and training project
approved by the French government in February 2012 as a “Laboratoire d’Excellence" and an initiative of
mathematicians and physicists of the Université Lille 1). For this application domain, we work in close
collaboration with physicists, which ensures our direct impact on these scientific issues. We focus on two
applications: optical fibers and cold atoms.

In collaboration with physicists from the PhLAM laboratory in Lille, we aim at developping new techniques
for the numerical integration of a family of 1D Schrödinger-like equations modelling the propagation of laser
pulses in optical fibers. The questions arising are challenging since physicists would like to have fairly fast
and cheap methods for their problems, with correct qualitative and quantitative behaviors. Another point is that
they are interested in methods and codes that are able to handle different physical situations, hence different
terms in the NLS equation. To meet these requirements, we will have to use numerical time-integration
techniques such as splitting methods or exponential Runge-Kutta methods, space discretization techniques
such as finite differences and fast Fourier transforms, and absorbent boundary conditions. Our goal, together
with the physicists is to be able to reproduce numerically the results of the experiments they make in actual
optical fibers, and then to be able to tune parameters numerically to get more insight into the appearance of
rogue waves beyond the dispersive blowup phenomenon.

Recall that the Schrödinger equation also describes Bose-Einstein condensates. A second experimental team
at PhLAM projects to study questions related to Anderson localization in such condensates. In fact, they will
realize the “kicked rotor” (see [43]), which provides a paradigm for Anderson localization, in a Bose-Einstein
condensate. We plan to collaborate with them on the theoretical underpinnings of their findings, which pose
many challenging questions.

5. New Software and Platforms
5.1. Platforms
5.1.1. Modulef

The numerical method to approximate the constitutive laws for rubber elasticity derived from polymer physics
(as used in [15], [25]) are implemented in the Inria software Modulef (joint work of M. Vidrascu, projetc-team
REO, and A. Gloria).

It is based on
• algorithms from stochastic geometry to generate suitable polymer networks;
• Delaunay tessellation algorithms to deal with steric effects (courtesy of the Inria project-team

GAMMA2);
• the introduction of 1-dimensional finite elements for the polymer-chains in Modulef.
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5.1.2. CMA-ES
To solve the inverse problem for the reconstruction of an explicit constitutive law from in silico experiments in
[25], we relied on the Covariance Matrix Adaptation Evolution Strategy developed in the project-team TAO.

https://www.lri.fr/~hansen/cmaesintro.html

5.1.3. FreeFEM++
The numerical methods proposed in [14] for the approximation of homogenized coefficients were implemented
in FreeFEM++, a user-friendly PDE-solver.

http://www.freefem.org/ff++/

6. New Results

6.1. Highlights of the Year
A. Gloria, S. Neukamm, and F. Otto published their recent contribution [17] on quantitative homogenization
in Inventiones Mathematicae.

As a plenary speaker of the World Congress of Computational Mechanics in Barcelone in July 2014, P. Le
Tallec (Ecole polytechnique) presented our joint results [15], [25].

6.2. Quantitative stochastic homogenization
A. Gloria, S. Neukamm (Univ. Dresden), and F. Otto (MPI for mathematics in the sciences, Leipzig) developed
in [17] a general approach to quantify ergodicity in stochastic homogenization of discrete elliptic equations.
Using a parabolic approach, they obtained optimal estimates on the time-decay of the so-called environment
seen from the particle. This allowed them to prove optimal bounds on the corrector gradient and the corrector
itself in any dimension (thus improving on [4]). They also obtained the first error analysis of the popular
periodization method to approximate the homogenized coefficients.

In [32], A. Gloria and F. Otto extended their results [4], [5] on discrete elliptic equations to the continuum
setting. They treated in addition the case of non-symmetric coefficients, and obtained optimal estimates in all
dimensions by the elliptic approach (whereas [4], [5] were suboptimal for d = 2).

In [28], A. Gloria and D. Marahrens (MPI for mathematics in the sciences, Leipzig) extended the annealed
results [51] on the discrete Green function by D. Marahrens and F. Otto to the continuum setting. As a by-
product of their result, they obtained new results in uncertainty quantification by estimating optimally the
variance of the solution of an elliptic PDE whose coefficients are perturbed by some noise with short range of
dependence.

In their recent work [29], A. Gloria, S. Neukamm, and F. Otto developed a regularity theory for random elliptic
operators inspired by the contributions of Avellaneda and Lin [39] in the periodic setting and of our visitor
S. Armstrong with C. Smart [38]. This allowed them to consider coefficients with arbritarily slow decaying
correlations in the form of a family of correlated Gaussian fields.

In [30], A. Gloria and J. Nolen (Duke Univ.) proved a quantitative central limit theorem for the effective
conductance on the discrete torus. In particular, they quantified the Wasserstein distance between a normal
random variable and the CLT-like rescaling of the difference between the approximation of the effective
conductance by periodization and the effective conductance. Their estimate is sharp and shows that the
Wasserstein distance goes to zero (up to logarithmic factors) as if the energy density of the corrector was iid
(which it is not). This completes and settles the analysis started in [17] on the approximation of homogenized
coefficients by periodization by characterizing the limiting law in addition to the scaling.

https://www.lri.fr/~hansen/cmaesintro.html
http://www.freefem.org/ff++/
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6.3. Derivation of nonlinear elasticity from polymer-physics
In [15], A. Gloria, P. Le Tallec (Mechanics department, Ecole polytechnique), and M. Vidrascu (Project-team
REO, Inria) numerically investigated the nonlinear elasticity model obtained in [1] by discrete stochastic
homogenization, and compared it to the standard measurements by Treloar on natural rubber. The implemen-
tation was realized in the Modulef software. These results are in rather good agreement, which shows that the
approach seems to be promising.

In [25], M. de Buhan (CNRS, Univ. Paris Descartes), A. Gloria, P. Le Tallec and M. Vidrascu proposed a
numerical method to produce analytical approximations (that can be used in practical nonlinear elasticity
softwares) of the numerical approximations obtained in [15] of the discrete-to-continuum energy density
derived theoretically in [1]. This numerical method is based on the parametrization of the set of polyconvex
Ogden laws and on the combination of a least square method and a genetic algorithm (cf. CMA-ES).

6.4. Numerical homogenization
Inspired by the quantitative analysis of [17] and [48], Z. Habibi (former SIMPAF post-doctoral fellow)
and A. Gloria introduced in [14] a general method to reduce the so-called resonance error in numerical
homogenization, both at the levels of the approximation of the homogenized coefficients and of the correctors.
This method significantly extends [2]. The method relies on the introduction of a massive term in the corrector
equation and of a systematic use of Richardson extrapolation. In the three academic examples of heterogeneous
coefficients (periodic, quasiperiodic, and Poisson random inclusions), the method yields optimal theoretical
and empirical convergence rates, and outperforms most of the other existing methods.

6.5. Nonlinear Schrödinger equation
S. De Bièvre, S. Rota Nodari (CEMPI postdoc 2013-2015) and F. Genoud (CEMPI visitor, September 2013)
have explained the geometry underlying the so-called energy-momentum method for proving orbital stability
in infinite dimensional Hamiltonian systems. Applications include the orbital stability of solitons of the NLS
and Manakov equations. This work is to appear as a chapter (120p) in the first volume of the CEMPI Lecture
Notes in Mathematics, cf. [24].

6.6. Kicked rotors
S. De Bièvre and his PhD student E. Soret rigorously proved the growth rate of the energy in a Markovian
model for stochastic acceleration of a particle in a random medium, cf. [34].

6.7. Time integration of Hamiltonian system with noise
G. Dujardin introduced an energy preserving method for Hamiltonian dynamics perturbed by a multiplicative
noise, cf. [11].

6.8. Miscellaneous results
The MEPHYSTO team is currently hosting former members of the project-team SIMPAF who focus on
numerical methods for dissipative systems:

• corrosion models [19], [23],

• fluid mechanics [9], [21], [27], [10],

• numerical analysis for asymptotic preserving properties [8], [7],

• a posteriori estimates [20].

T. Gallouët also made contributions in optimal transport [22], [26].
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7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
The team (C. Chainais and A. Gloria) has had its third bilateral contract with ANDRA (French nuclear waste
storage agency) from December 2012 to June 2014. The post-doctoral position of T. Gallouët was funded by
this contract.

This collaboration concerned mathematical and numerical issues on a corrosion model, and in particular the
identification of steady-states and the design of asymptotic-preserving schemes for a free interface problem.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR BECASIM

G. Dujardin and I. Lacroix are members of the ANR BECASIM project (http://becasim.math.cnrs.fr/). This
ANR project gathers mathematicians with theoretical and numerical backgrounds together with engineers. The
objective is to develop numerical methods to accurately simulate the behavior of Bose-Einstein condensates.

Title: Simulation numérique avancée pour les condensats de Bose-Einstein.

Type: Modèles Numériques - 2012

ANR reference: ANR-12-MONU-0007

Coordinator: Ionut DANAILA, Université de Rouen.

Duration: January 2013 - December 2016.

Partners: Université Lille 1, UPMC, Ecole des Ponts ParisTech, Inria-Nancy Grand-Est, Université
Montpellier 2.

8.1.2. Labex CEMPI
Title: Centre Européen pour les Mathématiques, la Physique et leurs interactions

Coordinator: Stephan De Bièvre.

Duration: January 2012 - December 2019.

Partners: Laboratoire Paul Painlevé and Laser physics department (PhLAM), Université Lille 1.

The “Laboratoire d’Excellence” Centre Européen pour les Mathématiques, la Physique et leurs interactions
(CEMPI), a project of the Laboratoire de Mathématiques Paul Painlevé and the Laboratoire de Physique des
Lasers, Atomes et Molécules (PhLAM), was created in the context of the "Programme d’Investissements
d’Avenir" in February 2012.

The association Painlevé-PhLAM creates in Lille a research unit for fundamental and applied research and for
training and technological development that covers a wide spectrum of knowledge stretching from pure and
applied mathematics to experimental and applied physics.

One of the three focus areas of CEMPI research is the interface between mathematics and physics. This focus
area encompasses three themes. The first is concerned with key problems of a mathematical, physical and
technological nature coming from the study of complex behaviour in cold atoms physics and non-linear optics,
in particular fibre optics. The two other themes deal with fields of mathematics such as algebraic geometry,
modular forms, operator algebras, harmonic analysis and quantum groups that have promising interactions
with several branches of theoretical physics.

http://becasim.math.cnrs.fr/
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8.2. European Initiatives
8.2.1. FP7 & H2020 Projects
8.2.1.1. QUANTHOM

Type: FP7
Instrument: ERC Starting Grant
Duration: February 2014 - January 2019
Coordinator: Antoine Gloria
Partner: Département de mathématique, Université Libre de Bruxelles (Belgium)
Inria contact: Antoine Gloria
Abstract: Quantitative methods in stochastic homogenization

8.2.2. Collaborations with Major European Organizations
Max Planck Institute for Mathematics in the Sciences (Germany).
Development of a quantitative theory of stochastic homogenization.

8.3. International Initiatives
8.3.1. Inria International Partners
8.3.1.1. Informal International Partners

The activity around quantitative stochastic homogenization was developed in collaboration with F. Otto,
director of the Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany).

8.4. International Research Visitors
8.4.1. Visits of International Scientists

• Daniel Marahrens (MPIMS, Leipzig): one week in March (A. Gloria), annealed estimates on Green’s
functions.

• Felix Otto (MPIMS, Leipzig): one week in April (A. Gloria), quantitative stochastic homogeniza-
tion.

• Gilbert Reinisch (physicist at University of Reykjavik): from May 12th 2014 to May 28th 2014
(G. Dujardin and M. Gazeau), numerical simulations of several differential systems modelling the
evolution of quantum dots. This visit was cofounded by Inria and the LabEx CEMPI. This work is a
follow up of the paper [18].

• Marco Cicalese (Univ. Munich): one week in May (A. Gloria), derivation of nonlinear elasticity from
polymer-physics.

• Jean-Christophe Mourrat (ENS Lyon): 10 days in May (A. Gloria), quantitative stochastic homoge-
nization.

• Stefan Neukamm (Weierstrass Institute, Berlin, now at Univ. Dresden): 10 days in May (A. Gloria),
quantitative stochastic homogenization.

• Ansgar Jüngel (Univ. Vienna): one week in July (C. Chainais and I. Lacroix-Violet), discrete
functional inequalities for asymptotic preserving schemes.

9. Dissemination
9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. General chair, scientific chair

S. De Bièvre is the scientific coordinator of CEMPI
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9.1.1.2. Member of the organizing committee

D. Bonheure and A. Gloria organize a PDE and analysis seminar at Brussels (http://homepages.ulb.ac.be/
~dbonheur/seminaire-ANEDP.html).

G. Dujardin and I. Lacroix are in charge of the PDE and numerical analysis seminar of the Paul Painlevé
mathematics department in Lille (http://math.univ-lille1.fr/d7/sanedp).

G. Francfort (Paris 13), A. Gloria, and M. Kruzik organized a workshop "Relaxation, homogenization and
dimensional reduction in hyperelasticity" at Université Paris-Nord, March 25-27, 2014 (http://staff.utia.cas.
cz/kruzik/workshop/).

9.1.2. Journal
9.1.2.1. Member of the editorial board

D. Bonheure is associate editor at the Bulletin of the Belgian Mathematical Society - Simon Stevin (http://
projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bbms), the Journal of cal-
culus of variations (http://www.hindawi.com/journals/jcv/), and International Scholarly Research Notices
(http://www.hindawi.com/journals/isrn/).

C. Chainais and A. Gloria are associate editors at the North-Western European Journal of Mathematics (http://
math.univ-lille1.fr/~nwejm/), a new journal launched by the mathematical departments of the French region
Nord-Pas-De-Calais.

9.1.2.2. Reviewer

The members of the team reviewed numerous papers for numerous international journals.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

The members of the team are mainly academics. We teach at the licence and master levels at the Université
Lille 1 and ULB.

9.2.2. Supervision
PhD in progress: P.-L. Colin, Theoretical and numerical study of some corrosion models, since
October 2012, advised by C. Chainais and I. Lacroix-Violet.
PhD in progress: M. Duerinckx, Problems in stochastic homogenization, since October 2014,
advised by A. Gloria and S. Serfaty (UPMC).
PhD in progress: E. Soret, Stochastic acceleration and thermalization, since October 2011, advised
by S. De Bièvre and T. Simon (Lille 1).

9.3. Popularization
C. Calgaro is the organizer of the action "Mathématiques itinérantes" (http://mathematiques.univ-lille1.fr/
Ouvertures/Mathematiques-itinerantes/), which promotes mathematics among young people (conferences in
highschools, "journées de la science", etc.). Members of the team regularly participate in these actions.
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