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2. Overall Objectives
2.1. Introduction

Over the last twenty years, Optimal Mass Transportation has played a major role in PDEs, geometry, functional
inequalities as well as in modelling and applied fields such as fluid mechanics, image processing and
economics. This trend shows no sign of slowing and the field is still extremely active. However, the numerics
remain underdeveloped, but recent progress in this new field of numerical Optimal Mass Transportation raise
hope for significant advances in numerical simulations.
Mokaplan objectives are to design, develop and implement these new algorithms with and emphasis on
economic applications.

3. Research Program
3.1. Context

Optimal Mass Transportation is a mathematical research topic which started two centuries ago with Monge’s
work on “des remblais et déblais". This engineering problem consists in minimizing the transport cost between
two given mass densities. In the 40’s, Kantorovich [64] solved the dual problem and interpreted it as an
economic equilibrium. The Monge-Kantorovich problem became a specialized research topic in optimization
and Kantorovich obtained the 1975 Nobel prize in economics for his contributions to resource allocations
problems. Following the seminal discoveries of Brenier in the 90’s [35], Optimal Transportation has received
renewed attention from mathematical analysts and the Fields Medal awarded in 2010 to C. Villani, who gave
important contributions to Optimal Transportation and wrote the modern reference monograph [84], arrived
at a culminating moment for this theory. Optimal Mass Transportation is today a mature area of mathematical
analysis with a constantly growing range of applications (see below).
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In the modern Optimal Mass Transportation problem, we are given two probability measures or "mass"
densities : dρi(xi)(= ρi(xi) dxi), i = 0, 1 such that ρi ≥ 0,

∫
X0
ρ0(x0)dx0 =

∫
X1
ρ1(x1)dx1 = 1,

Xi ⊂ Rn. They are often referred to, respectively, source and target densities, support or spaces. The problem
is the minimization of a transportation cost, I(M) =

∫
X0
c(x,M(x)) ρ0(x)dx where c is a displacement

ground cost, over all volume preserving maps M ∈M M = {M : X0 → X1, M#dρ0 = dρ1}. Assuming
that M is a diffeomorphism, this is equivalent to the Jacobian equation det(DM(x))ρ1(M(x)) = ρ0(x)
. Most of the modern Optimal Mass Transportation theory has been developed for the Euclidean distance
squared cost c(x, y) = ‖x− y)‖2 while the historic monge cost was the simple distance c(x, y) = ‖x− y‖.
In the Euclidean distance squared ground cost, the problem is well posed and in the seminal
work of Brenier [36], the optimal map is characterized as the gradient of a convex potential φ∗ :
I(∇φ∗(x)) = minM∈M I(M). A formal substitution in the Jacobian equation gives the Monge-Ampère
equation det(D2φ∗)ρ1(∇φ∗(x)) = ρ0(x) complemented by the second boundary value condition
∇φ∗(X0) ⊂ X1. Caffarelli [41] used this result to extend the regularity theory for the Monge-Ampère
equation. He noticed in particular that Optimal Mass Transportation solutions, now called Brenier solutions,
may have discontinuous gradients when the target density support X1 is non convex and are therefore weaker
than the Monge-Ampère potentials associated to Alexandrov measures (see [60] for a review of the different
notions of Monge-Ampère solutions). The value function

√
I(∇φ∗) is also known to be the Wasserstein

distance W2(ρ0, ρ1) on the space of probability densities, see [84]. The Computational Fluid Dynamic
formulation proposed by Brenier and Benamou in [2] introduces a time extension of the domain and leads to a

convex but non smooth optimization problem : I(∇φ∗) = min(ρ,V )∈C

∫ 1

0

∫
X

1

2
ρ(t, x) ‖V (t, x)‖2 dx dt.with

constraints : C = {(ρ, V ), s.t ∂tρ+ div(ρ V ) = 0, ρ({0, 1}, .) = ρ{0,1}(.)}. The time curves t→ ρ(t, .)
are geodesics between ρ0 and ρ1 for the Wasserstein distance. This formulation is a limit case of Mean
Fields games [65], a large class of economic models introduced by Lasry and Lions. The Wasserstein
distance and its connection to Optimal Mass Transportation also appears in the construction of semi-discrete
Gradient Flows. This notion known as JKO gradient flows after its authors in [62] is a popular tool to study
non-linear diffusion equations : the implicit Euler scheme ρdtk+1 = argminρ(.) F (ρ(.)) + 1

2 dtW2(ρ(.), ρdtk )
2

can be shown to converge ρdtk (.))→ρ∗(t, .) as dt→ 0 to the solution of the non linear continuity
equation ∂tρ

∗ + div(ρ∗∇(−∂F∂ρ (ρ∗))) = 0, ρ∗(0, .) = ρdt0 (.). The prototypical example is given by
F (ρ) =

∫
X
ρ(x) log (ρ(x)) + ρ(x)V (x) dx which corresponds to the classical Fokker-Planck equation.

Extensions of the ground cost c have been actively studied recently, some are mentioned in the application
section. Technical results culminating with the Ma-Trudinger-Wang condition [68] which gives necessary
condition on c for the regularity of the solution of the Optimal Mass Transportation problem. More recently
attention has risen on multi marginal Optimal Mass Transportation [59] and has been systematically studied
in [76] [79] [77] [78]. The data consists in an arbitrary (and even infinite) number N of densities (the
marginals) and the ground cost is defined on a product space c(x0, x1, ...., xn−1) of the same dimension.
Several interesting applications belong to this class of models (see below).
Our focus is on numerical methods in Optimal Mass Transportation and applications. The simplest way to
build a numerical method is to consider sum of dirac masses ρ0 =

∑N
i=1 δAi

ρ1 =
∑N
j=1 δBj

. In that case
the Optimal Mass Transportation problem reduces to combinatorial optimisation assigment problem between
the points {Ai}s and {Bi}s : minσ∈Permut(1,N)

1
N

∑N
i=1 Ci,σ(i)Ci,j = ‖Ai −Bj‖2. The complexity of the

best (Hungarian or Auction) algorithm, see [33] for example, is O(N
5
2 ). An interesting variant is obtained

when only the target measure is discrete. For instance X0 = {‖x‖ < 1}, ρ0 = 1
|X0| ρ1 = 1

N

∑N
j=1 δyj . It

corresponds to the notion of Pogorelov solutions of the Monge-Ampère equation [80] and is also linked to
Minkowski problem [31]. The optimal map is piecewise constant and the slopes are known. More precisely
there exists N polygonal cells Cj such that X0 = ∪jCj , |Cj | = 1

N and ∇φ∗|Cj
= yj . Pogorelov proposed a

constructive algorithm to build these solutions which has been refined and extended in particular in [50] [74]
[72] [71]. The complexity is still not linear : O(N2logN).
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For general densities data, the original optimization problem is not tractable because of the volume preserving
constraint on the map. Kantorovich dual formulation is a linear program but with a large number of constraints
set over the product of the source and target spaceX0 ×X1. The CFD formulation [2]. preserves the convexity
of the objective function and transforms the volume preserving constraint into a linear continuity equation
(using a change of variable). We obtained a convex but non smooth optimization problem solved using an
Augmented Lagrangian method [53], as originally proposed in [2]. It has been reinterpreted recently in the
framework of proximal algorithms [75]. This approach is robust and versatile and has been reimplemented
many times. It remains a first order optimization method and converges slowly. The cost is also increased
by the additional artificial time dimension. An empirical complexity is O(N3LogN) where N is the space
discretization of the density. Several variants and extension of these methods have been implemented, in
particular in [39] [30]. It is the only provably convergent method to compute Brenier (non C1) solutions.
When interested in slightly more regular solutions which correspond to the assumption that the target support
is convex, the recent wide stencil monotone finite difference scheme for the Monge-Ampère equation [55] can
be adapted to the Optimal Mass Transportation problem. This is the topic of [7]. This approach is extremely
fast as a Newton algorithm can be used to solve the discrete system. Numerical studies confirm this with a
linear empirical complexity.

For other costs, JKO schemes, multi marginal extensions, partial transport ... efficient numerical methods are
to be invented.

4. Application Domains

4.1. Continuous models in economics
• As already mentioned the CFD formulation is a limit case of simple variational Mean-Field Games

(MFG) [65]. MFG is a new branch of game theory recently developed by J-M. Lasry and P-L.
Lions. MFG models aim at describing the limiting behavior of stochastic differential games when
the number of players tends to infinity. They are specifically designed to model economic problems
where a large number of similar interacting agents try to maximize/minimize a utility/cost function
which takes into account global but partial information on the game. The players in these models are
individually insignificant but they collectively have a significant impact on the cost of the other
players. Dynamic MFG models often lead to a system of PDEs which consists of a backward
Hamilton-Jacobi Bellman equation for a value function coupled with a forward Fokker-Planck
equation describing the space-time evolution of the density of agents.

• In microeconomics, the principal-agent problem [83] with adverse selection plays a distinguished
role in the literature on asymmetric information and contract theory (with important contributions
from several Nobel prizes such as Mirrlees, Myerson, Spence or Tirole) and it has many important
applications in optimal taxation, insurance, nonlinear pricing. The problem can be reduced to the
maximization of an integral functional subject to a convexity constraint This is an unusual calculus
of variations problem and the optimal price can only be computed numerically. Recently, following
a reformulation of Carlier [12], convexity/well-posedness results of McCann, Figalli and Kim [52],
connected to optimal transport theory, showed that there is some hope to numerically solve the
problem for general utility functions.

• In [9] a class of games are considered with a continuum of players for which Cournot-Nash equilibria
can be obtained by the minimisation of some cost, related to optimal transport. This cost is not convex
in the usual sense in general but it turns out to have hidden strict convexity properties in many
relevant cases. This enables us to obtain new uniqueness results and a characterisation of equilibria
in terms of some partial differential equations, a simple numerical scheme in dimension one as well
as an analysis of the inefficiency of equilibria. The mathematical problem has the structure of one
step of the JKO gradient flow method.
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• Many relevant markets are markets of indivisible goods characterized by a certain quality: houses,
jobs, marriages... On the theoretical side, recent papers by Ekeland, McCann, Chiappori [45] showed
that finding equilibria in such markets is equivalent to solving a certain optimal transport problem
(where the cost function depends on the sellers and buyers preferences). On the empirical side, this
allows for trying to recover information on the preferences from observed matching; this is an inverse
problem as in a recent work of Galichon and Salanié [57] [58] Interestingly, these problems naturally
lead to numerically challenging variants of the Monge-Kantorovich problem: the multi-marginal OT
problem and the entropic approximation of the Monge-Kantorovich problem (which is actually due
to Schrödinger in the early 30’s).

4.2. Finance
The Skorohod embedding problem (SEP) consists in finding a martingale interpolation between two proba-
bility measures. When a particular stochastic ordering between the two measures is given, Galichon et al [56]
have shown that a very natural variational formulation could be given to a class of problems that includes
the SEP. This formulation is related to the CFD formulation of the OT problem [2] and has applications to
model-free bounds of derivative prices in Finance. It can also be interpreted as a a multi marginal Optimal
Mass Transportation with infinitely many marginals [78].

4.3. Congested Crowd motion
The volume preserving property appears naturally in this context where motion is constrained by the density
of player.

• Optimal Mass Transportation and MFG theories can be an extremely powerful tool to attack some
of these problems arising from spatial economics or to design new ones. For instance, various
urban/traffic planning models have been proposed by Buttazzo, Santambrogio, Carlier ([10] [40]
[32]) in recent years.

• Many models from PDEs and fluid mechanics have been used to give a description of people or
vehicles moving in a congested environment. These models have to be classified according to the
dimension (1D model are mostly used for cars on traffic networks, while 2D models are most suitable
for pedestrians), to the congestion effects (“soft” congestion standing for the phenomenon where
high densities slow down the movement, “hard” congestion for the sudden effects when contacts
occur, or a certain threshold is attained), and to the possible rationality of the agents Maury et al [69]
recently developed a theory for 2D hard congestion models without rationality, first in a discrete and
then in a continuous framework. This model produces a PDE that is difficult to attack with usual
PDE methods, but has been successfully studied via Optimal Mass Transportation techniques again
related to the JKO gradient flow paradigm.

4.4. Astrophysics
In [54] and [37], the authors show that the deterministic past history of the Universe can be uniquely
reconstructed from the knowledge of the present mass density field, the latter being inferred from the 3D
distribution of luminous matter, assumed to be tracing the distribution of dark matter up to a known bias.
Reconstruction ceases to be unique below those scales – a few Mpc – where multi-streaming becomes
significant. Above 6 Mpc/h we propose and implement an effective Monge-Ampere-Kantorovich method
of unique reconstruction. At such scales the Zel’dovich approximation is well satisfied and reconstruction
becomes an instance of optimal mass transportation. After discretization into N point masses one obtains an
assignment problem that can be handled by effective algorithms with not more than cubic time complexity in
N and reasonable CPU time requirements. Testing against N-body cosmological simulations gives over 60%
of exactly reconstructed points.
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4.5. Image Processing and inverse problems
The Wasserstein distance between densities is the value function of the Optimal Mass Transportation problem.
This distance may be considered to have "orthogonal" properties to the widely used least square distance. It
is for instance quadratic with respect to dilations and translation. On the other hand it is not very sensitive to
rigid transformations, [75] is an attempt at generalizing the CFD formulation in this context. The Wasserstein
distance is an interesting tool for applications where distances between signals and in particular oscillatory
signals need to to computed, this is assuming one understands how to transform the information into positive
densities.

• Tannenbaum and co-authors have designed several variants of the CFD numerical method and
applied it to warping, morphing and registration (using the Optimal Mass Transportation map)
problems in medical imaging. [86] [30]

• Gabriel Peyre and co-authors [82] have proposed an easier to compute relaxation of the Wasserstein
distance (the sliced Wasserstein distance) and applied it to two image processing problems: color
transfer and texture mixing.

• Froese Engquist [51] use a Monge-Ampère Solver to compute the Wasserstein distance between
synthetic 2D Seismic signals (After some transformations). Applications to waveform inversion and
registration are discussed and simple numerical examples are presented.

4.6. Meteorology and Fluid models
In, [34] Brenier reviews in a unified framework the connection between optimal transport theory and classical
convection theory for geophysical flows. Inspired by the numerical model proposed in [30], the starting point
is a generalization of the Darcy-Boussinesq equations, which is a degenerate version of the Navier-Stokes-
Boussinesq (NSB) equations. In a unified framework, he relates different variants of the NSB equations (in
particular what he calls the generalized hydrostatic-Boussinesq equations) to various models involving optimal
transport and the related Monge-Ampère equation. This includes the 2D semi-geostrophic equations [61] [49]
[48] [4] [67] and some fully nonlinear versions of the so-called high-field limit of the Vlasov-Poisson system
[73] and of the Keller-Segel system for chemotaxis [63] [44] .

4.7. Mesh motion/Lagragian methods
The necessity to preserve areas/volumes is a intrinsic feature of mesh deformations more generally Lagrangian
numerical methods. Numerical method of Optimal Mass Transportation which preserve some notions of
convexity and as a consequence the monotonicity of the computed transport maps can play a role in this
context, see for instance [43] [46] [66].

4.8. Density Functionnal Theory (DFT)
The precise modeling of electron correlations continues to constitute the major obstacle in developing high-
accuracy, low-cost methods for electronic structure computations in molecules and solids. The article [47]
sheds a new light on the longstanding problem of how to accurately incorporate electron correlation into DFT,
by deriving and analyzing the semiclassical limit of the exact Hohenberg-Kohn functional with the single-
particle density ρ held fixed. In this limit, in the case of two electrons, the exact functional reduces to a
very interesting functional that depends on an optimal transport map M associated with a given density ρ.
The limit problem is known in the DFT literature with the optimal transport map being called a correlation
function or a co-motion function , but it has not been rigorously derived, and it appears that it has not previously
been interpreted as an optimal transport problem. The article [47] thereby links for the first time DFT, which
is a large and very active research area in physics and chemistry, to optimal transportation theory with a
Coulombian repulsive cost. Numerics are still widely open [38].
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5. New Software and Platforms

5.1. ALG2 for Monge Mean-Field Games, Monge problem and Variational
problems under divergence constraint

5.1.1. Platforms
A generalisation of the ALG2 algorithm [53] corresponding to the paper [18] ha been implemented in
FreeFem++. The scripts and numerical simulations are available at https://team.inria.fr/mokaplan/augmented-
lagrangian-simulations/.

We still plan to implement a parallel version on Rocquencourt Inria cluster. We are waiting for FreeFem to be
installed on the cluster.

5.2. Mokabajour
5.2.1. Platforms

Following the pioneering work of Caffarelli and Oliker [42], Wang [85] has shown that the inverse problem
of freeforming a convex reflector which sends a prescribed source to a target intensity is a particular instance of
Optimal Mass Transportation. The method developed in [7] has been used by researchers of TU Eindhoven in
collaboration with Philips Lightning Labs to compute reflectors [81] in a simplified setting. The industrial
motivation is the automatic design of reflector given prescribed source and target illuminance. From the
mathematical point of view there is a hierarchy of Optimal Mass Transportation reflector and lenses problems
and only the simplest "far field" one can be solved with state of the art Monge-Ampère solvers. We will
adapt the Monge-Ampère solvers and also attempt to build real optimized reflector prototypes. We plan on
investigating the more complicated near field models and design numerical methods. Finally Monge-Ampère
based Optimal Mass Transportation solvers will be made available. This could be used for example in Mesh
adaptation.

The web site is under construction https://project.inria.fr/mokabajour/, preliminary results are available.

This ADT (Simon Legrand) on the numerical free forming of specular reflectors started in december. We
implement different types of MA solvers in collaboration with Quentin Mérigot (CEREMADE), Boris Thibert
(LJK Grenoble) and Vincent Duval. See https://project.inria.fr/mokabajour/.

6. New Results

6.1. Highlights of the Year
All of the new results below are important break through and most of them non-incremental research.

Mokaplan has extended its collaborations to several researchers at Ceremade and is under review to become a
project team.

6.2. Iterative Bregman Projections for Regularized Transportation Problems
Benamou, Jean-David and Carlier, Guillaume and Cuturi, Marco and Nenna, Luca and Peyré, Gabriel

[19]

https://team.inria.fr/mokaplan/augmented-lagrangian-simulations/
https://team.inria.fr/mokaplan/augmented-lagrangian-simulations/
https://project.inria.fr/mokabajour/
https://project.inria.fr/mokabajour/
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We provide a general numerical framework to approximate solutions to linear programs related to optimal
transport. The general idea is to introduce an entropic regularization of the initial linear program. This regu-
larized problem corresponds to a Kullback-Leibler Bregman di-vergence projection of a vector (representing
some initial joint distribution) on the polytope of constraints. We show that for many problems related to opti-
mal transport, the set of linear constraints can be split in an intersection of a few simple constraints, for which
the projections can be computed in closed form. This allows us to make use of iterative Bregman projections
(when there are only equality constraints) or more generally Bregman-Dykstra iterations (when inequality con-
straints are involved). We illustrate the usefulness of this approach to several variational problems related to
optimal transport: barycenters for the optimal trans-port metric, tomographic reconstruction, multi-marginal
optimal trans-port and in particular its application to Brenier’s relaxed solutions of in-compressible Euler
equations, partial unbalanced optimal transport and optimal transport with capacity constraints.
The extension of the method to the Principal Agent problem, Density Functional theory and Transport under
martingal constraint is under way.

6.3. A viscosity framework for computing Pogorelov solutions of the
Monge-Ampere equation
Benamou, Jean-David and Froese, Brittany D.

[21]

We consider the Monge-Kantorovich optimal transportation problem between two measures, one of which is
a weighted sum of Diracs. This problem is traditionally solved using expensive geometric methods. It can also
be reformulated as an elliptic partial differential equation known as the Monge-Ampere equation. However,
existing numerical methods for this non-linear PDE require the measures to have finite density. We introduce a
new formulation that couples the viscosity and Aleksandrov solution definitions and show that it is equivalent
to the original problem. Moreover, we describe a local reformulation of the subgradient measure at the Diracs,
which makes use of one-sided directional derivatives. This leads to a consistent, monotone discretisation of
the equation. Computational results demonstrate the correctness of this scheme when methods designed for
conventional viscosity solutions fail.
The method offers a new insight into the duality between Aleksandrov and Brenier solutions of the Monge
Ampère equations. We still work on the viscosity existence/uniqueness convergence of sheme theory.

6.4. Discretization of functionals involving the Monge-Ampère operator
Benamou, Jean-David and Carlier, Guillaume and Mérigot, Quentin and Oudet, Edouard

[26]

Gradient flows in the Wasserstein space have become a powerful tool in the analysis of diffusion equations,
following the seminal work of Jordan, Kinderlehrer and Otto (JKO). The numerical applications of this
formulation have been limited by the difficulty to compute the Wasserstein distance in dimension larger than
2. One step of the JKO scheme is equivalent to a variational problem on the space of convex functions, which
involves the Monge-Ampère operator. Convexity constraints are notably difficult to handle numerically, but in
our setting the internal energy plays the role of a barrier for these constraints. This enables us to introduce a
consistent discretization, which inherits convexity properties of the continuous variational problem. We show
the effectiveness of our approach on nonlinear diffusion and crowd-motion models.

6.5. Augmented Lagrangian methods for transport optimization, Mean-Field
Games and degenerate PDEs
Benamou, Jean-David and Carlier, Guillaume

[18]
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Many problems from mass transport can be reformulated as variational problems under a prescribed divergence
constraint (static problems) or subject to a time dependent continuity equation which again can also be
formulated as a divergence constraint but in time and space. The variational class of Mean-Field Games
introduced by Lasry and Lions may also be interpreted as a generalisation of the time-dependent optimal
transport problem. Following Benamou and Brenier, we show that augmented Lagrangian methods are well-
suited to treat convex but nonsmooth problems. It includes in particular Monge historic optimal transport
problem. A Finite Element discretization and implementation of the method is used to provide numerical
simulations and a convergence study.
We have good hopes to use this method to many non-linear diffusion equations through the use of JKO gradient
schemes.

6.6. Discretization of functionals involving the Monge-Ampère operator
Benamou, Jean-David and Collino, Francis and Mirebeau, Jean-Marie

[20]

We introduce a novel discretization of the Monge-Ampere operator, simultaneously consistent and degenerate
elliptic, hence accurate and robust in applications. These properties are achieved by exploiting the arithmetic
structure of the discrete domain, assumed to be a two dimensional cartesian grid. The construction of our
scheme is simple, but its analysis relies on original tools seldom encountered in numerical analysis, such as
the geometry of two dimensional lattices, and an arithmetic structure called the Stern-Brocot tree. Numerical
experiments illustrate the method’s efficiency.

6.7. A Γ-Convergence Result for the Upper Bound Limit Analysis of Plates
Bleyer, Jérémy and Carlier, Guillaume and Duval, Vincent and Mirebeau, Jean-Marie and Peyré, Gabriel

[23]

Upper bound limit analysis allows one to evaluate directly the ultimate load of structures without performing
a cumbersome incremental analysis. In order to numerically apply this method to thin plates in bending,
several authors have proposed to use various finite elements discretizations. We provide in this paper a
mathematical analysis which ensures the convergence of the finite element method, even with finite elements
with discontinuous derivatives such as the quadratic 6 node Lagrange triangles and the cubic Hermite triangles.
More precisely, we prove the Gamma-convergence of the discretized problems towards the continuous limit
analysis problem. Numerical results illustrate the relevance of this analysis for the yield design of both
homogeneous and non-homogeneous materials.

6.8. Cournot-Nash equilibria
Carlier, Guillaume and Blanchet, Adrien

[24]

The notion of Nash equilibria plays a key role in the analysis of strategic interactions in the framework of N
player games. Analysis of Nash equilibria is however a complex issue when the number of players is large.
It is therefore natural to investigate the continuous limit as N tends to infinity and to investigate whether it
corresponds to the notion of Cournot-Nash equilibria. In [9], this kind of convergence result is studied in a
Wasserstein framework. In [BC1], we go one step further by giving a class of games with a continnum of
players for which equilibria may be found as minimizers as a functional on measures which is very similar to
the one-step JKO case, uniqueness results are the obtained from displacement convexity arguments. Finally, in
[9] some situations which are non variational are considered and existence is obtained by methods combining
fixed point arguments and optimal transport.

6.9. Principal Agent
Carlier, Guillaume, Benamou, Jean-David and Dupuis Xavier
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The numerical resolution of principal Agent for a bilinear utility has been attacked and solved successfully in
a series of recent papers see [70] and references therein.

A Bregman approach inspired by [6] has been developed for more general functions the paper is currently
being written. It would be extremely useful as a complement to the theoretical analysis. A new semi-Discrete
Geometric approach is also investigated where the method reduces to non-convex polynomial optimization.

6.10. Exact Support Recovery for Sparse Spikes Deconvolution
Duval, Vincent and Peyré, Gabriel

[17]

We study sparse spikes deconvolution over the space of measures. We focus our attention to the recovery
properties of the support of the measure, i.e. the location of the Dirac masses. For non-degenerate sums of
Diracs, we show that, when the signal-to-noise ratio is large enough, total variation regularization (which is
the natural extension of the L1 norm of vectors to the setting of measures) recovers the exact same number
of Diracs. We also show that both the locations and the heights of these Diracs converge toward those of the
input measure when the noise drops to zero. The exact speed of convergence is governed by a specific dual
certificate, which can be computed by solving a linear system. We draw connections between the support
of the recovered measure on a continuous domain and on a discretized grid. We show that when the signal-
to-noise level is large enough, the solution of the discretized problem is supported on pairs of Diracs which
are neighbors of the Diracs of the input measure. This gives a precise description of the convergence of the
solution of the discretized problem toward the solution of the continuous grid-free problem, as the grid size
tends to zero.

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR

Jean-David Benamou is the coordinator of the ANR ISOTACE (Interacting Systems and Optimal Trans-
portation, Applications to Computational Economics) ANR-12-MONU-0013 (2012-2016). The consortium
explores new numerical methods in Optimal Transportation AND Mean Field Game theory with applications
in Economics and congested crowd motion. Four extended seminars have been organized/co-organized by
Mokaplan. Check https://project.inria.fr/isotace/news.
Christophe Duquesne (Aurigetech) is a software and mobility consultant hired on the ANR budget. He helps
the consortium to develop its industrial partnerships.

7.2. International Initiatives
7.2.1. Inria Associate Teams
7.2.1.1. MOKALIEN

Title: Numerical Optimal Transportation in (Mathematical) Economics

International Partner (Institution - Laboratory - Researcher):

McGill University (CANADA)

Duration: 2014 - 2016

See also: https://team.inria.fr/mokaplan/mokalien/

https://project.inria.fr/isotace/news
https://team.inria.fr/mokaplan/mokalien/
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The overall scientific goals is to develop numerical methods for large scale optimal transport and
models based on optimal transport tools
see https://team.inria.fr/mokaplan/files/2014/09/MOKALIEN_Proposal_2013.pdf, section 2.

A few additional applications were suggested at our annual workshop in october
https://team.inria.fr/mokaplan/first-meeting-in-montreal-at-u-mcgill-october-20-24-2014/

7.3. International Research Visitors
7.3.1. Visits of International Scientists

Adam Oberman (U. Mc Gill) visited Mokaplan in June.

7.3.2. Visits to International Teams
7.3.2.1. Sabbatical programme

Guillaume Carlier in on sabbatical for the academic year (délégation CNRS at the UMI-CNRS 3069 PIMS
at UVIC, Victoria, British Columbia, Canada). He is taking advantage of this full-research year to work
on optimal transport methods for kinetic models for granular media (with M. Agueh and Reinhard Illner),
Wasserstein barycenters and to continue to develop joint projects on numerical optimal transport with J.D.
Benamou’s MOKAPLAN team.

8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific events organisation
8.1.1.1. Member of the organizing committee

Guillaume Carlier was organiser of the RICAM special semester on Calculus of Variation http://www.ricam.
oeaw.ac.at/specsem/specsem2014/. This was a two weeks event. The first week was devoted to original
minicourses on special research topics that are particularly active: Numerical mehods for optimal transport
(J.-D. Benamou), Multi-marginal transport problems (L. de Pascale) and Gradient Flows (J.-A. Carrillo). The
second week, a workshop was organized. This event gathered more than 50 participants with a majority of
young researchers (more than 30).

8.1.2. Scientific events selection
8.1.2.1. Member of the conference program committee

Guillaume carlier is in the scientific committee for SMAI 2015.

8.1.2.2. Reviewer

Vincent Duval has reviewed several contributions for the Scale Space and Variational Methods SSVM 2015
conference.

8.1.3. Journal
8.1.3.1. Member of the editorial board

Guillaume carlier is member of the editorial Board of "Journal de l’Ecole Polytechnique" and co-editor of
"Mathematics and Financial Economics".

https://team.inria.fr/mokaplan/files/2014/09/MOKALIEN_Proposal_2013.pdf
https://team.inria.fr/mokaplan/first-meeting-in-montreal-at-u-mcgill-october-20-24-2014/
http://www.ricam.oeaw.ac.at/specsem/specsem2014/
http://www.ricam.oeaw.ac.at/specsem/specsem2014/
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8.1.3.2. Reviewer

Vincent Duval has reviewed several papers for the following jounals:
• SIIMS (SIAM Journal on Imaging Sciences)
• JMAA (Journal of Mathematical Analysis and Applications)
• IPol (Image Processing Online)
• JVCI (Journal of Visual Communication and Image Representation)

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

In 2014, Guillaume Carlier gave an advanced course on Mean-Field Games (M2 EDP-MAD and Masef) and
a master course (M1) on dynamic programming at Dauphine

Master : Guillaume Carlier, Mean-Field Games, M2 EDP-MAD , U. Paris- Dauphine.
Master : Guillaume Carlier, Dynamic Programming , M1 , U. Paris- Dauphine.

8.2.2. Supervision
PhD in progress: Quentin Denoyelle, “Analyse théorique et numérique de la super-résolution sans
grille”, 2014, Gabriel Peyré and Vincent Duval.
PhD in progress : Roméo Hatchi , "Analyse mathématique de modèles de trafic congestionné", 2012,
Guillaume Carlier.
PhD in progress : Maxime Laborde , " Dynamique des systèmes de particules en interaction,
approche par flots de gradient et applications", 2013 , Guillaume Carlier
PhD in progress : Luca Nenna , "Méthodes numṕerique pour le transport optimal multimarge" ,
2013, Jean-David Benamou et Guillaume Carlier.
PhD in progress: Quentin Denoyelle, “Analyse théorique et numérique de la super-résolution sans
grille”, thèse commencée le 1er octobre 2014, supervised by Gabriel Peyré (main supervisor) and
Vincent Duval (co-supervisor).

8.2.3. Juries
Guillaume carlier was in the Ph.D. committee of Serena Guarino (Pisa) and Miryana Grigorova (Paris 7).
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