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2. Overall Objectives

2.1. Overall Objectives
The overall objectives of the NACHOS project-team are the formulation, analysis and evaluation of numerical
methods and high performance algorithms for the solution of first order linear systems of partial differential
equations (PDEs) with variable coefficients pertaining to electrodynamics and elastodynamics. In both
domains, the applications targeted by the team involve the interaction of the underlying physical fields with
media exhibiting space and time heterogeneities. Moreover, in most of the situations of practical relevance, the
computational domain is irregularly shaped or/and it includes geometrical singularities. Both the heterogeneity
and the complex geometrical features of the underlying media motivate the use of numerical methods working
on non-uniform discretizations of the computational domain. In this context, the research efforts of the team
aim at the development of unstructured (or hybrid structured/unstructured) mesh based methods with activities
ranging from the mathematical analysis of numerical methods for the solution of the systems of PDEs of
electrodynamics and elastodynamics, to the development of prototype 3d simulation software that efficiently
exploits the capabilities of modern high performance computing platforms.

In the case of electrodynamics, the mathematical model of interest is the full system of unsteady Maxwell
equations [50] which is a first-order hyperbolic linear system of PDEs (if the underlying propagation media
is assumed to be linear). This system can be numerically solved using so-called time-domain methods among
which the Finite Difference Time-Domain (FDTD) method introduced by K.S. Yee [55] in 1996 is the
most popular and which often serves as a reference method for the works of the team. In the vast majority
of existing time-domain methods, time advancing relies on an explicit time scheme. For certain types of
problems, a time-harmonic evolution can be assumed leading to the formulation of the frequency-domain
Maxwell equations whose numerical resolution requires the solution of a linear system of equations (i.e
in that case, the numerical method is naturally implicit). Heterogeneity of the propagation media is taken
into account in the Maxwell equations through the electrical permittivity, the magnetic permeability and the
electric conductivity coefficients. In the general case, the electrical permittivity and the magnetic permeability
are tensors whose entries depend on space (i.e heterogeneity in space) and frequency. In the latter case, the
time-domain numerical modeling of such materials requires specific techniques in order to switch from the
frequency evolution of the electromagnetic coefficients to a time dependency. Moreover, there exist several
mathematical models for the frequency evolution of these coefficients (Debye model, Drude model, Drude-
Lorentz model, etc.).

In the case of elastodynamics, the mathematical model of interest is the system of elastodynamic equations
[45] for which several formulations can be considered such as the velocity-stress system. For this system,
as with Yee’s scheme for time-domain electromagnetics, one of the most popular numerical method is the
finite difference method proposed by J. Virieux [54] in 1986. Heterogeneity of the propagation media is taken
into account in the elastodynamic equations through the Lamé and mass density coefficients. A frequency
dependence of the Lamé coefficients allows to take into account physical attenuation of the wave fields and
characterizes a viscoelastic material. Again, several mathematical models are available for expressing the
frequency evolution of the Lamé coefficients.

3. Research Program

3.1. Scientific foundations
The teams focuses on physical applications dealing with electromagnetic or elastodynamic wave propagation
in interaction with heterogeneous media and irregularly shaped structures. The underlying wave propagation
phenomena can be purely unsteady or they can be periodic (because the imposed source term follows a
time-harmonic evolution). In this context, the research activities undertaken by the team aim at developing
innovative numerical methodologies putting the emphasis on several features:



Project-Team NACHOS 3

• Accuracy. The foreseen numerical methods should rely on discretization techniques that best
fit to the geometrical characteristics of the problems at hand. Methods based on unstructured,
locally refined, even non-conforming, simplicial meshes are particularly attractive in this regard.
In addition, the proposed numerical methods should also be capable to accurately describe the
underlying physical phenomena that may involve highly variable space and time scales. Both
objectives are generally addressed by studying so-called hp-adaptive solution strategies which
combine h-adaptivity using local refinement/coarsening of the mesh and p-adaptivity using adaptive
local variation of the interpolation order for approximating the solution variables. However, for
physical problems involving strongly heterogeneous or high contrast propagation media, such a
solution strategy may not be sufficient. Then, for dealing accurately with these situations, one has to
design numerical methods that specifically address the multiscale nature of the underlying physical
phenomena.

• Numerical efficiency. The simulation of unsteady problems most often relies on explicit time
integration schemes. Such schemes are constrained by a stability criterion, linking some space and
time discretization parameters, that can be very restrictive when the underlying mesh is highly non-
uniform (especially for locally refined meshes). For realistic 3d problems, this can represent a severe
limitation with regards to the overall computing time. One possible overcoming solution consists in
resorting to an implicit time scheme in regions of the computational domain where the underlying
mesh size is very small, while an explicit time scheme is applied elsewhere in the computational
domain. The resulting hybrid explicit-implicit time integration strategy raises several challenging
questions concerning both the mathematical analysis (stability and accuracy, especially for what
concern numerical dispersion), and the computer implementation on modern high performance
systems (data structures, parallel computing aspects). A second, often considered approach is to
devise a local time strategy in the context of a fully explicit time integration scheme. Beside, when
considering time-harmonic wave propagation problems, numerical efficiency is mainly linked to
the solution of the system of algebraic equations resulting from the discretization in space of the
underlying PDE model. Various strategies exist ranging from the more robust and efficient sparse
direct solvers to the more flexible and cheaper (in terms of memory resources) iterative methods.
Current trends tend to show that the ideal candidate will be a judicious mix of both approaches by
relying on domain decomposition principles.

• Computational efficiency. Realistic 3d wave propagation problems involve the processing of
very large volumes of data. The latter results from two combined parameters: the size of the
mesh i.e the number of mesh elements, and the number of degrees of freedom per mesh element
which is itself linked to the degree of interpolation and to the number of physical variables
(for systems of partial differential equations). Hence, numerical methods must be adapted to the
characteristics of modern parallel computing platforms taking into account their hierarchical nature
(e.g multiple processors and multiple core systems with complex cache and memory hierarchies). In
addition, appropriate parallelization strategies need to be designed that combine SIMD and MIMD
programming paradigms.

From the methodological point of view, the research activities of the team are concerned with four main
topics: (1) high order finite element type methods on unstructured or hybrid structured/unstructured meshes
for the discretization of the considered systems of PDEs, (2) efficient time integration strategies for dealing
with grid induced stiffness when using non-uniform (locally refined) meshes, (3) numerical treatment of
complex propagation media models (e.g. physical dispersion models), (4) algorithmic adaptation to modern
high performance computing platforms.

3.2. High order discretization methods
3.2.1. The Discontinuous Galerkin method

The Discontinuous Galerkin method (DG) was introduced in 1973 by Reed and Hill to solve the neutron
transport equation. From this time to the 90’s a review on the DG methods would likely fit into one page. In
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the meantime, the Finite Volume approach (FV) has been widely adopted by computational fluid dynamics
scientists and has now nearly supplanted classical finite difference and finite element methods in solving
problems of nonlinear convection and conservation law systems. The success of the FV method is due to its
ability to capture discontinuous solutions which may occur when solving nonlinear equations or more simply,
when convecting discontinuous initial data in the linear case. Let us first remark that DG methods share with
FV methods this property since a first order FV scheme may be viewed as a 0th order DG scheme. However
a DG method may also be considered as a Finite Element (FE) one where the continuity constraint at an
element interface is released. While keeping almost all the advantages of the FE method (large spectrum of
applications, complex geometries, etc.), the DG method has other nice properties which explain the renewed
interest it gains in various domains in scientific computing as witnessed by books or special issues of journals
dedicated to this method [42]- [43]- [44]- [49]:

• It is naturally adapted to a high order approximation of the unknown field. Moreover, one may
increase the degree of the approximation in the whole mesh as easily as for spectral methods but,
with a DG method, this can also be done very locally. In most cases, the approximation relies on
a polynomial interpolation method but the DG method also offers the flexibility of applying local
approximation strategies that best fit to the intrinsic features of the modeled physical phenomena.

• When the space discretization is coupled to an explicit time integration scheme, the DG method
leads to a block diagonal mass matrix whatever the form of the local approximation (e.g. the type of
polynomial interpolation). This is a striking difference with classical, continuous FE formulations.
Moreover, the mass matrix may be diagonal if the basis functions are orthogonal.

• It easily handles complex meshes. The grid may be a classical conforming FE mesh, a non-
conforming one or even a hybrid mesh made of various elements (tetrahedra, prisms, hexahedra,
etc.). The DG method has been proven to work well with highly locally refined meshes. This property
makes the DG method more suitable (and flexible) to the design of some hp-adaptive solution
strategy.

• It is also flexible with regards to the choice of the time stepping scheme. One may combine the
DG spatial discretization with any global or local explicit time integration scheme, or even implicit,
provided the resulting scheme is stable.

• It is naturally adapted to parallel computing. As long as an explicit time integration scheme is used,
the DG method is easily parallelized. Moreover, the compact nature of DG discretization schemes
is in favor of high computation to communication ratio especially when the interpolation order is
increased.

As with standard FE methods, a DG method relies on a variational formulation of the continuous problem at
hand. However, due to the discontinuity of the global approximation, this variational formulation has to be
defined locally, at the element level. Then, a degree of freedom in the design of a DG method stems from the
approximation of the boundary integral term resulting from the application of an integration by parts to the
element-wise variational form. In the spirit of FV methods, the approximation of this boundary integral term
calls for a numerical flux function which can be based on either a centered scheme or an upwind scheme, or a
blending between these two schemes.

3.2.2. High order DG methods for wave propagation models
DG methods are et the heart of the activities of the pteam regarding the development of high order discretiza-
tion schemes for the PDE systems modeling electromagnetic and elatsodynamic wave propagation:

• Nodal DG methods for time-domain problems. For the numerical solution of the time-domain
Maxwell equations, we have first proposed a non-dissipative high order DGTD (Discontinuous
Galerkin Time Domain) method working on unstructured conforming simplicial meshes [19]-[2].
This DG method combines a central numerical flux function for the approximation of the integral
term at the interface of two neighboring elements with a second order leap-frog time integration
scheme. Moreover, the local approximation of the electromagnetic field relies on a nodal (Lagrange
type) polynomial interpolation method. Recent achievements by the team deal with the extension
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of these methods towards non-conforming meshes and hp-adaptivity [16]-[17], their coupling with
hybrid explicit/implicit time integration schemes in order to improve their efficiency in the context
of locally refined meshes [6]. A high order DG method has also been proposed for the numerical
resolution of the elastodynamic equations modeling the propagation of seismic waves [4]-[15].

• Hybridizable DG (HDG) method for time-domain and time-harmonic problems. For the numer-
ical treatment of the time-harmonic Maxwell equations, nodal DG methods can also be consiered
[7]-[14]. However, such DG formulations are highly expensive, especially for the discretization of
3d problems, because they lead to a large sparse and undefinite linear system of equations coupling
all the degrees of freedom of the unknown physical fields. Different attempts have been made in
the recent past to improve this situation and one promising strategy has been recently proposed by
Cockburn et al.[47] in the form of so-called hybridizable DG formulations. The distinctive feature
of these methods is that the only globally coupled degrees of freedom are those of an approximation
of the solution defined only on the boundaries of the elements. This work is concerned with the
study of such Hybridizable Discontinuous Galerkin (HDG) methods for the solution of the system
of Maxwell equations in the time-domain when the time integration relies on an implicit scheme, or
in the frequency domain. The team has been a precursor in the development of HDG methods for
the frequency-domain Maxwell equations [22]-[23].

• Multiscale DG methods for time-domain problems. More recently, in the framework of a col-
laboration with LNCC in Petropolis (Frédéric Valentin), we have started to investigate a family of
methods specifically designed for an accurate and efficient numerical treatment of multiscale wave
propagation problems. These methods, referred to as Multiscale Hybrid Mixed (MHM) methods, are
currently studied in the team for both time-domain electromagnetic and elastodynamic PDE models.
They consist in reformulating the mixed variational form of each system into a global (arbitrarily
coarse) problem related to a weak formulation of the boundary condition (carried by a Lagrange
multiplier that represents e.g. the normal stress tensor in elastodynamic sytems), and a series of
small, element-wise, fully decoupled problems resembling to the initial one and related to some well
chosen partition of the solution variables on each element. By construction, that methodology is fully
parallelizable and recursivity may be used in each local problem as well, making MHM methods be-
longing to multi-level highly parallelizable methods. Each local problem may be solved using DG
or classical Galerkin FE approximations combined with some appropriate time integration scheme
(θ-scheme or leap-frog scheme).

3.3. Efficient time integration strategies
The use of unstructured meshes (based on triangles in two space dimensions and tetrahedra in three space
dimensions) is an important feature of the DGTD methods developed in the team which can thus easily deal
with complex geometries and heterogeneous propagation media. Moreover, DG discretization methods are
naturally adapted to local, conforming as well as non-conforming, refinement of the underlying mesh, Most of
the existing DGTD methods rely on explicit time integration schemes and lead to block diagonal mass matrices
which is often recognized as one of the main advantages with regards to continuous finite element methods.
However, explicit DGTD methods are also constrained by a stability condition that can be very restrictive
on highly refined meshes and when the local approximation relies on high order polynomial interpolation.
There are basically three strategies that can be considered to cure this computational efficiency problem. The
first approach is to use an unconditionally stable implicit time integration scheme to overcome the restrictive
constraint on the time step for locally refined meshes. In a second approach, a local time stepping strategy
is combined with an explicit time integration scheme. In the third approach, the time step size restriction is
overcome by using a hybrid explicit-implicit procedure. In this case, one blends a time implicit and a time
explicit schemes where only the solution variables defined on the smallest elements are treated implicitly.
The first and third options are considered in the team in the framework of DG [6]-[25]-[24] and HDG [20]
discretization methods.
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3.4. Numerical treatment of complex material models
Towards the general aim of being able to consider concrete physical situations, we are interested in taking
into account in the numerical methodologies that we study, a better description of the propagation of waves
in realistic media. In the case of electromagnetics, a typical physical phenomenon that one has to consider
is dispersion. It is present in almost all media and traduces the way the material reacts to the presence of
electromagnetic waves. In the presence of an electric field a medium does not react instantaneously and thus
presents an electric polarization of the molecules or electrons that itself influences the electric displacement.
In the case of a linear homogeneous isotropic media, there is a linear relation between the applied electric field
and the polarization. However, above some range of frequencies (depending on the considered material), the
dispersion phenomenon cannot be neglected and the relation between the polarization and the applied electric
field becomes complex. This is traduced by a frequency-dependent complex permittivity. Several such models
for the characterization of the permittivity exist. Concerning biological media, the Debye model is commonly
adopted in the presence of water, biological tissues and polymers, so that it already covers a wide range of
applications [21]. If one is interested in modeling the dispersion effects on metals on the nanometer scale and
at optical frequencies, which are the conditions that one has to deal with in the context of nanoplasmonics,
then the Drude or the Drude-Lorentz models are generally adopted [26]. In the context of seismic wave
propagation, we are interested by the intrinsic attenuation of the medium. In realistic configurations, for
instance in sedimentary basins where the waves are trapped, we can observe site effects due to local geological
and geotechnical conditions which result in a strong increase in amplification and duration of the ground
motion at some particular locations. During the wave propagation in such media, a part of the seismic energy is
dissipated because of anelastic losses relied to the internal friction of the medium. For these reasons, numerical
simulations based on the basic assumption of linear elasticity are no more valid since this assumption result in
a severe overestimation of amplitude and duration of the ground motion, even when we are not in presence of
a site effect, since intrinsic attenuation is not taken into account.

3.5. High performance numerical computing
Beside basic research activities related to the design of numerical methods and resolution algorithms for
the wave propagation models at hand, the team is also committed to demonstrate the benefits of the
proposed numerical methodologies in the simulation of challenging three-dimensional problems pertaining
to computational electromagnetics and computation geoseismics. For such applications, parallel computing is
a mandatory path. Nowadays, modern parallel computers most often take the form of clusters of heterogeneous
multiprocessor systems, combining multiple core CPUs with accelerator cards (e.g Graphical Processing Units
- GPUs), with complex hierarchical distributed-shared memory systems. Developing numerical algorithms
that efficiently exploit such high performance computing architectures raises several challenges, especially in
the context of a massive parallelism. In this context, current efforts of the team are towards the exploitation
of multiple levels of parallelism (computing systems combining CPUs and GPUs) through the study of
hierarchical SPMD (Single Program Multiple Data) strategies for the parallelization of unstructured mesh
based solvers.

4. Application Domains

4.1. Electromagnetic wave propagation
Electromagnetic devices are ubiquitous in present day technology. Indeed, electromagnetism has found
and continues to find applications in a wide array of areas, encompassing both industrial and societal
purposes. Applications of current interest include (among others) those related to communications (e.g
transmission through optical fiber lines), to biomedical devices (e.g microwave imaging, micro-antenna
design for telemedecine, etc.), to circuit or magnetic storage design (electromagnetic compatibility, hard disc
operation), to geophysical prospecting, and to non-destructive evaluation (e.g crack detection), to name but
just a few. Equally notable and motivating are applications in defence which include the design of military
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hardware with decreased signatures, automatic target recognition (e.g bunkers, mines and buried ordnance,
etc.) propagation effects on communication and radar systems, etc. Although the principles of electromagnetics
are well understood, their application to practical configurations of current interest, such as those that arise in
connection with the examples above, is significantly complicated and far beyond manual calculation in all but
the simplest cases. These complications typically arise from the geometrical characteristics of the propagation
medium (irregular shapes, geometrical singularities), the physical characteristics of the propagation medium
(heterogeneity, physical dispersion and dissipation) and the characteristics of the sources (wires, etc.).

Although many of the above-mentioned application contexts can potentially benefit from numerical modeling
studies, the team currently concentrates its efforts on two physical situations.

4.1.1. Microwave interaction with biological tissues
Two main reasons motivate our commitment to consider this type of problem for the application of the
numerical methodologies developed in the NACHOS project-team:

• First, from the numerical modeling point of view, the interaction between electromagnetic waves
and biological tissues exhibit the three sources of complexity identified previously and are thus
particularly challenging for pushing one step forward the state-of-the art of numerical methods
for computational electromagnetics. The propagation media is strongly heterogeneous and the
electromagnetic characteristics of the tissues are frequency dependent. Interfaces between tissues
have rather complicated shapes that cannot be accurately discretized using cartesian meshes. Finally,
the source of the signal often takes the form of a complicated device (e.g a mobile phone or an
antenna array).

• Second, the study of the interaction between electromagnetic waves and living tissues is of interest
to several applications of societal relevance such as the assessment of potential adverse effects
of electromagnetic fields or the utilization of electromagnetic waves for therapeutic or diagnostic
purposes. It is widely recognized nowadays that numerical modeling and computer simulation
of electromagnetic wave propagation in biological tissues is a mandatory path for improving the
scientific knowledge of the complex physical mechanisms that characterize these applications.

Despite the high complexity both in terms of heterogeneity and geometrical features of tissues, the great
majority of numerical studies so far have been conducted using variants of the widely known FDTD (Finite
Difference Time Domain) method due to Yee [55]. In this method, the whole computational domain is
discretized using a structured (cartesian) grid. Due to the possible straightforward implementation of the
algorithm and the availability of computational power, FDTD is currently the leading method for numerical
assessment of human exposure to electromagnetic waves. However, limitations are still seen, due to the rather
difficult departure from the commonly used rectilinear grid and cell size limitations regarding very detailed
structures of human tissues. In this context, the general objective of the contributions of the NACHOS project-
team is to demonstrate the benefits of high order unstructured mesh based Maxwell solvers for a realistic
numerical modeling of the interaction of electromagnetic waves and biological tissues with emphasis on
applications related to numerical dosimetry. Since the creation of the team, our works on this topic have
mainly been focussed on the study of the exposure of humans to radiations from mobile phones or wireless
communication systems (see Fig. 1). This activity has been conducted in close collaboration with the team
of Joe Wiart at Orange Labs/Whist Laboratory http://whist.institut-telecom.fr/en/index.html (formerly, France
Telecom Research & Development) in Issy-les-Moulineaux [18].

4.1.2. Light/matter interaction on the nanoscale
Nanostructuring of materials has opened up a number of new possibilities for manipulating and enhancing
light-matter interactions, thereby improving fundamental device properties. Low-dimensional semiconductors,
like quantum dots, enable one to catch the electrons and control the electronic properties of a material, while
photonic crystal structures allow to synthesize the electromagnetic properties. These technologies may, e.g., be
employed to make smaller and better lasers, sources that generate only one photon at a time, for applications
in quantum information technology, or miniature sensors with high sensitivity. The incorporation of metallic
structures into the medium add further possibilities for manipulating the propagation of electromagnetic

http://whist.institut-telecom.fr/en/index.html
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Figure 1. Exposure of head tissues to an electromagnetic wave emitted by a localized source. Top figures: surface
triangulations of the skin and the skull. Bottom figures: contour lines of the amplitude of the electric field.
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waves. In particular, this allows subwavelength localisation of the electromagnetic field and, by subwavelength
structuring of the material, novel effects like negative refraction, e.g. enabling super lenses, may be realized.
Nanophotonics is the recently emerged, but already well defined, field of science and technology aimed at
establishing and using the peculiar properties of light and light-matter interaction in various nanostructures.
Nanophotonics includes all the phenomena that are used in optical sciences for the development of optical
devices. Therefore, nanophotonics finds numerous applications such as in optical microscopy, the design of
optical switches and electromagnetic chips circuits, transistor filaments, etc. Because of its numerous scientific
and technological applications (e.g. in relation to telecommunication, energy production and biomedicine),
nanophotonics represents an active field of research increasingly relying on numerical modeling beside
experimental studies.
Plasmonics is a related field to nanophotonics. Mettalic nanostructures whose optical scattering is dominated
by the response of the conduction electrons are considered as plasmomic media. If the structure presents an
interface with e.g. a dielectric with a positive permittivity, collective oscillations of surface electrons create
surface-plasmons-polaritons (SPPs) that propagate along the interface. SPPs are guided along metal-dielectric
interfaces much in the same way light can be guided by an optical fiber, with the unique characteristic of
subwavelength-scale confinement perpendicular to the interface. Nanofabricated systems that exploit SPPs
offer fascinating opportunities for crafting and controlling the propagation of light in matter. In particular,
SPPs can be used to channel light efficiently into nanometer-scale volumes, leading to direct modification
of mode dispersion properties (substantially shrinking the wavelength of light and the speed of light pulses
for example), as well as huge field enhancements suitable for enabling strong interactions with nonlinear
materials. The resulting enhanced sensitivity of light to external parameters (for example, an applied electric
field or the dielectric constant of an adsorbed molecular layer) shows great promise for applications in sensing
and switching. In particular, very promising applications are foreseen in the medical domain [48]- [56].
Numerical modeling of electromagnetic wave propagation in interaction with metallic nanostructures at optical
frequencies requires to solve the system of Maxwell equations coupled to appropriate models of physical
dispersion in the metal, such the Drude and Drude-Lorentz models. Her again, the FDTD method is a widely
used approach for solving the resulting system of PDEs [53]. However, for nanophotonic applications, the
space and time scales, in addition to the geometrical characteristics of the considered nanostructures (or
structured layouts of the latter), are particularly challenging for an accurate and efficient application of the
FDTD method. Recently, unstructured mesh based methods have been developed and have demonstrated their
potentialities for being considered as viable alternatives to the FDTD method [51]- [52]- [46]. Since the end
of 2012, nanophotonics/plamonics is increasingly becoming a focused application domain in the research
activities of the team in close collaboration with physicists from CNRS laboratories, and also with researchers
from international institutions.

4.2. Elastodynamic wave propagation
Elastic wave propagation in interaction with solids are encountered in a lot of scientific and engineering
contexts. One typical example is geoseismic wave propagation, in particular in the context of earthquake
dynamics or resource prospection.

4.2.1. Earthquake dynamics
To understand the basic science of earthquakes and to help engineers better prepare for such an event,
scientists want to identify which regions are likely to experience the most intense shaking, particularly
in populated sediment-filled basins. This understanding can be used to improve buildings in high hazard
areas and to help engineers design safer structures, potentially saving lives and property. In the absence of
deterministic earthquake prediction, forecasting of earthquake ground motion based on simulation of scenarios
is one of the most promising tools to mitigate earthquake related hazard. This requires intense modeling
that meets the spatial and temporal resolution scales of the continuously increasing density and resolution of
the seismic instrumentation, which record dynamic shaking at the surface, as well as of the basin models.
Another important issue is to improve the physical understanding of the earthquake rupture processes and
seismic wave propagation. Large-scale simulations of earthquake rupture dynamics and wave propagation are
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Figure 2. Scattering of a 20 nanometer radius gold nanosphere by a plane wave. The gold properties are described
by a Drude dispersion model. Modulus of the electric field in the frequency domain. Top left figure: Mie solution.

Top right figure: numerical solution. Bottom figure: 1d plot of the electric field modulus for various orders of
approximation (PhD thesis of Jonathan Viquerat).
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currently the only means to investigate these multiscale physics together with data assimilation and inversion.
High resolution models are also required to develop and assess fast operational analysis tools for real time
seismology and early warning systems.

Numerical methods for the propagation of seismic waves have been studied for many years. Most of existing
numerical software rely on finite difference type methods. Among the most popular schemes, one can cite the
staggered grid finite difference scheme proposed by Virieux [54] and based on the first order velocity-stress
hyperbolic system of elastic waves equations, which is an extension of the scheme derived by Yee [55] for
the solution of the Maxwell equations. Many improvements of this method have been proposed, in particular,
higher order schemes in space or rotated staggered-grids allowing strong fluctuations of the elastic parameters.
Despite these improvements, the use of cartesian grids is a limitation for such numerical methods especially
when it is necessary to incorporate surface topography or curved interface. Moreover, in presence of a non
planar topography, the free surface condition needs very fine grids (about 60 points by minimal Rayleigh
wavelength) to be approximated. In this context, our objective is to develop high order unstructured mesh
based methods for the numerical solution of the system of elastodynamic equations for elastic media in a first
step, and then to extend these methods to a more accurate treatment of the heterogeneities of the medium
or to more complex propagation materials such as viscoelastic media which take into account the intrinsic
attenuation. Initially, the team has considered in detail the necessary methodological developments for the
large-scale simulation of earthquake dynamics [1]. More recently, the team has initiated a close collaboration
with CETE Méditerranée http://www.cete-mediterranee.fr/gb which is a regional technical and engineering
centre whose activities are concerned with seismic hazard assessment studies, and IFSTTAR http://www.
ifsttar.fr/en/welcome which is the French institute of science and technology for transport, development and
networks, conducting research studies on control over aging, risks and nuisances.

Figure 3. Propagation of a plane wave in a heterogeneous model of Nice area (provided by CETE Méditerranée).
Left figure: topography of Nice and location of the cross-section used for numerical simulations (black line).
Middle figure: S-wave velocity distribution along the cross-section in the Nice basin. Right figure: transfer

functions (amplification) for a vertically incident plane wave ; receivers every 5 m at the surface. This numerical
simulation was performed using a numerical method for the solution of the elastodynamics equations coupled to a

Generalized Maxwell Body (GMB) model of viscoelasticity (PhD thesis of Fabien Peyrusse).

4.2.2. Seismic exploration
This application topic has been considered recently by the NACHOS project-team and this is done in close
collaboration with the MAGIQUE-3D project-team at Inria Bordeaux - Sud-Ouest which is coordinating the
Depth Imaging Partnership (DIP) http://dip.inria.fr between Inria and TOTAL. The research program of DIP

http://www.cete-mediterranee.fr/gb
http://www.ifsttar.fr/en/welcome
http://www.ifsttar.fr/en/welcome
http://dip.inria.fr
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includes different aspects of the modeling and numerical simulation of sesimic wave propagation that must
be considered to construct an efficient software suites for producing accurate images of the subsurface. Our
common objective with the MAGIQUE-3D project-team is to design high order unstructured mesh based
methods for the numerical solution of the system of elastodynamic equations in the time-domain and in the
frequency domain, that will be used as forward modelers in appropriate inversion procedures.

5. New Software and Platforms
5.1. MAXW-DGTD

Participants: Alexandra Christophe-Argenvillier, Loula Fézoui, Stéphane Lanteri [correspondant], Raphaël
Léger, Jonathan Viquerat.

MAXW-DGTD is a software suite for the simulation of time domain electromagnetic wave propagation. It
implements a solution method for the Maxwell equations in the time-domain. MAXW-DGTD is based on a
discontinuous Galerkin method formulated on unstructured triangular (2d case) or tetrahedral (3d case) meshes
[19]. Within each element of the mesh, the components of the electromagnetic field are approximated by a
arbitrary high order nodal polynomial interpolation method. This discontinuous Galerkin method combines
a centered scheme for the evaluation of numerical fluxes at a face shared by two neighboring elements, with
an explicit Leap-Frog time scheme. The software and the underlying algorithms are adapted to distributed
memory parallel computing platforms thanks to a parallelization strategy that combines a partitioning of the
computational domain with message passing programming using the MPI standard. Besides, a peripheral
version of the software has been recently developed which is able to exploit the processing capabilities of a
hybrid parallel computing system comprising muticore CPU and GPU nodes.

• AMS: AMS 35L50, AMS 35Q60, AMS 35Q61, AMS 65N08, AMS 65N30, AMS 65M60
• Keywords: Computational electromagnetics, Maxwell equations, discontinuous Galerkin, tetrahe-

dral mesh.
• OS/Middelware: Linux
• Required library or software: MPI (Message Passing Interface), CUDA
• Programming language: Fortran 77/95

5.2. MAXW-DGFD
Participants: Stéphane Lanteri [correspondant], Ludovic Moya, Ronan Perrussel.

MAXW-DGFD is a software suite for the simulation of time-harmonic electromagnetic wave propagation. It
implements a solution method for the Maxwell equations in the frequency domain. MAXW-DGFD is based
on a discontinuous Galerkin method formulated on unstructured triangular (2d case) or tetrahedral (3d case)
meshes. Within each element of the mesh, the components of the electromagnetic field are approximated by a
arbitrary high order nodal polynomial interpolation method. The resolution of the sparse, complex coefficients,
linear systems resulting from the discontinuous Galerkin formulation is performed by a hybrid iterative/direct
solver whose design is based on domain decomposition principles. The software and the underlying algorithms
are adapted to distributed memory parallel computing platforms thanks to a paralleization strategy that
combines a partitioning of the computational domain with a message passing programming using the MPI
standard. Some recent achievements have been the implementation of non-uniform order DG method in the
2d case and of a new hybridizable discontinuous Galerkin (HDG) formulation also in the 2d and 3d cases.

• AMS: AMS 35L50, AMS 35Q60, AMS 35Q61, AMS 65N08, AMS 65N30, AMS 65M60
• Keywords: Computational electromagnetics, Maxwell equations, discontinuous Galerkin, tetrahe-

dral mesh.
• OS/Middelware: Linux
• Required library or software: MPI (Message Passing Interface)
• Programming language: Fortran 77/95
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5.3. SISMO-DGTD
Participants: Nathalie Glinsky, Stéphane Lanteri [correspondant].

SISMO-DGTD is a software for the simulation of time-domain seismic wave propagation. It implements a
solution method for the velocity-stress equations in the time-domain. SISMO-DGTD is based on a discon-
tinuous Galerkin method formulated on unstructured triangular (2d case) or tetrahedral (3d case) meshes [4].
Within each element of the mesh, the components of the electromagnetic field are approximated by a arbitrary
high order nodal polynomial interpolation method. This discontinuous Galerkin method combines a centered
scheme for the evaluation of numerical fluxes at a face shared by two neighboring elements, with an explicit
Leap-Frog time scheme. The software and the underlying algorithms are adapted to distributed memory par-
allel computing platforms thanks to a paralleization strategy that combines a partitioning of the computational
domain with a message passing programming using the MPI standard.

• AMS: AMS 35L50, AMS 35Q74, AMS 35Q86, AMS 65N08, AMS 65N30, AMS 65M60
• Keywords: Computational geoseismics, elastodynamic equations, discontinuous Galerkin, tetrahe-

dral mesh.
• OS/Middelware: Linux
• Required library or software: MPI (Message Passing Interface)
• Programming language: Fortran 77/95

6. New Results
6.1. Electromagnetic wave propagation
6.1.1. Numerical study of the 1d nonlinear Maxwell equations

Participants: Loula Fézoui, Stéphane Lanteri.

The system of Maxwell equations describes the evolution of the interaction of an electromagnetic field with
a propagation medium. The different properties of the medium, such as isotropy, homogeneity, linearity,
among others, are introduced through constitutive laws linking fields and inductions. In the present study,
we focus on nonlinear effects and address nonlinear Kerr materials specifically. In this model, any dielectric
may become nonlinear provided the electric field in the material is strong enough. As a first setp, we consider
the one-dimensional case and study the numerical solution of the nonlinear Maxwell equations thanks to
DG methods. In particular, we make use of an upwind scheme and limitation techniques because they have
a proven ability to capture shocks and other kinds of singularities in the fluid dynamics framework. The
numerical results obtained in this preliminary study gives us confidence towards extending this work to higher
spatial dimensions.

6.1.2. High order geometry conforming method for nanophotonics
Participants: Stéphane Lanteri, Claire Scheid, Jonathan Viquerat.

Usually, unstructured mesh based methods rely on tessellations composed of straight-edged elements mapped
linearly from a reference element, on domains which physical boundaries are indifferently straight or curved.
Such meshes represent a serious hindrance for high order finite element (FE) methods since they limit the
accuracy to second order in the spatial discretization. Thus, exploiting an enhanced representation of physical
geometries is in agreement with the natural procedure of high order FE methods, such as the DG method.
There are several ways to account for curved geometries. One could choose to incorporate the knowledge
coming from CAD in the method to design the geometry and the approximation. These methods are called
isogeometric, and have received a lot of attention recently. This naturally implies to have access to CAD
models of the geometry. On the other hand, isoparametric usually rely on a polynomial approximation of
both the boundary and the solution. This can be added fairly easily on top of existing implementations. In the
present study we focus on the latter type of method, since our goal is first to envisage the benefit of curvilinear
meshes for light/matter interaction with nanoscale structures.
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6.1.3. Numerical treatment of non-local dispersion for nanoplasmonics
Participants: Stéphane Lanteri, Claire Scheid, Nikolai Schmitt, Jonathan Viquerat.

When metallic nanostructures have sub-wavelength sizes and the illuminating frequencies are in the regime of
metal’s plasma frequency, electron interaction with the exciting fields have to be taken into account. Due to
these interactions, plasmonic surface waves can be excited and cause extreme local field enhancements (surface
plasmon polariton electromagnetic waves). Exploiting such field enhancements in applications of interest
requires a detailed knowledge about the occurring fields which can generally not be obtained analytically.
For the numerical modeling of light/matter interaction on the nanoscale, the choice of an appropriate model
is a crucial point. Approaches that are adopted in a first instance are based on local (no interaction between
electrons) dispersive models e.g. Drude or Drude-Lorentz. From the mathematical point of view, these models
lead to an additional ordinary differential equation in time that is coupled to Maxwell’s equations. When it
comes to very small structures in a regime of 2 nm to 25 nm, non-local effects due to electron collisions have
to be taken into account. Non-locality leads to additional, in general non-linear, partial differential equations
and is significantly more difficult to treat, though. In this work, we study a DGTD method able to solve the
system of Maxwell equations coupled to a linearized non-local dispersion model relevant to nanoplasmonics.
While the method is presented in the general 3d case, in this preliminary stdudy, numerical results are given
for 2d simulation settings.

6.1.4. Multiscale DG methods for the time-domain Maxwell equations
Participants: Stéphane Lanteri, Raphaël Léger, Diego Paredes Concha [LNCC, Petropolis, Brazil], Claire
Scheid, Frédéric Valentin [LNCC, Petropolis, Brazil].

Although the DGTD method has already been successfully applied to complex electromagnetic wave propaga-
tion problems, its accuracy may seriously deteriorate on coarse meshes when the solution presents multiscale
or high contrast features. In other physical contexts, such an issue has led to the concept of multiscale ba-
sis functions as a way to overcome such a drawback and allow numerical methods to be accurate on coarse
meshes. The present work, which has been initiated in the context of the visit of Frédéric Valentin in the
team, is concerned with the study of a particular family of multiscale methods, named Multiscale Hybrid-
Mixed (MHM) methods. Initially proposed for fluid flow problems, MHM methods are a consequence of a
hybridization procedure which caracterize the unknowns as a direct sum of a coarse (global) solution and the
solutions to (local) problems with Neumann boundary conditions driven by the purposely introduced hybrid
(dual) variable. As a result, the MHM method becomes a strategy that naturally incorporates multiple scales
while providing solutions with high order accuracy for the primal and dual variables. The completely inde-
pendent local problems are embedded in the upscaling procedure, and computational approximations may be
naturally obtained in a parallel computing environment. In this study, a family of MHM methods is proposed
for the solution of the time-domain Maxwell equations where the local problems are discretized either with
a continuous FE method or a DG method (that can be viewed as a multiscale DGTD method). Preliminary
results have been obtained in the 2d case for models problems.

6.1.5. HDG methods for the time-domain Maxwell equations
Participants: Alexandra Christophe-Argenvillier, Stéphane Descombes, Stéphane Lanteri.

This study is concerned with the development of accurate and efficient solution strategies for the system of
3d time-domain Maxwell equations coupled to local dispersion models (e.g. Debye, Drude or Drude-Lorentz
models) in the presence of locally refined meshes. Such meshes impose a constraint on the allowable time
step for explicit time integration schemes that can be very restrictive for the simulation of 3d problems. We
consider here the possibility of using an unconditionally stable implicit time integration scheme combined to
a HDG discretization method. As a first step, we extend our former study in [20] which was dealing with the
2d time-domain Maxwell equations for non-dispersive media.

6.1.6. HDG methods for the frequency-domain Maxwell equations
Participants: Stéphane Lanteri, Liang Li [UESTC, Chengdu, China], Ludovic Moya, Ronan Perrussel
[Laplace Laboratory, Toulouse].
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In the context of the ANR TECSER project, we continue our efforts towards the development of scalable high
order HDG methods for the solution of the system of 3d frequency-domain Maxwell equations. We aim at fully
exploiting the flexibiity of the HDG discretization framework with regards to the adaptation of the interpolation
order (p-adaptivity) and the mesh (h-adaptivity). In particular, we study the formulation of HDG methods on
a locally refined non-conforming tetrahedral mesh and on a non-confoming hybrid cubic/tetrahedral mesh.
We also investigate the coupling between the HDG formulation and a BEM (Boundary Element Method)
discretization of an integral representation of the electromagnetic field in the case of propagation problems
theoretically defined in unbounded domains.

6.2. Elastodynamic wave propagation
6.2.1. Sesimic wave interaction with viscoelastic media

Participants: Nathalie Glinsky, Stéphane Lanteri, Fabien Peyrusse [Department of Mathematics, Purdue
University].

This work is concerned with the development of high order DGTD methods formulated on unstructured
simplicial meshes for the numerical solution of the system of time-domain elastodynamic equations. These
methods share some ingredients of the DGTD methods developed by the team for the time-domain Maxwell
equations among which, the use of nodal polynomial (Lagrange type) basis functions, a second order leap-frog
time integration scheme and a centered scheme for the evaluation of the numerical flux at the interface between
neighboring elements. A recent novel contribution is the numerical treatment of viscoelastic attenuation. For
this, the velocity-stress first order hyperbolic system is completed by additional equations for the anelastic
functions including the strain history of the material. These additional equations result from the rheological
model of the generalized Maxwell body and permit the incorporation of realistic attenuation properties of
viscoelastic material accounting for the behaviour of elastic solids and viscous fluids. In practice, we need
solving 3L additional equations in 2d (and 6L in 3d), where L is the number of relaxation mechanisms of the
generalized Maxwell body. This method has been implemented in 2d and 3d.

6.2.2. DG method for arbitrary heterogeneous media
Participants: Nathalie Glinsky, Diego Mercerat [CETE Méditerranée].

We have recently devised an extension of the DGTD method for elastic wave propagation in arbitrary
heterogeneous media. In realistic geological media (sedimentary basins for example), one has to include strong
variations in the material properties. Then, the classical hypothesis that these properties are constant within
each element of the mesh can be a severe limitation of the method, since we need to discretize the medium
with very fine meshes resulting in very small time steps. For these reasons, we propose an improvement of
the DGTD method allowing non-constant material properties within the mesh elements. A change of variables
on the stress components allows writing the elastodynamic system in a pseudo-conservative form. Then, the
introduction of non-constant material properties inside an element is simply treated by the calculation, via
convenient quadrature formulae, of a modified local mass matrix depending on these properties. This new
extension has been validated for a smoothly varying medium or a strong jump between two media, which can
be accurately approximated by the method, independently of the mesh.

6.2.3. HDG method for the frequency-domain elastodynamic equations
Participants: Hélène Barucq [MAGIQUE-3D project-team, Inria Bordeaux - Sud-Ouest], Marie Bonnasse-
Gahot, Julien Diaz [MAGIQUE-3D project-team, Inria Bordeaux - Sud-Ouest], Stéphane Lanteri.

One of the most used seismic imaging methods is the full waveform inversion (FWI) method which is an
iterative procedure whose algorithm is the following. Starting from an initial velocity model, (1) compute
the solution of the wave equation for the N sources of the seismic acquisition campaign, (2) evaluate, for
each source, a residual defined as the difference between the wavefields recorded at receivers on the top of
the subsurface during the acquisition campaign and the numerical wavefields, (3) compute the solution of the
wave equation using the residuals as sources, and (4) update the velocity model by cross correlation of images
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produced at steps (1) and (3). Steps (1)-(4) are repeated until convergence of the velocity model is achieved.
We then have to solve 2N wave equations at each iteration. The number of sources, N , is usually large (about
1000) and the efficiency of the inverse solver is thus directly related to the efficiency of the numerical method
used to solve the wave equation. Seismic imaging can be performed in the time-domain or in the frequency-
domain regime. In this work which is conducted in the framework of the Depth Imaging Partnership (DIP)
between Inria and TOTAL, we adopt the second setting. The main difficulty with frequency-domain inversion
lies in the solution of large sparse linear systems which is a challenging task for realistic 3d elastic media, even
with the progress of high performance computing. In this context, we study novel high order HDG methods
formulated on unstructured meshes for the solution of the frency-domain elastodynamic equations. Instead of
solving a linear system involving the degrees of freedom of all volumic cells of the mesh, the principle of a
HDG formulation is to introduce a new unknown in the form of Lagrange multiplier representing the trace of
the numerical solution on each face of the mesh. As a result, a HDG formulation yields a global linear system
in terms of the new (surfacic) unknown while the volumic solution is recovered thanks to a local computation
on each element.

6.2.4. Multiscale DG methods for the time-domain elastodynamic equations
Participants: Marie-Hélène Lallemand Tenkès, Frédéric Valentin [LNCC, Petropolis, Brazil].

In the context of the visit of Frédéric Valentin in the team, we have initiated a study aiming at the design
of novel multiscale methods for the solution of the time-domain elastodynamic equations, in the spirit of
MHM (Multiscale Hybrid-Mixed) methods previously proposed for fluid flow problems. Motivation in that
direction naturally came when dealing with non homogeneous anisotropic elastic media as those encountered
in geodynamics related applications, since multiple scales are naturally present when high contrast elasticity
parameters define the propagation medium. Instead of solving the usual system expressed in terms of
displacement or displacement velocity, and stress tensor variables, a hybrid mixed-form is derived in which
an additional variable, the Lagrange multiplier, is sought as representing the (opposite) of the surface tension
defined at each face of the elements of a given discretization mesh. We consider the velocity/stress formulation
of the elastodynamic equations, and study a MHM method defined for a heterogeneous medium where each
elastic material is considered as isotropic to begin with. If the source term (the applied given force on the
medium) is time independent, and if we are given a arbitrarily coarse conforming mesh (triangulation in
2d, tetrahedrization in 3d), the proposed MHM method consists in first solving a series of fully decoupled
(therefore parallelizable) local (element-wise) problems defining parts of the full solution variables which
are directly related to the source term, followed by the solution of a global (coarse) problem, which yields
the degrees of freedom of both the Lagrange multiplier dependent part of the full solution variables and the
Lagrange multiplier itself. Finally, the updating of the full solution variables is obtained by adding each splitted
solution variables, before going on the next time step of a leap-frog time integration scheme. Theoretical
analysis and implementation of this MHM method where the local problems are discretized with a DG method,
are underway.

7. Partnerships and Cooperations
7.1. National Initiatives
7.1.1. Inria Project Lab
7.1.1.1. C2S@Exa (Computer and Computational Sciences at Exascale)

Participants: Olivier Aumage [RUNTIME project-team, Inria Bordeaux - Sud-Ouest], Jocelyne Erhel [SAGE
project-team, Inria Rennes - Bretagne Atlantique], Philippe Helluy [TONUS project-team, Inria Nancy
- Grand-Est], Laura Grigori [ALPINE project-team, Inria Saclay - Île-de-France], Jean-Yves L’excellent
[ROMA project-team, Inria Grenoble - Rhône-Alpes], Thierry Gautier [MOAIS project-team, Inria Grenoble
- Rhône-Alpes], Luc Giraud [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Michel Kern [POMDAPI
project-team, Inria Paris - Rocquencourt], Stéphane Lanteri [Coordinator of the project], François Pellegrini
[BACCHUS project-team, Inria Bordeaux - Sud-Ouest], Christian Perez [AVALON project-team, Inria Greno-
ble - Rhône-Alpes], Frédéric Vivien [ROMA project-team, Inria Grenoble - Rhône-Alpes].
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Since January 2013, the team is coordinating the C2S@Exa http://www-sop.inria.fr/c2s_at_exa Inria Project
Lab (IPL). This national initiative aims at the development of numerical modeling methodologies that fully
exploit the processing capabilities of modern massively parallel architectures in the context of a number
of selected applications related to important scientific and technological challenges for the quality and
the security of life in our society. At the current state of the art in technologies and methodologies, a
multidisciplinary approach is required to overcome the challenges raised by the development of highly
scalable numerical simulation software that can exploit computing platforms offering several hundreds of
thousands of cores. Hence, the main objective of C2S@Exa is the establishment of a continuum of expertise
in the computer science and numerical mathematics domains, by gathering researchers from Inria project-
teams whose research and development activities are tightly linked to high performance computing issues
in these domains. More precisely, this collaborative effort involves computer scientists that are experts of
programming models, environments and tools for harnessing massively parallel systems, algorithmists that
propose algorithms and contribute to generic libraries and core solvers in order to take benefit from all the
parallelism levels with the main goal of optimal scaling on very large numbers of computing entities and,
numerical mathematicians that are studying numerical schemes and scalable solvers for systems of partial
differential equations in view of the simulation of very large-scale problems.

7.1.2. ANR project
7.1.2.1. TECSER

Participants: Emmanuel Agullo [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Xavier Antoine
[CORIDA project-team, Inria Nancy - Grand-Est], Patrick Breuil [Nuclétudes, Les Ulis], Luc Giraud
[HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Stéphane Lanteri, Ludovic Moya, Guillaume Sylvand
[Airbus Group Innovations].

Type: ANR ASTRID

Duration: May 2014 - April 2017

Coordinator: Inria

Partner: Airbus Group Innovations, Inria, Nuclétudes

Inria contact: Stéphane Lanteri

Abstract: the objective of the TECSER projet is to develop an innovative high performance numer-
ical methodology for frequency-domain electromagnetics with applications to RCS (Radar Cross
Section) calculation of complicated structures. This numerical methodology combines a high or-
der hybridized DG method for the discretization of the frequency-domain Maxwell in heteroge-
neous media with a BEM (Boundary Element Method) discretization of an integral representation
of Maxwell’s equations in order to obtain the most accurate treatment of boundary truncation in
the case of theoretically unbounded propagation domain. Beside, scalable hybrid iterative/direct do-
main decomposition based algorithms are used for the solution of the resulting algebraic system of
equations.

7.2. European Initiatives
7.2.1. FP7 & H2020 Projects
7.2.1.1. DEEP-ER

Type: FP7

Defi: Special action

Instrument: Integrated Project

Objectif: Exascale computing platforms, software and applications

Duration: October 2013 - September 2016

Coordinator: Forschungszentrum Juelich Gmbh (Germany)

http://www-sop.inria.fr/c2s_at_exa
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Partner: Intel Gmbh (Germany), Bayerische Akademie der Wissenschaften (Germany), Ruprecht-
Karls-Universitaet Heidelberg (Germany), Universitaet Regensburg (Germany), Fraunhofer-
Gesellschaft zur Foerderung der Angewandten Forschung E.V (Germany), Eurotech Spa (Italy),
Consorzio Interuniversitario Cineca (Italy), Barcelona Supercomputing Center - Centro Nacional
de Supercomputacion (Spain), Xyratex Technology Limited (United Kingdom), Katholieke Univer-
siteit Leuven (Belgium), Stichting Astronomisch Onderzoek in Nederland (The Netherlands) and
Inria (France).

Inria contact: Stéphane Lanteri

Abstract: the DEEP-ER project aims at extending the Cluster-Booster Architecture that has been
developed within the DEEP project with a highly scalable, efficient, easy-to-use parallel I/O system
and resiliency mechanisms. A Prototype will be constructed leveraging advances in hardware
components and integrate new storage technologies. They will be the basis to develop a highly
scalable, efficient and user-friendly parallel I/O system tailored to HPC applications. Building on this
I/O functionality a unified user-level checkpointing system with reduced overhead will be developed,
exploiting multiple levels of storage. The DEEP programming model will be extended to introduce
easy-to-use annotations to control checkpointing, and to combine automatic re-execution of failed
tasks and recovery of long-running tasks from multi-level checkpoint. The requirements of HPC
codes with regards to I/O and resiliency will guide the design of the DEEP-ER hardware and software
components. Seven applications will be optimised for the DEEP-ER Prototype to demonstrate and
validate the benefits of the DEEP-ER extensions to the Cluster-Booster Architecture.

7.3. International Initiatives
7.3.1. Inria International Partners
7.3.1.1. Declared Inria International Partners

Dr. Maciej Klemm: University of Bristol, Communication Systems & Networks Laboratory, Centre
for Communications Research (United Kingdom)

7.3.2. Participation In other International Programs
7.3.2.1. CNPq-Inria HOSCAR project

Participants: Reza Akbarinia [ZENITH project-team, Inria Sophia Antipolis - Méditerranée], Rossana
Andrade [CSD/UFC], Hélène Barucq [MAGIQUE-3D project-team, Inria Bordeaux - Sud-Ouest], Alvaro
Coutinho [COPPE/UFR], Julien Diaz [MAGIQUE-3D project-team, Inria Bordeaux - Sud-Ouest], Thierry
Gautier [MOAIS project-team, Inria Grenoble - Rhone-Alpes], Antônio Tadeu Gomes [LNCC], Pedroedro
Leite Da Silva Dias [LNCC, Coordinator of the project on the Brazilian side], Luc Giraud [HIEPACS
project-team, Inria Bordeaux - Sud-Ouest], Stéphane Lanteri [Coordinator of the project on the French
side], Alexandre Madureira [LNCC], Nicolas Maillard [INF/UFRG], Florent Masseglia [ZENITH project-
team, Inria Sophia Antipolis - Méditerranée], Marta Mattoso [COPPE/UFR], Philippe Navaux [INF/UFRG],
Esther Pacitti [ZENITH project-team, Inria Sophia Antipolis - Méditerranée], François Pellegrini [BACCHUS
project-team, Inria Bordeaux - Sud-Ouest], Fabio Porto [LNCC], Bruno Raffin [MOAIS project-team, Inria
Grenoble - Rhone-Alpes], Pierre Ramet [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Jean-Louis
Roch [MOAIS project-team, Inria Grenoble - Rhone-Alpes], Patrick Valduriez [ZENITH project-team, Inria
Sophia Antipolis - Méditerranée], Frédéric Valentin [LNCC].

Since July 2012, the team is coordinating the HOSCAR http://www-sop.inria.fr/hoscar Brazil-France collab-
orative project. he HOSCAR project is a CNPq - Inria collaborative project between Brazilian and French
researchers, in the field of computational sciences. The project is also sponsored by the French Embassy in
Brazil.

http://www-sop.inria.fr/hoscar
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The general objective of the project is to setup a multidisciplinary Brazil-France collaborative effort for taking
full benefits of future high-performance massively parallel architectures. The targets are the very large-scale
datasets and numerical simulations relevant to a selected set of applications in natural sciences: (i) resource
prospection, (ii) reservoir simulation, (iii) ecological modeling, (iv) astronomy data management, and (v)
simulation data management. The project involves computer scientists and numerical mathematicians divided
in 3 fundamental research groups: (i) numerical schemes for PDE models (Group 1), (ii) scientific data
management (Group 2), and (iii) high-performance software systems (Group 3). Several Brazilian institutions
are participating to the project among which: LNCC (Laboratório Nacional de Computaçäo Científica),
COPPE/UFRJ (Instituto Alberto Luiz Coimbra de Pós-Graduaçäo e Pesquisa de Engenharia/Alberto Luiz
Coimbra Institute for Grad<uate Studies and Research in Engineering, Universidade Federal do Rio de
Janeiro), INF/UFRGS (Instituto de Informática, Universidade Federal do Rio Grande do Sul) and LIA/UFC
(Laboratórios de Pesquisa em Ciência da Computaçäo Departamento de Computaçäo, Universidade Federal
do Ceará). The French partners are research teams from several Inria research centers.

7.4. International Research Visitors
7.4.1. Visits of International Scientists

Liang Li, UESTC, China, July 15-August 8

Jay Gopalakrishnan, Portland University, USA, December 8-11

Maciej Klemm, University of Bristol, UK, July 29-August 2

8. Dissemination

8.1. Teaching - Supervision - Juries
8.1.1. Teaching

Stéphane Lanteri, Computational electromagnetics, MAM5, 20 h, Polytech Nice.

Claire Scheid, Practical works on ordinary differential equations, 36 h, L3, University of Nice-
Sophia Antipolis.

Claire Scheid, Lectures and practical works in Numerical Analysis, 36 h, M1, Mathematics engi-
neering, University of Nice-Sophia Antipolis.

Stéphane Descombes, Analyse numérique et applications en finances, M2, 30 h, University of Nice-
Sophia Antipolis.

8.1.2. Supervision
PhD defended in December 2014 : Caroline Girard, Numerical modeling of the electromagnetic
susceptibility of innovative planar circuits, October 2011, Stéphane Lanteri, Ronan Perrussel and
Nathalie Raveu (Laplace Laboratory, INP/ENSEEIHT/UPS, Toulouse).

PhD in progress : Fabien Peyrusse, Numerical simulation of strong earthquakes by a discontinu-
ous Galerkin method, University of Nice-Sophia Antipolis, October 2010, Nathalie Glinsky and
Stéphane Lanteri.

PhD in progress : Marie Bonnasse-Gahot, Numerical simulation of frequency domain elastic and
viscoelastic wave propagation using discontinuous Galerkin methods, University of Nice-Sophia
Antipolis, October 2012, Julien Diaz (MAGIQUE3D project-team, Inria Bordeaux - Sud-Ouest) and
Stéphane Lanteri.

PhD in progress : Jonathan Viquerat, Discontinuous Galerkin Time-Domain methods for nanopho-
tonics applications, October 2012, Stéphane Lanteri and Claire Scheid.
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PhD in progress : Colin Vo Cing Tri, Numerical modeling of non-local dispersion for plasmonic
nanostructures, November 2014, Stéphane Lanteri and Claire Scheid.

9. Bibliography
Major publications by the team in recent years

[1] M. BENJEMAA, N. GLINSKY-OLIVIER, V. M. CRUZ-ATIENZA, J. VIRIEUX. 3D dynamic rupture simulations
by a finite volume method, in "Geophys. J. Int.", 2009, vol. 178, pp. 541–560, http://dx.doi.org/10.1111/j.1365-
246X.2009.04088.x

[2] M. BERNACKI, L. FÉZOUI, S. LANTERI, S. PIPERNO. Parallel unstructured mesh solvers for heterogeneous
wave propagation problems, in "Appl. Math. Model.", 2006, vol. 30, no 8, pp. 744–763, http://dx.doi.org/10.
1016/j.apm.2005.06.015

[3] A. CATELLA, V. DOLEAN, S. LANTERI. An implicit discontinuous Galerkin time-domain method for two-
dimensional electromagnetic wave propagation, in "COMPEL", 2010, vol. 29, no 3, pp. 602–625, http://dx.
doi.org/10.1108/03321641011028215

[4] S. DELCOURTE, L. FÉZOUI, N. GLINSKY-OLIVIER. A high-order discontinuous Galerkin method for the
seismic wave propagation, in "ESAIM: Proc.", 2009, vol. 27, pp. 70–89, http://dx.doi.org/10.1051/proc/
2009020

[5] S. DESCOMBES, C. DUROCHAT, S. LANTERI, L. MOYA, C. SCHEID, J. VIQUERAT. Recent advances on
a DGTD method for time-domain electromagnetics, in "Photonics and Nanostructures - Fundamentals and
Applications", Nov 2013, vol. 11, no 4, pp. 291–302 [DOI : 10.1016/J.PHOTONICS.2013.06.005], http://
hal.inria.fr/hal-00915347

[6] V. DOLEAN, H. FAHS, L. FÉZOUI, S. LANTERI. Locally implicit discontinuous Galerkin method for time
domain electromagnetics, in "J. Comput. Phys.", 2010, vol. 229, no 2, pp. 512–526, http://dx.doi.org/10.
1016/j.jcp.2009.09.038

[7] V. DOLEAN, H. FOL, S. LANTERI, R. PERRUSSEL. Solution of the time-harmonic Maxwell equations using
discontinuous Galerkin methods, in "J. Comp. Appl. Math.", 2008, vol. 218, no 2, pp. 435-445, http://dx.doi.
org/10.1016/j.cam.2007.05.026

[8] V. DOLEAN, M. J. GANDER, L. GERARDO-GIORDA. Optimized Schwarz methods for Maxwell equations, in
"SIAM J. Scient. Comp.", 2009, vol. 31, no 3, pp. 2193–2213, http://dx.doi.org/10.1137/080728536

[9] V. DOLEAN, S. LANTERI, R. PERRUSSEL. A domain decomposition method for solving the three-dimensional
time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in "J. Comput. Phys.",
2007, vol. 227, no 3, pp. 2044–2072, http://dx.doi.org/10.1016/j.jcp.2007.10.004

[10] V. DOLEAN, S. LANTERI, R. PERRUSSEL. Optimized Schwarz algorithms for solving time-harmonic
Maxwell’s equations discretized by a discontinuous Galerkin method, in "IEEE. Trans. Magn.", 2008, vol.
44, no 6, pp. 954–957, http://dx.doi.org/10.1109/TMAG.2008.915830

http://dx.doi.org/10.1111/j.1365-246X.2009.04088.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04088.x
http://dx.doi.org/10.1016/j.apm.2005.06.015
http://dx.doi.org/10.1016/j.apm.2005.06.015
http://dx.doi.org/10.1108/03321641011028215
http://dx.doi.org/10.1108/03321641011028215
http://dx.doi.org/10.1051/proc/2009020
http://dx.doi.org/10.1051/proc/2009020
http://hal.inria.fr/hal-00915347
http://hal.inria.fr/hal-00915347
http://dx.doi.org/10.1016/j.jcp.2009.09.038
http://dx.doi.org/10.1016/j.jcp.2009.09.038
http://dx.doi.org/10.1016/j.cam.2007.05.026
http://dx.doi.org/10.1016/j.cam.2007.05.026
http://dx.doi.org/10.1137/080728536
http://dx.doi.org/10.1016/j.jcp.2007.10.004
http://dx.doi.org/10.1109/TMAG.2008.915830


Project-Team NACHOS 21

[11] C. DUROCHAT, S. LANTERI, R. LÉGER. A non-conforming multi-element DGTD method for the simulation
of human exposure to electromagnetic waves, in "Int. J. Numer. Model., Electron. Netw. Devices Fields", Oct
2013, vol. 27, pp. 614-625 [DOI : 10.1002/JNM.1943], http://hal.inria.fr/hal-00915353

[12] C. DUROCHAT, S. LANTERI, C. SCHEID. High order non-conforming multi-element discontinuous Galerkin
method for time domain electromagnetics, in "Appl. Math. Comput.", Nov 2013, vol. 224, pp. 681–704
[DOI : 10.1016/J.AMC.2013.08.069], http://hal.inria.fr/hal-00797973

[13] M. EL BOUAJAJI, V. DOLEAN, M. J. GANDER, S. LANTERI. Optimized Schwarz methods for the time-
harmonic Maxwell equations with damping, in "SIAM J. Sci. Comp.", 2012, vol. 34, no 4, pp. A20148–A2071
[DOI : 10.1137/110842995]

[14] M. EL BOUAJAJI, S. LANTERI. High order discontinuous Galerkin method for the solution of 2D time-
harmonic Maxwell’s equations, in "Appl. Math. Comput.", March 2013, vol. 219, no 13, pp. 7241–7251
[DOI : 10.1016/J.AMC.2011.03.140], http://hal.inria.fr/hal-00922826

[15] V. ETIENNE, E. CHALJUB, J. VIRIEUX, N. GLINSKY. An hp-adaptive discontinuous Galerkin finite-element
method for 3-D elastic wave modelling, in "Geophys. J. Int.", 2010, vol. 183, no 2, pp. 941–962, http://dx.
doi.org/10.1111/j.1365-246X.2010.04764.x

[16] H. FAHS. Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial
meshes for electromagnetic wave propagation, in "Int. J. Numer. Anal. Mod.", 2009, vol. 6, no 2, pp. 193–216

[17] H. FAHS. High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations
on non-conforming simplicial meshes, in "Numer. Math. Theor. Meth. Appl.", 2009, vol. 2, no 3, pp. 275–300

[18] H. FAHS, A. HADJEM, S. LANTERI, J. WIART, M. WONG. Calculation of the SAR induced in head tissues
using a high order DGTD method and triangulated geometrical models, in "IEEE Trans. Ant. Propag.", 2011,
vol. 59, no 12, pp. 4669–4678, http://dx.doi.org/10.1109/TAP.2011.2165471

[19] L. FEZOUI, S. LANTERI, S. LOHRENGEL, S. PIPERNO. Convergence and stability of a discontinuous
Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in
"ESAIM: Math. Model. Num. Anal.", 2005, vol. 39, no 6, pp. 1149–1176, http://dx.doi.org/DOI:10.1051/
m2an:2005049

[20] S. LANTERI, R. PERRUSSEL. An implicit hybridized discontinuous Galerkin method for the time-domain
Maxwell’s equations, Inria, Mar 2011, no RR-7578, 20 p. , https://hal.inria.fr/inria-00578488

[21] S. LANTERI, C. SCHEID. Convergence of a discontinuous Galerkin scheme for the mixed time domain
Maxwell’s equations in dispersive media, in "IMA J. Numer. Anal.", 2013, vol. 33, no 2, pp. 432-459
[DOI : 10.1093/IMANUM/DRS008], http://hal.inria.fr/hal-00874752

[22] L. LI, S. LANTERI, R. PERRUSSEL. Numerical investigation of a high order hybridizable discontinu-
ous Galerkin method for 2d time-harmonic Maxwell’s equations, in "COMPEL", 2013, pp. 1112–1138
[DOI : 10.1108/03321641311306196], http://hal.inria.fr/hal-00906142

[23] L. LI, S. LANTERI, R. PERRUSSEL. A hybridizable discontinuous Galerkin method combined to a Schwarz
algorithm for the solution of 3d time-harmonic Maxwell’s equations, in "J. Comput. Phys.", Jan 2014, vol.
256, pp. 563–581 [DOI : 10.1016/J.JCP.2013.09.003], http://hal.inria.fr/hal-00795125

http://hal.inria.fr/hal-00915353
http://hal.inria.fr/hal-00797973
http://hal.inria.fr/hal-00922826
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1109/TAP.2011.2165471
http://dx.doi.org/DOI:10.1051/m2an:2005049
http://dx.doi.org/DOI:10.1051/m2an:2005049
https://hal.inria.fr/inria-00578488
http://hal.inria.fr/hal-00874752
http://hal.inria.fr/hal-00906142
http://hal.inria.fr/hal-00795125


22 Activity Report INRIA 2014

[24] L. MOYA, S. DESCOMBES, S. LANTERI. Locally implicit time integration strategies in a discontinu-
ous Galerkin method for Maxwell’s equations, in "J. Sci. Comp.", Jul 2013, vol. 56, no 1, pp. 190–218
[DOI : 10.1007/S10915-012-9669-5], http://hal.inria.fr/hal-00922844

[25] L. MOYA. Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equa-
tions, in "ESAIM: Mathematical Modelling and Numerical Analysis", 2012, vol. 46, pp. 1225–1246
[DOI : 10.1051/M2AN/2012002], http://hal.inria.fr/inria-00565217

[26] J. VIQUERAT, K. MACIEJ, S. LANTERI, C. SCHEID. Theoretical and numerical analysis of local dispersion
models coupled to a discontinuous Galerkin time-domain method for Maxwell’s equations, Inria, May 2013,
no RR-8298, 79 p. , http://hal.inria.fr/hal-00819758

Publications of the year
Articles in International Peer-Reviewed Journals

[27] S. DELCOURTE, N. GLINSKY. Analysis of a high-order space and time discontinuous Galerkin method for
elastodynamic equations. Application to 3D wave propagation, in "ESAIM: Mathematical Modelling and
Numerical Analysis", 2015, 42 p. , forthcoming, https://hal.inria.fr/hal-01109424

[28] C. GIRARD, S. LANTERI, R. PERRUSSEL, N. RAVEU. Toward the coupling of a discontinuous Galerkin
method with a MoM for analysis of susceptibility of planar circuits, in "IEEE Transactions on Magnetics",
February 2014, vol. 50, no 2, pp. 509-512 [DOI : 10.1109/TMAG.2013.2282462], https://hal.archives-
ouvertes.fr/hal-00958274

[29] L. LI, S. LANTERI, R. PERRUSSEL. A hybridizable discontinuous Galerkin method combined to a Schwarz
algorithm for the solution of 3d time-harmonic Maxwell’s equations, in "Journal of Computational Physics",
January 2014, vol. 256, pp. 563-581 [DOI : 10.1016/J.JCP.2013.09.003], https://hal.inria.fr/hal-00795125

[30] R. LÉGER, J. VIQUERAT, C. DUROCHAT, C. SCHEID, S. LANTERI. A parallel non-conforming
multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic
nanoparticles, in "Journal of Computational and Applied Mathematics", November 2014, vol. 270, 12
p. [DOI : 10.1016/J.CAM.2013.12.042], https://hal.inria.fr/hal-01109704

[31] D. MERCERAT, N. GLINSKY. A nodal high-order discontinuous Galerkin method for elastic wave propagation
in arbitrary heterogeneous media, in "Geophysical Journal International", 2015, 20 p. , forthcoming, https://
hal.inria.fr/hal-01109612

[32] F. PEYRUSSE, N. GLINSKY, C. GÉLIS, S. LANTERI. A nodal discontinuous Galerkin method for site effects
assessment in viscoelastic media – verification and validation in the Nice basin, in "Geophysical Journal
International", October 2014, vol. 199, 20 p. [DOI : 10.1093/GJI/GGU256], https://hal.inria.fr/hal-01109565

International Conferences with Proceedings

[33] M. BONNASSE-GAHOT, H. CALANDRA, J. DIAZ, S. LANTERI. Discontinuous Galerkin methods for solving
Helmholtz elastic wave equations for seismic imaging, in "WCCM XI - ECCM V - ECFD VI - Barcelona
2014", Barcelone, Spain, July 2014, https://hal.inria.fr/hal-01096324

http://hal.inria.fr/hal-00922844
http://hal.inria.fr/inria-00565217
http://hal.inria.fr/hal-00819758
https://hal.inria.fr/hal-01109424
https://hal.archives-ouvertes.fr/hal-00958274
https://hal.archives-ouvertes.fr/hal-00958274
https://hal.inria.fr/hal-00795125
https://hal.inria.fr/hal-01109704
https://hal.inria.fr/hal-01109612
https://hal.inria.fr/hal-01109612
https://hal.inria.fr/hal-01109565
https://hal.inria.fr/hal-01096324


Project-Team NACHOS 23

[34] M. BONNASSE-GAHOT, H. CALANDRA, J. DIAZ, S. LANTERI. Hybridizable Discontinuous Galerkin
method for solving Helmholtz elastic wave equations, in "EAGE Workshop on High Performance Computing
for Upstream", Chania, Greece, September 2014, https://hal.inria.fr/hal-01096385

[35] M. BONNASSE-GAHOT, H. CALANDRA, J. DIAZ, S. LANTERI. Performance analysis of DG and HDG
methods for the simulation of seismic wave propagation in harmonic domain, in "Second Russian-French
Workshop "Computational Geophysics"", Berdsk, Russia, September 2014, https://hal.inria.fr/hal-01096392

[36] C. GIRARD, N. RAVEU, R. PERRUSSEL, S. LANTERI. Coupling of a MoM and a discontinuous Galerkin
method, in "CEFC", Annecy, France, May 2014, pp. OD2-4, https://hal.archives-ouvertes.fr/hal-00993485

Conferences without Proceedings

[37] M. BONNASSE-GAHOT, H. CALANDRA, J. DIAZ, S. LANTERI. Numerical schemes for the simulation of
seismic wave propagation in frequency domain, in "Réunion des Sciences de la Terre 2014", Pau, France,
October 2014, https://hal.inria.fr/hal-01096390

[38] N. GLINSKY, D. MERCERAT, S. LANTERI, F. PEYRUSSE. A high-order discontinuous Galerkin finite-element
method for site effect assessment in realistic media, in "Réunion des sciences de la terre", Pau, France, October
2014, https://hal.inria.fr/hal-01109586

Research Reports

[39] L. FEZOUI, S. LANTERI. Discontinuous Galerkin methods for the numerical solution of the nonlinear
Maxwell equations in 1d, Inria, January 2015, no 8678, https://hal.inria.fr/hal-01114155

Other Publications

[40] M. BONNASSE-GAHOT, S. LANTERI, J. DIAZ, H. CALANDRA. Performance comparison of HDG and
classical DG method for the simulation of seismic wave propagation in harmonic domain, October 2014,
Journées Total-Mathias 2014, https://hal.inria.fr/hal-01096318

[41] M. EL BOUAJAJI, V. DOLEAN, M. J. GANDER, S. LANTERI, R. PERRUSSEL. Discontinuous Galerkin
discretizations of Optimized Schwarz methods for solving the time-harmonic Maxwell equations, September
2014, https://hal.archives-ouvertes.fr/hal-01062853

References in notes

[42] B. COCKBURN, G. KARNIADAKIS, C. SHU (editors). Discontinuous Galerkin methods. Theory, computation
and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11

[43] B. COCKBURN, C. SHU (editors). Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer,
2005, vol. 22-23

[44] C. DAWSON (editor). Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng.,
Elsevier, 2006, vol. 195

[45] K. AKI, P. RICHARDS. Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002

https://hal.inria.fr/hal-01096385
https://hal.inria.fr/hal-01096392
https://hal.archives-ouvertes.fr/hal-00993485
https://hal.inria.fr/hal-01096390
https://hal.inria.fr/hal-01109586
https://hal.inria.fr/hal-01114155
https://hal.inria.fr/hal-01096318
https://hal.archives-ouvertes.fr/hal-01062853


24 Activity Report INRIA 2014

[46] K. BUSCH, M. KÖNIG, J. NIEGEMANN. Discontinuous Galerkin methods in nanophotonics, in "Laser and
Photonics Reviews", 2011, vol. 5, pp. 1–37

[47] B. COCKBURN, J. GOPALAKRISHNAN, R. LAZAROV. Unified hybridization of discontinuous Galerkin,
mixed, and continuous Galerkin methods for second order elliptic problems, in "SIAM J. Numer. Anal.",
2009, vol. 47, no 2, pp. 1319–1365

[48] A. CSAKI, T. SCHNEIDER, J. WIRTH, N. JAHR, A. STEINBRÜCK, O. STRANIK, F. GARWE, R. MÜLLER,
W. FRITZSCHE.. Molecular plasmonics: light meets molecules at the nanosacle, in "Phil. Trans. R. Soc. A",
2011, vol. 369, pp. 3483–3496

[49] J. S. HESTHAVEN, T. WARBURTON. Nodal discontinuous Galerkin methods: algorithms, analysis and
applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007

[50] J. JACKSON. Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998

[51] X. JI, W. CAI, P. ZHANG. High-order DGTD method for dispersive Maxwell’s equations and modelling of
silver nanowire coupling, in "Int. J. Numer. Meth. Engng.", 2007, vol. 69, pp. 308–325

[52] J. NIEGEMANN, M. KÖNIG, K. STANNIGEL, K. BUSCH. Higher-order time-domain methods for the analysis
of nano-photonic systems, in "Photonics Nanostruct.", 2009, vol. 7, pp. 2–11

[53] A. TAFLOVE, S. HAGNESS. Computational electrodynamics: the finite-difference time-domain method (3rd
edition), Artech House, 2005

[54] J. VIRIEUX. P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in
"Geophysics", 1986, vol. 51, pp. 889–901

[55] K. YEE. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic
media, in "IEEE Trans. Antennas and Propagation", 1966, vol. 14, no 3, pp. 302–307

[56] Y. ZHENG, B. KIRALY, P. WEISS, T. HUANG. Molecular plasmonics for biology and nanomedicine, in
"Nanomedicine", 2012, vol. 7, no 5, pp. 751–770


