
IN PARTNERSHIP WITH:
CNRS

Université Denis Diderot
(Paris 7)

Activity Report 2014

Project-Team PI.R2

Design, study and implementation of
languages for proofs and programs

IN COLLABORATION WITH: Laboratoire Preuves, Programmes et Systèmes

RESEARCH CENTER
Paris - Rocquencourt

THEME
Proofs and Verification

Table of contents

1. Members . 1
2. Overall Objectives . 2
3. Research Program . 2

3.1. Proof theory and the Curry-Howard correspondence 2
3.1.1. Proofs as programs 2
3.1.2. Towards the calculus of constructions 2
3.1.3. The Calculus of Inductive Constructions 3

3.2. The development of Coq 3
3.2.1. The underlying logic and the verification kernel 3
3.2.2. Programming and specification languages 4
3.2.3. Libraries 4
3.2.4. Tactics 4
3.2.5. Extraction 4

3.3. Dependently typed programming languages 4
3.4. Around and beyond the Curry-Howard correspondence 5

3.4.1. Control operators and classical logic 5
3.4.2. Sequent calculus 5
3.4.3. Abstract machines 5
3.4.4. Delimited control 6

4. New Software and Platforms . 6
4.1. COQ (http://coq.inria.fr) 6

4.1.1. Version 8.5 6
4.1.2. Evaluation algorithms 6
4.1.3. Internal representation of projections 6
4.1.4. Universes 7
4.1.5. Internal architecture of the Coq software 7
4.1.6. Efficiency 7
4.1.7. Documentation generation 7
4.1.8. Maintenance and coordination 7
4.1.9. The Coq extraction 7
4.1.10. Parametricity for the Coq proof assistant 7
4.1.11. Formalisation in Coq 8
4.1.12. Systematic development of programs for parallel and cloud computing 8
4.1.13. Proofs of algorithms on graphs 9

4.2. Other software developments 9
5. New Results . 10

5.1. Highlights of the Year 10
5.2. Proof-theoretical and effectful investigations 10

5.2.1. Proving with side-effects 10
5.2.2. Reverse mathematics 10
5.2.3. Gödel’s functional interpretation 10
5.2.4. Logical foundations of call-by-need evaluation 11
5.2.5. Streams and classical logic 11
5.2.6. Alternative syntaxes for proofs 11

5.3. Type theory and the foundations of Coq 11
5.3.1. Description of type theory 11
5.3.2. Models of type theory 11
5.3.3. Proof irrelevance, eta-rules 11
5.3.4. Unification 11

2 Activity Report INRIA 2014

5.3.5. Foundations and paradoxes 12
5.4. Homotopy of rewriting systems 12

5.4.1. Coherent presentations of Artin monoids 12
5.4.2. New methods for the computation of polygraphic resolutions 12
5.4.3. Higher-dimensional linear rewriting 12
5.4.4. Homotopical and homological finiteness conditions 13
5.4.5. Wiring structure of operads and operad-like structures 13

5.5. Coq as a functional programming language 13
5.5.1. Type classes and libraries 13
5.5.2. Dependent pattern-matching 13
5.5.3. Incrementality in proof languages 13
5.5.4. Proofs of programs in Coq 13
5.5.5. Typed tactic language 13
5.5.6. Tactic engine 14
5.5.7. Effectful programming 14
5.5.8. Libraries 14

6. Partnerships and Cooperations . 14
6.1. National Initiatives 14
6.2. European Initiatives 15
6.3. International Initiatives 15

6.3.1. Inria International Partners 15
6.3.2. Participation In other International Programs 15

6.4. International Research Visitors 15
6.4.1. Visits of International Scientists 15
6.4.2. Visits to International Teams 15

7. Dissemination . 16
7.1. Promoting Scientific Activities 16

7.1.1. Collective responsibilities 16
7.1.2. Editorial activities 16
7.1.3. Program committees and organising committees 16
7.1.4. Jury participation 17
7.1.5. Invited talks 17
7.1.6. Presentation of papers 17
7.1.7. Other presentations 17
7.1.8. Talks in seminars 18
7.1.9. Attendance to conferences, workshops, schools,... 18
7.1.10. Groupe de travail Théorie des types et réalisabilité 18

7.2. Teaching - Supervision - Juries 18
7.2.1. Teaching 18
7.2.2. Supervision 19
7.2.3. Juries 19

7.3. Popularization 20
8. Bibliography .20

Project-Team PI.R2

Keywords: Programming Languages, Interactive Theorem Proving, Type Systems, Proofs Of
Programs, Proof Theory

Creation of the Team: 2009 January 01, updated into Project-Team: 2011 January 01.

1. Members
Research Scientists

Pierre-Louis Curien [Team leader, CNRS, Senior Researcher, HdR]
Yves Guiraud [Inria, Researcher]
Hugo Herbelin [Inria, Senior Researcher, HdR]
Jean-Jacques Lévy [Emeritus Senior Researcher, HdR]
Alexis Saurin [CNRS, Researcher]
Matthieu Sozeau [Inria, Researcher]

Faculty Members
Thierry Coquand [Inria International Chair, from Dec 2014]
Pierre Letouzey [Univ. Paris VII, Associate Professor]
Frédéric Loulergue [Univ. Orléans, Professor (in delegation), from Sep 2014]
Philippe Malbos [Univ. Lyon I, Associate Professor (in delegation), until Aug 2014]
Yann Régis-Gianas [Univ. Paris VII, Associate Professor]

PhD Students
Maxime Lucas [Univ. Paris VII, funded by ANR Cathre]
Akira Yoshimisu [Tokyo University, Inria internship, from Nov 2014]
Pierre Boutillier [Univ. Paris VII, until Feb 2014]
Cyrille Chenavier [Univ. Paris VII, funded by the IDEX FOCAL project]
Guillaume Claret [ENS Paris, Univ. Paris VII]
Amina Doumane [Univ. Paris VII, funded by FSMP from Oct 2014]
Thibaut Girka [CIFRE contract with Mitsubishi Rennes, from Oct 2014]
Lourdes Del Carmen González Huesca [ATER Univ. Paris VII from Sep 2014, funded by ANR PARAL-ITP
until Aug 2014]
Étienne Miquey [Univ. Paris VII, from Oct 2014]
Jovana Obradovic [Univ. Paris VII, from Oct 2014]
Ludovic Patey [Univ. Paris VII]
Pierre-Marie Pédrot [Univ. Paris VII]

Post-Doctoral Fellows
Eric Finster [Inria, granted by ANR PI.R2 - RECRE project, until Dec 2014]
Marc Lasson [Inria]
Arnaud Spiwack [ADT Coq, from Sep 2014 to Oct 2014]

Visiting Scientists
Steven Awodey [Carnegie Mellon University, Professor, from May 2014 until Jun 2014]
Peter Azcel [University of Manchester, Emeritus Professor, from Apr 2014 until Jul 2014]
Bas Spitters [Univ. of Nijmegen, from Apr 2014 until Nov 2014]
Samuel Van Gool [PhD student, granted by ANR PI.R2 - RECRE project, until Mar 2014]
Vladimir Voevodsky [Institute for Advanced Study, Princeton, from Jun 2014 until Jul 2014]
Wojciech Jedynak [Wroclaw Univ., PhD student, May 2014]

Administrative Assistants
Kadidiatou Barry [Inria, from Sep 2014]

2 Activity Report INRIA 2014

Lindsay Polienor [Inria, on maternity leave from Sep 2014]
Other

Paul-André Mellies [External collaborator, CNRS]

2. Overall Objectives

2.1. Overall Objectives
The research conducted in πr2 is devoted both to the study of foundational aspects of formal proofs and
programs and to the development of the Coq proof assistant software, with a focus on the dependently
typed programming language aspects of Coq. The team acts as one of the strongest teams involved in the
development of Coq as it hosts in particular the current coordinator of the Coq development team.

Since 2012, the team has also extended its scope to the study of the homotopy of rewriting systems, which
shares foundational tools with recent advanced works on the semantics of type theories.

3. Research Program

3.1. Proof theory and the Curry-Howard correspondence
3.1.1. Proofs as programs

Proof theory is the branch of logic devoted to the study of the structure of proofs. An essential contributor to
this field is Gentzen [51] who developed in 1935 two logical formalisms that are now central to the study
of proofs. These are the so-called “natural deduction”, a syntax that is particularly well-suited to simulate the
intuitive notion of reasoning, and the so-called “sequent calculus”, a syntax with deep geometric properties
that is particularly well-suited for proof automation.

Proof theory gained a remarkable importance in computer science when it became clear, after genuine
observations first by Curry in 1958 [44], then by Howard and de Bruijn at the end of the 60’s [54], [66],
that proofs had the very same structure as programs: for instance, natural deduction proofs can be identified as
typed programs of the ideal programming language known as λ-calculus.

This proofs-as-programs correspondence has been the starting point to a large spectrum of researches and
results contributing to deeply connect logic and computer science. In particular, it is from this line of work that
Coquand’s Calculus of Constructions [41] stemmed out – a formalism that is both a logic and a programming
language and that is at the source of the Coq system [64].

3.1.2. Towards the calculus of constructions
The λ-calculus, defined by Church [40], is a remarkably succinct model of computation that is defined via
only three constructions (abstraction of a program with respect to one of its parameters, reference to such
a parameter, application of a program to an argument) and one reduction rule (substitution of the formal
parameter of a program by its effective argument). The λ-calculus, which is Turing-complete, i.e. which has
the same expressiveness as a Turing machine (there is for instance an encoding of numbers as functions in
λ-calculus), comes with two possible semantics referred to as call-by-name and call-by-value evaluations. Of
these two semantics, the first one, which is the simplest to characterise, has been deeply studied in the last
decades [37].

For explaining the Curry-Howard correspondence, it is important to distinguish between intuitionistic and
classical logic: following Brouwer at the beginning of the 20th century, classical logic is a logic that accepts
the use of reasoning by contradiction while intuitionistic logic proscribes it. Then, Howard’s observation is
that the proofs of the intuitionistic natural deduction formalism exactly coincide with programs in the (simply
typed) λ-calculus.

Project-Team PI.R2 3

A major achievement has been accomplished by Martin-Löf who designed in 1971 a formalism, referred to as
modern type theory, that was both a logical system and a (typed) programming language [60].

In 1985, Coquand and Huet [41], [42] in the Formel team of Inria-Rocquencourt explored an alternative ap-
proach based on Girard-Reynolds’ system F [52], [63]. This formalism, called the Calculus of Constructions,
served as logical foundation of the first implementation of Coq in 1984. Coq was called CoC at this time.

3.1.3. The Calculus of Inductive Constructions
The first public release of CoC dates back to 1989. The same project-team developed the programming
language Caml (nowadays called OCaml and coordinated by the Gallium team) that provided the expressive
and powerful concept of algebraic data types (a paragon of it being the type of list). In CoC, it was possible to
simulate algebraic data types, but only through a not-so-natural not-so-convenient encoding.

In 1989, Coquand and Paulin [43] designed an extension of the Calculus of Constructions with a generalisation
of algebraic types called inductive types, leading to the Calculus of Inductive Constructions (CIC) that started
to serve as a new foundation for the Coq system. This new system, which got its current definitive name Coq,
was released in 1991.

In practice, the Calculus of Inductive Constructions derives its strength from being both a logic powerful
enough to formalise all common mathematics (as set theory is) and an expressive richly-typed functional
programming language (like ML but with a richer type system, no effects and no non-terminating functions).

3.2. The development of Coq
Since 1984, about 40 persons have contributed to the development of Coq, out of which 7 persons have
contributed to bring the system to the place it is now. First Thierry Coquand through his foundational
theoretical ideas, then Gérard Huet who developed the first prototypes with Thierry Coquand and who headed
the Coq group until 1998, then Christine Paulin who was the main actor of the system based on the CIC and
who headed the development group from 1998 to 2006. On the programming side, important steps were made
by Chet Murthy who raised Coq from the prototypical state to a reasonably scalable system, Jean-Christophe
Filliâtre who turned to concrete the concept of a small trustful certification kernel on which an arbitrary large
system can be set up, Bruno Barras and Hugo Herbelin who, among other extensions, reorganised Coq on a
new smoother and more uniform basis able to support a new round of extensions for the next decade.

The development started from the Formel team at Rocquencourt but, after Christine Paulin got a position
in Lyon, it spread to École Normale Supérieure de Lyon. Then, the task force there globally moved to the
University of Orsay when Christine Paulin got a new position there. On the Rocquencourt side, the part of
Formel involved in ML moved to the Cristal team (now Gallium) and Formel got renamed into Coq. Gérard
Huet left the team and Christine Paulin started to head a Coq team bilocalised at Rocquencourt and Orsay.
Gilles Dowek became the head of the team which was renamed into LogiCal. Following Gilles Dowek who
got a position at École Polytechnique, LogiCal moved to the new Inria Saclay research center. It then split
again, giving birth to ProVal. At the same time, the Marelle team (formerly Lemme, formerly Croap) which
has been a long partner of the Formel team, invested more and more energy in both the formalisation of
mathematics in Coq and in user interfaces for Coq.

After various other spreadings resulting from where the wind pushed former PhD students, the development
of Coq got multi-site with the development now realised by employees of Inria, the CNAM and Paris 7.

We next briefly describe the main components of Coq.

3.2.1. The underlying logic and the verification kernel
The architecture adopts the so-called de Bruijn principle: the well-delimited kernel of Coq ensures the
correctness of the proofs validated by the system. The kernel is rather stable with modifications tied to the
evolution of the underlying Calculus of Inductive Constructions formalism. The kernel includes an interpreter
of the programs expressible in the CIC and this interpreter exists in two flavours: a customisable lazy
evaluation machine written in OCaml and a call-by-value bytecode interpreter written in C dedicated to
efficient computations. The kernel also provides a module system.

4 Activity Report INRIA 2014

3.2.2. Programming and specification languages
The concrete user language of Coq, called Gallina, is a high-level language built on top of the CIC. It includes
a type inference algorithm, definitions by complex pattern-matching, implicit arguments, mathematical nota-
tions and various other high-level language features. This high-level language serves both for the development
of programs and for the formalisation of mathematical theories. Coq also provides a large set of commands.
Gallina and the commands together forms the Vernacular language of Coq.

3.2.3. Libraries
Libraries are written in the vernacular language of Coq. There are libraries for various arithmetical structures
and various implementations of numbers (Peano numbers, implementation of N, Z, Q with binary digits,
implementation of N, Z, Q using machine words, axiomatisation of R). There are libraries for lists, list of a
specified length, sorts, and for various implementations of finite maps and finite sets. There are libraries on
relations, sets, orders.

3.2.4. Tactics
The tactics are the methods available to conduct proofs. This includes the basic inference rules of the CIC,
various advanced higher level inference rules and all the automation tactics. Regarding automation, there are
tactics for solving systems of equations, for simplifying ring or field expressions, for arbitrary proof search,
for semi-decidability of first-order logic and so on. There is also a powerful and popular untyped scripting
language for combining tactics into more complex tactics.

Note that all tactics of Coq produce proof certificates that are checked by the kernel of Coq. As a consequence,
possible bugs in proof methods do not hinder the confidence in the correctness of the Coq checker. Note also
that the CIC being a programming language, tactics can be written (and certified) in the own language of Coq
if needed.

3.2.5. Extraction
Extraction is a component of Coq that maps programs (or even computational proofs) of the CIC to functional
programs (in OCaml, Scheme or Haskell). Especially, a program certified by Coq can further be extracted to
a program of a full-fledged programming language then benefiting of the efficient compilation, linking tools,
profiling tools, ... of the target software.

3.3. Dependently typed programming languages
Dependently typed programming (shortly DTP) is an emerging concept referring to the diffuse and broadening
tendency to develop programming languages with type systems able to express program properties finer than
the usual information of simply belonging to specific data-types. The type systems of dependently-typed
programming languages allow to express properties dependent of the input and the output of the program
(for instance that a sorting program returns a list of same size as its argument). Typical examples of such
languages were the Cayenne language, developed in the late 90’s at Chalmers University in Sweden and
the DML language developed at Boston. Since then, various new tools have been proposed, either as typed
programming languages whose types embed equalities (Ωmega at Portland, ATS at Boston, ...) or as hybrid
logic/programming frameworks (Agda at Chalmers University, Twelf at Carnegie, Delphin at Yale, OpTT at
U. Iowa, Epigram at Nottingham, ...).

DTP contributes to a general movement leading to the fusion between logic and programming. Coq, whose
language is both a logic and a programming language which moreover can be extracted to pure ML code plays
a role in this movement and some frameworks for DTP have been proposed on top of Coq (Concoqtion at Rice
and Colorado, Ynot at Harvard, Why in the ProVal team at Inria). It also connects to Hoare logic, providing
frameworks where pre- and post-conditions of programs are tied with the programs.

Project-Team PI.R2 5

DTP approached from the programming language side generally benefits of a full-fledged language (e.g.
supporting effects) with efficient compilation. DTP approached from the logic side generally benefits of an
expressive specification logic and of proof methods so as to certify the specifications. The weakness of the
approach from logic however is generally the weak support for effects or partial functions.

3.3.1. Type-checking and proof automation
In between the decidable type systems of conventional data-types based programming languages and the
full expressiveness of logically undecidable formulae, an active field of research explores a spectrum of
decidable or semi-decidable type systems for possible use in dependently typed programming languages.
At the beginning of the spectrum, this includes, for instance, the system F’s extension MLF of the ML type
system or the generalisation of abstract data types with type constraints (G.A.D.T.) such as found in the Haskell
programming language. At the other side of the spectrum, one finds arbitrary complex type specification
languages (e.g. that a sorting function returns a list of type “sorted list”) for which more or less powerful proof
automation tools exist – generally first-order ones.

3.4. Around and beyond the Curry-Howard correspondence
For two decades, the Curry-Howard correspondence has been limited to the intuitionistic case but since 1990,
an important stimulus spurred on the community following Griffin’s discovery that this correspondence was
extensible to classical logic. The community then started to investigate unexplored potential connections
between computer science and logic. One of these fields is the computational understanding of Gentzen’s
sequent calculus while another one is the computational content of the axiom of choice.

3.4.1. Control operators and classical logic
Indeed, a significant extension of the Curry-Howard correspondence has been obtained at the beginning of
the 90’s thanks to the seminal observation by Griffin [53] that some operators known as control operators
were typable by the principle of double negation elimination (¬¬A⇒ A), a principle that enables classical
reasoning.

Control operators are used to jump from one location of a program to another. They were first considered
in the 60’s by Landin [58] and Reynolds [62] and started to be studied in an abstract way in the 80’s by
Felleisen et al [49], leading to Parigot’s λµ-calculus [61], a reference calculus that is in close Curry-Howard
correspondence with classical natural deduction. In this respect, control operators are fundamental pieces to
establish a full connection between proofs and programs.

3.4.2. Sequent calculus
The Curry-Howard interpretation of sequent calculus started to be investigated at the beginning of the 90’s.
The main technicality of sequent calculus is the presence of left introduction inference rules, for which two
kinds of interpretations are applicable. The first approach interprets left introduction rules as construction rules
for a language of patterns but it does not really address the problem of the interpretation of the implication
connective. The second approach, started in 1994, interprets left introduction rules as evaluation context
formation rules. This line of work led in 2000 to the design by Hugo Herbelin and Pierre-Louis Curien of
a symmetric calculus exhibiting deep dualities between the notion of programs and evaluation contexts and
between the standard notions of call-by-name and call-by-value evaluation semantics.

3.4.3. Abstract machines
Abstract machines came as an intermediate evaluation device, between high-level programming languages
and the computer microprocessor. The typical reference for call-by-value evaluation of λ-calculus is Landin’s
SECD machine [57] and Krivine’s abstract machine for call-by-name evaluation [56], [55]. A typical abstract
machine manipulates a state that consists of a program in some environment of bindings and some evaluation
context traditionally encoded into a “stack”.

6 Activity Report INRIA 2014

3.4.4. Delimited control
Delimited control extends the expressiveness of control operators with effects: the fundamental result here is a
completeness result by Filinski [50]: any side-effect expressible in monadic style (and this covers references,
exceptions, states, dynamic bindings, ...) can be simulated in λ-calculus equipped with delimited control.

4. New Software and Platforms

4.1. COQ (http://coq.inria.fr)
Participants: Bruno Barras [Inria Saclay], Yves Bertot [Marelle team, Sophia], Pierre Boutillier, Xavier Clerc
[SED team], Pierre Courtieu [CNAM], Maxime Dénès [Gallium team, Rocquencourt], Julien Forest [CNAM],
Stéphane Glondu [CARAMEL team, Nancy Grand Est], Benjamin Grégoire [Marelle team, Sophia], Vincent
Gross [Consultant at NBS Systems], Hugo Herbelin [correspondant], Pierre Letouzey, Assia Mahboubi
[SpecFun team, Saclay], Julien Narboux [University of Strasbourg], Jean-Marc Notin [Ecole Polytechnique],
Christine Paulin [Toccata team, Saclay], Pierre-Marie Pédrot, Loïc Pottier [Marelle team, Sophia], Matthias
Puech, Yann Régis-Gianas, François Ripault, Matthieu Sozeau, Arnaud Spiwack [Mines Paritech], Pierre-Yves
Strub [IMDEA, Madrid], Enrico Tassi [Marelle team, Sophia], Benjamin Werner [Ecole Polytechnique].

4.1.1. Version 8.5
Version 8.5 was expected to be released after the summer of 2014, but this got delayed until the Coq
Programming Language workshop mid-January 2015.

Coq 8.5 is a major release of the Coq proof assistant, including 5 major new features:

• Parallel development and compilation, inside files and across files, by Enrico Tassi (Inria SpecFun,
then Marelle), a result of the Paral-ITP ANR project.

• Availability of all the features of Arnaud Spiwack’s new proof engine, with more expressive, clearer
semantics, multigoal tactics, deep backtracking,

• A compilation scheme from Coq to OCaml to native code by Maxime Dénès and Benjamin Grégoire
(Inria Marelle, then University of Pennsylvania, then Inria Gallium), considerably improving on the
previous virtual machine implementation by B. Grégoire.

• A Universe Polymorphic extension by Matthieu Sozeau that allows universe-generic developments,
as required by the Homotopy Type Theory library for example,

• Primitive projections for records by Matthieu Sozeau, with significant efficiency improvements.

Coq 8.5 also includes many improvements at different levels: the primitive tactics, the tactic language, the
specification language, the tools associated to Coq, etc. For a full list of changes, the reader is invited to look
at http://coq.inria.fr or at the files CHANGES of the Coq archive.

4.1.2. Evaluation algorithms
The new unfolding algorithm for global constants that was proposed by Pierre Boutillier is ready for use in
Coq 8.5.

4.1.3. Internal representation of projections
A new internal representation of record projections has been implemented in the 8.5 release by Matthieu
Sozeau. During the stabilisation of this feature, we added a backwards compatibility layer that allows users to
switch seamlessly to the new representation, keeping the same user-level interface for primitive and non-
primitive projections (the record types and values being unchanged). This new representation adds eta-
conversion of records defined with primitive projections to the definitional equality of Coq, enlarging the
set of conversion problems that can be automatically handled by the system.

http://coq.inria.fr

Project-Team PI.R2 7

4.1.4. Universes
The new universe polymorphism system by Matthieu Sozeau is part of the 8.5 release. The implementation
has been stabilised, benchmarked and tested heavily in the last year, with much input from the Homotopy Type
Theory development team. In [27], Matthieu Sozeau and Nicolas Tabareau presented the system formally. It
has since been extended with user-friendly features like named universes and commands to display the status
of universe constraints. With the help from Maxime Dénès (Gallium Team), the native compilation system has
also been extended to fully support universe polymorphism.

4.1.5. Internal architecture of the Coq software
Pierre Letouzey, Pierre-Marie Pédrot and Xavier Clerc have continued to work at improving the quality of the
OCaml code which composes Coq :

• Many modules have been revised, in particular with cleaner naming conventions.

• Almost all uses of the generic OCaml comparison have been chased and transformed into specific
code, thereby avoiding many potential bugs with advanced structures, while improving performances
at the same time.

• The codes handling OCaml exceptions have been reworked to avoid undue interceptions of critical
exceptions.

• Issues involving exceptions are now quite simpler to debug, thanks to easy-to-obtain backtraces.

4.1.6. Efficiency
Pierre-Marie Pédrot has been working on the overall optimisation of Coq, by tracking hotspots in the code.
Coq trunk is currently much more efficient than its v8.4 counterpart, and is about as quick as v8.3, while
having been expanded with a lot of additional features.

4.1.7. Documentation generation
Yann Régis-Gianas continued the development of a new version of coqdoc, the documentation generator of
Coq. This new implementation is based on the interaction protocol with the Coq system and should be more
robust with respect to the evolution of Coq.

4.1.8. Maintenance and coordination
The maintenance and coordination of Coq has been jointly done by Hugo Herbelin, Pierre Boutillier, Pierre
Letouzey, Matthieu Sozeau, Pierre-Marie Pédrot, in relation with the other participants to the development.

A Coq working group is organised every two months (5 times a year). From the end of October, a Coq lunch
holds weekly welcoming any person interested in the development of Coq in general. Discussions about the
development happen, in particular, on coq-dev@inria.fr and http://coq.inria.fr/bugs.

4.1.9. The Coq extraction
In 2014, Pierre Letouzey built an extension of the Coq extraction that targets directly one of the internal layers
of the OCaml compiler. This way, it is possible to avoid the generation of OCaml concrete syntax by the
extraction, followed by a parsing phase when the OCaml compiler is launched on the extracted code. Our
extension is able to shortcut these two phases. The interest is twofold. First, it seriously reduces the amount
of code that should be considered as critical during a program development via extraction. Secondly, with
this approach we are able to directly compile and run certain extracted examples, and internalise the result
back into Coq, leading to a new promising command Extraction Compute. This extension is currently quite
experimental.

4.1.10. Parametricity for the Coq proof assistant
During his stay in the πr2 team, Marc Lasson developed a plugin for parametricity theory in the Coq proof
assistant.

http://coq.inria.fr/bugs

8 Activity Report INRIA 2014

Parametricity theory was originally introduced by John Reynolds in his seminal paper about polymorphic λ-
calculus (also known as System F). It is used to formalise the opacity of abstract datatypes in programming
languages that provide idioms to handle types generically. Polymorphic functions cannot inspect their
arguments with an abstract type, and have to use them uniformly. The main tool of parametricity theory is
that of logical relations, which are relations between programs of the same type that are defined by induction
on the structure of types.

Marc Lasson’s work consisted in developing a parametricity theory for the terms of Coq. The result of this
work is a new plugin for the proof assistant that computes logical relations as well as the proof witnesses that
programs satisfy these logical relations. It is available on github http://github.com/mlasson/paramcoq.

The purpose of this plugin is to allow to use parametric arguments in Coq proofs, the main direct application
is the certification of parametric programs. Thanks to powerful expressiveness of the proof assistant, this
plugin will allow future users to use parametric arguments to a larger scale. Although parametricity theory
was originally developed for studying programs, the fact that we can use it in a proof assistant enables new
uses in other contexts, such as the formalisation of mathematics and the meta-theory of proof assistants).

In [24], Marc Lasson showed that parametricity may also be useful to derive properties about the groupoidal
interpretation of Type Theory. It was known that the equality types (also known as identity types) of type theory
carry the algebraic structure of ω-groupoids (which is a higher-dimensional version of groups). Parametricity
theory allows us to prove that the terms witnessing these algebraic laws are canonical, in the sense that there
is only one way to implement them (up to higher-order equalities).

4.1.11. Formalisation in Coq
Hugo Herbelin’s type-theoretic construction of semi-simplicial sets [9] has been formalised in Coq.

Matthieu Sozeau and Nicolas Tabareau formalised a setoid model of type theory in Coq http://github.com/
mattam82/groupoid. They are working on extending this work to the groupoid model using the latest tools
available in Coq 8.5.

Frédéric Loulergue collaborates with Frédéric Dabrowski and Thomas Pinsard (Univ. Orléans) to verify in
Coq the compilation pass [21] for a language with nested atomic sections and thread escape to a language with
only threads and locks, building on [45].

4.1.12. Systematic development of programs for parallel and cloud computing
During his stay in the πr2 team, Frédéric Loulergue continues to collaborate with Kento Emoto (Kyushu
Institute of Technology), Zhenjiang Hu (National Institute for Informatics, Japan), Julien Tesson (Univ. Paris-
Est Créteil), Wadoud Bousdira (Univ. Orléans), Kiminori Matsuzaki (Kochi University of Technology) and
Vitor Rodrigues (Rochester Institute of Technology) to develop the SyDPaCC framework (http://traclifo.univ-
orleans.fr/SyDPaCC).

The goal of this framework is to ease the systematic development of correct parallel programs, in particular
large scale data-intensive applications. In Coq, users write inefficient (sequential) functional programs and
through (partly automated) program transformations based on the theory of list homomorphisms [32], bulk
synchronous parallel homomorphisms [59] and semi-ring homomorphisms [48], an efficient sequential version
is obtained. This version can then be automatically parallelised thanks to type class instance resolution and
instances relating specific functions to their parallel counterparts. The parallel versions of the programs are
written with a Coq axiomatisation of Bulk Synchronous Parallel ML (BSML) primitives. To obtain the final
code, these Coq programs are extracted towards OCaml with calls to a parallel implementation of the BSML
library.

As the SyDPaCC framework currently mixes certified code extracted from Coq and unverified code, Frédéric
Loulergue and Pierre Letouzey are working on an extended extraction that generates, when possible, OCaml
asserts for preconditions on function arguments. The next version of the generate-test-aggregate library of
SyDPaCC will use Marc Lasson’s plugin for parametricity to prove a “theorem for free”: currently only
instantiations of this theorem for each provided generator are proved.

http://github.com/mlasson/paramcoq
http://github.com/mattam82/groupoid
http://github.com/mattam82/groupoid
http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC

Project-Team PI.R2 9

4.1.13. Proofs of algorithms on graphs
Jean-Jacques Lévy’s current research is to review basic algorithms and make their formal proofs of correctness
in Why3 + Coq. Filliâtre and Pottier already started this research, but we plan to focus on graph algorithms,
with concerns on the feasability of these formal proofs and on the design of good libraries on top of Coq
or Ssreflect. The goal is not to disprove these algorithms which are most probably correct, but to develop a
theory of tools for proving algorithms with proof assistants and provers. Standard techniques use assertions
in Hoare logic or TLA or any other logic, which are written on paper. With the recent development of good
computer proof-assistants and the fantastic progress of SMT provers, the goal of providing algorithms with
their correctness proofs checked by computer seems possible. The plan of this research is to use Why3,
Coq, Ssreflect on standard computing systems, and also to motivate a few students to work on this project.
The challenge would be to compete with Filliâtre, Pottier and Monate’s group at CEA (France), or Fournet,
Swamy and Pierce at Microsoft Research or Univ. of Pennsylvania. We want to demonstrate that the use of
SMT provers can be well coupled with the one of interactive provers as already done in Why3 and in F*
with refined types in probable future. The expected outcome would be to extend to larger programs and real
software. But this seems quite ambitious at present time, since large scale needs more technology as showed
by Gonthier for his long proofs of mathematical theorems, and since the world of programming is much less
structured than the world of mathematics.

We completed proofs of the following major algorithms as exposed in Sedgewick’s book: sorting, searching,
depth-first search in graphs. This work is performed in collaboration with Chen Ran at Iscas (Institute of
Software, Chinese Academy of Sciences). Proofs can be found at http://jeanjacqueslevy.net/why3 (see also
[10]).

4.2. Other software developments
In collaboration with François Pottier (Inria Gallium), Yann Régis-Gianas maintained Menhir, an LR parser
generator for OCaml.

Yann Régis-Gianas has been developing the “Hacking Dojo”, with the help of Alexandre Ly (master student
of Paris Diderot). a web platform to automatically grade programming exercises. The platform is now used in
several courses of the University Paris Diderot.

In collaboration with Grégoire Duchêne (master student at Paris Diderot), Yann Régis-Gianas developed
Tamasheq, a fully-customisable interpreter for the OCaml programming language. Users of this interpreter can
write plugins to instrument the interpretation of an OCaml program with visualisation, interactive debugging
or logging. A paper is in preparation.

Yves Guiraud has updated the Catex tool for Latex, whose purpose is to automate the production of string
diagrams from algebraic expressions (http://www.pps.univ-paris-diderot.fr/~guiraud/catex/catex.zip).

Yves Guiraud has developed the Python library Cox for the computation of coherent presentations of Artin
monoids, after [18] (http://www.pps.univ-paris-diderot.fr/~guiraud/cox/cox.zip).

Yves Guiraud collaborates with Samuel Mimram (LIX) to develop the prototype Rewr that implements the
homotopical completion-reduction procedure of [6] (http://www.pps.univ-paris-diderot.fr/~smimram/rewr).

Eric Finster has developed a new proof assistant, called Orchard, which aims to pursue the emerging con-
nections between type theory and higher category theory by providing an environment in which to explicitly
manipulate higher categorical diagrams using a notation based on a collection of shapes called opetopes.
Opetopes have strong connections to concepts from computer science: they have a natural interpretation as a
series of canonical indexed inductive types, and thus can be implemented and reasoned about using standard
techniques from functional programming. The goal of the Orchard project is to forge links between the ho-
motopical ideas of homotopy type theory, and the higher categorical ideas coming from higher-dimensional
rewriting theory by providing a common language in which to reason about both. A preliminary implementa-
tion is available at https://github.com/ericfinster/orchard.

http://jeanjacqueslevy.net/why3
http://www.pps.univ-paris-diderot.fr/~guiraud/catex/catex.zip
http://www.pps.univ-paris-diderot.fr/~guiraud/cox/cox.zip
http://www.pps.univ-paris-diderot.fr/~smimram/rewr
https://github.com/ericfinster/orchard

10 Activity Report INRIA 2014

5. New Results

5.1. Highlights of the Year
We successfully organised the thematic trimester Semantics of Proofs and Certified Mathematics (IHP,
April-July 2014). The trimester attracted over two hundred participants altogether (with about 60 “resident”
participants staying a month or more), hosted 5 special workshops, as well as other related regevents such as
Types, MAP (Mathematics, Algorithms, and Proofs). It was the first thematic trimester in the history of IHP to
feature computer science prominently. There was a kick-off day on April 22, with talks of Georges Gonthier,
Thomas Hales, Xavier Leroy, and Vladimir Voevodsky, with the presence of some science journalists. During
the trimester, the Bourbaki Seminar devoted an afternoon (June 21) to these themes, with talks of Thomas
Hales and Thierry Coquand.

Shortly before, Coq has received the Software System Award 2013 from the Association for Computing
Machinery (ACM). Hugo Herbelin is one of the recipients of this prize.

5.2. Proof-theoretical and effectful investigations
Participants: Pierre Boutillier, Guillaume Claret, Pierre-Louis Curien, Amina Doumane, Hugo Herbelin,
Etienne Miquey, Ludovic Patey, Pierre-Marie Pédrot, Yann Régis-Gianas, Alexis Saurin.

5.2.1. Proving with side-effects
In 2012, Hugo Herbelin showed that classical arithmetic in finite types extended with strong elimination of
existential quantification proves the axiom of dependent choice. To get classical logic and choice together
without being inconsistent is made possible first by constraining strong elimination of existential quantification
to proofs that are essentially intuitionistic and secondly by turning countable universal quantification into an
infinite conjunction of classical proofs evaluated along a call-by-need evaluation strategy so as to extract from
them intuitionistic contents that complies to the intuitionistic constraint put on strong elimination of existential
quantification. Étienne Miquey is currently working to get a presentation of this work in Curien-Herbelin’s µ-
µ̃-calculus, with the aim of getting in the end a CPS-translation. Such a translation would provide a strong
argument of normalisation for the calculus, as well as a better undertanding of the mechanisms of the calculus,
especially the side-effect part and the meaning of the existential quantifier restriction.

Hugo Herbelin and Danko Ilik carried on their work on the computational content of completeness proofs and
in particular of the computational content of Gödel’s completeness theorem. Hugo Herbelin presented their
work at the workshop PSC 2014.

5.2.2. Reverse mathematics
Ludovic Patey studied with Laurent Bienvenu and Paul Shafer the provability strength of Ramsey-type versions
of theorems like König’s lemma. The corresponding paper is submitted to the Jourmal of Mathematical Logic.
Ludovic Patey studied with Laurent Bienvenu the constructions of diagonal non-computable functions by
probabilistic means. They submitted a paper to Information and Computation. Ludovic Patey worked on
the existence of universal instances in reverse mathematics, and submitted a paper to Annals of Pure and
Applied Logic. He worked on the relations between diagonal non-computability and Ramsey-type theorems
and submitted a paper to the Archive for Mathematical Logic. He studied the links between the iterative forcing
framework developed by Lerman, Solomon & Towsner and the notion of preservation of hyperimmunity and
submitted a paper to Computability in Europe 2015.

5.2.3. Gödel’s functional interpretation
Pierre-Marie Pédrot kept developing the proof-as-program interpretation of Gödel’s Dialectica translation, as
seen through the prism of classical realisability. This work was presented at TYPES 2014 and later published
at LICS 2014 [26].

Project-Team PI.R2 11

5.2.4. Logical foundations of call-by-need evaluation
Alexis Saurin and Pierre-Marie Pédrot developed a structured reconstruction of call-by-need based on linear
head reduction which arose in the context of linear logic. This opens new directions both to extend call-by-
need to control and to apply linear logic proof-theory (and particularly proof-nets) to call-by-need evaluation.
This work was presented at JFLA 2014 [30] early 2014 and later expanded to the classical case, encompassing
λµ-calculus.

5.2.5. Streams and classical logic
Alexis Saurin and Fanny He have been working on transfinite term rewriting in order to model stream calculi
and their connections with lambda-calculi for classical logic. Their work gave rise to a presentation at the
Workshop on Infinitary Rewriting that took place in Vienna last July as part of FLOC 2014.

5.2.6. Alternative syntaxes for proofs
Amina Doumane and Alexis Saurin, in a joint work with Marc Bagnol, studied the structure of several
correctness criteria for linear logic proof-nets and could relate them through a new primitive notion of
dependency. This work was first presented at JFLA 2014 [29] early 2014 and later at Structure and Deduction
in Vienna as part of FLOC 2014. An expanded version has recently been accepted at FOSSACS 2015 [19].

5.3. Type theory and the foundations of Coq
Participants: Pierre Boutillier, Pierre-Louis Curien, Hugo Herbelin, Pierre-Marie Pédrot, Yann Régis-Gianas,
Matthieu Sozeau, Arnaud Spiwack.

5.3.1. Description of type theory
Hugo Herbelin and Arnaud Spiwack completed and published their characterisation of the type constructions
of Coq in terms of atomic constructions rather than their usual description as a monolithic scheme [23].
This work permitted both a more pedagogical presentation of Coq’s type system, and a more tractable and
composable mathematical model of Coq on which meta-properties can be stated and proved.

5.3.2. Models of type theory
Simplicial sets and their extensions as Kan complexes can serve as models of homotopy type theory. Hugo
Herbelin developed a concrete type-theoretic formalisation of semi-simplicial sets following ideas from Steve
Awodey, Peter LeFanu Lumsdaine and other researchers both at Carnegie-Mellon University and at the
Institute of Advanced Study. This is in the process of being published in a special issue of MSCS on homotopy
type theory [9].

The technique scales to provide type-theoretic constructions for arbitrary presheaves on Reedy categories, thus
including simplicial sets.

5.3.3. Proof irrelevance, eta-rules
During his master’s internship supervised by Matthieu Sozeau, Philipp Haselwarter studied a formulation of
proof-irrelevance based on the rooster and the syntactic bracket presentation by Spiwack and Herbelin [23].
This resulted in a decomposition of the calculus cleanly showing the use of smashing and a better understand-
ing of the restricted elimination rules of propositions. It also clearly shows that the inductive type for accessi-
bility, used to justify general wellfounded definitions, can not be interpreted as a proof-irrelevant proposition
in this calculus.

5.3.4. Unification
Matthieu Sozeau is continuing work in collaboration with Beta Ziliani (PhD at MPI-Saarbrücken) on formalis-
ing the unification algorithm used in Coq, which is central for working with advanced type inference features
like Canonical Structures. This is the first precise formalisation of all the rules of unification including the
ones used for canonical structure resolution. The presentation currently excludes some heuristics that were
added on top of the core algorithm in Coq, until they can be studied more carefully. This work, part of B.
Ziliani’s thesis, was presented at the UNIF’14 workshop [28] and the Coq workshop in Vienna. A submission
is in preparation.

12 Activity Report INRIA 2014

5.3.5. Foundations and paradoxes
Arnaud Spiwack generalised previous works by Herman Geuvers and Hugo Herbelin to implement Hurkens’s
paradox of the impredicative system U−. The resulting Coq implementation, which is completely independent
from the impredicative features of Coq, generalises the two special cases which were previously used to prove
negative results about impredicativity in Coq.

5.4. Homotopy of rewriting systems
Participants: Cyrille Chenavier, Pierre-Louis Curien, Yves Guiraud, Maxime Lucas, Philippe Malbos, Jovana
Obradović.

5.4.1. Coherent presentations of Artin monoids
With Stéphane Gaussent (ICJ, Univ. de Saint-Étienne), Yves Guiraud and Philippe Malbos have used higher-
dimensional rewriting methods for the study of Artin monoids, a class of monoids that is fundamental in
algebra and geometry. This work uses the formal setting of coherent presentations (a truncation of polygraphic
resolutions at the level above relations) to formulate, in a common language, several known results in
combinatorial group theory: one by Tits about the fundamental group of a graph associated to an Artin monoid
[65], and one by Deligne about the actions of Artin monoids on categories [47], both proved by geometrical
methods. In this work, an improvement of Knuth-Bendix’s completion procedure is introduced, called the
homotopical completion-reduction procedure, and it is used to give a constructive proof and to extend both
theorems. This work will appear in Compositio Mathematica [18] and has been implemented in a Python
library.

The next objective of this collaboration is to extend those results in every dimension, first to Artin monoids,
then to Artin groups, with a view towards two well-known open problems in the field: the word problem of
Artin groups and the so-called K(π, 1) conjecture.

5.4.2. New methods for the computation of polygraphic resolutions
Maxime Lucas, supervised by Pierre-Louis Curien and Yves Guiraud, develops Squier’s theory in the setting
of cubical ω-categories. This will allow easier and more explicit computations of polygraphic resolutions than
in the globular setting of [5], and the use of new effective methods such as the reversing algorithm from
Garside theory [46].

Yves Guiraud currently collaborates with Patrick Dehornoy (Univ. de Caen) and Matthieu Picantin (LIAFA,
Univ. Paris 7) to extend the constructions of [18] to other important families of monoids, such as the plactic
monoid, the Chinese monoid and the dual braid monoids.

5.4.3. Higher-dimensional linear rewriting
Cyrille Chenavier, Pierre-Louis Curien, Yves Guiraud and Philippe Malbos investigate with Eric Hoffbeck
(LAGA, Univ. Paris 13) and Samuel Mimram (LIX, École Polytechnique) the links between set-theoretic
rewriting theory and the computational methods known in symbolic algebra, such as Gröbner bases [39]. This
interaction is supported by the Focal project of the IDEX Sorbonne Paris Cité.

With Eric Hoffbeck (LAGA, Univ. Paris 13), Yves Guiraud and Philippe Malbos have introduced the setting
of linear polygraphs to formalise a theory of linear rewriting (in the sense of linear algebra), generalising
Gröbner bases. They have adapted to algebras the procedure of [5] that computes polygraphic resolutions
from convergent presentations of monoids, with applications to the decision of an important homological
property called Koszulness. This work is contained in [35] and it has been presented at IWC 2014 [31].

Cyrille Chenavier, supervised by Yves Guiraud and Philippe Malbos, explores the use of Berger’s theory of
reduction operators [38] to design new methods for the study of linear rewriting systems, and to promote the
use of rewriting techniques in combinatorial algebra.

Project-Team PI.R2 13

5.4.4. Homotopical and homological finiteness conditions
Yves Guiraud and Philippe Malbos have written a comprehensive introduction [36] on the links between
higher-dimensional rewriting, the homotopical finiteness condition “finite derivation type” and the homolog-
ical finiteness condition “FP3”, from the point of view of higher categories and polygraphs. The purpose of
this work is to provide an introduction to the field, formulated in a contemporary language, and with new,
more formal proofs of classical results.

5.4.5. Wiring structure of operads and operad-like structures
Building on recent ideas of Marcelo Fiore on the one hand, and of François Lamarche on the other hand, Pierre-
Louis Curien and Jovana Obradović develop a syntactic approach, using some of the kit of Curien-Herbelin’s
duality of computation and its polarised versions of Munch and Curien, to the definition of various structures
that have appeared in algebra under the names of operads, cyclic operads, dioperads, properads, modular and
wheeled operads, permutads, etc.... These structures are defined in the literature in different flavours. We seek
to formalise the proofs of equivalence between these different styles of definition, and to make these proofs
modular, so as not to repeat them for each variation of the notion of operad. Preliminary results are being
presented in January 2015 at the Mathematical Institute of the Academy of Sciences (Belgrade).

5.5. Coq as a functional programming language
Participants: Pierre Boutillier, Guillaume Claret, Lourdes Del Carmen González Huesca, Thibaut Girka,
Hugo Herbelin, Pierre Letouzey, Matthias Puech, Yann Régis-Gianas, Matthieu Sozeau, Arnaud Spiwack.

5.5.1. Type classes and libraries
Type Classes are heavily used in the HoTT/Coq library (http://github.com/HoTT/coq) started by the Univalent
Foundations program at the IAS, to which Matthieu Sozeau participated. To ease the development of this
sophisticated library, Matthieu Sozeau implemented a number of extensions to type class resolution to make
it more predictable and efficient. These are now part of the Coq 8.5 release.

5.5.2. Dependent pattern-matching
The dissertation of Pierre Boutillier presents and formalises a new algorithm to compile dependent pattern-
matching into a chain of Coq case analyses. It avoids the use of the “uniqueness of identity proofs” axiom in
more cases than the former proposal by McBride and McKinna.

5.5.3. Incrementality in proof languages
Lourdes del Carmen González Huesca and Yann Régis-Gianas developed a new variant of the differential
lambda calculus that has two main features: (i) it is deterministic ; (ii) it is based on a notion of a first-class
changes. A paper is in preparation.

5.5.4. Proofs of programs in Coq
In collaboration with David Mentre (Mitsubishi Rennes), Thibaut Girka and Yann Régis-Gianas worked on a
certified generator for correlating programs. A correlating program is a program that represents the semantic
difference between two (close) versions of a program by performing a static scheduling of their instructions.
Performing an abstract interpretation on the correlating program provides a representation of the semantic
differences between the two versions of a program. A paper is written and should be submitted soon.

5.5.5. Typed tactic language
In collaboration with Beta Ziliani (MPI) and Thomas Refis (master 2 student at University Paris Diderot),
Yann Régis-Gianas starts the development of the version 2 of Mtac, a tactic language for Coq. Mtac is a DSL
embedded in the Coq proof assistant. Roughly speaking, it allows Coq to be used as a tactic language for itself.
With this work, Mtac 2 now includes first class goals. A paper is in preparation.

http://github.com/HoTT/coq

14 Activity Report INRIA 2014

5.5.6. Tactic engine
Arnaud Spiwack joined the team for two months (Sept—Oct 2014) to finalise the integration and documen-
tation of his re-engineering of Coq’s interactive proof engine for the v8.5 version. The new perspective taken
by this new engine is to shift the primary focus from how tactics (proof instructions) can modify goals (proof
obligations) to focus on the way tactics compose. By making sure that composition of tactics has good math-
ematical properties, the new engine makes it possible to combine tactics in a more predictable and more
powerful way. This new engine is also notable for the introduction of an abstract interface for tactics and tactic
composition which makes it easy to augment tactics with new capabilities. The most notable such features
are so-called dependent subgoals, which makes more fine-grained proofs possible and significantly improves
the support for dependent types; and backtracking which gives the possibility to deploy very modular proof-
search components. During his two months in the team, Arnaud Spiwack also added support for tracing tactic
execution (Info), again taking advantage of his modular design.

5.5.7. Effectful programming
Guillaume Claret and Yann Régis-Gianas developed a compiler from a subset of OCaml with effects to Coq.
Possible effects are the exceptions, the global references and the non-termination. Guillaume Claret and Yann
Régis-Gianas developed Pluto, a concurrent HTTP web server written in Gallina. They worked on techniques
to certify such interactive programs, formalising the reasoning by use cases. Use cases are proven correct
giving a scenario, a typed schema of interactions between a program and an environment, built using the tactic
mode of Coq as a symbolic debugger.

5.5.8. Libraries
Sébastien Hinderer and Pierre Letouzey contributed an extended library of lists. Pierre Letouzey contributed
an extended library about Peano numbers, that takes advantages of the “Numbers” modular framework done
earlier.

6. Partnerships and Cooperations

6.1. National Initiatives
Alexis Saurin (coordinator) and Yann Régis-Gianas are members of the four-year RAPIDO ANR project
accepted in 2014 and starting in January 2015. RAPIDO aims at investigating the use of proof-theoretical
methods to reason and program on infinite data objects. The goal of the project is to develop logical systems
capturing infinite proofs (proof systems with least and greatest fixed points as well as infinitary proof systems),
to design and to study programming languages for manipulating infinite data such as streams both from a
syntactical and semantical point of view. Moreover, the ambition of the project is to apply the fundamental
results obtained from the proof-theoretical investigations (i) to the development of software tools dedicated to
the reasoning about programs computing on infinite data, e.g. stream programs (more generally coinductive
programs), and (ii) to the study of properties of automata on infinite words and trees from a proof-theoretical
perspective with an eye towards model-checking problems. Other permanent members of the project are
Christine Tasson from PPS, David Baedle from LSV, ENS-Cachan, and Pierre Clairambault, Damien Pous
and Colin Riba from LIP, ENS-Lyon.

Pierre-Louis Curien (coordinator), Yves Guiraud and Philippe Malbos are members of the three-years Focal
project of the IDEX Sorbonne Paris Cité, started in June 2013. This project, giving the support for the PhD
grant of Cyrille Chenavier, concerns the interactions between higher-dimensional rewriting and combinatorial
algebra. This project is with members of the LAGA (Laboratory of Mathematics, Univ. Paris 13).

Pierre-Louis Curien (coordinator), Yves Guiraud and Philippe Malbos are members of the four-years Cathre
ANR project, started in January 2014. This project investigates the general theory of higher-dimensional
rewriting, the development of a general-purpose library for higher-dimensional rewriting, and applications
in the fields of combinatorial algebra, combinatorial group theory and theoretical computer science.

Project-Team PI.R2 15

Matthieu Sozeau, Hugo Herbelin, Lourdes del Carmen González Huesca and Yann Régis-Gianas are members
of the ANR Paral-ITP started in November 2011. Paral-ITP is about preparing the Coq and Isabelle interactive
theorem provers to a new generation of user interfaces thanks to massive parallelism and incremental type-
checking.

Hugo Herbelin is the coordinator of the PPS site for the ANR Récré accepted in 2011, which started in January
2012. Récré is about realisability and rewriting, with applications to proving with side-effects and concurrency.

Matthieu Sozeau is member of the ANR Typex (Types and certification for XML) and is coordinator of one
of the tasks of the project on formalisation and certification of XML tools. The project kicked-off in January
2012 and is a joint project with LRI, PPS and Inria Grenoble.

Yann Régis-Gianas collaborates with Mitsubishi Rennes on the topic of differential semantics. This collabo-
ration led to the CIFRE grant for the PhD of Thibaut Girka.

Matthieu Sozeau is a member of the CoqHoTT project led by Nicolas Tabareau (Ascola team, École des Mines
de Nantes), funded by an ERC Starting Grant.

6.2. European Initiatives
6.2.1. Collaborations with Major European Organisations

Pierre-Louis Curien, Yves Guiraud and Philippe Malbos are collaborators of the Applied and Computational
Algebraic Topology (ACAT) networking programme of the European Science Foundation.

6.3. International Initiatives
6.3.1. Inria International Partners

The project-team has collaborations with Wroclaw University (Poland), University of Aarhus (Denmark),
University of Oregon, University of Tokyo, University of Sovi Sad, University of Nottingham, Institute of
Advanced Study, MIT and University of Cambridge.

6.3.2. Participation In other International Programs
Pierre-Louis Curien participates to the ANR International French-Chinese project LOCALI (coordinated by
Gilles Dowek), and to a MathAmSud project in algebraic operads with the university of Talca (Chile).

6.4. International Research Visitors
6.4.1. Visits of International Scientists

Beta Ziliani (MPI Saarbrücken) visited πr2 for one week in November 2014 to collaborate with Yann Régis-
Gianas and Matthieu Sozeau.

Peter Aczel (Manchester Univ.), Steve Awodey (Carnegie Mellon University), Thierry Coquand (Univ.
Göteborg), and Vladimir Voevodsky (Institute for Advanced Study) were Inria funded invited professors for
the thematic IHP trimester Semantics of Proofs and Certified Mathemtatics.

6.4.1.1. Internships

Akira Yoshimizu is an international Inria intern, working on abstract machines for quantum programmming
languages inspired from game semantics and linear logic.

6.4.2. Visits to International Teams
6.4.2.1. Research stays abroad

Pierre-Louis Curien visited Chili (Univ. of Talca) in March 2014 (collaborative work with Maria Ronco in
operad theory).

16 Activity Report INRIA 2014

7. Dissemination

7.1. Promoting Scientific Activities
7.1.1. Collective responsibilities

Pierre-Louis Curien was a member of the Conseil Scientifique of the INSII (CNRS), until September 2014.
He is also a member of the Conseil Scientifique of CIRM (since June 2013).

7.1.2. Editorial activities
Pierre-Louis Curien is co-editor in chief of Mathematical Structures in Computer Science.

Frédéric Loulergue is a member of the editorial board of Scalable Computing: Practice and Experience, and
Technique et Science Informatiques.

Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau are co-editors of the post-proceedings of the conference
TYPES 2014 which was held in Paris in May.

7.1.3. Program committees and organising committees
Alexis Saurin has been a PC member of GaLoP 2014 (International Workshop on Games and Logic for
Programming) which took place during ETAPS 2014 in Grenoble, as well as FSTTCS 2014, which took
place in Mumbai in December. He is in the PC of WoC 2015, the workshop on continuations, affiliated with
ETAPS.

Alexis Saurin is member of the Education committee of the ACM Special Interest Group on Logic (SIGLOG,
http://siglog.hosting.acm.org).

Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau co-organised and co-chaired the TYPES’14 conference
in Paris in May.

Yves Guiraud and Philippe Malbos were among the organisers of the 5-week programme Mathematical
Structures of Computation, held in Lyon in January-February 2014, and supported by the Labex MILYON.
They were also organisers of the second week, Algebra and Computation, while Pierre-Louis Curien and Hugo
Herbelin organised the first week, Recent Trends in Type theory.

Yves Guiraud is in the organising committee and PC co-chair of Higher-Dimensional Rewriting and Applica-
tions (HDRA), a workshop of the International Conference on Rewriting, Deduction and Programming (RDP)
2015.

Pierre-Louis Curien, Hugo Herbelin and Paul-André Melliès were the organisers of the IHP trimester
Semantics of proofs and certified mathematics (cf. highlights). They also organised a spring school at CIRM
preceding the trimester, in April 2014.

Pierre-Louis Curien and Hugo Herbelin are members of the steering committee of the conference Typed
Lambda Calculi and Applications (TLCA).

Pierre-Louis Curien is a member of the steering committee of the international workshop Games for Logic
and Programming Languages (GaLop).

Frédéric Loulergue is a member of the steering committee of the international symposium on High-Level
Parallel Programming and Applications (HLPP), he is a member of the program committee of the International
Conference on Computational Science (ICCS’15).

Yann Régis-Gianas, Pierre Letouzey, Matthieu Sozeau are the organisers of the “Ecole de Printemps
d’Informatique Théorique 2015” about proof of programs. This school has been accepted as a “Ecole Thé-
matique” of the CNRS.

Matthieu Sozeau is a member of the steering committee of the Dependently Typed Programming international
workshop (DTP).

http://siglog.hosting.acm.org

Project-Team PI.R2 17

Matthieu Sozeau co-organised and chaired the first Coq for Programming Languages (CoqPL) workshop,
collocated with POPL’15 in Mumbai, India, in January 2015.

7.1.4. Jury participation
Alexis Saurin has been a member of the Jury for LMFI Master.

Yann Régis-Gianas has been a member of the “Comité de Sélection” for an assistant professor position at the
University of Paris Sud.

Pierre-Louis Curien has been a member of the “Comité de Sélection” for a professor position in computer
science at the University Paris Diderot.

Matthieu Sozeau has been a member of the Student Research Competition Jury at ICFP 2014 in Gothenburg.

7.1.5. Invited talks
P.-L. Curien gave an invited talk at the workshop “Algebra and Computation” in Lyon (mentioned above).

J.-J. Lévy wrote a paper for P.-L. Curien’s Festschrift Volume, entitled “On the length of Standard Reductions
in the Lambda Calculus” [2] (corresponding to his talk back in September 2013 in Venice at the anniversary
meeting in his honour).

P.-L. Curien and J.-J. Lévy participated to Luca Cardelli’s Festschrift at Microsoft Research in Cambridge,
UK (September 8-9). They gave talks entitled “Around formal parametricity” and “Simple Proofs for Simple
Programs”, respectively.

J.-J. Lévy participated to Matthew Hennessy’s Festschrift at IMD in Lucca, Italy (October 15-16). He gave a
talk on “Simple Proofs for Simple Programs”.

J.-J. Lévy and A. Saurin participated to “Les Journées LAC (Logique, Algèbre, Calcul)” in Chambéry, France
(November 20-21). They gave talks on “Simple Proofs for Simple Programs” and “On the dependencies of
logical rules”, respectively.

J.-J. Lévy participated to “The 2nd Locali workshop” between Institute of Software, Chinese Academy of
Sciences and Inria/Paris 7 (November 24-26). He gave a talk on “Simple Proofs for Simple Programs”.

M. Sozeau gave an invited talk on “Universe Polymorphism: Subtyping and unification” at the XIXth Agda
meeting in Paris (May 2014).

L. Patey has been invited to give a talk at the Workshop on Computability Theory 2014, at a special session of
the conference Computability in Europe 2015 and to a Dagstuhl Seminar 2015.

7.1.6. Presentation of papers
Philippe Malbos has presented [31] at IWC 2014.

Marc Lasson has presented [24] at MFPS 2014.

Hugo Herbelin has presented his joint work with Danko Ilik on the computational content of Gödel’s
completeness theorem at the workshop PSC 2014.

Matthieu Sozeau has presented [27] at ITP 2014 and [28] at UNIF 2014.

Ludovic Patey received the best student paper award for his paper about dichotomy theorems and an extended
version of his paper submitted to the Computability journal has been accepted.

7.1.7. Other presentations
Yann Régis-Gianas gave a talk about Coq at the PPS-LIAFA “pedagogical” meeting.

Frédéric Loulergue gave a short talk at JFLA’15 and a talk at the International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing SYNASC’14 (Timisoara).

Matthieu Sozeau gave talks on the development of Coq at the Coq Workshop in Vienna (July 2014) and at
the CoqPL workshop in Mumbai (Jan 2015). He also gave a talk on generalised rewriting strategies at TYPES
2014 and at the Coq Workshop.

18 Activity Report INRIA 2014

7.1.8. Talks in seminars
Lourdes González gave a talk on “Incrémentalité dans le calcul” during the Journées PPS, September 2014.

Marc Lasson gave talks about parametricity for dependent types at the TYPES 2014 workshop, at the journéees
nationales du GDR IM 2014, and the following team seminars: séminaire LCR, LIPN, Paris 13; séminaire
Logique et Interactions, Institut de Mathématiques de Marseille; séminaire d’équipe ACADIE, IRIT Toulouse.
He also presented his plugin during a Coq working group held in Paris.

Eric Finster gave a talk on Homotopy Type Theory at the “Notions of Identification” seminar at L’équipe ERC
Philosophy of Canonical Quantum Gravity, Paris 7 and a talk entitled “Opetopic Diagrams as a Language for
Higher Categorical Proofs” at the IHP Trimester in Paris.

Alexis Saurin gave a talk in PARSIFAL seminar at LIX on dependency and correctness of proof-nets.

Matthieu Sozeau gave a talk at the Deducteam seminar at Inria (place d’Italie) on the formalisation of the
groupoid model of type theory.

Pierre-Louis Curien gave a seminar talk at the University of Talca (Chile) on “Revisiting the categorical
interpretation of type theory” (March).

7.1.9. Attendance to conferences, workshops, schools,...
Lourdes González attended TYPES 2014 in Paris and the IHP trimester “Semantics of proofs and certified
mathematics”.

Marc Lasson attended TYPES 2014 in Paris, the IHP trimester, and the Homotopy Type Theory Workshop
held at the Mathematical Institute, University of Oxford, in November 2014.

Frédéric Loulergue attended SYNASC 2014 in September (Timisoara), and the JFLA’15 in Val d’Ajol.

Eric Finster attended the IHP Trimester in Paris, and the Homotopy Type Theory Workshop at Oxford.

Alexis Saurin and Matthieu Sozeau attended JFLA 2014, the IHP trimester, Types 2014 and FLOC 2014.

Matthieu Sozeau attended the Heidelberg Laureate Forum in September 2014 and ICFP’14.

7.1.10. Groupe de travail Théorie des types et réalisabilité
This is one of the working groups of PPS, jointly organised by Hugo Herbelin and Paul-André Melliès, since
September 2009. It is held weekly. Matthieu Sozeau joined the organisation this year.

Internal speakers this year were Eric Finster on Higher Dimensional Syntax and Ludovic Patey on an
Introduction to reverse mathematics. The external speakers were Jean-Baptiste Jeannin (CMU), Matthias
Puech (McGill University), Sylvain Schmitz (ENS Cachan), Timothy Bourke (Inria and ENS), Cătălin Hriţcu
(Inria), Pierre-Evariste Dagand (Inria), Carsten Schürmann (ITU Copenhagen), Conor McBride (Strathclyde
University), Nicolas Pouillard (IT University of Copenhagen, Denmark), Alois Brunel (LIPN).

7.2. Teaching - Supervision - Juries
7.2.1. Teaching

Licence: Lourdes González has a temporary research and teaching position (A.T.E.R) at University Paris 7 for
the academic year 2014–2015. During the first semester (Sep-Dec 2014) she was in charge of TP (Travaux
pratiques, 24 hours) on the subject “Principes de fonctionnement des machines binaires” (L1).

Licence: Étienne Miquey was in charge of TP (Travaux practiques, 24 hours) in the course “Introduction à la
programmation” (L1) at University Paris 7 during the first semester 2014/15.

Master: Pierre-Louis Curien teaches in the course “Models of programming languages: domains, categories,
games” of the MPRI (together with Thomas Ehrhard and Paul-André Melliès).

Project-Team PI.R2 19

Master: Alexis Saurin taught, jointly with Christine Tasson, a Master 2 course in “Logique Mathématique et
Fondements de l’Informatique” (LMFI), Université Paris Diderot, entitled “Lambda-calcul: des abstractions
aux applications”. He taught about 30H. In addition, Saurin chairs LMFI M2 from september 2013.

Master: Yann Régis-Gianas took part in the MPRI course entitled “Type systems”: he taught 12 hours about
generalised algebraic data types, higher-order Hoare logic and dependently typed programming.

MOOC: In collaboration with Roberto Di Cosmo and Ralf Treinen, Yann Régis-Gianas wrote a proposal
for a MOOC about the OCaml programming language. The proposal has been accepted and the course is in
preparation.

Master: Matthieu Sozeau teaches in the MPRI course on Advanced uses of Proof Assistants (12 hours + a
project), together with Assia Mahboubi (Inria SpecFun).

Master: Matthieu Sozeau taught an introducory course on software verification to M2 Pro students at
University Paris 7 during the first semester (Lectures + Practical Works, 20h).

7.2.2. Supervision
Internship: Alexis Saurin has supervised the L3 internship of Paul Fermé.

Internship: Alexis Saurin has supervised the M1 internship of Simon Lunel.

Internship: Alexis Saurin has supervised, with David Baelde, the M2 internship of Amina Doumane.

Internship: Yann Régis-Gianas has supervised the M2 internship of Thibaut Girka.

Internship: Yann Régis-Gianas has supervised the M2 internship of Thomas Refis.

Internship: Yann Régis-Gianas has supervised the M1 internship of Grégoire Duchêne.

Internship: Yann Régis-Gianas has supervised the M1 internship of Alexandre Ly.

Internship: Matthieu Sozeau has supervised the M2 internship of Philipp Haselwarter.

PhD in progress: Lourdes del Carmen González Huesca, Un langage de tactiques typées pour Coq, December
2011, supervised by Hugo Herbelin and Yann Régis-Gianas.

PhD in progress: Guillaume Claret, Programmation avec effets en Coq, September 2012, supervised Hugo
Herbelin and Yann Régis-Gianas.

PhD in progress: Pierre-Marie Pédrot, Logique linéaire et types dépendants, september 2012, supervised by
Alexis Saurin and Hugo Herbelin.

PhD in progress: Thibaut Girka, Sémantique différentielle, October 2014, supervised by Roberto DiCosmo
and Yann Régis-Gianas.

PhD in progress: Cyrille Chenavier, Méthodes algébriques pour la réécriture linéaire, supervised by Yves
Guiraud and Philippe Malbos.

PhD in progress: Maxime Lucas, Résolutions polygraphiques cubiques et théorie de Garside, supervised by
Yves Guiraud and Pierre-Louis Curien.

PhD in progress: Jovana Obradović, Langages pour la description de différentes sortes d’opérades, supervised
by Pierre-Louis Curien.

PhD in progress: Amina Doumane, Ludique, automates, points fixes, supervised by Alexis Saurin, David
Baelde and Pierre-Louis Curien.

PhD in progress: Étienne Miquey, Réalisabilité classique et effets de bords, September 2014, supervised by
Hugo Herbelin and Alexandre Miquel.

7.2.3. Juries
Pierre-Louis Curien was president of the thesis juries of Aloïs Brunel (Univ. Paris 13), Guillaume Jaber (Univ.
Nantes), Valentin Blot (ENS Lyon), and Marc Bagnol(Univ. Marseille).

20 Activity Report INRIA 2014

Pierre-Louis Curien was president of the habilitation jury of Philippe Malbos (Univ. Lyon 1).

He is a referee for the habilitation theses of Olivier Serre (LIAFA), Russ Harmer (ENS Lyon), and Paul-André
Melliès.

Frédéric Loulergue was president of the thesis juries of Hélène Coullon (Univ. Orléans), Mouhamadou Sakho
(Univ. Orléans) and Nader Khammassi (ENSTA Bretagne) ; referee for the theses of Nuno Gaspar (Univ.
Nice), Nader Khammassi (ENSTA Bretagne) and Charif Mahmoudi (Univ. Paris-Est Créteil) ; supervisor of
the thesis of Thomas Pinsard (Univ. Orléans).

7.3. Popularization
Pierre-Louis Curien wrote the editorial of a special “hors série” issue of the information letter of The Fondation
Sciences Mathématiques, entitled “Des preuves et des programmes”, may 2014. He wrote an introductory
article “Formalisation mathématique, certification logicielle, même combat!” in the journal Gazette des
Mathématiciens 142, 83-86 (octobre 2014).

Lourdes González-Huesca and Étienne Miquey took part in the animation of the “Fête de la Science” event at
the University Paris 7.

Étienne Miquey took part in the animation of several activities about mathematics in elementary and high
schools of Paris.

Yann Régis-Gianas co-organised the “Journée Francilienne de Programmation”, a programming contest
between undergraduate students of three universities of Paris (UPD, UPMC, UPS).

Yann Régis-Gianas organised the “Fête de la Science” event for the computer science department of the
University Paris 7.

Yann Régis-Gianas and Pierre Letouzey took part in the “Salon Culture et Jeux mathématiques” at Saint
Sulpice, Paris.

Yann Régis-Gianas gave several conferences about “What is programming?” in elementary and high schools
of Paris.

8. Bibliography
Major publications by the team in recent years

[1] Z. ARIOLA, H. HERBELIN, A. SABRY. A Type-Theoretic Foundation of Delimited Continuations, in "Higher
Order and Symbolic Computation", 2007, http://dx.doi.org/10.1007/s10990-007-9006-0

[2] A. ASPERTI, J.-J. LÉVY. On the length of Standard Reductions in the Lambda Calculus

[3] P.-L. CURIEN. Substitution up to isomorphism, in "Fundamenta Informaticae", 1993, vol. 19, pp. 51-85

[4] P.-L. CURIEN, H. HERBELIN. The duality of computation, in "Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00)", Montreal, Canada, SIGPLAN Notices
35(9), ACM, September 18-21 2000, pp. 233–243 [DOI : 10.1145/351240.351262], http://hal.archives-
ouvertes.fr/inria-00156377/en/

[5] Y. GUIRAUD, P. MALBOS. Higher-dimensional normalisation strategies for acyclicity, in "Advances in
Mathematics", 2012, vol. 231, no 3-4, pp. 2294-2351 [DOI : 10.1016/J.AIM.2012.05.010], https://hal.
archives-ouvertes.fr/hal-00531242

http://dx.doi.org/10.1007/s10990-007-9006-0
http://hal.archives-ouvertes.fr/inria-00156377/en/
http://hal.archives-ouvertes.fr/inria-00156377/en/
https://hal.archives-ouvertes.fr/hal-00531242
https://hal.archives-ouvertes.fr/hal-00531242

Project-Team PI.R2 21

[6] Y. GUIRAUD, P. MALBOS, S. MIMRAM. A Homotopical Completion Procedure with Applications to Co-
herence of Monoids, in "RTA - 24th International Conference on Rewriting Techniques and Applications
- 2013", Eindhoven, Netherlands, F. VAN RAAMSDONK (editor), Leibniz International Proceedings in In-
formatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, June 2013, vol. 21, pp. 223-238
[DOI : 10.4230/LIPICS.RTA.2013.223], https://hal.inria.fr/hal-00818253

[7] H. HERBELIN, S. GHILEZAN. An Approach to Call-by-Name Delimited Continuations, in "Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008", San
Francisco, California, USA, G. C. NECULA, P. WADLER (editors), ACM, January 7-12 2008, pp. 383-394

[8] H. HERBELIN. An intuitionistic logic that proves Markov’s principle, in "Logic In Computer Science",
Edinburgh, Royaume-Uni, IEEE Computer Society, 2010, http://hal.inria.fr/inria-00481815/en/

[9] H. HERBELIN. A dependently-typed construction of semi-simplicial types, March 2013, https://hal.inria.fr/hal-
00935446

[10] J.-J. LÉVY. Simple proofs of simple programs in Why3

[11] G. MUNCH-MACCAGNONI. Focalisation and Classical Realisability, in "Computer Science Logic ’09", E.
GRÄDEL, R. KAHLE (editors), Lecture Notes in Computer Science, Springer-Verlag, 2009, vol. 5771, pp.
409–423

[12] Y. RÉGIS-GIANAS, F. POTTIER. A Hoare Logic for Call-by-Value Functional Programs, in "Proceedings of
the Ninth International Conference on Mathematics of Program Construction (MPC’08)", Lecture Notes in
Computer Science, Springer, July 2008, vol. 5133, pp. 305–335, http://gallium.inria.fr/~fpottier/publis/regis-
gianas-pottier-hoarefp.ps.gz

[13] A. SAURIN. Separation with Streams in the Λµ-calculus, in "Symposium on Logic in Computer Science (LICS
2005)", Chicago, IL, USA, Proceedings, IEEE Computer Society, 26-29 June 2005, pp. 356-365

[14] A. SAURIN. On the Relations between the Syntactic Theories of λµ-Calculi, in "17th Annual Conference
of the EACSL 17th EACSL Annual Conference on Computer Science Logic - CSL 2008", Bertinoro Italie,
Lecture notes in computer science, Springer, 2008, vol. 5213, pp. 154-168 [DOI : 10.1007/978-3-540-
87531-4_13], http://hal.archives-ouvertes.fr/hal-00527930/en/

[15] M. SOZEAU, N. OURY. First-Class Type Classes, in "Theorem Proving in Higher Order Logics, 21st
International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings", O. A.
MOHAMED, C. MUÑOZ, S. TAHAR (editors), Lecture Notes in Computer Science, Springer, 2008, vol.
5170, pp. 278-293

Publications of the year
Doctoral Dissertations and Habilitation Theses

[16] P. BOUTILLIER. New tool to compute with inductive in Coq, Université Paris-Diderot - Paris VII, February
2014, https://tel.archives-ouvertes.fr/tel-01054723

Articles in International Peer-Reviewed Journals

https://hal.inria.fr/hal-00818253
http://hal.inria.fr/inria-00481815/en/
https://hal.inria.fr/hal-00935446
https://hal.inria.fr/hal-00935446
http://gallium.inria.fr/~fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
http://gallium.inria.fr/~fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
http://hal.archives-ouvertes.fr/hal-00527930/en/
https://tel.archives-ouvertes.fr/tel-01054723

22 Activity Report INRIA 2014

[17] P.-L. CURIEN, R. GARNER, M. HOFMANN. Revisiting the categorical interpretation of dependent type
theory, in "Theoretical Computer Science", 2014, vol. 546, pp. 99-119 [DOI : 10.1016/J.TCS.2014.03.003],
https://hal.archives-ouvertes.fr/hal-01114033

[18] S. GAUSSENT, Y. GUIRAUD, P. MALBOS. Coherent presentations of Artin monoids, in "Compositio Mathe-
matica", December 2014, pp. 1-42 [DOI : 10.1112/S0010437X14007842], https://hal.archives-ouvertes.fr/
hal-00682233

International Conferences with Proceedings

[19] M. BAGNOL, A. DOUMANE, A. SAURIN. On the dependencies of logical rules, in "FOSSACS, 18th
International Conference on Foundations of Software Science and Computation Structures", London, United
Kingdom, April 2015, https://hal.archives-ouvertes.fr/hal-01110340

[20] S. CASTELLAN, J. HAYMAN, M. LASSON, G. WINSKEL. Strategies as Concurrent Processes,
in "MFPS 2014", Ithaca, United States, Proceedings of the 30th Conference on the Mathemat-
ical Foundations of Programming Semantics (MFPS XXX), June 2014, vol. 308, pp. 87–107
[DOI : 10.1016/J.ENTCS.2014.10.006], https://hal.archives-ouvertes.fr/hal-01105258

[21] F. DABROWSKI, F. LOULERGUE, T. PINSARD. Nested atomic sections with thread escape: Compilation to
threads and locks, in "ACM Symposium on Applied Computing (SAC)", Salamanca, Spain, ACM, April 2015,
https://hal.inria.fr/hal-01105093

[22] P. DOWNEN, Z. ARIOLA. The duality of construction, in "ESOP 2014 : European Symposium on Program-
ming", Grenoble, France, April 2014, 15 p. , https://hal.archives-ouvertes.fr/hal-00938317

[23] H. HERBELIN, A. SPIWACK. The Rooster and the Syntactic Bracket , in "19th International Conference
on Types for Proofs and Programs (TYPES 2013)", Toulouse, France, Leibniz International Proceedings in
Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, July 2014, vol. 26, pp. 169–187
[DOI : 10.4230/LIPICS.TYPES.2013.169], https://hal.inria.fr/hal-01097919

[24] M. LASSON. Canonicity of Weak ω-groupoid Laws Using Parametricity Theory, in "MFPS 2014", Ithaca,
United States, Proceedings of the 30th Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXX), June 2014, vol. 308, pp. 229 - 244 [DOI : 10.1016/J.ENTCS.2014.10.013], https://
hal.archives-ouvertes.fr/hal-01105252

[25] G. MUNCH-MACCAGNONI. Models of a Non-Associative Composition, in "FOSSACS 2014 - 17th Inter-
national Conference on Foundations of Software Science and Computation Structures", Grenoble, France,
A. MUSCHOLL (editor), Springer, April 2014, vol. 8412, pp. 396-410 [DOI : 10.1007/978-3-642-54830-
7_26], https://hal.inria.fr/hal-00996729

[26] P.-M. PÉDROT. A Functional Functional Interpretation, in "CSL-LICS 2014 - Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science", Vienna, Austria, July 2014
[DOI : 10.1145/2603088.2603094], https://hal.archives-ouvertes.fr/hal-01111802

[27] M. SOZEAU, N. TABAREAU. Universe Polymorphism in Coq, in "Interactive Theorem Proving", Vienna,
Austria, July 2014, https://hal.inria.fr/hal-00974721

https://hal.archives-ouvertes.fr/hal-01114033
https://hal.archives-ouvertes.fr/hal-00682233
https://hal.archives-ouvertes.fr/hal-00682233
https://hal.archives-ouvertes.fr/hal-01110340
https://hal.archives-ouvertes.fr/hal-01105258
https://hal.inria.fr/hal-01105093
https://hal.archives-ouvertes.fr/hal-00938317
https://hal.inria.fr/hal-01097919
https://hal.archives-ouvertes.fr/hal-01105252
https://hal.archives-ouvertes.fr/hal-01105252
https://hal.inria.fr/hal-00996729
https://hal.archives-ouvertes.fr/hal-01111802
https://hal.inria.fr/hal-00974721

Project-Team PI.R2 23

[28] B. ZILIANI, M. SOZEAU. Towards a better-behaved unification algorithm for Coq , in "UNIF 2014 Work-
shop", Vienna, Austria, July 2014, pp. 74-87, https://hal.archives-ouvertes.fr/hal-01111193

National Conferences with Proceedings

[29] M. BAGNOL, A. DOUMANE, A. SAURIN. Analyse de dépendances et correction des réseaux de preuve, in
"JFLA 2014 - Vingt-cinquièmes Journées Francophones des Langages Applicatifs", Fréjus, France, January
2014, https://hal.archives-ouvertes.fr/hal-01110338

[30] A. SAURIN, P.-M. PÉDROT. Nécessité faite loi: de la réduction linéaire de tête à l’évaluation paresseuse, in
"JFLA 2014 - Vingt-cinquièmes Journées Francophones des Langages Applicatifs", Fréjus, France, January
2014, https://hal.archives-ouvertes.fr/hal-01110337

Conferences without Proceedings

[31] Y. GUIRAUD, E. HOFFBECK, P. MALBOS. Confluence of linear rewriting and homology of algebras, in
"3rd International Workshop on Confluence", Vienna, Austria, July 2014, https://hal.archives-ouvertes.fr/hal-
01105087

Scientific Books (or Scientific Book chapters)

[32] F. LOULERGUE, W. BOUSDIRA, J. TESSON. Calcul de programmes parallèles avec Coq, in "Informatique
Mathématique", collection Alpha, CNRS Éditions, March 2015, https://hal.inria.fr/hal-01107296

Research Reports

[33] P. BOUTILLIER, S. GLONDU, B. GRÉGOIRE, H. HERBELIN, P. LETOUZEY, P.-M. PÉDROT, Y. RÉGIS-
GIANAS, M. SOZEAU, A. SPIWACK, E. TASSI. Coq 8.4 Reference Manual, Inria, July 2014, The Coq
Development Team, https://hal.inria.fr/hal-01114602

Scientific Popularization

[34] P.-L. CURIEN. Formalisation mathématique, certification logicielle, même combat, in "Gazette des Mathé-
maticiens", October 2014, vol. 142, pp. 83-86, https://hal.archives-ouvertes.fr/hal-01114035

Other Publications

[35] Y. GUIRAUD, E. HOFFBECK, P. MALBOS. Linear polygraphs and Koszulity of algebras, June 2014, 42 pages,
https://hal.archives-ouvertes.fr/hal-01006220

[36] Y. GUIRAUD, P. MALBOS. Polygraphs of finite derivation type, January 2014, 46 pages, https://hal.archives-
ouvertes.fr/hal-00932845

References in notes

[37] H. P. BARENDREGT. The Lambda Calculus: Its Syntax and Semantics, North HollandAmsterdam, 1984

[38] R. BERGER. Confluence and Koszulity, in "J. Algebra", 1998, vol. 201, no 1, pp. 243–283

https://hal.archives-ouvertes.fr/hal-01111193
https://hal.archives-ouvertes.fr/hal-01110338
https://hal.archives-ouvertes.fr/hal-01110337
https://hal.archives-ouvertes.fr/hal-01105087
https://hal.archives-ouvertes.fr/hal-01105087
https://hal.inria.fr/hal-01107296
https://hal.inria.fr/hal-01114602
https://hal.archives-ouvertes.fr/hal-01114035
https://hal.archives-ouvertes.fr/hal-01006220
https://hal.archives-ouvertes.fr/hal-00932845
https://hal.archives-ouvertes.fr/hal-00932845

24 Activity Report INRIA 2014

[39] B. BUCHBERGER. An algorithm for finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal, in "J. Symbolic Comput.", 2006, vol. 41, no 3-4, pp. 475–511, Translated from the 1965
German original by Michael P. Abramson

[40] A. CHURCH. A set of Postulates for the foundation of Logic, in "Annals of Mathematics", 1932, vol. 2, pp.
33, 346-366

[41] T. COQUAND. Une théorie des Constructions, University Paris 7, January 1985

[42] T. COQUAND, G. HUET. Constructions : A Higher Order Proof System for Mechanizing Mathematics, in
"EUROCAL’85", Linz, Lecture Notes in Computer Science, Springer Verlag, 1985, vol. 203

[43] T. COQUAND, C. PAULIN-MOHRING. Inductively defined types, in "Proceedings of Colog’88", P. MARTIN-
LÖF, G. MINTS (editors), Lecture Notes in Computer Science, Springer Verlag, 1990, vol. 417

[44] H. B. CURRY, R. FEYS, W. CRAIG. Combinatory Logic, North-Holland, 1958, vol. 1, §9E

[45] F. DABROWSKI, F. LOULERGUE, T. PINSARD. Nested Atomic Sections with Thread Escape: A Formal
Definition, in "Symposium on Applied Computing (SAC)", ACM, 2014, pp. 1585-1592, http://dx.doi.org/
10.1145/2554850.2554996

[46] P. DEHORNOY, L. PARIS. Gaussian groups and Garside groups, two generalisations of Artin groups, in "Proc.
London Math. Soc. (3)", 1999, vol. 79, no 3, pp. 569–604

[47] P. DELIGNE. Action du groupe des tresses sur une catégorie, in "Invent. Math.", 1997, vol. 128, no 1, pp.
159–175

[48] K. EMOTO, F. LOULERGUE, J. TESSON. A Verified Generate-Test-Aggregate Coq Library for Parallel
Programs Extraction, in "Interactive Theorem Proving (ITP)", LNCS, Springer, 2014, no 8558, pp. 258-274,
http://dx.doi.org/10.1007/978-3-319-08970-6_17

[49] M. FELLEISEN, D. P. FRIEDMAN, E. KOHLBECKER, B. F. DUBA. Reasoning with continuations, in "First
Symposium on Logic and Computer Science", 1986, pp. 131-141

[50] A. FILINSKI. Representing Monads, in "Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, POPL’94", Portland, OR, USA, ACM Press, 17-21 Jan 1994, pp. 446-457

[51] G. GENTZEN. Untersuchungen über das logische Schließen, in "Mathematische Zeitschrift", 1935, vol. 39,
pp. 176–210,405–431

[52] J.-Y. GIRARD. Une extension de l’interpretation de Gödel à l’analyse, et son application à l’élimination des
coupures dans l’analyse et la théorie des types, in "Second Scandinavian Logic Symposium", J. FENSTAD
(editor), Studies in Logic and the Foundations of Mathematics, North Holland, 1971, no 63, pp. 63-92

[53] T. G. GRIFFIN. The Formulae-as-Types Notion of Control, in "Conf. Record 17th Annual ACM Symp. on
Principles of Programming Languages, POPL ’90", San Francisco, CA, USA, 17-19 Jan 1990, ACM Press,
1990, pp. 47–57

http://dx.doi.org/10.1145/2554850.2554996
http://dx.doi.org/10.1145/2554850.2554996
http://dx.doi.org/10.1007/978-3-319-08970-6_17

Project-Team PI.R2 25

[54] W. A. HOWARD. The formulae-as-types notion of constructions, in "to H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism", Academic Press, 1980, Unpublished manuscript of 1969

[55] J.-L. KRIVINE. A call-by-name lambda-calculus machine, in "Higher Order and Symbolic Computation",
2005

[56] J.-L. KRIVINE. Un interpréteur du lambda-calcul, 1986, Unpublished

[57] P. LANDIN. The mechanical evaluation of expressions, in "The Computer Journal", January 1964, vol. 6, no

4, pp. 308–320

[58] P. LANDIN. A generalisation of jumps and labels, UNIVAC Systems Programming Research, August 1965,
no ECS-LFCS-88-66, Reprinted in Higher Order and Symbolic Computation, 11(2), 1998

[59] F. LOULERGUE, S. ROBILLARD, J. TESSON, J. LÉGAUX, Z. HU. Formal Derivation and Extraction of a
Parallel Program for the All Nearest Smaller Values Problem, in "Symposium on Applied Computing (SAC)",
ACM, 2014, pp. 1577-1584, http://dx.doi.org/10.1145/2554850.2554912

[60] P. MARTIN-LÖF. A theory of types, University of Stockholm, 1971, no 71-3

[61] M. PARIGOT. Free Deduction: An Analysis of "Computations" in Classical Logic, in "Logic Programming,
Second Russian Conference on Logic Programming", St. Petersburg, Russia, A. VORONKOV (editor), Lecture
Notes in Computer Science, Springer, September 11-16 1991, vol. 592, pp. 361-380, http://www.informatik.
uni-trier.de/~ley/pers/hd/p/Parigot:Michel.html

[62] J. C. REYNOLDS. Definitional interpreters for higher-order programming languages, in "ACM ’72: Proceed-
ings of the ACM annual conference", New York, NY, USA, ACM Press, 1972, pp. 717–740

[63] J. C. REYNOLDS. Towards a theory of type structure, in "Symposium on Programming", B. ROBINET (editor),
Lecture Notes in Computer Science, Springer, 1974, vol. 19, pp. 408-423

[64] THE COQ DEVELOPMENT TEAM. The Coq Reference Manual, version 8.2, September 2008, http://coq.inria.
fr/doc

[65] J. TITS. A local approach to buildings, in "The geometric vein", New York, Springer, 1981, pp. 519–547

[66] N. DE BRUIJN. AUTOMATH, a language for mathematics, Technological University Eindhoven, November
1968, no 66-WSK-05

http://dx.doi.org/10.1145/2554850.2554912
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Parigot:Michel.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Parigot:Michel.html
http://coq.inria.fr/doc
http://coq.inria.fr/doc

