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        Overall Objectives

        Many phenomena of interest are analyzed and controlled
through graphs or n-dimensional images. Often, these graphs have
an irregular aspect, whether the studied phenomenon is of natural
or artificial origin. In the first class, one may cite
natural landscapes, most biological signals and images (EEG, ECG, MR images, ...),
and temperature records. In the second class, prominent examples include financial logs and TCP traces.

        Such irregular phenomena are usually not adequately described by
purely deterministic models, and a probabilistic
ingredient is often added. Stochastic processes allow to take into account,
with a firm theoretical basis, the numerous microscopic fluctuations that shape the phenomenon.

        In general, it is a wrong view to believe that
irregularity appears as an epiphenomenon, that is
conveniently dealt with by introducing randomness. In many situations, and
in particular in some of the examples
mentioned above, irregularity is a core
ingredient that cannot be removed without destroying the
phenomenon itself. In some cases, irregularity is even a
necessary condition for proper functioning.
A striking example is that of ECG: an ECG is inherently irregular, and, moreover, in a mathematically precise
sense, an increase in its regularity is strongly correlated with a degradation of its condition.

        In fact, in various situations, irregularity is a crucial feature that can be used
to assess the behaviour of a given system. For instance,
irregularity may the result of two or more sub-systems that
act in a concurrent way to achieve some kind of equilibrium.
Examples of this abound in nature
(e.g. the sympathetic and parasympathetic systems in the regulation of the heart). For artifacts, such as financial logs and TCP traffic, irregularity is in a sense
an unwanted feature, since it typically makes regulations more complex. It is
again, however, a necessary one. For instance, efficiency in financial markets requires a constant flow of information among agents, which manifests itself
through permanent fluctuations of the prices: irregularity just reflects the evolution of this information.

        The aim of Regularity is a to develop a coherent set of methods allowing to model such “essentially
irregular” phenomena in view of managing the uncertainties entailed by their irregularity.

        Indeed, essential irregularity makes it more to difficult to study phenomena in terms of their description,
modeling, prediction and control. It introduces uncertainties both in
the measurements and the dynamics. It is, for instance, obviously easier to predict the short
time behaviour of a smooth (e.g. C1) process than of a nowhere differentiable one. Likewise,
sampling rough functions yields less precise information than regular ones.
As a consequence, when dealing with essentially irregular phenomena, uncertainties are
fundamental in the sense that
one cannot hope to remove them by a more careful analysis or a more adequate modeling. The study of
such phenomena then requires to develop specific approaches
allowing to manage in an efficient way these inherent uncertainties.
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        Theoretical aspects: probabilistic modeling of irregularity

        The modeling of essentially irregular phenomena is an important challenge, with an emphasis on understanding the sources and functions of this irregularity. Probabilistic tools are well-adapted to this task, provided one can design stochastic models for which the regularity can be measured and controlled precisely. Two points deserve special attention:

        
          	
             first, the study of regularity has to be local. Indeed, in most applications, one will want to act on a system based on local temporal or spatial information. For instance, detection of arrhythmias in ECG
or of krachs in financial markets should be performed in “real time”, or, even better, ahead of time. In this sense, regularity is a local indicator of the local health of a system.

          

          	
             Second, although we have used the term “irregularity” in a generic and somewhat vague sense, it seems obvious that, in real-world phenomena, regularity comes in many colors, and a rigorous analysis should distinguish between them. As an example, at least two kinds of irregularities are present in financial logs: the local “roughness” of the records, and the local density and height of jumps. These correspond to two different concepts of regularity (in technical terms, Hölder exponents and local index of stability), and they both contribute a different manner to financial risk.

          

        

        In view of the above, the  Regularity team focuses on the design of methods that:

        
          	
             define and study precisely various relevant measures of local regularity,

          

          	
             allow to build stochastic models versatile enough to mimic the rapid variations of the different kinds of regularities observed in real phenomena,

          

          	
             allow to estimate as precisely and rapidly as possible these regularities, so as to alert systems in charge of control.

          

        

        Our aim is to address the three items above through the design of mathematical tools in the field of probability (and, to a lesser extent, statistics), and
to apply these tools to uncertainty management as described in the following section.
We note here
that we do not intend to address the problem of controlling
the phenomena based on regularity, that would naturally
constitute an item 4 in the list above. Indeed, while we strongly believe that generic tools may be designed to measure and
model regularity, and that these tools may be used to analyze
real-world applications, in particular in the field of
uncertainty management, it is clear that, when it comes to control, application-specific tools are required, that we do not wish to address.

        The research topics of the Regularity team can be roughly divided into two strongly interacting axes, corresponding to two complementary ways of studying regularity:

        
          	
             developments of tools allowing to characterize, measure and estimate
various notions of local regularity, with a particular emphasis on
the stochastic frame,

          

          	
             definition and fine analysis of stochastic models for which some aspects of local regularity may be prescribed.

          

        

        These two aspects are detailed in sections 
	3.2  and 
	3.3  below.
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        Tools for characterizing and measuring regularity

        
          Fractional Dimensions
        

        Although the main focus of our team is on characterizing local
regularity, on occasions, it is interesting to use a global
index of regularity. Fractional dimensions provide such an index.
In particular, the regularization dimension, that was defined
in [31] , is well adapted to the study stochastic processes, as its
definition allows to build robust estimators in an easy way.
Since its introduction, regularization dimension has been used by various teams
worldwide in many different applications including the characterization of certain stochastic
processes, statistical estimation,
the study of mammographies or galactograms for breast
carcinomas detection,
ECG analysis for the study of ventricular arrhythmia,
encephalitis diagnosis from EEG, human skin analysis,
discrimination between the nature of radioactive contaminations,
analysis of porous media textures,
well-logs data analysis,
agro-alimentary image analysis, road profile analysis, remote sensing,
mechanical systems assessment, analysis of video games, ...(see http://regularity.saclay.inria.fr/theory/localregularity/biblioregdim 
for a list of works using the regularization dimension).

        
          Hölder exponents
        

        The simplest and most popular measures of local
regularity are the pointwise
and local Hölder exponents. For a stochastic process
{X(t)}t∈ℝ whose trajectories are
continuous and nowhere differentiable,
these are defined, at a point t0, as the random variables:
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        Although these quantities are in general random, we will omit as is customary
the dependency in ω and X and write α(t0) and α˜(t0) instead of αX(t0,ω) and α˜X(t0,ω).

        The random functions t↦αX(t0,ω) and t↦α˜X(t0,ω)
are called respectively the pointwise and local Hölder functions of the process X.

        The pointwise Hölder exponent is a very versatile
tool, in the sense that the set of pointwise Hölder functions of
continuous functions is quite large (it coincides with the set of
lower limits of sequences of continuous functions [6] ). In this sense,
the pointwise exponent is often a more precise tool
(i.e. it varies in a more rapid way)
than the local one, since local Hölder functions are always lower semi-continuous.
This is why, in particular, it is
the exponent that is used as a basis ingredient in multifractal
analysis (see section 
	3.2 ). For certain classes of stochastic
processes, and most notably Gaussian processes, it has the remarkable
property that, at each point, it assumes an almost sure value [18] .
SRP, mBm, and processes of this kind (see sections 
	3.3  and

	3.3 ) rely on the sole use
of the pointwise Hölder exponent for prescribing the regularity.

        However, αX obviously does not give a complete description
of local regularity, even for continuous processes. It is for instance
insensitive to “oscillations”, contrarily to the local exponent.
A simple example in the deterministic frame is provided by the
function xγsin(x-β), where γ,β
are positive real numbers. This so-called “chirp function”
exhibits two kinds of irregularities: the first one, due to the
term xγ is measured by the pointwise Hölder exponent.
Indeed, α(0)=γ. The
second one is due to the wild oscillations around 0, to which
α is blind. In contrast, the local Hölder exponent
at 0 is equal to γ1+β, and is thus influenced
by the oscillatory behaviour.

        Another, related, drawback of the pointwise exponent is that it is
not stable under integro-differentiation, which sometimes makes
its use complicated in applications. Again, the local exponent provides
here a useful complement to α, since α˜ is
stable under integro-differentiation.

        Both exponents have proved useful in various applications, ranging
from image denoising and segmentation to TCP traffic characterization.
Applications require precise estimation of these exponents.

        
          Stochastic 2-microlocal analysis
        

        Neither the pointwise nor the local exponents give a complete characterization of
the local regularity, and, although their joint use somewhat improves the situation, it
is far from yielding the complete picture.

        A fuller description of local regularity is provided by the
so-called 2-microlocal analysis, introduced by J.M. Bony
[46] . In this frame, regularity
at each point is now specified by two indices, which makes the analysis
and estimation tasks more difficult. More precisely,
a function f is said to belong to the 2-microlocal space
Cx0s,s', where s+s'>0,s'<0, if and only if its
m=[s+s']-th order derivative exists around x0, and if there
exists δ>0, a polynomial P with degree lower than
[s]-m, and a constant C, such that
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        for all x,y such that 0<|x-x0|<δ, 0<|y-x0|<δ.
This characterization was obtained in [25] , [32] .
See [53] , [54]  for other characterizations and results.
These spaces are stable through integro-differentiation, i.e. f∈Cxs,s' if and only if f'∈Cxs-1,s'. Knowing to which
space f belongs thus allows to predict the evolution of its
regularity after derivation, a useful feature if one uses models
based on some kind differential equations. A lot of work remains to be done
in this area, in order to obtain more general characterizations,
to develop robust estimation
methods, and to extend the “2-microlocal formalism” : this is a tool
allowing to detect which space a function belongs to, from the
computation of the Legendre transform of an auxiliary function known as its 2-microlocal
spectrum. This spectrum provide a wealth of information on the local
regularity.

        In [18] , we have laid some foundations for a stochastic
version of 2-microlocal analysis. We believe this will provide a fine analysis
of the local regularity of random processes in a direction different
from the one detailed for instance in [55] .We have defined random versions
of the 2-microlocal spaces, and given almost sure conditions for continuous
processes to belong to such spaces. More precise results have also been
obtained for Gaussian processes. A preliminary investigation
of the 2-microlocal behaviour of Wiener integrals has been performed.

        
          Multifractal analysis of stochastic processes
        

        A direct use of the local regularity is often fruitful in applications.
This is for instance the case in RR analysis or terrain
modeling. However, in some situations,
it is interesting to supplement or replace it by a more global
approach known as multifractal analysis (MA). The idea behind
MA is to group together all points with same regularity (as measured
by the pointwise Hölder exponent) and to measure the “size” of
the sets thus obtained [28] , [47] , [50] . There are mainly two ways to do so, a geometrical
and a statistical one.

        In the geometrical approach, one defines the
Hausdorff multifractal spectrum of a process or function
X as the function: α↦fh(α)=dim{t:αX(t)=α}, where dimE denotes the Hausdorff dimension of the set E.
This gives a fine measure-theoretic information, but is often difficult
to compute theoretically, and almost impossible to estimate on numerical
data.

        The statistical path to MA is based on the so-called
large deviation multifractal spectrum:
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        and αnk is the “coarse grained exponent” corresponding to the
interval Ink=kn,k+1n, i.e.:
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        Here, Ynk is some quantity that measures the variation
of X in the interval Ink, such as the increment, the oscillation
or a wavelet coefficient.

        The large deviation spectrum is typically easier to compute and
to estimate than the Hausdorff one. In addition, it often gives
more relevant information in applications.

        Under very mild conditions (e.g. for instance, if
the support of fg is bounded, [27] )
the concave envelope of fg can be computed easily from an auxiliary
function, called the Legendre multifractal spectrum. To do so,
one basically interprets the spectrum fg as a rate function in a
large deviation principle (LDP): define, for q∈ℝ,
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        with the convention 0q:=0 for all q∈ℝ.
Let:
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        The Legendre multifractal spectrum of X is defined as the Legendre
transform τ* of τ:
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        To see the relation between fg and fl, define the sequence of random
variables Zn:=log|Ynk| where the randomness is through a
choice of k uniformly in {0,...,n-1}.
Consider the corresponding moment generating functions:
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        where En denotes expectation with respect to Pn, the uniform
distribution on {0,...,n-1}.
A version of Gärtner-Ellis theorem
ensures that if limcn(q) exists
(in which case it equals 1+τ(q)), and is differentiable, then
c*=fg-1. In this case, one says that the weak multifractal
formalism holds, i.e. fg=fl. In favorable cases,
this also coincides with fh, a situation referred to as the strong
multifractal formalism.

        Multifractal spectra subsume a lot of information about the
distribution of the regularity, that has proved useful in various
situations. A most notable example is the strong correlation reported
recently in several works between the narrowing of the multifractal
spectrum of ECG and certain pathologies of the heart [51] , [52] .
Let us also mention the multifractality of TCP traffic, that has been both
observed experimentally and proved on simplified models of TCP
[2] , [44] .

        
          Another colour in local regularity: jumps
        

        As noted above, apart from Hölder exponents and their generalizations,
at least another type of irregularity may sometimes be observed on
certain real phenomena: discontinuities, which occur for instance
on financial logs and certain biomedical signals. In this frame, it is of
interest to supplement Hölder exponents and their extensions with (at least) an additional
index that measures the local intensity and size of jumps. This is a topic we
intend to pursue in full generality in the near future. So far, we have developed an approach
in the particular frame of multistable processes. We refer to section 
	3.3 
for more details.
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        Stochastic models

        The second axis in the theoretical developments of the Regularity team aims at defining and studying stochastic processes for which various aspects of the local regularity may be prescribed.

        
          Multifractional Brownian motion
        

        One of the simplest stochastic process for which some kind of control over the Hölder exponents is
possible is probably fractional Brownian motion (fBm). This process was defined by Kolmogorov
and further studied by Mandelbrot and Van Ness, followed by many authors. The so-called “moving average”
definition of fBm reads as follows:
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        where 𝕎 denotes the real white noise. The parameter H ranges in (0,1), and it governs
the pointwise regularity: indeed, almost surely, at each point, both the local and pointwise Hölder
exponents are equal to H.

        Although varying H yields processes with different regularity, the fact that the exponents are constant
along any single path is often a major drawback for the modeling of real world phenomena. For instance, fBm
has often been used for the synthesis natural terrains. This is not satisfactory since it
yields images lacking crucial features of
real mountains, where some parts are smoother than others, due, for instance, to erosion.

        It is possible to generalize fBm to obtain a Gaussian process for which the pointwise Hölder exponent
may be tuned at each point: the multifractional Brownian motion (mBm) is such
an extension, obtained by substituting the constant parameter H∈(0,1)
with a regularity function H:ℝ+→(0,1).

        mBm was introduced independently by two groups of authors:
on the one hand, Peltier and Levy-Vehel [29]  defined the mBm {Xt;t∈ℝ+} from the moving average definition of the fractional Brownian motion, and set:
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        On the other hand, Benassi, Jaffard and Roux [45]  defined the mBm from the harmonizable representation of the
fBm, i.e.:

        
          
            
              
                X
                t
              
              =
              
                ∫
                ℝ
              
              
                
                  
                    e
                    
                      i
                      t
                      ξ
                    
                  
                  -
                  1
                
                
                  
                    ξ
                  
                  
                    H
                    
                      (
                      t
                      )
                    
                    +
                    
                      1
                      2
                    
                  
                
              
              .
              
                𝕎
                ^
              
              
                (
                d
                ξ
                )
              
              ,
            
          
        

        where 𝕎^ denotes the complex white noise.

        The Hölder exponents of the mBm are prescribed almost surely:
the pointwise Hölder exponent is αX(t)=H(t)∧αH(t) a.s., and the local Hölder exponent is α˜X(t)=H(t)∧α˜H(t) a.s.
Consequently, the regularity of the sample paths of the mBm are determined by the function H or by its regularity. The multifractional Brownian motion is our prime example of a stochastic process with prescribed local regularity.

        The fact that the local regularity of mBm
may be tuned via a functional parameter has made it a useful
model in various areas such as finance, biomedicine,
geophysics, image analysis, ....
A large number of studies have been devoted worldwide to its mathematical properties,
including in particular its local time. In addition,
there is now a rather strong body of work dealing the estimation of its
functional parameter, i.e. its local regularity. See http://regularity.saclay.inria.fr/theory/stochasticmodels/bibliombm 
for a partial list of works, applied or
theoretical, that deal with mBm.

        
          Self-regulating processes
        

        We have recently introduced another class of stochastic models, inspired by mBm,
but where the local regularity, instead of being tuned “exogenously”, is
a function of the amplitude. In other words, at each point t, the Hölder
exponent of the process X verifies almost surely αX(t)=g(X(t)), where g is a
fixed deterministic function verifying certain conditions. A process
satisfying such an equation is generically termed a self-regulating process (SRP).
The particular process obtained by adapting adequately mBm is called
the self-regulating multifractional process [3] . Another instance is given by
modifying the Lévy construction of Brownian motion [4] .
The motivation for introducing self-regulating processes is based on the following general fact: in nature, the local regularity of a phenomenon is often related to its amplitude.
An intuitive example is provided by natural terrains: in young mountains, regions
at higher altitudes are typically more irregular than regions at lower altitudes.
We have verified this fact experimentally on several digital elevation models
[8] . Other natural phenomena displaying a relation between
amplitude and exponent include temperatures
records and RR intervals extracted from ECG [9] .

        To build the SRMP, one starts from a field of fractional Brownian motions B(t,H), where (t,H) span [0,1]×[a,b]
and 0<a<b<1. For each fixed H, B(t,H) is a fractional
Brownian motion with exponent H. Denote:
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        the affine rescaling between α' and β'
of an arbitrary continuous random field over a compact set K.
One considers the following (stochastic) operator, defined almost surely:
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        where α≤α'<β'≤β, α and
β are two real numbers, and α',β' are random
variables adequately chosen. One may show that this operator is contractive with respect
to the sup-norm. Its unique fixed point is the SRMP. Additional arguments
allow to prove that, indeed, the Hölder exponent at each point is almost surely
g(t).

        An example of a two dimensional SRMP with function g(x)=1-x2 is displayed
on figure 1 .
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	1. Self-regulating miltifractional process with g(x)=1-x2
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        We believe that SRP open a whole new and very promising area of research.

        
          Multistable processes
        

        Non-continuous phenomena are commonly encountered in real-world
applications, e.g. financial records or EEG traces.
For such processes, the information brought
by the Hölder exponent must be supplemented by some measure of
the density and size of jumps. Stochastic processes with jumps,
and in particular Lévy processes, are currently an active area of research.

        The simplest class of non-continuous Lévy processes is maybe the one
of stable processes [56] . These are mainly characterized by a parameter
α∈(0,2], the stability index (α=2 corresponds to the Gaussian case, that we do not consider here).
This index measures in some precise sense
the intensity of jumps. Paths of stable processes with
α close to 2 tend
to display “small jumps”, while, when α is near 0,
their aspect is governed by large ones.

        In line with our quest for the characterization and modeling of
various notions of local regularity, we have defined multistable processes.
These are processes which are
“locally” stable, but where
the stability index α is now a function of time.
This allows to model phenomena which, at times, are “almost
continuous”, and at others display large discontinuities.
Such a behaviour is for instance obvious on almost any sufficiently long financial record.

        More formally, a multistable process is a process which is,
at each time u, tangent to a stable process [49] . Recall that
a process Y is said to be tangent at u to the process Yu'
if:
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        where the limit is understood either in finite dimensional
distributions or in the stronger sense of distributions.
Note Yu' may and in general will vary with u.

        One approach to defining multistable processes is similar to the one
developed for constructing mBm [29] : we consider fields of stochastic processes
X(t,u), where t is time and u is an independent parameter that controls
the variation of α. We then consider a “diagonal” process Y(t)=X(t,t),
which will be, under certain conditions, “tangent” at each point t
to a process t↦X(t,u).

        A particular class of multistable processes, termed
“linear multistable multifractional
motions” (lmmm) takes the following form [11] , [10] .
Let (E,ℰ,m) be a
σ-finite measure space, and
Π be a Poisson process on E×ℝ with mean measure
m×ℒ (ℒ denotes the Lebesgue measure).
An lmmm is defined as:
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        where x<y>:=sign(x)|x|y, a:ℝ→ℝ+
is a C1 function and α:ℝ→(0,2) and
h:ℝ→(0,1) are C2 functions.

        In fact, lmmm are somewhat more general than said above:
indeed, the couple (h,α) allows to prescribe at
each point, under certain conditions, both the pointwise Hölder
exponent and the local intensity of
jumps. In this sense, they generalize both the mBm and the
linear multifractional stable motion [57] .
From a broader perspective, such multistable
multifractional processes are expected to provide relevant
models for TCP traces, financial logs, EEG and other phenomena
displaying time-varying regularity both in terms of Hölder exponents
and discontinuity structure.

        Figure 2  displays a graph of an lmmm with linearly
increasing α and linearly decreasing H. One sees that
the path has large jumps at the beginning, and almost no jumps
at the end. Conversely, it is smooth (between jumps) at the beginning,
but becomes jaggier and jaggier as time evolves.

        
          
            
          
          
            Figure
	2. Linear multistable multifractional
motion with linearly
increasing α and linearly decreasing H
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        Section: 
      Application Domains

        Uncertainties management

        Our theoretical works are motivated by and find natural applications to
real-world problems in a general frame generally referred to as uncertainty
management, that we describe now.

        Since a few decades, modeling has gained an increasing part in complex systems design in various fields of industry such as automobile, aeronautics, energy, etc.
Industrial design involves several levels of modeling: from behavioural models in preliminary design to finite-elements models aiming at representing sharply physical phenomena. Nowadays, the fundamental challenge of numerical simulation is in designing physical systems while saving the experimentation steps.

        As an example, at the early stage of conception in aeronautics, numerical simulation aims at exploring the design parameters space and setting the global variables such that target performances are satisfied. This iterative procedure needs fast multiphysical models. These simplified models are usually calibrated using high-fidelity models or experiments.
At each of these levels, modeling requires control of uncertainties due to
simplifications of models, numerical errors, data imprecisions, variability of surrounding conditions, etc.

        One dilemma in the design by numerical simulation is that many crucial choices are made very early, and thus when uncertainties are maximum, and that these choices have a fundamental impact on the final performances.

        Classically, coping with this variability is achieved through model registration by experimenting and adding fixed margins to the model response.
In view of technical and economical performance, it appears judicious to replace these fixed margins by a rigorous analysis and control of risk. This may be achieved through a probabilistic approach to uncertainties, that provides decision criteria adapted to the management
of unpredictability inherent to design issues.

        From the particular case of aircraft design emerge several general aspects of management of uncertainties in simulation.
Probabilistic decision criteria, that translate decision making into mathematical/probabilistic terms, require the following three steps to be considered [48] :

        
          	
             build a probabilistic description of the fluctuations of the model's parameters (Quantification of uncertainty sources),

          

          	
             deduce the implication of these distribution laws on the model's response (Propagation of uncertainties),

          

          	
             and determine the specific influence of each uncertainty source on the model's response variability (Sensitivity Analysis).

          

        

        
The previous analysis now constitutes the framework of a general study of uncertainties. It is used in industrial contexts where uncertainties can be represented by random variables (unknown temperature of an external surface, physical quantities of a given material, ... at a given fixed time). However, in order for the numerical models to describe with high fidelity a phenomenon, the relevant uncertainties must generally depend on time or space variables.
Consequently, one has to tackle the following issues:

        
          	
             How to capture the distribution law of time (or space) dependent parameters,
without directly accessible data?
The distribution of probability of the continuous time (or space) uncertainty sources must describe the links between variations at neighbor times (or points).
The local and global regularity are important parameters of these laws, since it describes how the fluctuations at some time (or point) induce fluctuations at close times (or points).
The continuous equations representing the studied phenomena should help to propose models for the law of the random fields.
Let us notice that interactions between various levels of modeling might also be used to derive distributions of probability at the lowest one.

          

          	
             The navigation between the various natures of models needs a kind of metric which could mathematically describe the notion of granularity or fineness of the models.
Of course, the local regularity will not be totally absent of this mathematical definition.

          

          	
             All the various levels of conception, preliminary design or high-fidelity modelling, require registrations by experimentation to reduce model errors.
This calibration issue has been present in this frame since a long time, especially in a deterministic optimization context. The random modeling of uncertainty requires the definition of a systematic approach.
The difficulty in this specific context is: statistical estimation with few data and estimation of a function with continuous variables using only discrete setting of values.

          

        

        
Moreover, a multi-physical context must be added to these questions. The complex system design is most often located at the interface between several disciplines. In that case, modeling relies on a coupling between several models for the various phenomena and design becomes a multidisciplinary optimization problem. In this uncertainty context, the real challenge turns robust optimization to manage technical and economical risks (risk for non-satisfaction of technical specifications, cost control).

        We participate in the uncertainties community through several collaborative research projects. As explained
above, we focus on essentially irregular phenomena, for which irregularity is a relevant quantity to capture
the variability (e.g. certain biomedical signals, terrain modeling, ﬁnancial data, etc.). These will be modeled
through stochastic processes with prescribed regularity.
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      Application Domains

        Risk modelling in finance

        
          	
             A striking feature of many financial logs is that they are both irregular
in the Hölder sense and
display jumps. Furthermore, the local roughness as well as the size of jumps
typically vary in time. This hints that multifractional multistable processes
may provide well-adapted models. As a first step,
we shall investigate the simple case of multistable Lévy motions and
concentrate on understanding how a time-varying α
function translates in terms of risk, in particular for VaR computation.
This will require both a deeper understanding of the stochastic properties of
these processes and a fine analysis of the microstructure of financial logs.

          

          	
             In another direction, we will study whether multifractional
Brownian motion (mBm) and SRP provide useful
models in the frame of financial modeling. Fractional Brownian motion-based
option pricing and portfolio selection has attracted a lot of interest in
recent years. This process is certainly a more adequate model than pure Brownian motion, as many
studies have shown. However, it is also clear that it suffers various limitations. One of the most
obvious is that the local regularity of financial logs is not constant, as is apparent on any
sufficiently long sample. The most direct way of generalizing fractional Brownian motion to account for this fact is
to consider mBm, as we have done in [35] , using the theory of stochastic calculus with respect
to mBm that we have recently developed in [39] , [38] .
Another possibility is to use SRP. This requires to extend both the theoretical
results (mainly those related to stochastic calculus) and their applications (pricing, portfolio
selection) beyond the case of fractional Brownian motion.
A disadvantage of mBm is that, in order
to price for instance, one has to know the regularity function ahead of time, which usually
requires additional assumptions, or to build a model for its evolution.
This problem is not present for the SRP: no
further information is required once the function relating the amplitude and the regularity has been identified. On the other hand, stochastic integration with
respect to SRP (which is neither a Gaussian process nor a semi-martingale)
does not seem to be within reach at present, since little is known
indeed about this process. This nevertheless constitutes one of our
long term goals.
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      New Software and Platforms

        FracLab

        Participant :
	Jacques Lévy Véhel [correspondant] .

        FracLab was developed for two main purposes:

        
          	
             propose a general platform allowing research teams to avoid the need
to re-code basic and advanced techniques in the processing of signals
based on (local) regularity.

          

          	
             provide state of the art algorithms allowing both to disseminate
new methods in this area and to compare results on a common basis.

          

        

        FracLab is a general purpose signal and image processing toolbox based
on fractal, multifractal and local regularity methods. FracLab can be approached from
two different perspectives:

        
          	
             (multi-) fractal and local regularity analysis: A large number
of procedures allow to compute
various quantities associated with 1D or 2D signals, such as
dimensions, Hölder and 2-microlocal exponents or multifractal spectra.

          

          	
             Signal/Image processing: Alternatively, one can use FracLab directly
to perform many basic tasks in signal processing, including
estimation, detection, denoising, modeling,
segmentation, classification, and synthesis.

          

        

        A graphical interface makes FracLab easy to use and
intuitive. In addition, various wavelet-related tools are
available in FracLab.

        FracLab is a free software. It mainly consists of routines
developed in MatLab or C-code interfaced with MatLab.
It runs under Linux, MacOS and Windows environments. In addition,
a “stand-alone” version (i.e. which does not require
MatLab to run) is available.

        Fraclab has been downloaded several thousands of times in the last years
by users all around the world. A few dozens
laboratories seem to use it regularly, with more than four hundreds registered users.
Our ambition is to make it the
standard in fractal softwares for signal and image processing
applications. We have signs that this is starting to become
the case. To date, its use has been acknowledged in roughly three hundreds and fifty
research papers in various areas such as astrophysics, chemical engineering,
financial modeling, fluid dynamics, internet and road traffic analysis, image and signal processing,
geophysics, biomedical applications, computer science, as well as in mathematical studies in analysis and
statistics (see http://fraclab.saclay.inria.fr/  for a partial list with papers).
In addition, we have opened the development of FracLab so that other teams
worldwide may contribute. Additions have been made by groups in Australia, England, France, the USA,
and Serbia.
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      New Results

        Highlights of the Year

        The article "Christiane's Hair" by Jacques Lévy-Véhel and Franklin Mendivil has received the Paul R. Halmos - Lester R. Ford award
of the Mathematical Association of America.
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        Modelling the exchange of cultural goods on the Internet

        Participant :
	Jacques Lévy Véhel.

        
          In collaboration with Pierre Emmanuel Lévy Véhel and Victor Lévy Véhel.
        

        Illegal sharing of cultural goods on the Internet has become a massive reality
in today's connected society. Numerous studies have been performed to try and
evaluate the impact of these practices on the industry of cultural goods,
and how much harm, if any, they have entailed. The effect of legal
and technical responses to limit pirating has also been investigated,
showing in general inconclusive effect. Instead of penalizing
illegal actors - providers and/or consumers -, a totally different
approach has been proposed recently by the french government agency Hadopi.
The idea is to offer the possibility to sites that illegally share cultural
goods to become legal in exchange of a retribution proportional to their activity.
In the frame of a contract with the Hadopi, we have built a model that
studies the economic feasibility of such a scheme under various assumptions on
the behaviour of the different actors involved. Our main finding is that,
supposing that more popular goods are more prone to pirating, a retribution
of the order of the increase in benefit per user gained by legalized sites does
indeed lead to a win-win situation for both producers/sellers of cultural goods
and willing-to-be-legalized sites. This will be the case under two conditions:
the proportion of pirates is large enough (which seems largely true) and the
increase in the amount of money that forums will make from advertisement when
becoming legal is sufficient [43] .

        An extension of our work is under way, that will consider further actors and
refined modelling of the way illegal sharing takes place. Calibration issues
will also be investigated more closely.
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        Financial risk analysis

        Participant :
	Jacques Lévy Véhel.

        Financial regulations have fundamentally changed since the Basel II
Accords. Among other evolutions, Basel II and III explicitly impose
that computations of capital requirements be model-based.
This paradigm shift in risk management has been the source of
strong debates among both practitioners and academics, who
question whether such model-based regulations are indeed more efficient.

        A common feeling in the industry is that regulations will sometimes
give a false impression of security: risk manager tend to think
that a financial company that would fulfil all the criteria of,
say, the Basel III Accords on capital adequacy, is not
necessarily on the safe side. This is so mainly because
many risks, and most significantly systemic
or system-wide risks, are not properly modelled, and also because
it is easy to manipulate to some extent various risk measures, such as VaR.

        In parallel, a fast growing body of academic research provides various arguments
explaining why current regulations are not well fitted to address risk management
in an adequate way, and may even, in certain cases, worsen the situation.

        We use the term regulation risk to describe the fact that,
in some situations, prudential rules are
themselves the source of a systemic risk. We have shown how a combination
of model risk and regulation risk leads to an effect which is exactly
the opposite of what the regulator tries to enforce. More precisely, we
explain how wrongly assuming a Gaussian dynamics (or, more generally, a
left-light-tailed one) when the “true” one is pure jump (or, more generally,
left-heavy-tailed), and imposing as a constraint minimizing VaR at constant
volume results in effect in movements that will maximize VaR.
This effect is related to the fact that regulations fail to consider
that risk is endogenous.
In a nutshell, the idea is simply that, by treating jumps
in the evolution of prices as exceptional events and essentially ignoring them
in model-based VaR computations, one misses an essential dimension of risk,
and acts in a way that will in effect favour sudden large movements in the
markets and ultimately increase VaR. Our simple setting predicts that VaR
constraints result in an increased intensity of jumps and a
decrease in volatility - a fact confirmed
experimentally on certain datasets. This is a mathematical translation
of the common feeling of practitioners that regulations give a false impression of
security characterized by low volatility but increased risk of sudden large movements.
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        Functional central limit theorem for multistable Lévy motions

        Participants :
	Xiequan Fan, Jacques Lévy Véhel.

        We prove a functional central limit theorem (FCLT) for the independent-increments multistable Lévy motions (MsLM) LI(t),t∈[0,1], as well as of integrals with respect to these processes, using weighted sums of independent random variables. In particular, we prove that multistable Lévy motions are stochastic Hölder continuous and strongly localisable.

        Theorem 0.1  Let (αn(u))n,α(u),u∈[0,1], be a class of càdlàg functions
ranging in [a,b]⊂(0,2] such that the sequence (α)n tends to α in the uniform metric.
Let X(k,n)n∈ℕ,k=1,...,2n be a family of independent and symmetric
αn(k2n)-stable random variables with unit scale parameter, i.e.,
X(k,n)∼Sαn(k2n)(1,0,0). Then the sequence of processes
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        tends in distribution to LI(u) in (D[0,1],dS), where ⌊x⌋ is the largest integer smaller than or equal to x.
In particular, if α satisfies
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        uniformly for all x as t↘0, then LI(u) is localisable at all times.

        We have defined integrals of MsLM, and given criteria for convergence,independence, stochastic Hölder continuity
and strong localisability of such integrals.
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        Deviation inequalities for martingales with applications

        Participant :
	Xiequan Fan.

        In the papers [36] , [37]  we study some general exponential inequalities for supermartingales. The inequalities improve or generalize
many exponential inequalities of Bennett (1962), Freedman (1975), van de Geer (1995), de la Peña (1999) and Pinelis (2006). Moreover, our concentration inequalities also improve some
known inequalities for sums of independent random variables. Applications
associated with linear regressions, autoregressive processes and branching
processes are provided. In particular, an interesting application of
de la Peña's inequality to self-normalized deviations is also
provided.

        We also considered an 𝒳-valued Markov chain X1,X2,...,Xn belonging to a class of iterated random functions, which is
“one-step contracting" with respect to some distance d on 𝒳. If f is any separately Lipschitz
function with respect to d, we use a well known decomposition of
Sn=f(X1,...,Xn)-𝔼[f(X1,...,Xn)] into a sum of martingale
differences dk
with respect to the natural filtration ℱk. We show that each difference dk
is
bounded by a random variable ηk independent of ℱk-1.
Using this very strong property, we obtain a large variety of deviation inequalities
for Sn, which are governed by the distribution of the ηk's.
Finally, we give an application of these inequalities to the Wasserstein distance
between the empirical measure and the invariant distribution of the chain.
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        Self-stabilizing Lévy motions

        Participants :
	Xiequan Fan, Jacques Lévy Véhel.

        Self-stabilizing processes have the property that the “local intensities of jumps” varies with amplitude. They are good
models for, e.g., financial and temperature records.

        The main aim of our work is to establish the existence of such processes and to give a simple construction.
Formally, one says that a stochastic process S(t),t∈[0,1], is a self-stabilizing process if, for almost surely all t∈[0,1), S is localisable at t with tangent process St' an g(S(t))-stable process, with respect to the conditional probability measure ℙS(t). In other words,
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        where convergence is in finite dimensional distributions with respect to ℙS(t).
Heuristically, if St'(u)=Lg(S(t))(u), equality (8 ) implies that

        
          
            
              S
              
                (
                t
                +
                r
                u
                )
              
              -
              S
              
                (
                t
                )
              
              ≈
              
                r
                
                  1
                  /
                  g
                  (
                  S
                  (
                  t
                  )
                  )
                
              
              
                L
                
                  g
                  (
                  S
                  (
                  t
                  )
                  )
                
              
              
                (
                u
                )
              
              =
              
                
                  (
                  r
                  u
                  )
                
                
                  1
                  /
                  g
                  (
                  S
                  (
                  t
                  )
                  )
                
              
              
                L
                
                  g
                  (
                  S
                  (
                  t
                  )
                  )
                
              
              
                (
                1
                )
              
              ,
            
          
        

        when r is small.
Thus it is natural to define S(t)=limn→∞Sn(⌊nt⌋n), where

        
          
            
              
                S
                n
              
              
                
                  
                    k
                    +
                    1
                  
                  n
                
              
              -
              
                S
                n
              
              
                
                  k
                  n
                
              
              =
              
                n
                
                  -
                  1
                  /
                  g
                  (
                  
                    S
                    n
                  
                  
                    (
                    k
                    /
                    n
                    )
                  
                  )
                
              
              
                L
                
                  g
                  (
                  
                    S
                    n
                  
                  
                    (
                    k
                    /
                    n
                    )
                  
                  )
                
              
              
                (
                1
                )
              
              .
            
          
        

        This inspiration allows us to build Markov processes that converge to a self-stabilizing process. Note that, when α(x)≡2, this is simply Donsker's construction.
The main difficult is to prove the weak convergence of Sn. To this aim, we make use of a generalization of the Arzelà-Ascoli theorem.

        Definition 0.1 We call the sequence (fn(θ))n≥1 is sub-equicontinuous on I⊂ℝd, if for any ε>0, there exist δ>0 and a sequence of nonnegative numbers (εn)n≥1, εn→0 as n→∞, such that, for all functions fn in the sequence,
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        whenever ||θ1-θ2||<δ (if
εn=0 for all n, then (fn(θ))n≥1 is just equicontinuous).

        The slightly generalized version of the Arzelà-Ascoli theorem reads:

        Lemma 0.1  Assume that (fn)n≥1 be a sequence of real-valued continuous functions defined on a closed and bounded set Πi=1d[ai,bi]⊂ℝd. If this sequence is uniformly bounded and sub-equicontinuous, then there exists a subsequence (fnk)k≥1 that converges uniformly.

        The following theorem states that self-stabilizing processes do exist.

        Theorem 0.2  Let g be a Hölder function defined on ℝ and ranging in [a,b]⊂(0,2].
There exists a self-stabilizing process S(t),t∈[0,1], that it is tangent at all u to a g(S(u))-stable Lévy process under the conditional expectation with respect to S(u). Moreover, the process S(t),t∈[0,1], satisfies, for all (θj,tj)∈ℝ×[0,1],j=1,2,...,d,
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        We are currently studying the main properties of self-stabilizing processes.
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        Bilateral Contracts with Industry

        
          	
             The Tandem Project is a consortium involving several industrial
companies (e.g. Bull Amesys) and some research laboratories
(e.g. CMAP). The aim is to detect landmines from 3D radar images.

          

          	
             Hadopi contract on the economical feasibility of a way to reduce
pirating of cultural goods on the Internet.
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        Section: 
      Dissemination

        Promoting Scientific Activities

        
        Scientific events organisation

        
        General chair, scientific chair

        Regularity has organized and hosted a conference in honour of Pr. K. Falconer's 60th birthday in May 2014.

        
        Journal

        
        Member of the editorial board

        Jacques Lévy Véhel is associate editor of the journal Fractals.

        
        Reviewer

        Xiequan Fan is a reviewer for Mathematical Reviews (AMS). Jacques Lévy Véhel reviewed papers for
many journals and conferences.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Dissemination

        Teaching - Supervision - Juries

        
        Teaching

        
          	
             Master: Jacques Lévy Véhel, Wavelets and Fractals, M2, 8h, Ecole Centrale Nantes.

          

          	
             Master: Jacques Lévy Véhel, Wavelets and Fractals, M2, 18h, ESIEA.

          

        

        
        Supervision

        
          	
             PhD : Benjamin Arras, Around some selfsimilar processes with stationary increments, Ecole Centrale Paris,
December 2014, advisor : J. Lévy Véhel

          

          	
             PhD : Alexandre Richard, Local regularity of some fractional Brownian ﬁelds, Ecole Centrale Paris,
September 2014, advisor : E. Merzbach

          

        

        
        Juries

        J. Lévy Véhel has been a member of the juries for recruiting two AER, one AS and one AF at Inria Saclay.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Dissemination

        Institutional commitment

        J. Lévy Véhel is a member of the Bureau du Comité des Projets, of the Commission Scientifique, and of the Comité de Centre
at Inria Saclay. He is the animator of the Commission de Suivi Doctoral also at Inria Saclay. Finally, he was the head of
the jury for the 2014 CR2 positions contest for Inria Saclay.
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        International Initiatives


        
        Inria International Partners


        
        Informal International Partners


        
          		
             Regularity collaborates with St Andrews University (Prof. Kenneth Falconer) on the study of multistable processes.


          


          		
             Regularity collaborates with Acadia University (Prof. Franklin Mendivil) on the study of fractal strings, certain
fractals sets, and the study of the regularization dimension.
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        Regional Initiatives


        Regularity has strong collaborations with Nantes University (Anne Philippe)
[40]  and Rennes University (Ronan Le Guével)
[42] .
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        International Research Visitors


        
        Visits of International Scientists


        Pr. Franklin Mendivil, from Acadia University was invited for one month in the team.
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