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2. Overall Objectives

2.1. Overall Objectives
Many phenomena of interest are analyzed and controlled through graphs or n-dimensional images. Often,
these graphs have an irregular aspect, whether the studied phenomenon is of natural or artificial origin. In the
first class, one may cite natural landscapes, most biological signals and images (EEG, ECG, MR images, ...),
and temperature records. In the second class, prominent examples include financial logs and TCP traces.

Such irregular phenomena are usually not adequately described by purely deterministic models, and a
probabilistic ingredient is often added. Stochastic processes allow to take into account, with a firm theoretical
basis, the numerous microscopic fluctuations that shape the phenomenon.

In general, it is a wrong view to believe that irregularity appears as an epiphenomenon, that is conveniently
dealt with by introducing randomness. In many situations, and in particular in some of the examples mentioned
above, irregularity is a core ingredient that cannot be removed without destroying the phenomenon itself. In
some cases, irregularity is even a necessary condition for proper functioning. A striking example is that of
ECG: an ECG is inherently irregular, and, moreover, in a mathematically precise sense, an increase in its
regularity is strongly correlated with a degradation of its condition.

In fact, in various situations, irregularity is a crucial feature that can be used to assess the behaviour of a given
system. For instance, irregularity may the result of two or more sub-systems that act in a concurrent way to
achieve some kind of equilibrium. Examples of this abound in nature (e.g. the sympathetic and parasympathetic
systems in the regulation of the heart). For artifacts, such as financial logs and TCP traffic, irregularity is in a
sense an unwanted feature, since it typically makes regulations more complex. It is again, however, a necessary
one. For instance, efficiency in financial markets requires a constant flow of information among agents, which
manifests itself through permanent fluctuations of the prices: irregularity just reflects the evolution of this
information.

The aim of Regularity is a to develop a coherent set of methods allowing to model such “essentially irregular”
phenomena in view of managing the uncertainties entailed by their irregularity.
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Indeed, essential irregularity makes it more to difficult to study phenomena in terms of their description,
modeling, prediction and control. It introduces uncertainties both in the measurements and the dynamics. It
is, for instance, obviously easier to predict the short time behaviour of a smooth (e.g. C1) process than of a
nowhere differentiable one. Likewise, sampling rough functions yields less precise information than regular
ones. As a consequence, when dealing with essentially irregular phenomena, uncertainties are fundamental in
the sense that one cannot hope to remove them by a more careful analysis or a more adequate modeling. The
study of such phenomena then requires to develop specific approaches allowing to manage in an efficient way
these inherent uncertainties.

3. Research Program

3.1. Theoretical aspects: probabilistic modeling of irregularity
The modeling of essentially irregular phenomena is an important challenge, with an emphasis on understand-
ing the sources and functions of this irregularity. Probabilistic tools are well-adapted to this task, provided one
can design stochastic models for which the regularity can be measured and controlled precisely. Two points
deserve special attention:
• first, the study of regularity has to be local. Indeed, in most applications, one will want to act on

a system based on local temporal or spatial information. For instance, detection of arrhythmias in
ECG or of krachs in financial markets should be performed in “real time”, or, even better, ahead of
time. In this sense, regularity is a local indicator of the local health of a system.

• Second, although we have used the term “irregularity” in a generic and somewhat vague sense,
it seems obvious that, in real-world phenomena, regularity comes in many colors, and a rigorous
analysis should distinguish between them. As an example, at least two kinds of irregularities are
present in financial logs: the local “roughness” of the records, and the local density and height
of jumps. These correspond to two different concepts of regularity (in technical terms, Hölder
exponents and local index of stability), and they both contribute a different manner to financial
risk.

In view of the above, the Regularity team focuses on the design of methods that:
1. define and study precisely various relevant measures of local regularity,
2. allow to build stochastic models versatile enough to mimic the rapid variations of the different kinds

of regularities observed in real phenomena,
3. allow to estimate as precisely and rapidly as possible these regularities, so as to alert systems in

charge of control.

Our aim is to address the three items above through the design of mathematical tools in the field of probability
(and, to a lesser extent, statistics), and to apply these tools to uncertainty management as described in the
following section. We note here that we do not intend to address the problem of controlling the phenomena
based on regularity, that would naturally constitute an item 4 in the list above. Indeed, while we strongly
believe that generic tools may be designed to measure and model regularity, and that these tools may be used
to analyze real-world applications, in particular in the field of uncertainty management, it is clear that, when
it comes to control, application-specific tools are required, that we do not wish to address.

The research topics of the Regularity team can be roughly divided into two strongly interacting axes,
corresponding to two complementary ways of studying regularity:

1. developments of tools allowing to characterize, measure and estimate various notions of local
regularity, with a particular emphasis on the stochastic frame,

2. definition and fine analysis of stochastic models for which some aspects of local regularity may be
prescribed.

These two aspects are detailed in sections 3.2 and 3.3 below.
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3.2. Tools for characterizing and measuring regularity
Fractional Dimensions
Although the main focus of our team is on characterizing local regularity, on occasions, it is interesting to
use a global index of regularity. Fractional dimensions provide such an index. In particular, the regularization
dimension, that was defined in [31], is well adapted to the study stochastic processes, as its definition allows
to build robust estimators in an easy way. Since its introduction, regularization dimension has been used
by various teams worldwide in many different applications including the characterization of certain stochastic
processes, statistical estimation, the study of mammographies or galactograms for breast carcinomas detection,
ECG analysis for the study of ventricular arrhythmia, encephalitis diagnosis from EEG, human skin analysis,
discrimination between the nature of radioactive contaminations, analysis of porous media textures, well-
logs data analysis, agro-alimentary image analysis, road profile analysis, remote sensing, mechanical systems
assessment, analysis of video games, ...(see http://regularity.saclay.inria.fr/theory/localregularity/biblioregdim
for a list of works using the regularization dimension).

Hölder exponents
The simplest and most popular measures of local regularity are the pointwise and local Hölder exponents.
For a stochastic process {X(t)}t∈R whose trajectories are continuous and nowhere differentiable, these are
defined, at a point t0, as the random variables:

αX(t0, ω) = sup

{
α : limsup

ρ→0
sup

t,u∈B(t0,ρ)

|Xt −Xu|
ρα

<∞

}
, (1)

and

α̃X(t0, ω) = sup

{
α : limsup

ρ→0
sup

t,u∈B(t0,ρ)

|Xt −Xu|
‖t− u‖α

<∞

}
. (2)

Although these quantities are in general random, we will omit as is customary the dependency in ω and X and
write α(t0) and α̃(t0) instead of αX(t0, ω) and α̃X(t0, ω).

The random functions t 7→ αX(t0, ω) and t 7→ α̃X(t0, ω) are called respectively the pointwise and local
Hölder functions of the process X .

The pointwise Hölder exponent is a very versatile tool, in the sense that the set of pointwise Hölder functions
of continuous functions is quite large (it coincides with the set of lower limits of sequences of continuous
functions [6]). In this sense, the pointwise exponent is often a more precise tool (i.e. it varies in a more
rapid way) than the local one, since local Hölder functions are always lower semi-continuous. This is why,
in particular, it is the exponent that is used as a basis ingredient in multifractal analysis (see section 3.2). For
certain classes of stochastic processes, and most notably Gaussian processes, it has the remarkable property
that, at each point, it assumes an almost sure value [18]. SRP, mBm, and processes of this kind (see sections
3.3 and 3.3) rely on the sole use of the pointwise Hölder exponent for prescribing the regularity.

However, αX obviously does not give a complete description of local regularity, even for continuous processes.
It is for instance insensitive to “oscillations”, contrarily to the local exponent. A simple example in the
deterministic frame is provided by the function xγ sin (x−β), where γ, β are positive real numbers. This so-
called “chirp function” exhibits two kinds of irregularities: the first one, due to the term xγ is measured by
the pointwise Hölder exponent. Indeed, α(0) = γ. The second one is due to the wild oscillations around 0,
to which α is blind. In contrast, the local Hölder exponent at 0 is equal to γ

1+β , and is thus influenced by the
oscillatory behaviour.

Another, related, drawback of the pointwise exponent is that it is not stable under integro-differentiation,
which sometimes makes its use complicated in applications. Again, the local exponent provides here a useful
complement to α, since α̃ is stable under integro-differentiation.

http://regularity.saclay.inria.fr/theory/localregularity/biblioregdim
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Both exponents have proved useful in various applications, ranging from image denoising and segmentation
to TCP traffic characterization. Applications require precise estimation of these exponents.

Stochastic 2-microlocal analysis
Neither the pointwise nor the local exponents give a complete characterization of the local regularity, and,
although their joint use somewhat improves the situation, it is far from yielding the complete picture.

A fuller description of local regularity is provided by the so-called 2-microlocal analysis, introduced by J.M.
Bony [46]. In this frame, regularity at each point is now specified by two indices, which makes the analysis
and estimation tasks more difficult. More precisely, a function f is said to belong to the 2-microlocal space
Cs,s

′

x0
, where s+ s′ > 0, s′ < 0, if and only if its m = [s+ s′]−th order derivative exists around x0, and if

there exists δ > 0, a polynomial P with degree lower than [s]−m, and a constant C, such that∣∣∣∣∂mf(x)− P (x)

|x−x0|[s]−m
− ∂mf(y)− P (y)

|y−x0|[s]−m

∣∣∣∣ ≤ C|x− y|s+s′−m(|x− y|+ |x−x0|)−s
′−[s]+m

for all x, y such that 0 < |x−x0| < δ, 0 < |y−x0| < δ. This characterization was obtained in [25], [32]. See
[53], [54] for other characterizations and results. These spaces are stable through integro-differentiation, i.e.
f ∈ Cs,s′x if and only if f ′ ∈ Cs−1,s′

x . Knowing to which space f belongs thus allows to predict the evolution
of its regularity after derivation, a useful feature if one uses models based on some kind differential equations.
A lot of work remains to be done in this area, in order to obtain more general characterizations, to develop
robust estimation methods, and to extend the “2-microlocal formalism” : this is a tool allowing to detect which
space a function belongs to, from the computation of the Legendre transform of an auxiliary function known
as its 2-microlocal spectrum. This spectrum provide a wealth of information on the local regularity.

In [18], we have laid some foundations for a stochastic version of 2-microlocal analysis. We believe this
will provide a fine analysis of the local regularity of random processes in a direction different from the one
detailed for instance in [55].We have defined random versions of the 2-microlocal spaces, and given almost
sure conditions for continuous processes to belong to such spaces. More precise results have also been obtained
for Gaussian processes. A preliminary investigation of the 2-microlocal behaviour of Wiener integrals has been
performed.

Multifractal analysis of stochastic processes
A direct use of the local regularity is often fruitful in applications. This is for instance the case in RR analysis
or terrain modeling. However, in some situations, it is interesting to supplement or replace it by a more global
approach known as multifractal analysis (MA). The idea behind MA is to group together all points with same
regularity (as measured by the pointwise Hölder exponent) and to measure the “size” of the sets thus obtained
[28], [47], [50]. There are mainly two ways to do so, a geometrical and a statistical one.

In the geometrical approach, one defines the Hausdorff multifractal spectrum of a process or function X as
the function: α 7→ fh(α) = dim {t : αX(t) = α}, where dimE denotes the Hausdorff dimension of the set
E. This gives a fine measure-theoretic information, but is often difficult to compute theoretically, and almost
impossible to estimate on numerical data.

The statistical path to MA is based on the so-called large deviation multifractal spectrum:

fg(α) = lim
ε→0

liminf
n→∞

log Nε
n(α)

log n
,

where:

Nε
n(α) = #{k : α− ε ≤ αkn ≤ α+ ε},
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and αkn is the “coarse grained exponent” corresponding to the interval Ikn =
[
k
n ,

k+1
n

]
, i.e.:

αkn =
log |Y kn |
− log n

.

Here, Y kn is some quantity that measures the variation of X in the interval Ikn , such as the increment, the
oscillation or a wavelet coefficient.

The large deviation spectrum is typically easier to compute and to estimate than the Hausdorff one. In addition,
it often gives more relevant information in applications.

Under very mild conditions (e.g. for instance, if the support of fg is bounded, [27]) the concave envelope of fg
can be computed easily from an auxiliary function, called the Legendre multifractal spectrum. To do so, one
basically interprets the spectrum fg as a rate function in a large deviation principle (LDP): define, for q ∈ R,

Sn(q) =

n−1∑
k=0

|Y kn |
q
, (3)

with the convention 0q := 0 for all q ∈ R. Let:

τ(q) = liminf
n→∞

logSn(q)

− log(n)
.

The Legendre multifractal spectrum of X is defined as the Legendre transform τ∗ of τ :

fl(α) := τ∗(α) := inf
q∈R

(qα− τ(q)).

To see the relation between fg and fl, define the sequence of random variables Zn := log |Y kn | where
the randomness is through a choice of k uniformly in {0, ..., n− 1}. Consider the corresponding moment
generating functions:

cn(q) := − logEn[exp (qZn)]

log(n)

where En denotes expectation with respect to Pn, the uniform distribution on {0, ..., n− 1}. A version of
Gärtner-Ellis theorem ensures that if lim cn(q) exists (in which case it equals 1 + τ(q)), and is differentiable,
then c∗ = fg − 1. In this case, one says that the weak multifractal formalism holds, i.e. fg = fl. In favorable
cases, this also coincides with fh, a situation referred to as the strong multifractal formalism.

Multifractal spectra subsume a lot of information about the distribution of the regularity, that has proved
useful in various situations. A most notable example is the strong correlation reported recently in several
works between the narrowing of the multifractal spectrum of ECG and certain pathologies of the heart [51],
[52]. Let us also mention the multifractality of TCP traffic, that has been both observed experimentally and
proved on simplified models of TCP [2], [44].

Another colour in local regularity: jumps
As noted above, apart from Hölder exponents and their generalizations, at least another type of irregularity
may sometimes be observed on certain real phenomena: discontinuities, which occur for instance on financial
logs and certain biomedical signals. In this frame, it is of interest to supplement Hölder exponents and their
extensions with (at least) an additional index that measures the local intensity and size of jumps. This is a
topic we intend to pursue in full generality in the near future. So far, we have developed an approach in the
particular frame of multistable processes. We refer to section 3.3 for more details.
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3.3. Stochastic models
The second axis in the theoretical developments of the Regularity team aims at defining and studying stochastic
processes for which various aspects of the local regularity may be prescribed.

Multifractional Brownian motion
One of the simplest stochastic process for which some kind of control over the Hölder exponents is possible
is probably fractional Brownian motion (fBm). This process was defined by Kolmogorov and further studied
by Mandelbrot and Van Ness, followed by many authors. The so-called “moving average” definition of fBm
reads as follows:

Yt =

∫ 0

−∞

[
(t− u)

H− 1
2 − (−u)

H− 1
2

]
.W(du) +

∫ t

0

(t− u)
H− 1

2 .W(du),

where W denotes the real white noise. The parameter H ranges in (0, 1), and it governs the pointwise
regularity: indeed, almost surely, at each point, both the local and pointwise Hölder exponents are equal to
H .

Although varying H yields processes with different regularity, the fact that the exponents are constant along
any single path is often a major drawback for the modeling of real world phenomena. For instance, fBm has
often been used for the synthesis natural terrains. This is not satisfactory since it yields images lacking crucial
features of real mountains, where some parts are smoother than others, due, for instance, to erosion.

It is possible to generalize fBm to obtain a Gaussian process for which the pointwise Hölder exponent may be
tuned at each point: the multifractional Brownian motion (mBm) is such an extension, obtained by substituting
the constant parameter H ∈ (0, 1) with a regularity function H : R+ → (0, 1).

mBm was introduced independently by two groups of authors: on the one hand, Peltier and Levy-Vehel [29]
defined the mBm {Xt; t ∈ R+} from the moving average definition of the fractional Brownian motion, and
set:

Xt =

∫ 0

−∞

[
(t− u)

H(t)− 1
2 − (−u)

H(t)− 1
2

]
.W(du) +

∫ t

0

(t− u)
H(t)− 1

2 .W(du),

On the other hand, Benassi, Jaffard and Roux [45] defined the mBm from the harmonizable representation of
the fBm, i.e.:

Xt =

∫
R

eitξ − 1

|ξ|H(t)+ 1
2

.Ŵ(dξ),

where Ŵ denotes the complex white noise.

The Hölder exponents of the mBm are prescribed almost surely: the pointwise Hölder exponent is
αX(t) = H(t) ∧ αH(t) a.s., and the local Hölder exponent is α̃X(t) = H(t) ∧ α̃H(t) a.s. Consequently,
the regularity of the sample paths of the mBm are determined by the function H or by its regularity. The
multifractional Brownian motion is our prime example of a stochastic process with prescribed local regularity.

The fact that the local regularity of mBm may be tuned via a functional parameter has made it a useful model
in various areas such as finance, biomedicine, geophysics, image analysis, .... A large number of studies have
been devoted worldwide to its mathematical properties, including in particular its local time. In addition, there
is now a rather strong body of work dealing the estimation of its functional parameter, i.e. its local regularity.
See http://regularity.saclay.inria.fr/theory/stochasticmodels/bibliombm for a partial list of works, applied or
theoretical, that deal with mBm.

Self-regulating processes

http://regularity.saclay.inria.fr/theory/stochasticmodels/bibliombm
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We have recently introduced another class of stochastic models, inspired by mBm, but where the local
regularity, instead of being tuned “exogenously”, is a function of the amplitude. In other words, at each
point t, the Hölder exponent of the process X verifies almost surely αX(t) = g(X(t)), where g is a fixed
deterministic function verifying certain conditions. A process satisfying such an equation is generically
termed a self-regulating process (SRP). The particular process obtained by adapting adequately mBm is
called the self-regulating multifractional process [3]. Another instance is given by modifying the Lévy
construction of Brownian motion [4]. The motivation for introducing self-regulating processes is based on
the following general fact: in nature, the local regularity of a phenomenon is often related to its amplitude. An
intuitive example is provided by natural terrains: in young mountains, regions at higher altitudes are typically
more irregular than regions at lower altitudes. We have verified this fact experimentally on several digital
elevation models [8]. Other natural phenomena displaying a relation between amplitude and exponent include
temperatures records and RR intervals extracted from ECG [9].

To build the SRMP, one starts from a field of fractional Brownian motions B(t,H), where (t,H) span
[0, 1]× [a, b] and 0 < a < b < 1. For each fixed H , B(t,H) is a fractional Brownian motion with exponent
H . Denote:

X
β′

α′ = α′ + (β′ − α′) X−minK(X)
maxK(X)−minK(X)

the affine rescaling between α′ and β′ of an arbitrary continuous random field over a compact set K. One
considers the following (stochastic) operator, defined almost surely:

Λα′,β′ : C ([0, 1] , [α, β]) → C ([0, 1] , [α, β])

Z(.) 7→ B(., g (Z(.))
β′

α′

where α ≤ α′ < β′ ≤ β, α and β are two real numbers, and α′, β′ are random variables adequately chosen.
One may show that this operator is contractive with respect to the sup-norm. Its unique fixed point is the
SRMP. Additional arguments allow to prove that, indeed, the Hölder exponent at each point is almost surely
g(t).

An example of a two dimensional SRMP with function g(x) = 1− x2 is displayed on figure 1.

We believe that SRP open a whole new and very promising area of research.

Multistable processes
Non-continuous phenomena are commonly encountered in real-world applications, e.g. financial records or
EEG traces. For such processes, the information brought by the Hölder exponent must be supplemented by
some measure of the density and size of jumps. Stochastic processes with jumps, and in particular Lévy
processes, are currently an active area of research.

The simplest class of non-continuous Lévy processes is maybe the one of stable processes [56]. These are
mainly characterized by a parameter α ∈ (0, 2], the stability index (α = 2 corresponds to the Gaussian case,
that we do not consider here). This index measures in some precise sense the intensity of jumps. Paths of stable
processes with α close to 2 tend to display “small jumps”, while, when α is near 0, their aspect is governed by
large ones.

In line with our quest for the characterization and modeling of various notions of local regularity, we have
defined multistable processes. These are processes which are “locally” stable, but where the stability index α
is now a function of time. This allows to model phenomena which, at times, are “almost continuous”, and at
others display large discontinuities. Such a behaviour is for instance obvious on almost any sufficiently long
financial record.
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Figure 1. Self-regulating miltifractional process with g(x) = 1− x2

More formally, a multistable process is a process which is, at each time u, tangent to a stable process [49].
Recall that a process Y is said to be tangent at u to the process Y ′u if:

lim
r→0

Y (u+ rt)− Y (u)

rh
= Y ′u(t), (4)

where the limit is understood either in finite dimensional distributions or in the stronger sense of distributions.
Note Y ′u may and in general will vary with u.

One approach to defining multistable processes is similar to the one developed for constructing mBm [29]:
we consider fields of stochastic processes X(t, u), where t is time and u is an independent parameter that
controls the variation of α. We then consider a “diagonal” process Y (t) = X(t, t), which will be, under certain
conditions, “tangent” at each point t to a process t 7→ X(t, u).

A particular class of multistable processes, termed “linear multistable multifractional motions” (lmmm) takes
the following form [11], [10]. Let (E,E,m) be a σ-finite measure space, and Π be a Poisson process onE × R
with mean measure m× L (L denotes the Lebesgue measure). An lmmm is defined as:

Y (t) = a(t)
∑

(X,Y)∈Π

Y<−1/α(t)>
(
|t− X|h(t)−1/α(t) − |X|h(t)−1/α(t)

)
(t ∈ R). (5)

where x<y> := sign(x)|x|y , a : R→ R+ is a C1 function and α : R→ (0, 2) and h : R→ (0, 1) are C2

functions.
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In fact, lmmm are somewhat more general than said above: indeed, the couple (h, α) allows to prescribe at
each point, under certain conditions, both the pointwise Hölder exponent and the local intensity of jumps.
In this sense, they generalize both the mBm and the linear multifractional stable motion [57]. From a broader
perspective, such multistable multifractional processes are expected to provide relevant models for TCP traces,
financial logs, EEG and other phenomena displaying time-varying regularity both in terms of Hölder exponents
and discontinuity structure.

Figure 2 displays a graph of an lmmm with linearly increasing α and linearly decreasing H . One sees that
the path has large jumps at the beginning, and almost no jumps at the end. Conversely, it is smooth (between
jumps) at the beginning, but becomes jaggier and jaggier as time evolves.

2000 4000 6000 8000 10000 12000 14000
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Figure 2. Linear multistable multifractional motion with linearly increasing α and linearly decreasing H

4. Application Domains
4.1. Uncertainties management

Our theoretical works are motivated by and find natural applications to real-world problems in a general frame
generally referred to as uncertainty management, that we describe now.

Since a few decades, modeling has gained an increasing part in complex systems design in various fields of
industry such as automobile, aeronautics, energy, etc. Industrial design involves several levels of modeling:
from behavioural models in preliminary design to finite-elements models aiming at representing sharply
physical phenomena. Nowadays, the fundamental challenge of numerical simulation is in designing physical
systems while saving the experimentation steps.

As an example, at the early stage of conception in aeronautics, numerical simulation aims at exploring the
design parameters space and setting the global variables such that target performances are satisfied. This
iterative procedure needs fast multiphysical models. These simplified models are usually calibrated using
high-fidelity models or experiments. At each of these levels, modeling requires control of uncertainties due to
simplifications of models, numerical errors, data imprecisions, variability of surrounding conditions, etc.
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One dilemma in the design by numerical simulation is that many crucial choices are made very early, and thus
when uncertainties are maximum, and that these choices have a fundamental impact on the final performances.

Classically, coping with this variability is achieved through model registration by experimenting and adding
fixed margins to the model response. In view of technical and economical performance, it appears judicious
to replace these fixed margins by a rigorous analysis and control of risk. This may be achieved through
a probabilistic approach to uncertainties, that provides decision criteria adapted to the management of
unpredictability inherent to design issues.

From the particular case of aircraft design emerge several general aspects of management of uncertainties
in simulation. Probabilistic decision criteria, that translate decision making into mathematical/probabilistic
terms, require the following three steps to be considered [48]:

1. build a probabilistic description of the fluctuations of the model’s parameters (Quantification of
uncertainty sources),

2. deduce the implication of these distribution laws on the model’s response (Propagation of uncertain-
ties),

3. and determine the specific influence of each uncertainty source on the model’s response variability
(Sensitivity Analysis).

The previous analysis now constitutes the framework of a general study of uncertainties. It is used in industrial
contexts where uncertainties can be represented by random variables (unknown temperature of an external
surface, physical quantities of a given material, ... at a given fixed time). However, in order for the numerical
models to describe with high fidelity a phenomenon, the relevant uncertainties must generally depend on time
or space variables. Consequently, one has to tackle the following issues:

• How to capture the distribution law of time (or space) dependent parameters, without directly
accessible data? The distribution of probability of the continuous time (or space) uncertainty sources
must describe the links between variations at neighbor times (or points). The local and global
regularity are important parameters of these laws, since it describes how the fluctuations at some
time (or point) induce fluctuations at close times (or points). The continuous equations representing
the studied phenomena should help to propose models for the law of the random fields. Let us notice
that interactions between various levels of modeling might also be used to derive distributions of
probability at the lowest one.

• The navigation between the various natures of models needs a kind of metric which could mathe-
matically describe the notion of granularity or fineness of the models. Of course, the local regularity
will not be totally absent of this mathematical definition.

• All the various levels of conception, preliminary design or high-fidelity modelling, require regis-
trations by experimentation to reduce model errors. This calibration issue has been present in this
frame since a long time, especially in a deterministic optimization context. The random modeling
of uncertainty requires the definition of a systematic approach. The difficulty in this specific context
is: statistical estimation with few data and estimation of a function with continuous variables using
only discrete setting of values.

Moreover, a multi-physical context must be added to these questions. The complex system design is most
often located at the interface between several disciplines. In that case, modeling relies on a coupling between
several models for the various phenomena and design becomes a multidisciplinary optimization problem. In
this uncertainty context, the real challenge turns robust optimization to manage technical and economical risks
(risk for non-satisfaction of technical specifications, cost control).

We participate in the uncertainties community through several collaborative research projects. As explained
above, we focus on essentially irregular phenomena, for which irregularity is a relevant quantity to capture
the variability (e.g. certain biomedical signals, terrain modeling, financial data, etc.). These will be modeled
through stochastic processes with prescribed regularity.
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4.2. Risk modelling in finance
• A striking feature of many financial logs is that they are both irregular in the Hölder sense and display

jumps. Furthermore, the local roughness as well as the size of jumps typically vary in time. This
hints that multifractional multistable processes may provide well-adapted models. As a first step,
we shall investigate the simple case of multistable Lévy motions and concentrate on understanding
how a time-varying α function translates in terms of risk, in particular for VaR computation. This
will require both a deeper understanding of the stochastic properties of these processes and a fine
analysis of the microstructure of financial logs.

• In another direction, we will study whether multifractional Brownian motion (mBm) and SRP
provide useful models in the frame of financial modeling. Fractional Brownian motion-based option
pricing and portfolio selection has attracted a lot of interest in recent years. This process is certainly
a more adequate model than pure Brownian motion, as many studies have shown. However, it is
also clear that it suffers various limitations. One of the most obvious is that the local regularity
of financial logs is not constant, as is apparent on any sufficiently long sample. The most direct
way of generalizing fractional Brownian motion to account for this fact is to consider mBm, as
we have done in [35], using the theory of stochastic calculus with respect to mBm that we have
recently developed in [39], [38]. Another possibility is to use SRP. This requires to extend both
the theoretical results (mainly those related to stochastic calculus) and their applications (pricing,
portfolio selection) beyond the case of fractional Brownian motion. A disadvantage of mBm is that,
in order to price for instance, one has to know the regularity function ahead of time, which usually
requires additional assumptions, or to build a model for its evolution. This problem is not present
for the SRP: no further information is required once the function relating the amplitude and the
regularity has been identified. On the other hand, stochastic integration with respect to SRP (which
is neither a Gaussian process nor a semi-martingale) does not seem to be within reach at present,
since little is known indeed about this process. This nevertheless constitutes one of our long term
goals.

5. New Software and Platforms

5.1. FracLab
Participant: Jacques Lévy Véhel [correspondant].

FracLab was developed for two main purposes:

1. propose a general platform allowing research teams to avoid the need to re-code basic and advanced
techniques in the processing of signals based on (local) regularity.

2. provide state of the art algorithms allowing both to disseminate new methods in this area and to
compare results on a common basis.

FracLab is a general purpose signal and image processing toolbox based on fractal, multifractal and local
regularity methods. FracLab can be approached from two different perspectives:

• (multi-) fractal and local regularity analysis: A large number of procedures allow to compute various
quantities associated with 1D or 2D signals, such as dimensions, Hölder and 2-microlocal exponents
or multifractal spectra.

• Signal/Image processing: Alternatively, one can use FracLab directly to perform many basic tasks in
signal processing, including estimation, detection, denoising, modeling, segmentation, classification,
and synthesis.

A graphical interface makes FracLab easy to use and intuitive. In addition, various wavelet-related tools are
available in FracLab.
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FracLab is a free software. It mainly consists of routines developed in MatLab or C-code interfaced with
MatLab. It runs under Linux, MacOS and Windows environments. In addition, a “stand-alone” version (i.e.
which does not require MatLab to run) is available.

Fraclab has been downloaded several thousands of times in the last years by users all around the world. A
few dozens laboratories seem to use it regularly, with more than four hundreds registered users. Our ambition
is to make it the standard in fractal softwares for signal and image processing applications. We have signs
that this is starting to become the case. To date, its use has been acknowledged in roughly three hundreds
and fifty research papers in various areas such as astrophysics, chemical engineering, financial modeling, fluid
dynamics, internet and road traffic analysis, image and signal processing, geophysics, biomedical applications,
computer science, as well as in mathematical studies in analysis and statistics (see http://fraclab.saclay.inria.fr/
for a partial list with papers). In addition, we have opened the development of FracLab so that other teams
worldwide may contribute. Additions have been made by groups in Australia, England, France, the USA, and
Serbia.

6. New Results

6.1. Highlights of the Year
The article "Christiane’s Hair" by Jacques Lévy-Véhel and Franklin Mendivil has received the Paul R. Halmos
- Lester R. Ford award of the Mathematical Association of America.

6.2. Modelling the exchange of cultural goods on the Internet
Participant: Jacques Lévy Véhel.

In collaboration with Pierre Emmanuel Lévy Véhel and Victor Lévy Véhel.

Illegal sharing of cultural goods on the Internet has become a massive reality in today’s connected society.
Numerous studies have been performed to try and evaluate the impact of these practices on the industry of
cultural goods, and how much harm, if any, they have entailed. The effect of legal and technical responses
to limit pirating has also been investigated, showing in general inconclusive effect. Instead of penalizing
illegal actors - providers and/or consumers -, a totally different approach has been proposed recently by the
french government agency Hadopi. The idea is to offer the possibility to sites that illegally share cultural
goods to become legal in exchange of a retribution proportional to their activity. In the frame of a contract
with the Hadopi, we have built a model that studies the economic feasibility of such a scheme under various
assumptions on the behaviour of the different actors involved. Our main finding is that, supposing that more
popular goods are more prone to pirating, a retribution of the order of the increase in benefit per user gained by
legalized sites does indeed lead to a win-win situation for both producers/sellers of cultural goods and willing-
to-be-legalized sites. This will be the case under two conditions: the proportion of pirates is large enough
(which seems largely true) and the increase in the amount of money that forums will make from advertisement
when becoming legal is sufficient [43].

An extension of our work is under way, that will consider further actors and refined modelling of the way
illegal sharing takes place. Calibration issues will also be investigated more closely.

6.3. Financial risk analysis
Participant: Jacques Lévy Véhel.

Financial regulations have fundamentally changed since the Basel II Accords. Among other evolutions, Basel
II and III explicitly impose that computations of capital requirements be model-based. This paradigm shift in
risk management has been the source of strong debates among both practitioners and academics, who question
whether such model-based regulations are indeed more efficient.

http://fraclab.saclay.inria.fr/
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A common feeling in the industry is that regulations will sometimes give a false impression of security:
risk manager tend to think that a financial company that would fulfil all the criteria of, say, the Basel III
Accords on capital adequacy, is not necessarily on the safe side. This is so mainly because many risks, and
most significantly systemic or system-wide risks, are not properly modelled, and also because it is easy to
manipulate to some extent various risk measures, such as VaR.

In parallel, a fast growing body of academic research provides various arguments explaining why current
regulations are not well fitted to address risk management in an adequate way, and may even, in certain cases,
worsen the situation.

We use the term regulation risk to describe the fact that, in some situations, prudential rules are themselves
the source of a systemic risk. We have shown how a combination of model risk and regulation risk leads to
an effect which is exactly the opposite of what the regulator tries to enforce. More precisely, we explain how
wrongly assuming a Gaussian dynamics (or, more generally, a left-light-tailed one) when the “true” one is pure
jump (or, more generally, left-heavy-tailed), and imposing as a constraint minimizing VaR at constant volume
results in effect in movements that will maximize VaR. This effect is related to the fact that regulations fail
to consider that risk is endogenous. In a nutshell, the idea is simply that, by treating jumps in the evolution
of prices as exceptional events and essentially ignoring them in model-based VaR computations, one misses
an essential dimension of risk, and acts in a way that will in effect favour sudden large movements in the
markets and ultimately increase VaR. Our simple setting predicts that VaR constraints result in an increased
intensity of jumps and a decrease in volatility - a fact confirmed experimentally on certain datasets. This is
a mathematical translation of the common feeling of practitioners that regulations give a false impression of
security characterized by low volatility but increased risk of sudden large movements.

6.4. Functional central limit theorem for multistable Lévy motions
Participants: Xiequan Fan, Jacques Lévy Véhel.

We prove a functional central limit theorem (FCLT) for the independent-increments multistable Lévy motions
(MsLM) LI(t), t ∈ [0, 1], as well as of integrals with respect to these processes, using weighted sums of
independent random variables. In particular, we prove that multistable Lévy motions are stochastic Hölder
continuous and strongly localisable.

Theorem 0.1 Let (αn(u))n, α(u), u ∈ [0, 1], be a class of càdlàg functions ranging in [a, b] ⊂ (0, 2] such that
the sequence (α)n tends to α in the uniform metric. Let (X(k, n))n∈N, k=1,...,2n be a family of independent
and symmetric αn( k

2n )−stable random variables with unit scale parameter, i.e., X(k, n) ∼ Sαn( k
2n )(1, 0, 0).

Then the sequence of processes

L
(n)
I (u) =

b2nuc∑
k=1

(
1

2n

)1/αn( k
2n )

X(k, n), u ∈ [0, 1], (6)

tends in distribution to LI(u) in (D[0, 1], dS), where bxc is the largest integer smaller than or equal to x. In
particular, if α satisfies

(α(x)− α(x+ t)) ln t→ 0 (7)

uniformly for all x as t↘ 0, then LI(u) is localisable at all times.

We have defined integrals of MsLM, and given criteria for convergence,independence, stochastic Hölder
continuity and strong localisability of such integrals.

6.5. Deviation inequalities for martingales with applications
Participant: Xiequan Fan.
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In the papers [36], [37] we study some general exponential inequalities for supermartingales. The inequalities
improve or generalize many exponential inequalities of Bennett (1962), Freedman (1975), van de Geer
(1995), de la Peña (1999) and Pinelis (2006). Moreover, our concentration inequalities also improve some
known inequalities for sums of independent random variables. Applications associated with linear regressions,
autoregressive processes and branching processes are provided. In particular, an interesting application of de
la Peña’s inequality to self-normalized deviations is also provided.

We also considered an X-valued Markov chain X1, X2, ..., Xn belonging to a class of iterated random
functions, which is “one-step contracting" with respect to some distance d on X. If f is any separately Lipschitz
function with respect to d, we use a well known decomposition of Sn = f(X1, ..., Xn)− E[f(X1, ..., Xn)]
into a sum of martingale differences dk with respect to the natural filtration Fk. We show that each difference
dk is bounded by a random variable ηk independent of Fk−1. Using this very strong property, we obtain a large
variety of deviation inequalities for Sn, which are governed by the distribution of the ηk’s. Finally, we give an
application of these inequalities to the Wasserstein distance between the empirical measure and the invariant
distribution of the chain.

6.6. Self-stabilizing Lévy motions
Participants: Xiequan Fan, Jacques Lévy Véhel.

Self-stabilizing processes have the property that the “local intensities of jumps” varies with amplitude. They
are good models for, e.g., financial and temperature records.

The main aim of our work is to establish the existence of such processes and to give a simple construction.
Formally, one says that a stochastic process S(t), t ∈ [0, 1], is a self-stabilizing process if, for almost surely
all t ∈ [0, 1), S is localisable at t with tangent process S′t an g(S(t))−stable process, with respect to the
conditional probability measure PS(t). In other words,

lim
r↘0

S(t+ ru)− S(t)

r1/g(S(t))
= S′t(u), (8)

where convergence is in finite dimensional distributions with respect to PS(t). Heuristically, if
S′t(u) = Lg(S(t))(u), equality (8) implies that

S(t+ ru)− S(t) ≈ r1/g(S(t))Lg(S(t))(u) = (ru)
1/g(S(t))

Lg(S(t))(1),

when r is small. Thus it is natural to define S(t) = limn→∞ Sn( bntcn ), where

Sn

(
k + 1

n

)
− Sn

(
k

n

)
= n−1/g(Sn(k/n))Lg(Sn(k/n))(1).

This inspiration allows us to build Markov processes that converge to a self-stabilizing process. Note that,
when α(x) ≡ 2, this is simply Donsker’s construction. The main difficult is to prove the weak convergence of
Sn. To this aim, we make use of a generalization of the Arzelà-Ascoli theorem.

Definition 0.1 We call the sequence (fn(θ))n≥1 is sub-equicontinuous on I ⊂ Rd, if for any ε > 0, there exist
δ > 0 and a sequence of nonnegative numbers (εn)n≥1, εn → 0 as n→∞, such that, for all functions fn in
the sequence,

|fn(θ1)− fn(θ2)| ≤ ε+ εn, θ1, θ2 ∈ I, (9)

whenever ||θ1 − θ2|| < δ (if εn = 0 for all n, then (fn(θ))n≥1 is just equicontinuous).

The slightly generalized version of the Arzelà-Ascoli theorem reads:
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Lemma 0.1 Assume that (fn)n≥1 be a sequence of real-valued continuous functions defined on a closed
and bounded set Πd

i=1[ai, bi] ⊂ Rd. If this sequence is uniformly bounded and sub-equicontinuous, then there
exists a subsequence (fnk

)k≥1 that converges uniformly.

The following theorem states that self-stabilizing processes do exist.

Theorem 0.2 Let g be a Hölder function defined on R and ranging in [a, b] ⊂ (0, 2]. There exists a
self-stabilizing process S(t), t ∈ [0, 1], that it is tangent at all u to a g(S(u))−stable Lévy process under
the conditional expectation with respect to S(u). Moreover, the process S(t), t ∈ [0, 1], satisfies, for all
(θj , tj) ∈ R× [0, 1], j = 1, 2, ..., d,

ES(t1)

exp

i
d∑
j=2

θj (S(tj)− S(t1)) +

∫
|
d∑
j=2

θj1[t1,tj ](z)|g(S(z))dz


 = 1. (10)

We are currently studying the main properties of self-stabilizing processes.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
• The Tandem Project is a consortium involving several industrial companies (e.g. Bull Amesys) and

some research laboratories (e.g. CMAP). The aim is to detect landmines from 3D radar images.

• Hadopi contract on the economical feasibility of a way to reduce pirating of cultural goods on the
Internet.

8. Partnerships and Cooperations

8.1. Regional Initiatives
Regularity has strong collaborations with Nantes University (Anne Philippe) [40] and Rennes University
(Ronan Le Guével) [42].

8.2. International Initiatives
8.2.1. Inria International Partners
8.2.1.1. Informal International Partners

• Regularity collaborates with St Andrews University (Prof. Kenneth Falconer) on the study of
multistable processes.

• Regularity collaborates with Acadia University (Prof. Franklin Mendivil) on the study of fractal
strings, certain fractals sets, and the study of the regularization dimension.

8.3. International Research Visitors
8.3.1. Visits of International Scientists

Pr. Franklin Mendivil, from Acadia University was invited for one month in the team.
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9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. General chair, scientific chair

Regularity has organized and hosted a conference in honour of Pr. K. Falconer’s 60th birthday in May 2014.

9.1.2. Journal
9.1.2.1. Member of the editorial board

Jacques Lévy Véhel is associate editor of the journal Fractals.

9.1.2.2. Reviewer

Xiequan Fan is a reviewer for Mathematical Reviews (AMS). Jacques Lévy Véhel reviewed papers for many
journals and conferences.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Master: Jacques Lévy Véhel, Wavelets and Fractals, M2, 8h, Ecole Centrale Nantes.

Master: Jacques Lévy Véhel, Wavelets and Fractals, M2, 18h, ESIEA.

9.2.2. Supervision
PhD : Benjamin Arras, Around some selfsimilar processes with stationary increments, Ecole Cen-
trale Paris, December 2014, advisor : J. Lévy Véhel

PhD : Alexandre Richard, Local regularity of some fractional Brownian fields, Ecole Centrale Paris,
September 2014, advisor : E. Merzbach

9.2.3. Juries
J. Lévy Véhel has been a member of the juries for recruiting two AER, one AS and one AF at Inria Saclay.

9.3. Institutional commitment
J. Lévy Véhel is a member of the Bureau du Comité des Projets, of the Commission Scientifique, and of the
Comité de Centre at Inria Saclay. He is the animator of the Commission de Suivi Doctoral also at Inria Saclay.
Finally, he was the head of the jury for the 2014 CR2 positions contest for Inria Saclay.
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