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2. Overall Objectives

2.1. Overall Objectives
The SPADES project-team aims at contributing to meet the challenge of designing and programming depend-
able embedded systems in an increasingly distributed and dynamic context. Specifically, by exploiting formal
methods and techniques, SPADES aims to answer three key questions:

1. How to program open networked embedded systems as dynamic adaptive modular structures?

2. How to program reactive systems with real-time and resource constraints on multicore architectures?

3. How to program reliable, fault-tolerant embedded systems with different levels of criticality?
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These questions above are not new, but answering them in the context of modern embedded systems, which
are increasingly distributed, open and dynamic in nature [28], makes them more pressing and more difficult
to address: the targeted system properties – dynamic modularity, time-predictability, energy efficiency, and
fault-tolerance – are largely antagonistic (e.g., having a highly dynamic software structure is at variance with
ensuring that resource and behavioral constraints are met). Tackling these questions together is crucial to
address this antagonism, and constitutes a key point of the SPADES research program.

A few remarks are in order:

• We consider these questions to be central in the construction of future embedded systems, dealing
as they are with, roughly, software architecture and the provision of real-time and fault-tolerance
guarantees. Building a safety-critical embedded system cannot avoid dealing with these three
concerns.

• The three questions above are highly connected. For instance, composability along time, resource
consumption and reliability dimensions are key to the success of a component-based approach to
embedded systems construction.

• For us, “Programming” means any constructive process to build a running system. It can encompass
traditional programming as well as high-level design or “model-based engineering” activities,
provided that the latter are supported by effective compiling tools to produce a running system.

• We aim to provide semantically sound programming tools for embedded systems. This translates
into an emphasis on formal methods and tools for the development of provably dependable systems.

3. Research Program

3.1. Introduction
The SPADES research program is organized around three main themes, Components and contracts, Real-
time multicore programming, and Language-based fault tolerance, that seek to answer the three key questions
identified in Section 2.1. We plan to do so by developing and/or building on programming languages and
techniques based on formal methods and formal semantics (hence the use of “sound programming” in the
project-team title). In particular, we seek to support design where correctness is obtained by construction,
relying on proven tools and verified constructs, with programming languages and programming abstractions
designed with verification in mind.

3.2. Components and contracts
Component-based construction has long been advocated as a key approach to the “correct-by-construction”
design of complex embedded systems [53]. Witness component-based toolsets such as UC Berkeley’s Ptolemy
[44], Verimag’s BIP [30], or the modular architecture frameworks used, for instance, in the automotive industry
(AUTOSAR) [25]. For building large, complex systems, a key feature of component-based construction is the
ability to associate with components a set of contracts, which can be understood as rich behavioral types that
can be composed and verified to guarantee a component assemblage will meet desired properties. The goal
in this theme is to study the formal foundations of the component-based construction of embedded systems,
to develop component and contract theories dealing with real-time, reliability and fault-tolerance aspects of
components, and to develop proof-assistant-based tools for the computer-aided design and verification of
component-based systems.
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Formal models for component-based design are an active area of research (see e.g., [26], [27]). However,
we are still missing a comprehensive formal model and its associated behavioral theory able to deal at the
same time with different forms of composition, dynamic component structures, and quantitative constraints
(such as timing, fault-tolerance, or energy consumption). Notions of contracts and interface theories have been
proposed to support modular and compositional design of correct-by-construction embedded systems (see
e.g., [32], [33] and the references therein), but having a comprehensive theory of contracts that deals with
all the above aspects is still an open question [58]. In particular, it is not clear how to accomodate different
forms of composition, reliability and fault-tolerance aspects, or to deal with evolving component structures in
a theory of contracts.

Dealing in the same component theory with heterogeneous forms of composition, different quantitative as-
pects, and dynamic configurations, requires to consider together the three elements that comprise a compo-
nent model: behavior, structure and types. Behavior refers to behavioral (interaction and execution) models
that characterize the behavior of components and component assemblages (e.g., transition systems and their
multiple variants – timed, stochastic, etc.). Structure refers to the organization of component assemblages or
configurations, and the composition operators they involve. Types refer to properties or contracts that can be
attached to components and component interfaces to facilitate separate development and ensure the correct-
ness of component configurations with respect to certain properties. Taking into account dynamicity requires
to establish an explicit link between behavior and structure, as well as to consider higher-order systems, both
of which have a direct impact on types.

We plan to develop our component theory by progressing on two fronts: component calculi, and semantical
framework. The work on typed component calculi aims to elicit process calculi that capture the main insights
of component-based design and programming and that can serve as a bridge towards actual architecture
description and programming language developments. The work on the semantical framework should, in the
longer term, provide abstract mathematical models for the more operational and linguistic analysis afforded by
component calculi. Our work on component theory will find its application in the development of a Coq-based
toolchain for the certified design and construction of dependable embedded systems, which constitutes our
third main objective for this axis.

3.3. Real-time multicore programming
Programming real-time systems (i.e. systems whose correct behavior depends on meeting timing constraints)
requires appropriate languages (as exemplified by the family of synchronous languages [31]), but also
the support of efficient scheduling policies, execution time and schedulability analyses to guarantee real-
time constraints (e.g., deadlines) while making the most effective use of available (processing, memory, or
networking) resources. Schedulability analysis involves analyzing the worst-case behavior of real-time tasks
under a given scheduling algorithm and is crucial to guarantee that time constraints are met in any possible
execution of the system. Reactive programming and real-time scheduling and schedulability for multiprocessor
systems are old subjects, but they are nowhere as mature as their uniprocessor counterparts, and still feature
a number of open research questions [29], [41], in particular in relation with mixed criticality systems. The
main goal in this theme is to address several of these open questions.

We intend to focus on two issues: multicriteria scheduling on multiprocessors, and schedulability analysis
for real-time multiprocessor systems. Beyond real-time aspects, multiprocessor environments, and multicore
ones in particular, are subject to several constraints in conjunction, typically involving real-time, reliability and
energy-efficiency constraints, making the scheduling problem more complex for both the offline and the online
cases. Schedulability analysis for multiprocessor systems, in particular for systems with mixed criticality tasks,
is still very much an open research area.

Distributed reactive programming is rightly singled out as a major open issue in the recent, but heavily biased
(it essentially ignores recent research in synchronous and dataflow programming), survey by Bainomugisha
et al. [29]. For our part, we intend to focus on two questions: devising synchronous programming languages
for distributed systems and precision-timed architectures, and devising dataflow languages for multiprocessors
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supporting dynamicity and parametricity while enjoying effective analyses for meeting real-time, resource and
energy constraints in conjunction.

3.4. Language-based fault tolerance
Tolerating faults is a clear and present necessity in networked embedded systems. At the hardware level,
modern multicore architectures are manufactured using inherently unreliable technologies [36], [48]. The
evolution of embedded systems towards increasingly distributed architectures highlighted in the introductory
section means that dealing with partial failures, as in Web-based distributed systems, becomes an important
issue. While fault-tolerance is an old and much researched topic, several important questions remain open:
automation of fault-tolerance provision, composable abstractions for fault-tolerance, fault diagnosis, and fault
isolation.

The first question is related to the old question of “system structure for fault-tolerance” as originally discussed
by Randell for software fault tolerance [65], and concerns in part our ability to clearly separate fault-tolerance
aspects from the design and programming of purely “functional” aspects of an application. The classical
arguments in favor of a clear separation of fault-tolerance concerns from application code revolve around
reduced code and maintenance complexity [42]. The second question concerns the definition of appropriate
abstractions for the modular construction of fault-tolerant embedded systems. The current set of techniques
available for building such systems spans a wide range, including exception handling facilities, transaction
management schemes, rollback/recovery schemes, and replication protocols. Unfortunately, these different
techniques do not necessarily compose well – for instance, combining exception handling and transactions is
non trivial, witness the flurry of recent work on the topic, see e.g., [52] and the references therein –, they have
no common semantical basis, and they suffer from limited programming language support. The third question
concerns the identification of causes for faulty behavior in component-based assemblages. It is directly related
to the much researched area of fault diagnosis, fault detection and isolation [54].

We intend to address these questions by leveraging programming language techniques (programming con-
structs, formal semantics, static analyses, program transformations) with the goal to achieve provable fault-
tolerance, i.e. the construction of systems whose fault-tolerance can be formally ensured using verification
tools and proof assistants. We aim in this axis to address some of the issues raised by the above open questions
by using aspect-oriented programming techniques and program transformations to automate the inclusion of
fault-tolerance in systems (software as well as hardware), by exploiting reversible programming models to
investigate composable recovery abstractions, and by leveraging causality analyses to study fault-ascription in
component-based systems. Compared to the huge literature on fault-tolerance in general, in particular in the
systems area (see e.g., [49] for an interesting but not so recent survey), we find by comparison much less work
exploiting formal language techniques and tools to achieve or support fault-tolerance. The works reported in
[34], [37], [39], [46], [55], [64], [69] provide a representative sample of recent such works.

A common theme in this axis is the use and exploitation of causality information. Causality, i.e., the logical
dependence of an effect on a cause, has long been studied in disciplines such as philosophy [60], natural
sciences, law [61], and statistics [62], but it has only recently emerged as an important focus of research in
computer science. The analysis of logical causality has applications in many areas of computer science. For
instance, tracking and analyzing logical causality between events in the execution of a concurrent system is
required to ensure reversibility [57], to allow the diagnosis of faults in a complex concurrent system [50],
or to enforce accountability [56], that is, designing systems in such a way that it can be determined without
ambiguity whether a required safety or security property has been violated, and why. More generally, the goal
of fault-tolerance can be understood as being to prevent certain causal chains from occurring by designing
systems such that each causal chain either has its premises outside of the fault model (e.g., by introducing
redundancy [49]), or is broken (e.g., by limiting fault propagation [66]).

4. Application Domains
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4.1. Industrial Applications
Our applications are in the embedded system area, typically: transportation, energy production, robotics,
telecommunications, systems on chip (SoC). In some areas, safety is critical, and motivates the investment
in formal methods and techniques for design. But even in less critical contexts, like telecommunications and
multimedia, these techniques can be beneficial in improving the efficiency and the quality of designs, as well
as the cost of the programming and the validation processes.

Industrial acceptance of formal techniques, as well as their deployment, goes necessarily through their
usability by specialists of the application domain, rather than of the formal techniques themselves. Hence,
we are looking to propose domain-specific (but generic) realistic models, validated through experience
(e.g., control tasks systems), based on formal techniques with a high degree of automation (e.g., synchronous
models), and tailored for concrete functionalities (e.g., code generation).

4.2. Industrial Design Tools
The commercially available design tools (such as UML with real-time extensions, MATLAB/ SIMULINK/
dSPACE 1) and execution platforms (OS such as VXWORKS, QNX, real-time versions of LINUX ...) start now
to provide besides their core functionalities design or verification methods. Some of them, founded on models
of reactive systems, come close to tools with a formal basis, such as for example STATEMATE by iLOGIX.

Regarding the synchronous approach, commercial tools are available: SCADE 2 (based on LUSTRE), CON-
TROLBUILD and RT-BUILDER (based on SIGNAL) from GEENSYS 3 (part of DASSAULT SYSTEMES), spe-
cialized environments like CELLCONTROL for industrial automatism (by the INRIA spin-off ATHYS– now part
of DASSAULT SYSTEMES). One can observe that behind the variety of actors, there is a real consistency of the
synchronous technology, which makes sure that the results of our work related to the synchronous approach
are not restricted to some language due to compatibility issues.

4.3. Current Industrial Cooperations
Regarding applications and case studies with industrial end-users of our techniques, we cooperate with
STMicroelectronics on dynamic data-flow models of computation for streaming applications, dedicated to
high definition video applications for their new STHORM manycore chip.

5. New Software and Platforms

5.1. Prototypes
5.1.1. Logical Causality

Participant: Gregor Goessler.

We are developing LOCA, a prototype tool written in Scala that implements the analysis of logical causality
described in 6.3.3. LOCA currently supports causality analysis in BIP and networks of timed automata. The
core analysis engine is implemented as an abstract class, such that support for other models of computation
(MoC) can be added by instantiating the class with the basic operations of the MoC.

5.1.2. Cosyma
Participant: Gregor Goessler.

1http://www.dspaceinc.com
2http://www.esterel-technologies.com
3http://www.geensoft.com

http://www.dspaceinc.com
http://www.esterel-technologies.com
http://www.geensoft.com
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We have developed COSYMA, a tool for automatic controller synthesis for incrementally stable switched
systems based on multi-scale discrete abstractions. The tool accepts a description of a switched system
represented by a set of differential equations and the sampling parameters used to define an approximation
of the state-space on which discrete abstractions are computed. The tool generates a controller — if it exists
— for the system that enforces a given safety or time-bounded reachability specification.

5.1.3. The SIAAM virtual machine
Participant: Jean-Bernard Stefani.

The SIAAM abstract machine is an object-based realization of the Actor model of concurrent computation.
Actors can exchange arbitrary object graphs in messages while still enjoying a strong isolation property. It
guarantees that each actor can only directly access objects in its own local heap, and that information between
actors can only flow via message exchange. The SIAAM machine has been implemented for Java as a modified
Jikes virtual machine. The resulting SIAAM software comprises:

• A modified Jikes RVM that implements actors and actor isolation as specified by the SIAAM
machine.

• A set of static analyses build using the Soot Java optimization framework for optimizing the
execution of the SIAAM/Jikes virtual machine, and for helping programmers diagnose potential
performance issues.

• A formal proof using the Coq proof assistant of the SIAAM isolation property.

The SIAAM machine is the subject of Quentin Sabah’s PhD thesis [67].

5.1.4. pyCPA_TCA
Participant: Sophie Quinton.

We are developing PYCPA_TCA, a PYCPA plugin for Typical Worst-Case Analysis as described in
Section 6.2.2. PYCPA is an open-source Python implementation of Compositional Performance Analysis de-
veloped at TU Braunschweig, which allows in particular response-time analysis. PYCPA_TCA is an extension
of this tool that is co-developed by Sophie Quinton and Zain Hammadeh at TU Braunschweig. It allows in
particular the computation of weakly-hard guarantees for real-time tasks, i.e. number of deadline misses out
of a sequence of executions. So far, PYCPA_TCA is restricted to uniprocessor systems of independent tasks,
scheduled according to static priority scheduling.

6. New Results
6.1. Components and Contracts

Participant: Jean-Bernard Stefani.

6.1.1. Location graph model
The design of configurable systems can be streamlined and made more systematic by adopting a component-
based structure, as demonstrated with the Fractal component model [2]. However, the formal foundations
for configurable component-based systems, featuring higher-order capabilities where components can be
dynamically instantiated and passivated, and non-hierarchical structures where components can be contained
in different composites at the same time, are still an open topic. We have developed recently the location
graph model [15], where components are understood as graphs of locations hosting higher-order processes,
and where component structures can be arbitrary graphs. We have developed a compositional operational
semantics for the location graph model, which is parametric with respect to the family of processes. We have
shown that the location graph model constitutes a conservative extension of a previous model, called CAB, that
captures the key features of the BIP component model [5]. We have further worked on the behavioral theory
of the location graph model, characterizing contextual equivalence in the model by means of a higher-order
bisimularity relation, and begun the study of the encoding of different models, including the Synchronized
Hyperedge Replacement model [45].
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6.2. Real-Time multicore programming
Participants: Vagelis Bebelis, Adnan Bouakaz, Pascal Fradet, Alain Girault, Gregor Goessler, Jean-Bernard
Stefani, Sophie Quinton, Partha Roop, Eugene Yip.

6.2.1. Analysis and scheduling of parametric dataflow models
Recent data-flow programming environments support applications whose behavior is characterized by dy-
namic variations in resource requirements. The high expressive power of the underlying models (e.g., Kahn
Process Networks or the CAL actor language) makes it challenging to ensure predictable behavior. In par-
ticular, checking liveness (i.e., no part of the system will deadlock) and boundedness (i.e., the system can
be executed in finite memory) is known to be hard or even undecidable for such models. This situation is
troublesome for the design of high-quality embedded systems.

Recently, we have introduced the schedulable parametric data-flow (SPDF) MoC for dynamic streaming
applications [47]. SPDF extends the standard dataflow model by allowing rates to be parametric. Last year,
we have proposed the Boolean Parametric Data Flow (BPDF) MoC which combines integer parameters (to
express dynamic rates) and boolean parameters (to express the activation and deactivation of communication
channels). High dynamicity is provided by integer parameters which can change at each basic iteration and
boolean parameters which can change even within the iteration. We have presented static analyses which
ensure the liveness and the boundedness of BDPF graphs.

Recently, we have proposed a generic and flexible framework to generate parallel schedules for BPDF
applications [16]. The parametric dataflow graph is associated with user-defined specific constraints aimed
at minimizing, timing, buffer sizes, power consumption, or other criteria. The scheduling algorithm executes
with minimal overhead and can be adapted to different scheduling policies just by changing some constraints.
The safety of both the dataflow graph and constraints can be checked statically and all schedules are guaranteed
to be bounded and deadlock free. Our case studies are video decoders for high definition video streaming such
as VC-1. One of the target architectures is the STHORM many-core platform designed by STMicroelectronics.

This research is the central topic of Vagelis Bebelis’ PhD thesis. It is conducted in collaboration with
STMicroelectronics.

6.2.2. Typical Worst-Case Analysis of real-time systems
Weakly hard time constraints have been proposed for applications where occasional deadline misses are
permitted. We have recently developed Typical Worst Case Analysis (TWCA) to exploit similar constraints
and bound response times of systems with sporadic overload. This year, we have applied this approach to a
real-life automotive network [14]. Additionally, we have extended the approach for static priority preemptive
(SPP) and static priority non-preemptive (SPNP) scheduling to determine the maximum number of deadline
misses of a given task [21]. The approach is based on an optimization problem which trades off higher priority
interference versus miss count. We formally derived a lattice structure for these combinations that lays the
ground for an integer linear programming (ILP) formulation. The ILP solution was evaluated and provided far
better results than previous TWCA.

In parallel, we have contributed to a systematic co-engineering approach that integrates TWCA into functional
analysis [19]. We combine physical, control and timing models by representing them as a network of hybrid
automata. Closed-loop properties can then be verified on this hybrid automata network by using standard
model checkers for hybrid systems. The use of the Logical Execution Time (LET) semantics where data
is written back deterministically at the typical worst-case response time (rather than the usual worst-case
bound) is a new and particularly powerful approach for addressing the computational complexity of the model
checking problem.

6.2.3. Time predictable programming
In the context of the RIPPES associated team with UC Berkeley and U Auckland, we have finalized ongoing
work on our synchronous programming language for time predictability PRET-C [10]. PRET-C extends C with
synchronous constructs inspired by ESTEREL, to allow an easy programming of concurrent reactive programs.
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These constructs allow the programmer to express concurrency, interaction with the environment, looping, and
a synchronization barrier (like the pause statement in ESTEREL). PRET-C’s semantics is deterministic, and
it can be efficiently compiled towards sequential code, either executed on a dedicated processor for the best
predictability of the program’s Worst-Case Reaction Time (WCRT), or executed on a generic processor.

We have also continued our work on FOREC, a time predictable synchronous programming language for
multi-core chips. Like PRET-C, it extends C with a small set of ESTEREL-like synchronous primitives. FOREC
threads communicate with each other via shared variables, the values of which are combined at the end of each
tick to maintain deterministic execution. FOREC is compiled into threads that are then statically scheduled
for a target multi-core chip. This is the main difference with PRET-C. We have finalized the semantics of
FOREC, which led us to propose several ways to combine shared variables at the tick boundaries, such that
the semantics remains deterministic. This part was inspired by the so-called concurrent revisions [38].

Finally, with colleagues from the former ARTISTDESIGN European Network of Excellence, we have also
participated in a survey on predictable embedded systems [11].

6.2.4. Tradeoff exploration between energy consumption and execution time
We have continued our work on multi-criteria scheduling, in the particular context of dynamic applications that
are launched and terminated on an embedded multi-core chip, under execution time and energy consumption
constraints. We have proposed a two layer adaptive scheduling method. In the first layer, each application
(represented as a DAG of tasks) is scheduled statically on sets of cores: 2 cores, 3 cores, 4 cores, and so on.
For each size of these sets (2, 3, 4, ...), there may be only one topology or several topologies. For instance,
for 2 or 3 cores there is only one topology (a “line”), while for 4 cores there are three distinct topologies
(“line”, “square”, and “T shape”). Moreover, for each topology, we generate statically several schedules, each
one subject to a different total energy consumption constraint, and consequently with a different Worst-Case
Reaction Time (WCRT). Coping with the energy consumption constraints is achieved thanks to Dynamic
Frequency and Voltage Scaling (DVFS). In the second layer, we use these pre-generated static schedules to
reconfigure dynamically the applications running on the multi-core each time a new application is launched or
an existing one is stopped. The goal of the second layer is to perform a global optimization of the configuration,
such that each running application meets a pre-defined quality-of-service constraint (translated into an upper
bound on its WCRT) and such that the total energy consumption is minimized. For this, we (1) allocate a
sufficient number of cores to each active application, (2) allocate the unassigned cores to the applications
yielding the largest gain in energy, and (3) choose for each application the best topology for its subset of cores
(i.e., better than the by default “line” topology).

This is a joint work with Ismail Assayad (U. Casablanca, Morocco) who visits the team regularly.

6.3. Language Based Fault-Tolerance
Participants: Dmitry Burlyaev, Pascal Fradet, Alain Girault, Yoann Geoffroy, Gregor Goessler, Jean-Bernard
Stefani.

6.3.1. Automatic transformations for fault tolerant circuits
In the past years, we have studied the implementation of specific fault tolerance techniques in real-time embed-
ded systems using program transformation [1]. We are now investigating the use of automatic transformations
to ensure fault-tolerance properties in digital circuits. To this aim, we consider program transformations for
hardware description languages (HDL). We consider both single-event upsets (SEU) and single-event tran-
sients (SET) and fault models of the form “at most 1 SEU or SET within n clock signals”.

We have expressed several variants of triple modular redundancy (TMR) as program transformations. We
have proposed a verification-based approach to minimize the number of voters in TMR [17]. Our technique
guarantees that the resulting circuit (i) is fault tolerant to the soft-errors defined by the fault model and (ii)
is functionally equivalent to the initial one. Our approach operates at the logic level and takes into account
the input and output interface specifications of the circuit. Its implementation makes use of graph traversal
algorithms, fixed-point iterations, and BDDs. Experimental results on the ITC’99 benchmark suite indicate
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that our method significantly decreases the number of inserted voters, which entails a hardware reduction of
up to 55% and a clock frequency increase of up to 35% compared to full TMR. We address scalability issues
arising from formal verification with approximations and assess their efficiency and precision.

We have proposed novel fault-tolerance transformations based on time-redundancy. In particular, we have
presented a transformation using double-time redundancy (DTR) coupled with micro-checkpointing, rollback
and a speedup mode [18]. The approach is capable to mask any SET every 10 cycles and keeps the same
input/output behavior regardless error occurrences. Experimental results on the ITC’99 benchmark suite
indicate that the hardware overhead is 2.7 to 6.1 times smaller than full TMR with double loss in throughput.
It is an interesting alternative to TMR for logic intensive designs.

We have also designed a transformation that allows the circuit to change its level of time-redundancy. This
feature permits to dynamically and temporarily give up (resp. increase) fault-tolerance and speed up (resp.
slow down) the circuit. The motivations for such changes can be based on the observed change in radiation
environment or the processing of (non)critical data. These different time redundancy transformations have
been patented [23]

We have started the formal certification of such transformations using the Coq proof assistant [40]. The
transformations are described on a simple gate-level hardware description language inspired from µFP [68].
The fault-model is described in the operational semantics of the language. The main theorem states that, for
any circuit, for any input stream and for any SET allowed by the fault-model, its transformed version produces
a correct output. A TMR and triple time redundancy transformations have already been proved correct. The
proof of the DTR transformation is in progress.

6.3.2. Concurrent flexible reversibility
In the recent years, we have been investigating reversible concurrent computation, and investigated various
reversible concurrent programming models, with the hope that reversibility can shed some light on the common
semantic features underlying various forms of fault recovery techniques (including, exceptions, transactions,
and checkpoint/rollback schemes).

We have revisited our encoding of our reversible higher-order π-calculus in (a variant of) the higher-order
π-calculus, in order to obtain a much tighter result than our original encoding. In essence, we now have a form
of strong bisimilarity (modulo administrative reductions) between a reversible higher-order π-calculus process
and its translation in higher-order π. We have also studied the relation between the causality information used
in our reversible higher-order π and a causal higher-order π-calculus, inspired by the causal π-calculus [35].
This work has been submitted for publication [24]. This work was done in collaboration with Inria teams
FOCUS in Bologna, as part of the ANR REVER project.

6.3.3. Blaming in component-based systems
The failure of one component may entail a cascade of failures in other components; several components may
also fail independently. In such cases, elucidating the exact scenario that led to the failure is a complex and
tedious task that requires significant expertise.

The notion of causality (did an event e cause an event e′?) has been studied in many disciplines, including
philosophy, logic, statistics, and law. The definitions of causality studied in these disciplines usually amount
to variants of the counterfactual test “e is a cause of e′ if both e and e′ have occurred, and in a world that is
as close as possible to the actual world but where e does not occur, e′ does not occur either”. Surprisingly, the
study of logical causality has so far received little attention in computer science, with the notable exception
of [51] and its instantiations. However, this approach relies on a causal model that may not be known, for
instance in presence of black-box components. For such systems, we have been developing a framework for
blaming that helps us establish the causal relationship between component failures and system failures, given
an observed system execution trace. The analysis is based on a formalization of counterfactual reasoning. We
have shown in [12] how our approach can be used for log analysis to help establishing liability in the context
of legal contracts.
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We have proposed in [6] an approach for blaming in component-based real-time systems whose component
specifications are given as timed automata. The analysis is based on a single execution trace violating a safety
property P . We have formalized blaming using counterfactual reasoning to distinguish component failures that
actually contributed to the outcome from failures that had no impact on the violation of P . We have shown
how to effectively implement blaming by reducing it to a model-checking problem for timed automata. The
approach has been implemented in LOCA (Section 5.1.1). We have further demonstrated the feasibility of our
approach on the model of a dual-chamber implantable pacemaker.

6.3.4. Synthesis and implementation of fault-tolerant embedded systems
We have integrated a complete workflow to synthesize and implement correct-by-construction fault tolerant
distributed embedded systems consisting of real-time periodic tasks. Correct-by-construction is provided by
the use of discrete controller synthesis [63] (DCS), a formal method thanks to which we are able to guarantee
that the synthe-sized controlled system satisfies the functionality of its tasks even in the presence of processor
failures. For this step, our workflow uses the Heptagon domain specific language [43] and the Sigali DCS
tool [59]. The correct implementation of the resulting distributed system is a challenge, all the more since the
controller itself must be tolerant to the processor failures. We achieve this step thanks to the libDGALS real-
time library [22] (1) to generate the glue code that will migrate the tasks upon processor failures, maintaining
their internal state through migration, and (2) to make the synthesized controller itself fault-tolerant. We
have demonstrated the feasibility of our work-flow on a multi-tasks multi-processor fault-tolerant distributed
system.

7. Bilateral Contracts and Grants with Industry
7.1. Bilateral Contracts with Industry

• With Orange Labs: software architecture for GlobalOS

7.2. Bilateral Grants with Industry
• ST Microelectronics: CIFRE contract for the PhD of Vagelis Bebelis. This work is described in

Section 6.2.1.

8. Partnerships and Cooperations
8.1. National Initiatives
8.1.1. ANR Projects
8.1.1.1. PiCoq (ANR project)

Participant: Jean-Bernard Stefani.

The goal of the PiCoq project is to develop an environment for the formal verification of properties of
distributed, component-based programs. The project’s approach lies at the interface between two research
areas: concurrency theory and proof assistants. Achieving this goal relies on three scientific advances, which
the project intends to address:

• Finding mathematical frameworks that ease modular reasoning about concurrent and distributed
systems: due to their large size and complex interactions, distributed systems cannot be analysed in
a global way. They have to be decomposed into modular components, whose individual behaviour
can be understood.

• Improving existing proof techniques for distributed/modular systems: while behavioural theories
of first-order concurrent languages are well understood, this is not the case for higher-order ones.
We also need to generalise well-known modular techniques that have been developed for first-order
languages to facilitate formalisation in a proof assistant, where source code redundancies should be
avoided.

• Defining core calculi that both reflect concrete practice in distributed component programming and
enjoy nice properties w.r.t. behavioural equivalences.
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The project partners include Inria (CELTIQUE and SPADES teams), LIP (PLUME team), and Université de
Savoie. The project runs from November 2010 to October 2014.

8.1.1.2. REVER (ANR project)
Participant: Jean-Bernard Stefani.

The REVER project aims to develop semantically well-founded and composable abstractions for dependable
distributed computing on the basis of a reversible programming model, where reversibility means the ability
to undo any program execution and to revert it to a state consistent with the past execution. The critical
assumption behind REVER is that by combining reversibility with notions of compensation and modularity,
one can develop systematic and composable abstractions for dependable programming.

The REVER work program is articulated around three major objectives:

• To investigate the semantics of reversible concurrent processes.

• To study the combination of reversibility with notions of compensation, isolation and modularity in
a concurrent and distributed setting.

• To investigate how to support these features in a practical (typically, object-oriented and functional)
programming language design.

The project partners are Inria (FOCUS and SPADES teams), Université de Paris VII (PPS laboratory), and CEA
(List laboratory). The project runs from December 2011 to November 2015.

8.2. European Initiatives
8.2.1. Collaborations in European Programs, except FP7 & H2020

Program: COST

Project acronym: IC1405

Project title: Reversible Computation

Duration: 2015-2019

Coordinator: I. Ulidowski (U. Leicester, UK)

Abstract: This recently launched COST Action aims to establisjh a research network of excellence on
reversible commputation. Reversible computation is an emerging paradigm that extends the standard
forward-only mode of computation with the ability to execute in reverse, so that computation can
run backwards as naturally as it can go forwards. It aims to deliver novel computing devices and
software. the potential benefits include the design of new reversible logic gates and circuits – leading
to low-power computing –, and new conceptual frameworks, language abstractions and software
tools for reliable and recovery-oriented distributed systems.

8.3. International Initiatives
8.3.1. Inria Associate Teams
8.3.1.1. RIPPES

Title: RIgorous Programming of Predictable Embedded Systems

International Partner (Institution - Laboratory - Researcher):

University of California Berkeley (USA)

University of Auckland (New Zealand)

Duration: 2013 - 2015

See also: https://wiki.inria.fr/rippes

https://wiki.inria.fr/rippes
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The RIPPES associated teams gathers the SPADES team from Inria Grenoble Rhône-Alpes, the
Ptolemy group from UC Berkeley (EECS Department), and the Embedded Systems Research group
from U. Auckland (ECE Department). The planned research seeks to reconcile two contradictory
objectives of embedded systems, more predictability and more adaptivity. We propose to address
these issues by exploring two complementary research directions: (1) by starting from a classical
concurrent C or Java programming language and enhancing it to provide more predictability, and (2)
by starting from a very predictable model of computation (SDF) and enhancing it to provide more
adaptivity.

8.3.2. Inria International Partners
8.3.2.1. Informal International Partners

University of Bologna, Department of Computer Science (Italy)
Topics: reversibility in concurrent languages
TU Braunschweig, (Germany)
Topics: typical worst-case schedulability analysis

8.4. International Research Visitors
8.4.1. Visits of International Scientists

• April 2014: Eugene Yip (PhD student, U. Auckland) visited Inria Grenoble to work on the semantics
of the FOREC PRET programming language (RIPPES associated team).

• April 2014: David Broman (Ass. Prof. KTH Stockholm and UC Berkeley) visited Inria Grenoble to
attend the RePP’14 workshop and to work on PRET programming (RIPPES associated team).

• September 2014: Ismail Assayad (Ass. Prof. U. Casablanca) visited Inria Grenoble to work on multi-
criteria optimization and scheduling for embedded system.

• September 2014: Lilia Sfaxi (Ass. Prof. ENSI Tunis) and Imen Boudabous (PhD student, ENSI Tu-
nis) visited Inria Grenoble to work on scheduling and energy optimization of data-flow applications
on multi-core chips.

• November and December 2014: Partha Roop (Senior Lecturer, U. Auckland) and Hugh Wang (PhD
student, U. Auckland) visited Inria Grenoble to work on the FOREC PRET programming language
(RIPPES associated team).

8.4.2. Visits to International Teams
• Alain Girault visited UC Berkeley (USA) in February 2014 to work on the parametric dataflow

model of computation and on PRET programming (RIPPES associated team).

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. general chair, scientific chair

• Sophie Quinton was PC co-chair and organizing committee member of the First Workshop on Formal
Methods for Timing Verification (FMTV’14).

• Alain Girault was PC co-chair and co-organizer of the Second Workshop on Reconciling Perfor-
mance with Predictability (RePP’14), which took place on March 5th 2014, in Grenoble, France.

• Alain Girault was co-chair and co-organizer of the Workshop on Synchronous Programming (SYN-
CHRON’14), which took place in December 2014 in Aussois, France.
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9.1.2. Scientific events selection
9.1.2.1. Participation in conference steering committees

• Jean-Bernard Stefani is the current chair of the Steering Committee of the IFIP FORTE conference
series, and a member of the Stering Committee of the DisCoTec federated conference series.

9.1.2.2. Participation in conference program committees

• Pascal Fradet served in the program committees of the 13th International Conference on Modularity
(MODULARITY’14) and of Journées Francophones des Langages Applicatifs (JFLA’14).

• Gregor Goessler served in the program committees of the 17th International Symposium on
Component-Based Software Engineering (CBSE’14) and Design, Automation, and Test in Europe
(DATE’14).

• Sophie Quinton served in the program committees of the 26th Euromicro Conference on Real-Time
Systems (ECRTS’14), 34th IFIP International Conference on Formal Techniques for Distributed
Objects, Components and Systems (FORTE’14) and 12th IEEE International Symposium on Par-
allel and Distributed Processing with Applications (ISPA’14) conferences as well as the First In-
ternational Workshop on Multi-Objective Many-Core Design (MOMAC’14) and 2nd International
Workshop on Mixed Criticality Systems (WMC’14) workshops and the Work-in-Progress session of
ECRTS’14.

• Alain Girault served on the program committees of the International Conference on Design and Test
in Europe (DATE’14), the Design Automation Conference (DAC’14), the International Symposium
on Industrial Embedded Systems (SIES’14), and the International Conference on Pervasive and
Embedded Computing and Communication Systems (PECCS’14).

9.1.2.3. Reviewer

• Gregor Goessler reviewed articles for CDC’14, POST’14, and TACAS’14.

• Sophie Quinton reviewed an article for the 51th Design Automation Conference (DAC’14).

9.1.3. Journal
9.1.3.1. Member of the editorial board

• Jean-Bernard Stefani is a member of the editorial board of Annals of Telecommunications.

• Alain Girault is a member of the editorial board of the EURASIP Journal on Embedded Systems.

9.1.3.2. Reviewer

• Jean-Bernard Stefani reviewed articles for Theoretical Computer Science.

• Gregor Goessler reviewed articles for Science of Computer Programming and ACM Transactions on
Embedded Computing Systems.

• Sophie Quinton reviewed articles for ACM Transactions on Embedded Computing, ACM Transac-
tions on Design Automation of Electronic Systems and Real-Time Systems.

• Alain Girault reviewed articles for IEEE Trans. on Parallel and Distributed Systems and ACM Trans.
on Design Automation of Electronic Systems

9.2. Teaching - Supervision - Juries
9.2.1. Supervision

PhD in progress: Vagelis Bebelis, “Boolean Parametric Data Flow. Modeling - Analyses -
Implementation”, Grenoble University, since 12/2011, co-advised by Pascal Fradet and Alain
Girault.

PhD in progress: Dmitry Burlyaev, “Specification and synthesis of fault-tolerant circuits”, Grenoble
University, since 12/2011, co-advised by Pascal Fradet and Alain Girault.
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PhD in progress: Yoann Geoffroy, “Towards a general causality analysis framework”, Grenoble
University, since 10/2013, advised by Gregor Goessler.

9.2.2. Juries
• Alain Girault was president of the PhD defense jury of Pranav Tendulkar (University Grenoble

Alpes).

• Alain Girault was president of the PhD defense jury of Christian von Essen (University Grenoble
Alpes).

• Alain Girault was referee for the computer science PhD thesis of Guillaume Aupy (ENS-Lyon).

• Jean-Bernard Stefani was president of the jury for Bertrand Jeannet’s HDR defense (University
Grenoble Alpes).

• Jean-Bernard Stefani was rapporteur for Helene Martorell’s PhD defense (Toulouse University)
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