
Activity Report 2014

Project-Team SPECFUN

Symbolic Special Functions : Fast and
Certified

RESEARCH CENTER
Saclay - Île-de-France

THEME
Algorithmics, Computer Algebra and
Cryptology

Table of contents

1. Members . 1
2. Overall Objectives . 1

2.1. Scientific challenges, expected impact 1
2.1.1. Use computer algebra but convince users beyond reasonable doubt 3
2.1.2. Make computer algebra and formal proofs help one another 3
2.1.3. Experimental mathematics with special functions 4

2.2. Research axes 4
2.2.1. Computer algebra certified by the coq system 4

2.2.1.1. Libraries of formalized mathematics 4
2.2.1.2. Manipulation of large algebraic data in a proof assistant 4
2.2.1.3. Formal-proof-producing normalization algorithms 5

2.2.2. Better symbolic computations with special functions 5
2.2.2.1. Special-function integration and summation 5
2.2.2.2. Applications to experimental mathematics 5

2.2.3. Interactive and certified mathematical web sites 6
3. Research Program . 6

3.1. Studying special functions by computer algebra 6
3.1.1. Equations as a data structure 6
3.1.2. Algorithms combining functions 7
3.1.3. Solving functional equations 7
3.1.4. Multi-precision numerical evaluation 7
3.1.5. Guessing heuristics 7
3.1.6. Complexity-driven design of algorithms 7

3.2. Trusted computer-algebra calculations 8
3.2.1. Encyclopedias 8
3.2.2. Computer algebra and symbolic logic 8
3.2.3. Certifying systems for computer algebra 8
3.2.4. Semantics for computer algebra 8
3.2.5. Formal proofs for symbolic components of computer-algebra systems 8
3.2.6. Formal proofs for numerical components of computer-algebra systems 8

3.3. Machine-checked proofs of formalized mathematics 9
3.3.1. Logical foundations and proof assistants 9
3.3.2. Computations in formal proofs 9
3.3.3. Large-scale computations for proofs inside the Coq system 9
3.3.4. Relevant contributions from the Mathematical Component libraries 10
3.3.5. User interaction with the proof assistant 10

4. Application Domains .10
5. New Software and Platforms . 11

5.1. SSReflect 11
5.2. The Mathematical Components library 11
5.3. Coq 11
5.4. Coq/jEdit 11
5.5. Other maintained software 11

5.5.1. DDMF 12
5.5.2. DynaMoW 12
5.5.3. Ring 12
5.5.4. Mgfun 12

6. New Results . 12
6.1. Highlights of the Year 12

2 Activity Report INRIA 2014

6.2. A formal proof of the irrationality of ζ(3) 12
6.3. Criterion for the existence of telescopers for mixed hypergeometric terms 13
6.4. Integration of rational functions 13
6.5. Efficient algorithms for linear differential equations in positive characteristic 13
6.6. Efficient algorithms for rational first integrals 14
6.7. Computation of necessary integrability conditions for parametrized Hamiltonian systems 14
6.8. Non-D-finite excursions in the quarter plane 14
6.9. A human proof of the Gessel conjecture 14
6.10. Enumeration of 3-dimensional lattice walks confined to the positive octant 14
6.11. Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Algebraic and

analytic approaches collated 15
6.12. Asynchronous interaction with Coq 15

7. Bilateral Contracts and Grants with Industry . 15
8. Partnerships and Cooperations . 15

8.1. Regional Initiatives 15
8.2. National Initiatives 16
8.3. International Research Visitors 16

9. Dissemination . 16
9.1. Promoting Scientific Activities 16

9.1.1. Scientific events organisation 16
9.1.2. Scientific events selection 16

9.1.2.1. member of the conference program committee 16
9.1.2.2. reviewer 16

9.1.3. Journal 17
9.2. Teaching - Supervision - Juries 17

9.2.1. Teaching 17
9.2.2. Supervision 17
9.2.3. Juries 17

9.3. Keynote talks 17
9.4. Popularization 17

10. Bibliography .18

Project-Team SPECFUN

Keywords: Computational Complexity, Computer Algebra, Experimental Mathematics, Inter-
active Theorem Proving, Special Functions, Type Theory

Creation of the Team: 2012 November 01, updated into Project-Team: 2014 July 01.

1. Members
Research Scientists

Frédéric Chyzak [Team leader, Inria, Researcher, HdR]
Assia Mahboubi [Team co-leader, Inria, Researcher]
Alin Bostan [Inria, Researcher]
Enrico Tassi [Inria, Researcher, until August 2014]

Faculty Member
Philippe Dumas [Éducation Nationale, Professor]

Engineer
Maxence Guesdon [Inria, Engineer, 40%, from mid-October 2014]

PhD Students
Augustin Barillec [ENS Lyon, until June 2014]
Louis Dumont [École Polytechnique]
Pierre Lairez [École Polytechnique, until August 2014]
Thomas Sibut-Pinote [ENS Lyon, from March 2014]

Post-Doctoral Fellow
Carst Tankink [Inria, from February 2014]

Visiting Scientists
Marc Mezzarobba [CNRS, from September 2014]
Claudio Sacerdoti Coen [Università di Bologna, in February, May, and September 2014]

Administrative Assistants
Christine Biard [Inria, from July 2014]
Valérie Lecomte [Inria, until August 2014]

2. Overall Objectives

2.1. Scientific challenges, expected impact
The general orientation of our team is described by the short name given to it: Special Functions, that
is, particular mathematical functions that have established names due to their importance in mathematical
analysis, physics, and other application domains. Indeed, we ambition to study special functions with the
computer, by combined means of computer algebra and formal methods.

2 Activity Report INRIA 2014

Computer-algebra systems have been advertised for decades as software for “doing mathematics by computer”
[70]. For instance, computer-algebra libraries can uniformly generate a corpus of mathematical properties
about special functions, so as to display them on an interactive website. This possibility was recently shown
by the computer-algebra component of the team [25]. Such an automated generation significantly increases the
reliability of the mathematical corpus, in comparison to the content of existing static authoritative handbooks.
The importance of the validity of these contents can be measured by the very wide audience that such
handbooks have had, to the point that a book like [20] remains one of the most cited mathematical publications
ever and has motivated the 10-year-long project of writing its successor [22]. However, can the mathematics
produced “by computer” be considered as true mathematics? More specifically, whereas it is nowadays well
established that the computer helps in discovering and observing new mathematical phenomenons, can the
mathematical statements produced with the aid of the computer and the mathematical results computed by it
be accepted as valid mathematics, that is, as having the status of mathematical proofs? Beyond the reported
weaknesses or controversial design choices of mainstream computer-algebra systems, the issue is more of
an epistemological nature. It will not find its solution even in the advent of the ultimate computer-algebra
system: the social process of peer-reviewing just falls short of evaluating the results produced by computers,
as reported by Th. Hales [49] after the publication of his proof of the Kepler Conjecture about sphere packing.

A natural answer to this deadlock is to move to an alternative kind of mathematical software and to use
a proof assistant to check the correctness of the desired properties or formulas. The recent success of
large-scale formalization projects, like the Four-Color Theorem of graph theory [44], the above-mentioned
Kepler Conjecture [49], and, very recently, the Odd Order Theorem of group theory 1, have increased the
understanding of the appropriate software-engineering methods for this peculiar kind of programming. For
computer algebra, this legitimates a move to proof assistants now.

The Dynamic Dictionary of Mathematical Functions 2 (DDMF) [25] is an online computer-generated hand-
book of mathematical functions that ambitions to serve as a reference for a broad range of applications. This
software was developed by the computer-algebra component of the team as a project 3 of the MSR–INRIA
Joint Centre. It bases on a library for the computer-algebra system Maple, Algolib 4, whose development
started 20 years ago in ÉPI Algorithms 5. As suggested by the constant questioning of certainty by new poten-
tial users, DDMF deserves a formal guarantee of correctness of its content, on a level that proof assistants can
provide. Fortunately, the maturity of special-functions algorithms in Algolib makes DDMF a stepping stone
for such a formalization: it provides a well-understood and unified algorithmic treatment, without which a
formal certification would simply be unreachable.

The formal-proofs component of the team emanates from another project of the MSR–INRIA Joint Centre,
namely the Mathematical Components project (MathComp) 6. Since 2006, the MathComp group has endeav-
oured to develop computer-checked libraries of formalized mathematics, using the Coq proof assistant [66].
The methodological aim of the project was to understand the design methods leading to successful large-scale
formalizations. The work culminated in 2012 with the completion of a formal proof of the Odd Order The-
orem, resulting in the largest corpus of algebraic theories ever machine-checked with a proof assistant and a
whole methodology to effectively combine these components in order to tackle complex formalizations. In
particular, these libraries provide a good number of the many algebraic objects needed to reason about spe-
cial functions and their properties, like rational numbers, iterated sums, polynomials, and a rich hierarchy of
algebraic structures.

The present team takes benefit from these recent advances to explore the formal certification of the results
collected in DDMF. The aim of this project is to concentrate the formalization effort on this delimited area,
building on DDMF and the Algolib library, as well as on the Coq system [66] and on the libraries developed
by the MathComp project.

1http://www.msr-inria.inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/
2http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
3http://www.msr-inria.inria.fr/projects/dynamic-dictionary-of-mathematical-functions/
4http://algo.inria.fr/libraries/
5http://algo.inria.fr/
6http://www.msr-inria.fr/projects/mathematical-components/

http://www.msr-inria.inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://www.msr-inria.inria.fr/projects/dynamic-dictionary-of-mathematical-functions/
http://algo.inria.fr/libraries/
http://algo.inria.fr/
http://www.msr-inria.fr/projects/mathematical-components/

Project-Team SPECFUN 3

2.1.1. Use computer algebra but convince users beyond reasonable doubt
The following few opinions on computer algebra are, we believe, typical of computer-algebra users’ doubts
and difficulties when using computer-algebra systems:

• Fredrik Johansson, expert in the multi-precision numerical evaluation of special functions and in
fast computer-algebra algorithms, writes on his blog [55]: “Mathematica is great for cross-checking
numerical values, but it’s not unusual to run into bugs, so triple checking is a good habit.” One
answer in the discussion is: “We can claim that Mathematica has [...] an impossible to understand
semantics: If Mathematica’s output is wrong then change the input. If you don’t like the answer,
change the question. That seems to be the philosophy behind.”

• A professor’s advice to students [62] on using Maple: “You may wish to use Maple to check your
homework answers. If you do then keep in mind that Maple sometimes gives the wrong answer,
usually because you asked incorrectly, or because of niceties of analytic continuation. You may
even be bitten by an occasional Maple bug, though that has become fairly unlikely. Even with as
powerful a tool as Maple you will still have to devise your own checks and you will still have to
think.”

• Jacques Carette, former head of the maths group at Maplesoft, about a bug [21] when asking Maple
to take the limit limit(f(n) * exp(-n), n = infinity) for an undetermined function f: “The
problem is that there is an implicit assumption in the implementation that unknown functions do not
‘grow too fast’.”

As explained by the expert views above, complaints by computer-algebra users are often due to their
misunderstanding of what a computer-algebra systems is, namely a purely syntactic tool for calculations, that
the user must complement with a semantics. Still, robustness and consistency of computer-algebra systems
are not ensured as of today, and, whatever Zeilberger may provocatively say in his Opinion 94 [71], a firmer
logical foundation is necessary. Indeed, the fact is that many “bugs” in a computer-algebra system cannot be
fixed by just the usual debugging method of tracking down the faulty lines in the code. It is sort of “by design”:
assumptions that too often remain implicit are really needed by the design of symbolic algorithms and cannot
easily be expressed in the programming languages used in computer algebra. A similar certification initiative
has already been undertaken in the domain of numerical computing, in a successful manner [53], [28]. It is
natural to undertake a similar approach for computer algebra.

2.1.2. Make computer algebra and formal proofs help one another
Some of the mathematical objects that interest our team are still totally untouched by formalization. When
implementing them and their theory inside a proof assistant, we have to deal with the pervasive discrepancy
between the published literature and the actual implementation of computer-algebra algorithms. Interestingly,
this forces us to clarify our computer-algebraic view on them, and possibly make us discover holes lurking
in published (human) proofs. We are therefore convinced that the close interaction of researchers from both
fields, which is what we strive to maintain in this team, is a strong asset.

For a concrete example, the core of Zeilberger’s creative telescoping manipulates rational functions up
to simplifications. In summation applications, checking that these simplifications do not hide problematic
divisions by 0 is most often left to the reader. In the same vein, in the case of integrals, the published algorithms
do not check the convergence of all integrals, especially in intermediate calculations. Such checks are again
left to the readers. In general, we expect to revisit the existing algorithms to ensure that they are meaningful
for genuine mathematical sequences or functions, and not only for algebraic idealizations.

Another big challenge in this project originates in the scientific difference between computer algebra and
formal proofs. Computer algebra seeks speed of calculation on concrete instances of algebraic data structures
(polynomials, matrices, etc). For their part, formal proofs manipulate symbolic expressions in terms of abstract
variables understood to represent generic elements of algebraic data structures. In view of this, a continuous
challenge is to develop the right, hybrid thinking attitude that is able to effectively manage concrete and
abstract values simultaneously, alternatively computing and proving with them.

4 Activity Report INRIA 2014

2.1.3. Experimental mathematics with special functions
Applications in combinatorics and mathematical physics frequently involve equations of so high orders and
so large sizes, that computing or even storing all their coefficients is impossible on existing computers.
Making this tractable is an extraordinary challenge. The approach we believe in is to design algorithms of
good—ideally quasi-optimal—complexity in order to extract precisely the required data from the equations,
while avoiding the computationally intractable task of completely expanding them into an explicit representa-
tion.

Typical applications with expected high impact are the automatic discovery and algorithmic proof of results in
combinatorics and mathematical physics for which human proofs are currently unattainable.

2.2. Research axes
The implementation of certified symbolic computations on special functions in the Coq proof assistant
requires both investigating new formalization techniques and renewing the traditional computer-algebra
viewpoint on these standard objects. Large mathematical objects typical of computer algebra occur during
formalization, which also requires us to improve the efficiency and ergonomics of Coq. In order to feed this
interdisciplinary activity with new motivating problems, we additionally pursue a research activity oriented
towards experimental mathematics in application domains that involve special functions. We expect these
applications to pose new algorithmic challenges to computer algebra, which in turn will deserve a formal-
certification effort. Finally, DDMF is the motivation and the showcase of our progress on the certification
of these computations. While striving to provide a formal guarantee of the correctness of the information
it displays, we remain keen on enriching its mathematical content by developing new computer-algebra
algorithms.

2.2.1. Computer algebra certified by the coq system
Our formalization effort consists in organizing a cooperation between a computer-algebra system and a proof
assistant. The computer-algebra system is used to produce efficiently algebraic data, which are later processed
by the proof assistant. The success of this cooperation relies on the design of appropriate libraries of formalized
mathematics, including certified implementations of certain computer-algebra algorithms. On the other side,
we expect that scrutinizing the implementation and the output of computer-algebra algorithms will shed a new
light on their semantics and on their correctness proofs, and help clarifying their documentation.

2.2.1.1. Libraries of formalized mathematics

The appropriate framework for the study of efficient algorithms for special functions is algebraic. Representing
algebraic theories as Coq formal libraries takes benefit from the methodology emerging from the success of
ambitious projects like the formal proof of a major classification result in finite-group theory (the Odd Order
Theorem) [42].

Yet, a number of the objects we need to formalize in the present context has never been investigated using any
interactive proof assistant, despite being considered as commonplaces in computer algebra. For instance there
is up to our knowledge no available formalization of the theory of non-commutative rings, of the algorithmic
theory of special-functions closures, or of the asymptotic study of special functions. We expect our future
formal libraries to prove broadly reusable in later formalizations of seemingly unrelated theories.

2.2.1.2. Manipulation of large algebraic data in a proof assistant

Another peculiarity of the mathematical objects we are going to manipulate with the Coq system is their size.
In order to provide a formal guarantee on the data displayed by DDMF, two related axes of research have
to be pursued. First, efficient algorithms dealing with these large objects have to be programmed and run
in Coq. Recent evolutions of the Coq system to improve the efficiency of its internal computations [23], [26]
make this objective reachable. Still, how to combine the aforementioned formalization methodology with these
cutting-edge evolutions of Coq remains one of the prospective aspects of our project. A second need is to help
users interactively manipulate large expressions occurring in their conjectures, an objective for which little
has been done so far. To address this need, we work on improving the ergonomics of the system in two ways:

Project-Team SPECFUN 5

first, ameliorating the reactivity of Coq in its interaction with the user; second, designing and implementing
extensions of its interface to ease our formalization activity. We expect the outcome of these lines of research
to be useful to a wider audience, interested in manipulating large formulas on topics possibly unrelated to
special functions.

2.2.1.3. Formal-proof-producing normalization algorithms

Our algorithm certifications inside Coq intend to simulate well-identified components of our Maple packages,
possibly by reproducing them in Coq. It would however not have been judicious to re-implement them inside
Coq in a systematic way. Indeed for a number of its components, the output of the algorithm is more easily
checked than found, like for instance the solving of a linear system. Rather, we delegate the discovery of the
solutions to an external, untrusted oracle like Maple. Trusted computations inside Coq then formally validate
the correctness of the a priori untrusted output. More often than not, this validation consists in implementing
and executing normalization procedures inside Coq. A challenge of this automation is to make sure they go
to scale while remaining efficient, which requires a Coq version of non-trivial computer-algebra algorithms.
A first, archetypal example we expect to work on is a non-commutative generalization of the normalization
procedure for elements of rings [48].

2.2.2. Better symbolic computations with special functions
Generally speaking, we design algorithms for manipulating special functions symbolically, whether univariate
or with parameters, and for extracting algorithmically any kind of algebraic and analytic information from
them, notably asymptotic properties. Beyond this, the heart of our research is concerned with parametrised
definite summations and integrations. These very expressive operations have far-ranging applications, for
instance, to the computation of integral transforms (Laplace, Fourier) or to the solution of combinatorial
problems expressed via integrals (coefficient extractions, diagonals). The algorithms that we design for them
need to really operate on the level of linear functional systems, differential and of recurrence. In all cases, we
strive to design our algorithms with the constant goal of good theoretical complexity, and we observe that our
algorithms are also fast in practice.

2.2.2.1. Special-function integration and summation

Our long-term goal is to design fast algorithms for a general method for special-function integration (creative
telescoping), and make them applicable to general special-function inputs. Still, our strategy is to proceed with
simpler, more specific classes first (rational functions, then algebraic functions, hyperexponential functions,
D-finite functions, non-D-finite functions; two variables, then many variables); as well, we isolate analytic
questions by first considering types of integration with a more purely algebraic flavor (constant terms, algebraic
residues, diagonals of combinatorics). In particular, we expect to extend our recent approach [31] to more
general classes (algebraic with nested radicals, for example): the idea is to speed up calculations by making use
of an analogue of Hermite reduction that avoids considering certificates. Homologous problems for summation
will be addressed as well.

2.2.2.2. Applications to experimental mathematics

As a consequence of our complexity-driven approach to algorithms design, the algorithms mentioned in the
previous paragraph are of good complexity. Therefore, they naturally help us deal with applications that
involve equations of high orders and large sizes.

With regard to combinatorics, we expect to advance the algorithmic classification of combinatorial classes
like walks and urns. Here, the goal is to determine if enumerative generating functions are rational, algebraic,
or D-finite, for example. Physical problems whose modelling involves special-function integrals comprise the
study of models of statistical mechanics, like the Ising model for ferro-magnetism, or questions related to
Hamiltonian systems.

Number theory is another promising domain of applications. Here, we attempt an experimental approach to the
automated certification of integrality of the coefficients of mirror maps for Calabi–Yau manifolds. This could
also involve the discovery of new Calabi–Yau operators and the certification of the existing ones. We also plan
to algorithmically discover and certify new recurrences yielding good approximants needed in irrationality
proofs.

6 Activity Report INRIA 2014

It is to be noted that in all of these application domains, we would so far use general algorithms, as was done
in earlier works of ours [30], [34], [33]. To push the scale of applications further, we plan to consider in each
case the specifics of the application domain to tailor our algorithms.

2.2.3. Interactive and certified mathematical web sites
In continuation of our past project of an encyclopedia at http://ddmf.msr-inria.inria.fr/1.9.1/ddmf, we ambition
to both enrich and certify the formulas about the special functions that we provide online. For each function,
our website shows its essential properties and the mathematical objects attached to it, which are often infinite
in nature (numerical evaluations, asymptotic expansions). An interactive presentation has the advantage of
allowing for adaption to the user’s needs. More advanced content will broaden the encyclopedia:

• the algorithmic discussion of equations with parameters, leading to certified automatic case analysis
based on arithmetic properties of the parameters;

• lists of summation and integral formulas involving special functions, including validity conditions
on the parameters;

• guaranteed large-precision numerical evaluations.

3. Research Program
3.1. Studying special functions by computer algebra

Computer algebra manipulates symbolic representations of exact mathematical objects in a computer, in order
to perform computations and operations like simplifying expressions and solving equations for “closed-form
expressions”. The manipulations are often fundamentally of algebraic nature, even when the ultimate goal is
analytic. The issue of efficiency is a particular one in computer algebra, owing to the extreme swell of the
intermediate values during calculations.

Our view on the domain is that research on the algorithmic manipulation of special functions is anchored
between two paradigms:

• adopting linear differential equations as the right data structure for special functions,
• designing efficient algorithms in a complexity-driven way.

It aims at four kinds of algorithmic goals:
• algorithms combining functions,
• functional equations solving,
• multi-precision numerical evaluations,
• guessing heuristics.

This interacts with three domains of research:
• computer algebra, meant as the search for quasi-optimal algorithms for exact algebraic objects,
• symbolic analysis/algebraic analysis;
• experimental mathematics (combinatorics, mathematical physics, ...).

This view is made explicit in the present section.

3.1.1. Equations as a data structure
Numerous special functions satisfy linear differential and/or recurrence equations. Under a mild technical
condition, the existence of such equations induces a finiteness property that makes the main properties of the
functions decidable. We thus speak of D-finite functions. For example, 60 % of the chapters in the handbook
[20] describe D-finite functions. In addition, the class is closed under a rich set of algebraic operations. This
makes linear functional equations just the right data structure to encode and manipulate special functions. The
power of this representation was observed in the early 1990s [72], leading to the design of many algorithms in
computer algebra. Both on the theoretical and algorithmic sides, the study of D-finite functions shares much
with neighbouring mathematical domains: differential algebra, D-module theory, differential Galois theory, as
well as their counterparts for recurrence equations.

http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

Project-Team SPECFUN 7

3.1.2. Algorithms combining functions
Differential/recurrence equations that define special functions can be recombined [72] to define: additions
and products of special functions; compositions of special functions; integrals and sums involving special
functions. Zeilberger’s fast algorithm for obtaining recurrences satisfied by parametrised binomial sums was
developed in the early 1990s already [73]. It is the basis of all modern definite summation and integration
algorithms. The theory was made fully rigorous and algorithmic in later works, mostly by a group in RISC
(Linz, Austria) and by members of the team [61], [69], [38], [36], [37], [56]. The past ÉPI Algorithms
contributed several implementations (gfun [64], Mgfun [38]).

3.1.3. Solving functional equations
Encoding special functions as defining linear functional equations postpones some of the difficulty of the
problems to a delayed solving of equations. But at the same time, solving (for special classes of functions)
is a sub-task of many algorithms on special functions, especially so when solving in terms of polynomial or
rational functions. A lot of work has been done in this direction in the 1990s; more intensively since the 2000s,
solving differential and recurrence equations in terms of special functions has also been investigated.

3.1.4. Multi-precision numerical evaluation
A major conceptual and algorithmic difference exists for numerical calculations between data structures
that fit on a machine word and data structures of arbitrary length, that is, multi-precision arithmetic. When
multi-precision floating-point numbers became available, early works on the evaluation of special functions
were just promising that “most” digits in the output were correct, and performed by heuristically increasing
precision during intermediate calculations, without intended rigour. The original theory has evolved in a
twofold way since the 1990s: by making computable all constants hidden in asymptotic approximations, it
became possible to guarantee a prescribed absolute precision; by employing state-of-the-art algorithms on
polynomials, matrices, etc, it became possible to have evaluation algorithms in a time complexity that is linear
in the output size, with a constant that is not more than a few units. On the implementation side, several original
works exist, one of which (NumGfun [60]) is used in our DDMF.

3.1.5. Guessing heuristics
“Differential approximation”, or “Guessing”, is an operation to get an ODE likely to be satisfied by a given
approximate series expansion of an unknown function. This has been used at least since the 1970s and is a key
stone in spectacular applications in experimental mathematics [34]. All this is based on subtle algorithms for
Hermite–Padé approximants [24]. Moreover, guessing can at times be complemented by proven quantitative
results that turn the heuristics into an algorithm [32]. This is a promising algorithmic approach that deserves
more attention than it has received so far.

3.1.6. Complexity-driven design of algorithms
The main concern of computer algebra has long been to prove the feasibility of a given problem, that is, to
show the existence of an algorithmic solution for it. However, with the advent of faster and faster computers,
complexity results have ceased to be of theoretical interest only. Nowadays, a large track of works in computer
algebra is interested in developing fast algorithms, with time complexity as close as possible to linear in
their output size. After most of the more pervasive objects like integers, polynomials, and matrices have been
endowed with fast algorithms for the main operations on them [43], the community, including ourselves,
started to turn its attention to differential and recurrence objects in the 2000s. The subject is still not as
developed as in the commutative case, and a major challenge remains to understand the combinatorics behind
summation and integration. On the methodological side, several paradigms occur repeatedly in fast algorithms:
“divide and conquer” to balance calculations, “evaluation and interpolation” to avoid intermediate swell of
data, etc. [29].

8 Activity Report INRIA 2014

3.2. Trusted computer-algebra calculations
3.2.1. Encyclopedias

Handbooks collecting mathematical properties aim at serving as reference, therefore trusted, documents. The
decision of several authors or maintainers of such knowledge bases to move from paper books [20], [22], [65]
to websites and wikis 7 allows for a more collaborative effort in proof reading. Another step toward further
confidence is to manage to generate the content of an encyclopedia by computer-algebra programs, as is the
case with the Wolfram Functions Site 8 or DDMF 9. Yet, due to the lingering doubts about computer-algebra
systems, some encyclopedias propose both cross-checking by different systems and handwritten companion
paper proofs of their content 10. As of today, there is no encyclopedia certified with formal proofs.

3.2.2. Computer algebra and symbolic logic
Several attempts have been made in order to extend existing computer-algebra systems with symbolic
manipulations of logical formulas. Yet, these works are more about extending the expressivity of computer-
algebra systems than about improving the standards of correctness and semantics of the systems. Conversely,
several projects have addressed the communication of a proof system with a computer-algebra system,
resulting in an increased automation available in the proof system, to the price of the uncertainty of the
computations performed by this oracle.

3.2.3. Certifying systems for computer algebra
More ambitious projects have tried to design a new computer-algebra system providing an environment where
the user could both program efficiently and elaborate formal and machine-checked proofs of correctness, by
calling a general-purpose proof assistant like the Coq system. This approach requires a huge manpower and a
daunting effort in order to re-implement a complete computer-algebra system, as well as the libraries of formal
mathematics required by such formal proofs.

3.2.4. Semantics for computer algebra
The move to machine-checked proofs of the mathematical correctness of the output of computer-algebra
implementations demands a prior clarification about the often implicit assumptions on which the presumably
correctly implemented algorithms rely. Interestingly, this preliminary work, which could be considered as
independent from a formal certification project, is seldom precise or even available in the literature.

3.2.5. Formal proofs for symbolic components of computer-algebra systems
A number of authors have investigated ways to organize the communication of a chosen computer-algebra
system with a chosen proof assistant in order to certify specific components of the computer-algebra systems,
experimenting various combinations of systems and various formats for mathematical exchanges. Another line
of research consists in the implementation and certification of computer-algebra algorithms inside the logic
[68], [48], [57] or as a proof-automation strategy. Normalization algorithms are of special interest when they
allow to check results possibly obtained by an external computer-algebra oracle [41]. A discussion about the
systematic separation of the search for a solution and the checking of the solution is already clearly outlined
in [54].

3.2.6. Formal proofs for numerical components of computer-algebra systems
Significant progress has been made in the certification of numerical applications by formal proofs. Libraries
formalizing and implementing floating-point arithmetic as well as large numbers and arbitrary-precision
arithmetic are available. These libraries are used to certify floating-point programs, implementations of
mathematical functions and for applications like hybrid systems.

7for instance http://dlmf.nist.gov/ for special functions or http://oeis.org/ for integer sequences
8http://functions.wolfram.com/
9http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
10http://129.81.170.14/~vhm/Table.html

http://dlmf.nist.gov/
http://oeis.org/
http://functions.wolfram.com/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://129.81.170.14/~vhm/Table.html

Project-Team SPECFUN 9

3.3. Machine-checked proofs of formalized mathematics
To be checked by a machine, a proof needs to be expressed in a constrained, relatively simple formal language.
Proof assistants provide facilities to write proofs in such languages. But, as merely writing, even in a formal
language, does not constitute a formal proof just per se, proof assistants also provide a proof checker: a small
and well-understood piece of software in charge of verifying the correctness of arbitrarily large proofs. The
gap between the low-level formal language a machine can check and the sophistication of an average page of
mathematics is conspicuous and unavoidable. Proof assistants try to bridge this gap by offering facilities, like
notations or automation, to support convenient formalization methodologies. Indeed, many aspects, from the
logical foundation to the user interface, play an important role in the feasibility of formalized mathematics
inside a proof assistant.

3.3.1. Logical foundations and proof assistants
While many logical foundations for mathematics have been proposed, studied, and implemented, type theory
is the one that has been more successfully employed to formalize mathematics, to the notable exception of the
Mizar system [58], which is based on set theory. In particular, the calculus of construction (CoC) [39] and its
extension with inductive types (CIC) [40], have been studied for more than 20 years and been implemented
by several independent tools (like Lego, Matita, and Agda). Its reference implementation, Coq [66], has been
used for several large-scale formalizations projects (formal certification of a compiler back-end; four-color
theorem). Improving the type theory underlying the Coq system remains an active area of research. Other
systems based on different type theories do exist and, whilst being more oriented toward software verification,
have been also used to verify results of mainstream mathematics (prime-number theorem; Kepler conjecture).

3.3.2. Computations in formal proofs
The most distinguishing feature of CoC is that computation is promoted to the status of rigorous logical
argument. Moreover, in its extension CIC, we can recognize the key ingredients of a functional programming
language like inductive types, pattern matching, and recursive functions. Indeed, one can program effectively
inside tools based on CIC like Coq. This possibility has paved the way to many effective formalization
techniques that were essential to the most impressive formalizations made in CIC.

Another milestone in the promotion of the computations-as-proofs feature of Coq has been the integration of
compilation techniques in the system to speed up evaluation. Coq can now run realistic programs in the logic,
and hence easily incorporates calculations into proofs that demand heavy computational steps.

Because of their different choice for the underlying logic, other proof assistants have to simulate computations
outside the formal system, and indeed fewer attempts to formalize mathematical proofs involving heavy
calculations have been made in these tools. The only notable exception, which was finished in 2014, the
Kepler conjecture, required a significant work to optimize the rewriting engine that simulates evaluation in
Isabelle/HOL.

3.3.3. Large-scale computations for proofs inside the Coq system
Programs run and proved correct inside the logic are especially useful for the conception of automated decision
procedures. To this end, inductive types are used as an internal language for the description of mathematical
objects by their syntax, thus enabling programs to reason and compute by case analysis and recursion on
symbolic expressions.

The output of complex and optimized programs external to the proof assistant can also be stamped with a
formal proof of correctness when their result is easier to check than to find. In that case one can benefit from
their efficiency without compromising the level of confidence on their output at the price of writing and certify
a checker inside the logic. This approach, which has been successfully used in various contexts, is very relevant
to the present research project.

10 Activity Report INRIA 2014

3.3.4. Relevant contributions from the Mathematical Component libraries
Representing abstract algebra in a proof assistant has been studied for long. The libraries developed by
the MathComp project for the proof of the Odd Order Theorem provide a rather comprehensive hierarchy
of structures; however, they originally feature a large number of instances of structures that they need to
organize. On the methodological side, this hierarchy is an incarnation of an original work [42] based on various
mechanisms, primarily type inference, typically employed in the area of programming languages. A large
amount of information that is implicit in handwritten proofs, and that must become explicit at formalization
time, can be systematically recovered following this methodology.

Small-scale reflection [45] is another methodology promoted by the MathComp project. Its ultimate goal is
to ease formal proofs by systematically dealing with as many bureaucratic steps as possible, by automated
computation. For instance, as opposed to the style advocated by Coq’s standard library, decidable predicates
are systematically represented using computable boolean functions: comparison on integers is expressed as
program, and to state that a ≤ b one compares the output of this program run on a and b with true. In many
cases, for example when a and b are values, one can prove or disprove the inequality by pure computation.

The MathComp library was consistently designed after uniform principles of software engineering. These
principles range from simple ones, like naming conventions, to more advanced ones, like generic program-
ming, resulting in a robust and reusable collection of formal mathematical components. This large body of
formalized mathematics covers a broad panel of algebraic theories, including of course advanced topics of
finite group theory, but also linear algebra, commutative algebra, Galois theory, and representation theory. We
refer the interested reader to the online documentation of these libraries [67], which represent about 150,000
lines of code and include roughly 4,000 definitions and 13,000 theorems.

Topics not addressed by these libraries and that might be relevant to the present project include real analysis
and differential equations. The most advanced work of formalization on these domains is available in the HOL-
Light system [50], [51], [52], although some existing developments of interest [27], [59] are also available
for Coq. Another aspect of the MathComp libraries that needs improvement, owing to the size of the data
we manipulate, is the connection with efficient data structures and implementations, which only starts to be
explored.

3.3.5. User interaction with the proof assistant
The user of a proof assistant describes the proof he wants to formalize in the system using a textual language.
Depending on the peculiarities of the formal system and the applicative domain, different proof languages
have been developed. Some proof assistants promote the use of a declarative language, when the Coq and
Matita systems are more oriented toward a procedural style.

The development of the large, consistent body of MathComp libraries has prompted the need to design an
alternative and coherent language extension for the Coq proof assistant [47], [46], enforcing the robustness
of proof scripts to the numerous changes induced by code refactoring and enhancing the support for the
methodology of small-scale reflection.

The development of large libraries is quite a novelty for the Coq system. In particular any long-term
development process requires the iteration of many refactoring steps and very little support is provided by
most proof assistants, with the notable exception of Mizar [63]. For the Coq system, this is an active area of
research.

4. Application Domains

4.1. Experimental mathematics with special functions
Applications in combinatorics and mathematical physics frequently involve equations of so high orders and so
large sizes, that computing or even storing all their coefficients is impossible on existing computers. Making
this tractable is another challenge of our project. The approach we believe in is to design algorithms of good,

Project-Team SPECFUN 11

ideally quasi-optimal, complexity in order to extract precisely the required data from the equations, while
avoiding the computationally intractable task of completely expanding them into an explicit representation.

Typical applications with expected high impact are the automatic discovery and proof of results in combina-
torics and mathematical physics for which human proofs are currently unattainable.

5. New Software and Platforms

5.1. SSReflect
SSReflect is a language extension of the Coq system and was originally written by G. Gonthier for his formal
proof of the Four-Color Theorem 11. In the team, A. Mahboubi and E. Tassi participate to its development,
maintenance, distribution, documentation, and user support. A new version (1.5) was released in March 2014.
The proof language now offers fine-grained control on type-classes inference and offers new proof commands
to ease forward reasoning. In particular the ‘have’ tactic now supports new modifiers to ease stating generalized
formulas as well as hoisting out deeply nested forward steps.

5.2. The Mathematical Components library
The Mathematical Components library is a set of Coq libraries that cover the mechanization of the proof of
the Odd Order Theorem, with large contributions by A. Mahboubi and E. Tassi. After the formal proof was
completed in September 2012, stable libraries had been distributed 12 with the SSReflect extension, while
remaining parts of the libraries had remained under continued improvements in view of potential reuse. In
March 2014, version 1.5 of library was released. With it, the library includes 16 more theory files, covering in
particular field and Galois theory, advanced character theory, and a construction of algebraic numbers.

5.3. Coq
The way Coq processes theory files has been improved. When used as a batch compiler, Coq is now able to
decouple the checking of statements and definitions from the checking of proofs. All proofs can be checked
independently taking advantage of modern parallel hardware. When used interactively in conjunction with
PIDE-based interfaces, Coq is now able to process the document asynchronously by delegating most of the
task to external workers.

The Coq build process was also improved to better support the Windows platform and to enable third parties
to provide pre-compiled plugins for such platform.

5.4. Coq/jEdit
Building on top of the asynchronous processing of Coq proofs, we have implemented a plugin that connects
the jEdit generic text editor to Coq. This plugin is an adaptation of a similar plugin, written by M. Wenzel,
for the Isabelle proof assistant. The interaction using this plugin is a significant change from existing user
interfaces, making full use of Coq’s asynchronous processing capabilities to provide richer feedback about the
proof a user is editing.

The plugin was released as a beta in November 2014 and is available at http://pages.saclay.inria.fr/carst.
tankink/jedit.html.

5.5. Other maintained software
We still actively maintain the following other software, which have not had a new release this year.

11http://www.msr-inria.fr/projects/mathematical-components/
12http://www.msr-inria.fr/projects/mathematical-components/

http://pages.saclay.inria.fr/carst.tankink/jedit.html
http://pages.saclay.inria.fr/carst.tankink/jedit.html
http://www.msr-inria.fr/projects/mathematical-components/
http://www.msr-inria.fr/projects/mathematical-components/

12 Activity Report INRIA 2014

5.5.1. DDMF
(2007–): Web site consisting of interactive tables of mathematical formulas on elementary and special
functions. The formulas are automatically generated by OCaml and computer-algebra routines. Users can
ask for more terms of the expansions, more digits of the numerical values, proofs of some of the formulas,
etc. See http://ddmf.msr-inria.inria.fr/1.9.1/ddmf. We count hundreds of user sessions per month. Source code
distributed under CeCILL-B. A next release is under preparation: it will base on a different, more user-friendly
rendering tool (MathJax) and will display more contents.

5.5.2. DynaMoW
(2007–): Programming tool for controlling the generation of mathematical websites that embed dynamical
mathematical contents generated by computer-algebra calculations. Implemented in OCaml. See http://ddmf.
msr-inria.inria.fr/DynaMoW/. Source code distributed under CeCILL-B.

5.5.3. Ring
(2004–): Coq normalization tool and decision procedure for expressions in commutative ring theories.
Implemented in Coq and OCaml. Integrated in the standard distribution of the Coq proof assistant since 2005.

5.5.4. Mgfun
(1994–): Maple package for symbolic summation, integration, and other closure properties of multivariate
special functions. Now distributed as part of Algolib, a collection of packages for combinatorics and manipu-
lations of special functions, available at http://algo.inria.fr/libraries/. This software has been used this year for
our formal proof of irrationality of ζ(3).

6. New Results

6.1. Highlights of the Year
Two results are particularly important this year, our computer-checked proof [11] of irrationality of ζ(3) and
our new algorithm [19] for the integration of multiple integrals. The former is our first success in the merger
between computer algebra and formal methods, and stimulates further research in this direction around special
functions and creative telescoping. The latter has made a large class of integrals possible in practice, thus
allowing us to compute a challenging list of integrals related to famous Calabi–Yau various; it has also received
attention by physicists.

6.2. A formal proof of the irrationality of ζ(3)
We have obtained a formal proof, machine-checked by the Coq proof assistant, of the irrationality of the
constant ζ(3), that is, the evaluation at 3 of the Riemann zeta function of number theory. The result has been
known in mathematics since the French mathematician Apéry’s work in 1978, and several alternative proofs
have been given since then. Our formalized result is the first complete proof by the computer (under the
single assumption of the asymptotic behavior of the least common multiple of the first n natural numbers).
The core of this formal proof is based on (untrusted) computer-algebra calculations performed outside the
proof assistant with the Mgfun Maple library developed by members of the team in the past. Then, we verify
formally and a posteriori the desired properties of the objects computed by Maple and complete the proof of
irrationality. This work [11] was formally presented at the conference on interactive theorem proving, ITP’14,
and also as talks at MSC 2014 (Mathematical Structures of Computation) 13, at the meeting MAP 2014 of the
community on mathematics, algorithms and proofs 14, and at JNCF’14, the meeting of the French computer-
algebra community 15.

13http://smc2014.univ-lyon1.fr/
14http://perso.crans.org/cohen/map2014/
15http://www.lifl.fr/jncf2014/

http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://ddmf.msr-inria.inria.fr/DynaMoW/
http://ddmf.msr-inria.inria.fr/DynaMoW/
http://algo.inria.fr/libraries/
http://smc2014.univ-lyon1.fr/
http://perso.crans.org/cohen/map2014/
http://www.lifl.fr/jncf2014/

Project-Team SPECFUN 13

6.3. Criterion for the existence of telescopers for mixed hypergeometric terms
Creative telescoping is a process that determines a univariate recurrence satisfied by the sum of a summand
described by a system of bivariate recurrences. For hypergeometric summands, that is, summands given by
first-order linear recurrences, this has led to Zeilberger’s algorithm in the early 1990s, since then followed by
a large number of works, including a natural counterpart for integration. The history of creative-telescoping
algorithms was surveyed this year in Chyzak’s HDR [1]. Also this year, we presented in [6] a criterion for
the existence of telescopers for mixed hypergeometric terms, which is based on additive and multiplicative
decompositions. The criterion had enabled us to determine the termination of Zeilberger’s algorithms for
mixed hypergeometric inputs prior to any costly computations, and to verify that certain indefinite sums do
not satisfy any polynomial differential equation.

6.4. Integration of rational functions
Periods of rational integrals are specific integrals, with respect to one or several variables, whose integrand is
a rational function and whose domain of integration is closed. Periods with a parameter are classically known
to satisfy linear differential equations of a type called Picard-Fuchs equations. As for other special-function
manipulations, handling periods through those differential equations is a good way to actually compute them,
and this was the topic of Pierre Lairez’ PhD, defended this year [2].

Computing multivariate integrals is one speciality of the team and our algorithms are known to treat much
more general integrals than just periods of rational integrals. However, integration is still slow in practice
when the number of variables goes increasing. By looking at periods of rational function, the hope is to obtain
relevant complexity bounds and faster algorithms.

The goal of reaching relevant theoretical complexity bounds has been reached last year [35] but a practically
fast algorithm was still missing. This year, we described a new algorithm which is efficient in practice [19],
though its complexity is not known. This algorithm allows to compute quickly integrals that are too big to
be computed with previous algorithms. As a challenging benchmark, we computed 210 integrals given by
Batyrev and Kreuzer in their work on Calabi–Yau varieties. This achievement gave strong visibility to the
paper and allowed a quick dissemination of the implementation, which is provided in Magma under a CeCILL
B license. The algorithm is now used on a regular basis by several teams. We know of:

• Tom Coates’ team (Dpt. of Mathematics, Imperial College, London, UK), which uses the software
in their work about mirror symmetry and classification of Fano varieties;

• Duco van Straten (Institute of Mathematics, University of Mainz, Germany), who uses the software
in his work in algebraic geometry;

• Gert Alkmvist (Dpt. of Mathematics, University of Lund, Sweden), who uses the software in his
work of enumerating the Calabi–Yau differential equations.

6.5. Efficient algorithms for linear differential equations in positive
characteristic
The p-curvature of a linear differential operator in characteristic p is a matrix that measures to what extent the
space of polynomial solutions of the operator has dimension close to its order. This makes the p-curvature a
useful tool in concrete applications, like in combinatorics and statistical physics, where it serves for instance as
an a posteriori certification filter for differential operators obtained by guessing techniques. In [9], we designed
a new algorithm for computing the characteristic polynomial of the p-curvature in sublinear time Õ(p0.5).
Prior to this work, the fastest algorithms for this task, and even for the subtask of deciding nilpotency of the
p-curvature, had had merely slightly subquadratic complexity Õ(p1.79). The new algorithm is also efficient in
practice: it allows to test the nilpotency of the p-curvature for primes p of order 106, for which the p-curvature
itself is impossible to compute using current algorithms.

14 Activity Report INRIA 2014

6.6. Efficient algorithms for rational first integrals
We presented in [4] fast algorithms for computing rational first integrals with degree bounded by N of a
planar polynomial vector field of degree d ≤ N . The main novelty is that such rational first integrals are
obtained by computing via systems of linear equations instead of systems of quadratic equations. This leads
to a probabilistic algorithm with arithmetic complexity Õ(N2ω) and to a deterministic algorithm for solving
the problem in Õ(d2N2ω+1) arithmetic operations, where ω is the exponent of linear algebra. By comparison,
the best previous algorithm uses at least dω+1N4ω+4 arithmetic operations. Our new algorithms are moreover
very efficient in practice.

6.7. Computation of necessary integrability conditions for parametrized
Hamiltonian systems
Let V (q1,q2) be a homogeneous function whose coefficients depend rationally on parameters a1, ...,an.
In [10] we designed an algorithm to compute polynomial necessary conditions on the parameters (a1, ...,an)
such that the dynamical system associated to the potential V is integrable. These conditions originate from
those of the classical Morales-Ramis-Simó integrability criterion. The implementation of the algorithm allows
to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial
potentials up to degree 9. Another striking application is the first complete proof of the non-integrability of the
collinear three-body problem.

6.8. Non-D-finite excursions in the quarter plane
Counting lattice paths obeying various geometric constraints is a classical topic in combinatorics and prob-
ability theory. Many recent works deal with the enumeration of 2-dimensional walks with prescribed steps
confined to the positive quadrant. A large part of the effort has been devoted to the classification of classes
of walks according to the nature of equations that they satisfy (linear, polynomial, differential, etc). Equiva-
lently, this provides properties of the classes of walks according to the algebraic nature of their enumerative
series: whether rational, algebraic, D-finite, etc. The classification is now complete for walks with unit steps:
the trivariate generating function of the numbers of walks with given length and prescribed ending point is
D-finite if and only if a certain group associated with the step set is finite. We proved in [5] a refinement of this
result: we showed that the sequence of numbers of excursions (finite paths starting and ending at the origin)
in the quarter plane corresponding to a nonsingular step set with infinite group does not satisfy any nontriv-
ial linear recurrence with polynomial coefficients. This solves an open problem in the field of lattice-path
combinatorics.

6.9. A human proof of the Gessel conjecture
Gessel walks are planar walks confined to the positive quarter plane, that move by unit steps in any of the
following directions: West, North-East, East and South-West. In 2001, Ira Gessel conjectured a closed-form
expression for the number of Gessel walks of a given length starting and ending at the origin. In 2008, Kauers,
Koutschan and Zeilberger gave a computer-aided proof of this conjecture. The same year, Bostan and Kauers
showed, using again computer algebra tools, that the trivariate generating function of Gessel walks is algebraic.
We propose in [17] the first “human proofs” of these results. They are derived from a new expression for the
generating function of Gessel walks.

6.10. Enumeration of 3-dimensional lattice walks confined to the positive
octant
We explored in [3] the classification problem for 3-dimensional walks with unit steps confined to the positive
octant. The first difficulty is their number: there are 11 074 225 cases (instead of 79 in dimension 2). In our
work, we focused on the 35 548 that have at most six steps. We applied to them a combined approach, first
experimental and then rigorous. Among the 35 548 cases, we first found 170 cases with a finite group; in the

Project-Team SPECFUN 15

remaining cases, our experiments suggest that the group is infinite. We then rigorously proved D-finiteness of
the generating series in all the 170 cases, with the exception of 19 intriguing step sets for which the nature of
the generating function still remains unclear. In two challenging cases, no human proof is currently known,
and we derived computer-algebra proofs, thus constituting the first proofs for those two step sets.

6.11. Asymptotic expansions for linear homogeneous divide-and-conquer
recurrences: Algebraic and analytic approaches collated
Linear divide-and-conquer recurrences are a classical topic in computer science, but they are often dealt
with in an offhand way. Particularly the subtle oscillations they show are usually not emphasized. After
having elaborated last year a new approach to the asymptotic study of such recurrences, we provide in [7]
a comparison with an older approach based on number theoretic tools as Dirichlet series and residue
computation. The most striking aspect of the linear approach is the simplicity and the ease of use. Reduction to
normal Jordan form, computation of a joint spectral radius, dealing with a dilatation equation are all workable
with a computer-algebra system. Moreover these concepts are better known by computer scientists than those
of complex analysis and analytic number theory. So there is hope that this approach will more easily gain
acceptance among computer scientists.

6.12. Asynchronous interaction with Coq
We have integrated the Coq proof assistant with the PIDE architecture [13], [12] (“prover integrated devel-
opment environment”). The architecture is aimed at asynchronous, parallel interaction with proof assistants,
originally aimed at the Isabelle proof assistant, and is tied in heavily with a plugin that allows the jEdit editor
to work with proof assistants. We have made several generalizations to the PIDE architecture to accommodate
for more provers than just Isabelle, and adapted Coq to understand the core protocol: this delivered a working
system in about two man-months; further work improved the connection and added novel functionalities to
the interface. The tool has also been presented informally at seminars at the University of Dundee and the
Université Paris 13.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
Mathematical Components (project of the MSR–INRIA Joint Centre).
Goal: Investigate the design of large-scale, modular and reusable libraries of formalized mathemat-
ics, using the Coq proof assistant. This project successfully formalized the proof of the Odd Order
Theorem, resulting in a corpus of libraries related to various areas of algebra.
Leader: G. Gonthier (MSR Cambridge). Participants: F. Chyzak, A. Mahboubi, E. Tassi.
Website: http://www.msr-inria.fr/projects/mathematical-components/.

8. Partnerships and Cooperations

8.1. Regional Initiatives
Project Coquelicot, funded jointly by the Fondation de Coopération Scientifique “Campus Paris-
Saclay” and Digiteo.
Goal: Create a new Coq library for real numbers of mathematics.
Leader: S. Boldo (INRIA Saclay, Toccata). Participant: A. Mahboubi.
Website: http://coquelicot.saclay.inria.fr/.

http://www.msr-inria.fr/projects/mathematical-components/
http://coquelicot.saclay.inria.fr/

16 Activity Report INRIA 2014

8.2. National Initiatives
8.2.1. ANR

ParalITP (ANR-11-INSE-001).
Goal: Improve the performances and the ergonomics of interactive provers by taking advantage of
modern, parallel hardware.
Leader: B. Wolff (University of Orsay, Paris Paris-Sud). Participants: A. Mahboubi, C. Tankink,
E. Tassi.
Website: http://paral-itp.lri.fr/.

FastRelax (ANR-14-CE25-0018).
Goal: Develop computer-aided proofs of numerical values, with certified and reasonably tight error
bounds, without sacrificing efficiency.
Leader: B. Salvy (Inria, ÉNS Lyon). Participants: A. Mahboubi, Th. Sibut-Pinote.
Website: http://fastrelax.gforge.inria.fr/.

8.3. International Research Visitors
8.3.1. Visits of International Scientists

Claudio Sacerdoti Coen (associate professor at the University of Bologna) has been visiting three times a
week during 2014. During his stays he collaborated with Enrico Tassi and Dale Miller (team Parsifal) on the
design and implementation of a λ-Prolog-inspired programming language well suited to express type-inference
algorithms and their extensions.

Fabian Immler (PhD candidate, TUM, Munich, Germany) is working on the formal certification of properties
of differential systems, using the Isabelle proof assistant. He visited us for three days in December.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. member of the organizing committee

• A. Bostan has served in the organizing committee of the JNCF 2014, the annual meeting of the
French computer algebra community.

9.1.2. Scientific events selection
9.1.2.1. member of the conference program committee

• A. Bostan has served in the program committee of the SYNASC 2014 international conference.

• A. Bostan is part of the Scientific advisory board of the MEGA conference series.

• A. Mahboubi has served in the program committee of the ITP 2014 and CICM/Calculemus 2014
international conferences.

9.1.2.2. reviewer

• A. Bostan has served as reviewer for the ISSAC 2014 and SYNASC 2014 conferences.

• F. Chyzak has served as reviewer for the conference Calculemus 2014.

• A. Mahboubi has served as reviewer for the NFM 15 and CPP 15 international conference, and for
the JFLA 2015 national conference.

• C. Tankink has served as reviewer for the ITP 2014 international conference.

http://paral-itp.lri.fr/
http://fastrelax.gforge.inria.fr/

Project-Team SPECFUN 17

9.1.3. Journal
9.1.3.1. reviewer

• A. Bostan has served as reviewer for the Journal of Symbolic Computation and for the American
Mathematical Monthly.

• F. Chyzak has served as reviewer for the Journal of Algebra.
• A. Mahboubi has served as reviewer for the Journal of Automated Reasoning.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

• Master : A. Bostan, Algorithmes efficaces en calcul formel, 12h, M2, MPRI, France
• Master : F. Chyzak, Algorithmes efficaces en calcul formel, 12h, M2, MPRI, France
• Master : A. Mahboubi, Assistants de preuves, 6h, M2, MPRI, France
• Doctorat : A. Mahboubi, Lecturer at the Summer School Méthodes Algorithmiques et Applications

en Géométrie Algébrique Réelle et Théorie des Nombres, 4.5h, a CIMPA School at AIMS (M’Bour,
Sénégal)

• Doctorat : A. Mahboubi, Lecturer, 12h at the NII Shonan School on Coq, at Shonan (Japan)
• Research School : A. Mahboubi, Lecturer, 6h, at the Introductory school to the IHP special semester

on semantics of formal proofs and certified mathematics, CIRM (Marseille, France)

9.2.2. Supervision
• HdR: F. Chyzak, The ABC of Creative Telescoping: Algorithms, Bounds, Complexity, University

Paris-Sud 11, April 14, 2014 [1]
• PhD: P. Lairez, Périodes d’intégrales rationnelles : algorithmes et applications, École Polytech-

nique, November 12, 2014, supervised by A. Bostan and B. Salvy [2]
• PhD in progress: A. Barillec, Asymptotique automatique certifiée des fonctions spéciales, École

Polytechnique, started in September 2013, supervised by F. Chyzak and A. Mahboubi
• PhD in progress: L. Dumont, Algorithmique efficace pour les diagonales, applications en combina-

toire, physique et théorie des nombres, École Polytechnique, started in September 2013, supervised
by A. Bostan and B. Salvy

• PhD in progress: Th. Sibut-Pinote, Calcul numérique et démonstrations mathématiques : de la
rigueur à la preuve formelle, started in September 2014, supervised by A. Mahboubi

• Master : A. Mahboubi has supervised the Master 2 internship of Thomas Sibut-Pinote (ÉNS Lyon).

9.2.3. Juries
• A. Bostan has served as a jury member of the French Agrégation de Mathématiques – épreuve de

modélisation, option C.

9.3. Keynote talks
• A. Mahboubi has given an invited lecture at the joint CSL-LICS conference, part of the Vienna

Summer of Logic 2014.
• A. Mahboubi has given an invited lecture at the “Leçons de Mathématiques et d’Informatique

d’Aujourd’hui” colloquium in Bordeaux.

9.4. Popularization
• A. Mahboubi has written an article [16] for the popular science website “Images de Mathematiques”,

in the context of a partnership of this website with the Bourbaki seminar.

18 Activity Report INRIA 2014

• A. Mahboubi has given a talk at the popular science event “Nuit des Sciences, Ébullitions” http://
www.nuit-sciences.ens.fr/ at École Normale Supérieure, on June 6th 2014.

• A. Mahboubi has been interviewed by Ph. Pajot in the magazine La Recherche, November 2014.

• A. Mahboubi has given a “Science Break” talk, at Supélec, on December 10th 2014, an event
organized by La Diagonale Paris-Saclay, part of la Fondation de Coopération Scientifique Campus-
Paris-Saclay.

10. Bibliography
Publications of the year

Doctoral Dissertations and Habilitation Theses

[1] F. CHYZAK. The ABC of Creative Telescoping — Algorithms, Bounds, Complexity, Ecole Polytechnique X,
April 2014, Habilitation à diriger des recherches, https://tel.archives-ouvertes.fr/tel-01069831

[2] P. LAIREZ. Periods of rational integrals : algorithms and applications, École polytechnique, November 2014,
https://pastel.archives-ouvertes.fr/tel-01089130

Articles in International Peer-Reviewed Journals

[3] A. BOSTAN, M. BOUSQUET-MÉLOU, M. KAUERS, S. MELCZER. On 3-dimensional lattice walks confined
to the positive octant, in "Annals of Combinatorics", March 2015, 36 p. , forthcoming, https://hal.archives-
ouvertes.fr/hal-01063886

[4] A. BOSTAN, G. CHÈZE, T. CLUZEAU, J.-A. WEIL. Efficient Algorithms for Computing Rational First
Integrals and Darboux Polynomials of Planar Polynomial Vector Fields, in "Mathematics of Computation",
December 2014, forthcoming, https://hal.archives-ouvertes.fr/hal-00871663

[5] A. BOSTAN, K. RASCHEL, B. SALVY. Non-D-finite excursions in the quarter plane, in "Journal of Combina-
torial Theory, Series A", January 2014, vol. 121, pp. 45-63 [DOI : 10.1016/J.JCTA.2013.09.005], https://
hal.archives-ouvertes.fr/hal-00697386

[6] S. CHEN, F. CHYZAK, R. FENG, G. FU, Z. LI. On the existence of telescopers for mixed hypergeometric
terms, in "Journal of Symbolic Computation", 2014, https://hal.inria.fr/hal-00991211

[7] P. DUMAS. Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Alge-
braic and analytic approaches collated, in "Theoretical Computer Science", July 2014, pp. 25-53
[DOI : 10.1016/J.TCS.2014.06.036], https://hal.inria.fr/hal-01065761

Invited Conferences

[8] A. MAHBOUBI. Computer-checked mathematics: a formal proof of the odd order theorem, in "The
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)", Vienna, Austria, July 2014
[DOI : 10.1145/2603088.2603090], https://hal.inria.fr/hal-01107941

http://www.nuit-sciences.ens.fr/
http://www.nuit-sciences.ens.fr/
https://tel.archives-ouvertes.fr/tel-01069831
https://pastel.archives-ouvertes.fr/tel-01089130
https://hal.archives-ouvertes.fr/hal-01063886
https://hal.archives-ouvertes.fr/hal-01063886
https://hal.archives-ouvertes.fr/hal-00871663
https://hal.archives-ouvertes.fr/hal-00697386
https://hal.archives-ouvertes.fr/hal-00697386
https://hal.inria.fr/hal-00991211
https://hal.inria.fr/hal-01065761
https://hal.inria.fr/hal-01107941

Project-Team SPECFUN 19

International Conferences with Proceedings

[9] A. BOSTAN, X. CARUSO, É. SCHOST. A fast algorithm for computing the characteristic polynomial of the
p-curvature, in "ISSAC - 39th International Symposium on Symbolic and Algebraic Computation", Kobe,
Japan, ACM Press, July 2014 [DOI : 10.1145/2608628.2608650], https://hal.inria.fr/hal-00994033

[10] A. BOSTAN, T. COMBOT, M. SAFEY EL DIN. Computing necessary integrability conditions for planar
parametrized homogeneous potentials, in "ISSAC’14 - International Symposium on Symbolic and Algebraic
Computation", Kobe, Japan, ACM Press, July 2014 [DOI : 10.1145/2608628.2608662], https://hal.inria.fr/
hal-00994116

[11] F. CHYZAK, A. MAHBOUBI, T. SIBUT-PINOTE, E. TASSI. A Computer-Algebra-Based Formal Proof of the
Irrationality of ζ(3), in "ITP - 5th International Conference on Interactive Theorem Proving", Vienna, Austria,
2014, https://hal.inria.fr/hal-00984057

[12] C. TANKINK. Asynchronous Editing for Coq, in "The Coq Workshop 2014", Vienna, Austria, July 2014,
https://hal.inria.fr/hal-01092008

[13] C. TANKINK. PIDE for Asynchronous Interaction with Coq, in "User Interfaces for Theorem Provers", Vienna,
Austria, July 2014, vol. 167, pp. 73 - 83 [DOI : 10.4204/EPTCS.167.9], https://hal.inria.fr/hal-01091907

Research Reports

[14] P. BOUTILLIER, S. GLONDU, B. GRÉGOIRE, H. HERBELIN, P. LETOUZEY, P.-M. PÉDROT, Y. RÉGIS-
GIANAS, M. SOZEAU, A. SPIWACK, E. TASSI. Coq 8.4 Reference Manual, Inria, July 2014, The Coq
Development Team, https://hal.inria.fr/hal-01114602

[15] G. GONTHIER, A. MAHBOUBI, E. TASSI. A Small Scale Reflection Extension for the Coq system, Inria
Saclay Ile de France, 2014, no RR-6455, https://hal.inria.fr/inria-00258384

Scientific Popularization

[16] A. MAHBOUBI. Un ordinateur pour vérifier les preuves mathématiques, in "Images des Mathématiques",
2014, Article en partenariat avec le Séminaire Bourbaki, https://hal.inria.fr/hal-01062816

Other Publications

[17] A. BOSTAN, I. KURKOVA, K. RASCHEL. A human proof of Gessel’s lattice path conjecture, February 2015,
28 pages, 4 figures, https://hal.archives-ouvertes.fr/hal-00858083

[18] R. DAMIEN, M. FAROOQUE, S. GRAHAM-LENGRAND, J.-M. NOTIN, A. MAHBOUBI. Axiomatisation of
constraint systems to specify a tableaux calculus modulo theories, December 2014, Preprint, https://hal.inria.
fr/hal-01107944

[19] P. LAIREZ. Computing periods of rational integrals, May 2014, https://hal.inria.fr/hal-00981114

References in notes

[20] M. ABRAMOWITZ, I. A. STEGUN (editors). Handbook of mathematical functions with formulas, graphs, and
mathematical tables, DoverNew York, 1992, xiv+1046 p. , Reprint of the 1972 edition

https://hal.inria.fr/hal-00994033
https://hal.inria.fr/hal-00994116
https://hal.inria.fr/hal-00994116
https://hal.inria.fr/hal-00984057
https://hal.inria.fr/hal-01092008
https://hal.inria.fr/hal-01091907
https://hal.inria.fr/hal-01114602
https://hal.inria.fr/inria-00258384
https://hal.inria.fr/hal-01062816
https://hal.archives-ouvertes.fr/hal-00858083
https://hal.inria.fr/hal-01107944
https://hal.inria.fr/hal-01107944
https://hal.inria.fr/hal-00981114

20 Activity Report INRIA 2014

[21] Computer Algebra Errors, Article in mathematics blog MathOverflow, http://mathoverflow.net/questions/
11517/computer-algebra-errors

[22] F. W. J. OLVER, D. W. LOZIER, R. F. BOISVERT, C. W. CLARK (editors). NIST Handbook of mathematical
functions, Cambridge University Press, 2010

[23] M. ARMAND, B. GRÉGOIRE, A. SPIWACK, L. THÉRY. Extending Coq with Imperative Features and
its Application to SAT Verication, in "Interactive Theorem Proving, international Conference, ITP 2010,
Edinburgh, Scotland, July 11–14, 2010, Proceedings", Lecture Notes in Computer Science, Springer, 2010

[24] B. BECKERMANN, G. LABAHN. A uniform approach for the fast computation of matrix-type Padé approxi-
mants, in "SIAM J. Matrix Anal. Appl.", 1994, vol. 15, no 3, pp. 804–823

[25] A. BENOIT, F. CHYZAK, A. DARRASSE, S. GERHOLD, M. MEZZAROBBA, B. SALVY. The Dynamic
Dictionary of Mathematical Functions (DDMF), in "The Third International Congress on Mathematical
Software (ICMS 2010)", K. FUKUDA, J. VAN DER HOEVEN, M. JOSWIG, N. TAKAYAMA (editors), Lecture
Notes in Computer Science, 2010, vol. 6327, pp. 35–41, http://dx.doi.org/10.1007/978-3-642-15582-6_7

[26] M. BOESPFLUG, M. DÉNÈS, B. GRÉGOIRE. Full reduction at full throttle, in "First International Conference
on Certified Programs and Proofs, Taiwan, December 7–9", Lecture Notes in Computer Science, Springer,
2011

[27] S. BOLDO, C. LELAY, G. MELQUIOND. Improving Real Analysis in Coq: A User-Friendly Approach to
Integrals and Derivatives, in "Certified Programs and Proofs", C. HAWBLITZEL, D. MILLER (editors),
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, vol. 7679, pp. 289-304, http://dx.
doi.org/10.1007/978-3-642-35308-6_22

[28] S. BOLDO, G. MELQUIOND. Flocq: A Unified Library for Proving Floating-point Algorithms in Coq, in
"Proceedings of the 20th IEEE Symposium on Computer Arithmetic", Tübingen, Germany, July 2011, pp.
243–252

[29] A. BOSTAN. Algorithmes rapides pour les polynômes, séries formelles et matrices, in "Actes des Journées
Nationales de Calcul Formel", Luminy, France, 2010, pp. 75–262, Les cours du CIRM, tome 1, numéro 2,
http://ccirm.cedram.org:80/ccirm-bin/fitem?id=CCIRM_2010__1_2_75_0

[30] A. BOSTAN, S. BOUKRAA, S. HASSANI, J.-M. MAILLARD, J.-A. WEIL, N. ZENINE. Globally nilpotent
differential operators and the square Ising model, in "J. Phys. A: Math. Theor.", 2009, vol. 42, no 12, 50 p. ,
http://dx.doi.org/10.1088/1751-8113/42/12/125206

[31] A. BOSTAN, S. CHEN, F. CHYZAK, Z. LI. Complexity of creative telescoping for bivariate rational functions,
in "ISSAC’10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation",
New York, NY, USA, ACM, 2010, pp. 203–210, http://doi.acm.org/10.1145/1837934.1837975

[32] A. BOSTAN, F. CHYZAK, G. LECERF, B. SALVY, É. SCHOST. Differential equations for algebraic functions,
in "ISSAC’07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation", C.
W. BROWN (editor), ACM Press, 2007, pp. 25–32, http://dx.doi.org/10.1145/1277548.1277553

http://mathoverflow.net/questions/11517/computer-algebra-errors
http://mathoverflow.net/questions/11517/computer-algebra-errors
http://dx.doi.org/10.1007/978-3-642-15582-6_7
http://dx.doi.org/10.1007/978-3-642-35308-6_22
http://dx.doi.org/10.1007/978-3-642-35308-6_22
http://ccirm.cedram.org:80/ccirm-bin/fitem?id=CCIRM_2010__1_2_75_0
http://dx.doi.org/10.1088/1751-8113/42/12/125206
http://doi.acm.org/10.1145/1837934.1837975
http://dx.doi.org/10.1145/1277548.1277553

Project-Team SPECFUN 21

[33] A. BOSTAN, F. CHYZAK, M. VAN HOEIJ, L. PECH. Explicit formula for the generating series of diagonal
3D rook paths, in "Sém. Loth. Comb.", 2011, vol. B66a, 27 p. , http://www.emis.de/journals/SLC/wpapers/
s66bochhope.html

[34] A. BOSTAN, M. KAUERS. The complete generating function for Gessel walks is algebraic, in "Proceedings
of the American Mathematical Society", September 2010, vol. 138, no 9, pp. 3063–3078, With an appendix
by Mark van Hoeij

[35] A. BOSTAN, P. LAIREZ, B. SALVY. Creative telescoping for rational functions using the Griffiths-
Dwork method, in "ISSAC’13 - 38th International Symposium on Symbolic and Algebraic Computa-
tion", Boston, United States, Northeastern University, Boston, Massachusetts, USA, 2013, pp. 93-100
[DOI : 10.1145/2465506.2465935], http://hal.inria.fr/hal-00777675

[36] F. CHYZAK. An extension of Zeilberger’s fast algorithm to general holonomic functions, in "Discrete Math.",
2000, vol. 217, no 1-3, pp. 115–134, Formal power series and algebraic combinatorics (Vienna, 1997)

[37] F. CHYZAK, M. KAUERS, B. SALVY. A Non-Holonomic Systems Approach to Special Function Identities,
in "ISSAC’09: Proceedings of the Twenty-Second International Symposium on Symbolic and Algebraic
Computation", J. MAY (editor), 2009, pp. 111–118, http://dx.doi.org/10.1145/1576702.1576720

[38] F. CHYZAK, B. SALVY. Non-commutative elimination in Ore algebras proves multivariate identities, in "J.
Symbolic Comput.", 1998, vol. 26, no 2, pp. 187–227

[39] T. COQUAND, G. P. HUET. The Calculus of Constructions, in "Inf. Comput.", 1988, vol. 76, no 2/3, pp.
95-120, http://dx.doi.org/10.1016/0890-5401(88)90005-3

[40] T. COQUAND, C. PAULIN-MOHRING. Inductively defined types, in "Proceedings of Colog’88", P. MARTIN-
LÖF, G. MINTS (editors), Lecture Notes in Computer Science, Springer-Verlag, 1990, vol. 417

[41] D. DELAHAYE, M. MAYERO. Dealing with algebraic expressions over a field in Coq using Maple, in "J.
Symbolic Comput.", 2005, vol. 39, no 5, pp. 569–592, Special issue on the integration of automated reasoning
and computer algebra systems, http://dx.doi.org/10.1016/j.jsc.2004.12.004

[42] F. GARILLOT, G. GONTHIER, A. MAHBOUBI, L. RIDEAU. Packaging Mathematical Structures, in "Theorem
Proving in Higher-Order Logics", S. BERGHOFER, T. NIPKOW, C. URBAN, M. WENZEL (editors), Lecture
Notes in Computer Science, Springer, 2009, vol. 5674, pp. 327–342

[43] J. VON ZUR. GATHEN, J. GERHARD. Modern computer algebra, 2nd, Cambridge University PressNew York,
2003, xiv+785 p.

[44] G. GONTHIER. Formal proofs—the four-colour theorem, in "Notices of the AMS", 2008, vol. 55, no 11, pp.
1382-1393

[45] G. GONTHIER, A. MAHBOUBI. An introduction to small scale reflection in Coq, in "Journal of Formalized
Reasoning", 2010, vol. 3, no 2, pp. 95–152

[46] G. GONTHIER, A. MAHBOUBI, E. TASSI. A Small Scale Reflection Extension for the Coq system, Inria,
2008, no RR-6455, http://hal.inria.fr/inria-00258384

http://www.emis.de/journals/SLC/wpapers/s66bochhope.html
http://www.emis.de/journals/SLC/wpapers/s66bochhope.html
http://hal.inria.fr/hal-00777675
http://dx.doi.org/10.1145/1576702.1576720
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/j.jsc.2004.12.004
http://hal.inria.fr/inria-00258384

22 Activity Report INRIA 2014

[47] G. GONTHIER, E. TASSI. A language of patterns for subterm selection, in "ITP", LNCS, 2012, vol. 7406, pp.
361–376

[48] B. GRÉGOIRE, A. MAHBOUBI. Proving Equalities in a Commutative Ring Done Right in Coq, in "Theorem
Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25,
2005, Proceedings", Lecture Notes in Computer Science, Springer, 2005, vol. 3603, pp. 98–113

[49] T. HALES. Formal proof, in "Notices of the AMS", 2008, vol. 55, no 11, pp. 1370-1380

[50] J. HARRISON. A HOL Theory of Euclidean space, in "Theorem Proving in Higher Order Logics, 18th
International Conference, TPHOLs 2005", Oxford, UK, J. HURD, T. MELHAM (editors), Lecture Notes in
Computer Science, Springer-Verlag, 2005, vol. 3603

[51] J. HARRISON. Formalizing an analytic proof of the prime number theorem, in "Journal of Automated
Reasoning", 2009, vol. 43, pp. 243–261, Dedicated to Mike Gordon on the occasion of his 60th birthday

[52] J. HARRISON. Theorem proving with the real numbers, CPHC/BCS distinguished dissertations, Springer,
1998, I p.

[53] J. HARRISON. A Machine-Checked Theory of Floating Point Arithmetic, in "Theorem Proving in Higher
Order Logics: 12th International Conference, TPHOLs’99", Nice, France, Y. BERTOT, G. DOWEK, A.
HIRSCHOWITZ, C. PAULIN, L. THÉRY (editors), Lecture Notes in Computer Science, Springer-Verlag, 1999,
vol. 1690, pp. 113–130

[54] J. HARRISON, L. THÉRY. A Skeptic’s Approach to Combining HOL and Maple, in "J. Autom. Reason.",
December 1998, vol. 21, no 3, pp. 279–294, http://dx.doi.org/10.1023/A:1006023127567

[55] F. JOHANSSON. Another Mathematica bug, Article on personal blog, http://fredrik-j.blogspot.fr/2009/07/
another-mathematica-bug.html

[56] C. KOUTSCHAN. A fast approach to creative telescoping, in "Math. Comput. Sci.", 2010, vol. 4, no 2-3, pp.
259–266, http://dx.doi.org/10.1007/s11786-010-0055-0

[57] A. MAHBOUBI. Implementing the cylindrical algebraic decomposition within the Coq system, in "Mathemat-
ical Structures in Computer Science", 2007, vol. 17, no 1, pp. 99–127

[58] R. MATUSZEWSKI, P. RUDNICKI. Mizar: the first 30 years, in "Mechanized Mathematics and Its Applica-
tions", 2005, vol. 4

[59] M. MAYERO. Problèmes critiques et preuves formelles, Université Paris 13, novembre 2012, Habilitation à
Diriger des Recherches

[60] M. MEZZAROBBA. NumGfun: a package for numerical and analytic computation and D-finite functions, in
"ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation",
New York, ACM, 2010, pp. 139–146, http://dx.doi.org/10.1145/1837934.1837965

http://dx.doi.org/10.1023/A:1006023127567
http://fredrik-j.blogspot.fr/2009/07/another-mathematica-bug.html
http://fredrik-j.blogspot.fr/2009/07/another-mathematica-bug.html
http://dx.doi.org/10.1007/s11786-010-0055-0
http://dx.doi.org/10.1145/1837934.1837965

Project-Team SPECFUN 23

[61] P. PAULE, M. SCHORN. A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient
identities, in "J. Symbolic Comput.", 1995, vol. 20, no 5-6, pp. 673–698, Symbolic computation in combina-
torics ∆1 (Ithaca, NY, 1993), http://dx.doi.org/10.1006/jsco.1995.1071

[62] B. PETERSEN. Maple, Personal web site

[63] P. RUDNICKI, A. TRYBULEC. On the Integrity of a Repository of Formalized Mathematics, in "Proceedings
of the Second International Conference on Mathematical Knowledge Management", London, UK, MKM ’03,
Springer-Verlag, 2003, pp. 162–174, http://dl.acm.org/citation.cfm?id=648071.748518

[64] B. SALVY, P. ZIMMERMANN. Gfun: a Maple package for the manipulation of generating and holonomic
functions in one variable, in "ACM Trans. Math. Software", 1994, vol. 20, no 2, pp. 163–177

[65] N. J. A. SLOANE, S. PLOUFFE. The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995

[66] THE COQ DEVELOPMENT TEAM. The Coq Proof Assistant: Reference Manual, http://coq.inria.fr/doc/

[67] THE MATHEMATICAL COMPONENT TEAM. A Formalization of the Odd Order Theorem using the Coq proof
assistant, September 2012, http://www.msr-inria.fr/projects/mathematical-components/

[68] L. THÉRY. A Machine-Checked Implementation of Buchberger’s Algorithm, in "J. Autom. Reasoning", 2001,
vol. 26, no 2, pp. 107-137, http://dx.doi.org/10.1023/A:1026518331905

[69] K. WEGSCHAIDER. Computer generated proofs of binomial multi-sum identities, RISC, J. Kepler University,
May 1997, 99 p.

[70] S. WOLFRAM. Mathematica: A system for doing mathematics by computer (2nd ed.), Addison-Wesley, 1992,
I p.

[71] D. ZEILBERGER. Opinion 94: The Human Obsession With “Formal Proofs” is a Waste of the Computer’s
Time, and, Even More Regretfully, of Humans’ Time, 2009, http://www.math.rutgers.edu/~zeilberg/Opinion94.
html

[72] D. ZEILBERGER. A holonomic systems approach to special functions identities, in "J. Comput. Appl. Math.",
1990, vol. 32, no 3, pp. 321–368

[73] D. ZEILBERGER. The method of creative telescoping, in "J. Symbolic Comput.", 1991, vol. 11, no 3, pp.
195–204

http://dx.doi.org/10.1006/jsco.1995.1071
http://dl.acm.org/citation.cfm?id=648071.748518
http://coq.inria.fr/doc/
http://www.msr-inria.fr/projects/mathematical-components/
http://dx.doi.org/10.1023/A:1026518331905
http://www.math.rutgers.edu/~zeilberg/Opinion94.html
http://www.math.rutgers.edu/~zeilberg/Opinion94.html

