
IN PARTNERSHIP WITH:
Université Paris-Sud (Paris 11)

Activity Report 2014

Project-Team TOCCATA

Formally Verified Programs, Certified Tools,
Numerical Computations

IN COLLABORATION WITH: Laboratoire de recherche en informatique (LRI)

RESEARCH CENTER
Saclay - Île-de-France

THEME
Proofs and Verification

Table of contents

1. Members . 1
2. Overall Objectives . 2

2.1.1. State of the Art of Program Verification 2
2.1.2. Deductive Program Verification Nowadays 3
2.1.3. Overview of our Former Contributions 3

3. Research Program . 4
3.1. Introduction 4
3.2. Formally Verified Programs 6

3.2.1. Genericity and Reusability of Verified Components 6
3.2.2. Automated Deduction for Program Verification 7
3.2.3. An Environment for Both Programming and Proving 7
3.2.4. Extra Exploratory Axes of Research 8

3.3. Certified Tools 8
3.3.1. Formalization of Binders 9
3.3.2. Theory Realizations, Certification of Transformations 9
3.3.3. Certified Theorem Proving 9
3.3.4. Certified VC Generation 9

3.4. Numerical Programs 10
3.4.1. Making Formal Verification of Floating-point Programs Easier 10
3.4.2. Continuous Quantities, Numerical Analysis 10
3.4.3. Certification of Floating-point Analyses 11

4. Application Domains .11
5. New Software and Platforms . 12

5.1. The Why3 system 12
5.2. The Alt-Ergo theorem prover 13
5.3. The Cubicle model checker modulo theories 13
5.4. The Flocq library 14
5.5. The Gappa tool 14
5.6. The Interval package for Coq 14
5.7. The Coquelicot library for real analysis 15
5.8. The CFML tool for verifying OCaml code 15
5.9. Other Maintained Tools 15

5.9.1. The ALEA library for randomized algorithms 15
5.9.2. Bibtex2html 16
5.9.3. The Coccinelle library for term rewriting 16
5.9.4. OCamlgraph 16
5.9.5. Mlpost 16
5.9.6. Functory 16
5.9.7. The Why Environment 17

6. New Results . 17
6.1. Highlights of the Year 17
6.2. Deductive Verification 17
6.3. Floating-Point and Numerical Programs 18
6.4. Automated Reasoning 19
6.5. Certification of Languages, Tools and Systems 20
6.6. Miscellaneous 20

7. Bilateral Contracts and Grants with Industry . 21
7.1. Bilateral Contracts with Industry 21

7.1.1. ProofInUse Joint Laboratory 21

2 Activity Report INRIA 2014

7.1.2. CIFRE contract with Adacore 21
7.2. Bilateral Grants with Industry 21

8. Partnerships and Cooperations . 22
8.1. Regional Initiatives 22

8.1.1. Coquelicot 22
8.1.2. ELFIC 22

8.2. National Initiatives 22
8.2.1. ANR Ajacs 22
8.2.2. ANR FastRelax 22
8.2.3. ANR Soprano 23
8.2.4. ANR CAFEIN 23
8.2.5. ANR BWare 23
8.2.6. ANR Verasco 24

8.3. European Initiatives 24
8.4. International Initiatives 24
8.5. International Research Visitors 25

9. Dissemination . 25
9.1. Promoting Scientific Activities 25

9.1.1. Scientific events organisation 25
9.1.1.1. General chair, scientific chair 25
9.1.1.2. Member of the organizing committee 25

9.1.2. Scientific events selection 25
9.1.2.1. Member of the conference program committee 25
9.1.2.2. Reviewer 26

9.1.3. Journal 26
9.1.3.1. Member of the editorial board 26
9.1.3.2. Reviewer 26

9.1.4. Invited Talks 26
9.1.5. Collective Responsibilities 27

9.2. Teaching - Supervision - Juries 28
9.2.1. Teaching 28
9.2.2. Internships 29
9.2.3. Supervision 29
9.2.4. Juries 30

9.3. Popularization 30
10. Bibliography .31

Project-Team TOCCATA

Keywords: Formal Methods, Verification, Proofs Of Programs, Theorem Proving, Computer
Arithmetic

The Toccata team (http://toccata.lri.fr/) is a research team common to Inria Saclay–Île-de-France, CNRS, and
Université Paris-Sud. Team members are also members of the larger VALS research group (Verification of
Algorithms, Languages and systems; http://vals.lri.fr/) of the LRI (Laboratoire de Recherche en Informatique,
UMR 8623).

Creation of the Team: 2012 September 01, updated into Project-Team: 2014 July 01.

1. Members
Research Scientists

Claude Marché [Team leader, Inria, Senior Researcher, HdR]
Sylvie Boldo [Team co-leader, Inria, Researcher, HdR]
Arthur Charguéraud [Inria, Researcher]
Évelyne Contejean [CNRS, Researcher, HdR]
Jean-Christophe Filliâtre [CNRS, Researcher, HdR]
Guillaume Melquiond [Inria, Researcher]

Faculty Members
Sylvain Conchon [Univ. Paris-Sud, Professor, HdR]
Andrei Paskevich [Univ. Paris-Sud, Associate Professor]
Christine Paulin-Mohring [Univ. Paris-Sud, Professor, HdR]

Engineer
Clément Fumex [Inria, from Nov 2014, ProofInUse grant]

PhD Students
Martin Clochard [Univ. Paris-Sud]
David Declerck [Univ. Paris-Sud, from Oct. 2014 (M2 intern from Mar. to Sep.)]
Claire Dross [Univ. Paris-Sud, until Apr 2014, CIFRE AdaCore grant]
Stefania Dumbrava [Univ. Paris-Sud]
Levs Gondelmans [Univ. Paris-Sud]
Catherine Lelay [Inria]
Jacques-Charles Mbiada Ndjanda [from Nov 2014, CEA grant]

Post-Doctoral Fellows
Michael Marcozzi [Inria, from Nov 2014, ERCIM grant]
Érik Martin-Dorel [Inria, until Aug 2014, VERASCO grant]
Alain Mebsout [Inria, CAFEIN grant (PhD until Sep.)]
Asma Tafat Bouzid [Univ. Paris-Sud, ATER, until Aug 2014]

Visiting Scientists
Pierre Roux [ONERA, Toulouse, until Aug 2014]
Bas Spitters [Nijmegen University, the Netherlands, from Apr 2014 until Jun 2014]
Andrew Tolmach [Portland State University, USA, from Sep 2014, Digiteo Chair]

Administrative Assistant
Régine Bricquet [Inria]

Others
Yohan Chatelain [L3 intern Univ. Paris-Sud, from May 2014 until Jun 2014]
Jacques-Pascal Deplaix [Intern EPITECH, from May 2014 until Aug 2014]

http://toccata.lri.fr/
http://vals.lri.fr/

2 Activity Report INRIA 2014

Julien Grangier [M1 intern ENSIEE, from Jun 2014 until Sep 2014]
Xavier Onfroy [L3 intern ENS Lyon, from Jun 2014 until Jul 2014]
Thibaut Balabonski [Associate member, Univ. Paris-Sud, Associate Professor, from Oct 2014]
Xavier Urbain [Associate Member, ENSIEE, Associate Professor]
Mohamed Iguernelala [Associate Member, Research Engineer at OCamlPro]

2. Overall Objectives

2.1. Overall Objectives
The general objective of the Toccata project is to promote formal specification and computer-assisted proof in
the development of software that requires a high assurance of its safety and its correctness with respect to its
intended behavior.

2.1.1. State of the Art of Program Verification
The importance of software in critical systems increased a lot in the past decades. Critical software appears
in various application domains such as transportation (e.g. airplanes, railway), communication (e.g. smart
phones) or banking. The set of available features is quickly increasing, together with the number of lines of
codes involved. Given the need of high assurance of safety in the functional behavior of such applications,
the need for automated (i.e. computer-assisted) methods and techniques to bring guarantee of safety became a
major challenge. In the past, the main process to check safety of a software was to apply heavy test campaigns,
which take a large part of the costs of software development.

This is why static analysis techniques were invented to complement tests. The general aim is to analyze a
program code without executing it, to get as much guarantees as possible on all possible executions at once.
The main classes of static analysis techniques are:

• Abstract Interpretation: it approximates program execution by abstracting program states into well-
chosen abstraction domains. The reachable abstract states are then analyzed in order to detect
possible mistakes, corresponding to abstract states that should not occur. The efficiency of this
approach relies on the quality of the approximation: if it is too coarse, false positives will appear,
which the user needs to analyze manually to determine if the error is real or not. A major success
of this kind of approach is the verification of absence of run-time errors in the control-command
software of the Airbus A380 by the tool Astrée [80].

• Model-checking: it denotes a class of approaches that got a great success in industry, e.g. the quality
of device drivers of Microsoft’s Windows operating system increased a lot by systematic application
of such an approach [48]. A program is abstracted into a finite graph representing an approximation
of its execution. Functional properties expected for the execution can be expressed using formal
logic (typically temporal logic) that can be checked valid by an exploration of the graph. The major
issue of model-checking is that the size of the graph can get very large. Moreover, to get less coarse
approximations, one may be interested in abstracting a program into an infinite graph. In that case,
extensions of model-checking are proposed: bounded model-checking, symbolic model-checking,
etc. Predicate Abstraction is also a rather successful kind of model-checking approach because of
its ability of getting iteratively refined to suppress false positives [49].

• Deductive verification: it differs from the other approaches in that it does not approximate program
execution. It originates from the well-known Hoare logic approach. Programs are formally specified
using expressive logic languages, and mathematical methods are applied to formally prove that a
program meets its specification.

The Toccata project is mainly interested in exploring the deductive verification approach, although we believe
that the above classes of approaches are compatible. We indeed have studied some way to combine these
approaches in the past [11], [95], [76].

Project-Team TOCCATA 3

2.1.2. Deductive Program Verification Nowadays
In the past decade, significant progresses have been made in the domain of deductive program verification.
They are emphasized by some successful application of these techniques on industrial-scale software, e.g. the
Atelier B system was used to develop part of the embedded software of the Paris metro line 14 [57] and
other railroad-related systems, a formally proved C compiler was developed using the Coq proof assistant
[102], Microsoft’s hypervisor for highly secure virtualization was verified using VCC [81] and the Z3 prover
[124], the L4-verified project developed a formally verified micro-kernel with high security guarantees, using
analysis tools on top of the Isabelle/HOL proof assistant [97]. Another sign of recent progress is the emergence
of deductive verification competitions.

In the deductive verification context, there are two main families of approaches. Methods in the first family
build on top of mathematical proof assistants (e.g. Coq, Isabelle) in which both the models and the programs
are encoded, and the proofs that a program meets its specification is typically conducted in an interactive way
using the underlying proof construction engine. Methods from the second family proceed by the design of
standalone tools taking as input a program in a particular programming language (e.g. C, Java) specified with a
dedicated annotation language (e.g. ACSL [56], JML [69]) and automatically producing a set of mathematical
formulas (the verification conditions) which are typically proved using automatic provers (e.g. Z3 [124], Alt-
Ergo [58], CVC3 [54]). The first family of approaches usually offers a higher level of assurance than the
second, but also demands more work to establish the proofs (because of their interactive nature) and makes
them less easy to adopt by industry. Moreover they do not allow to directly analyze a program written in a
mainstream programming language like Java or C. The second kind of approaches has benefited in the past
years from the tremendous progresses made in SAT and SMT solving techniques, allowing more impact on
industrial practices, but suffers from a lower level of trust: in all parts of the proof chain (the model of the
input programming language, the VC generator, the back-end automatic prover) potential errors may appear,
compromising the guarantee offered. They can be applied to mainstream languages, but usually only a subset
of them is supported. Finally, recent trends in the industrial practice for development of critical software is
to require more and more guarantees of safety, e.g. the DO-178C standard for developing avionics software
adds to the former DO-178B the use of formal models and formal methods. It also emphasizes the need for
certification of the analysis tools involved in the process.

2.1.3. Overview of our Former Contributions
To illustrate our past contributions in the domain of deductive verification, we provide below a set of reference
publications of our former scientific results, published in the past 5 years.

Concerning Automated Deduction, our references publications are: a TACAS’2011 paper [7] on an SMT deci-
sion procedure for associativity and commutativity, an IJCAR’2012 paper [59] about an original contribution
to decision procedures for arithmetic, a CAV’2012 paper [76] presenting an SMT-based model checker, a
FroCos’2011 paper [3] presenting an new approach for encoding polymorphic theories into monomorphic
ones.

Regarding deductive program verification in general, a first reference publication is the habilitation thesis of
Filliâtre [9] which provides a very good survey of our contributions until 2011. A shorter version appeared in
the STTT journal [87]. The ABZ’2012 paper [109] is a representative publication presenting an application
of our Why3 system to solving proof obligations coming from Atelier B. The VSTTE’2012 paper [89] is
a reference case study publication: proof of a program solving the n-queens problem, that uses bitwise
operations for efficiency.

In industrial applications, numerical calculations are very common (e.g. control software in transportation).
Typically they involve floating-point numbers. Concerning the analysis of numerical programs, our represen-
tative publications are: a paper in the MCS journal in 2011[5] presenting on various examples our approach
of proving behavioral properties of numerical C programs using Frama-C/Jessie, a paper in the TC journal
in 2010 [123] presenting the use of the Gappa solver for proving numerical algorithms, a paper in the ISSE
journal in 2011 [68] together with a paper at the CPP’2011 conference [113] presenting how we can take ar-
chitectures and compilers into account when dealing with floating-point programs. We also contributed to the

4 Activity Report INRIA 2014

Handbook of Floating-Point Arithmetic in 2009 [112]. A representative case study is the analysis and the proof
of both the method error and the rounding error of a numerical analysis program solving the one-dimension
acoustic wave equation, presented in part at ITP’2010 [62] and in another part at ICALP’2009 [4] and fully in
a paper in the JAR journal [63].

Finally, about the theme of certification of analysis tools, the reference papers are: a PEPM’2010 [79] and a
RTA’2011 paper [8] on certified proofs of termination and other related properties of rewriting systems, and a
VSTTE’2012 paper [94] presenting a certified VC generator.

The diagram of Figure 1 details how our tools interact with each other and with other tools. The tools in
pink boxes are designed by us, while those in blue boxes are designed by partners. The central tool is Why3
[2], [88], which includes both a Verification Condition Generator and a set of encoders and printers. The VC
generator reads source programs in a dedicated input language that includes both specifications and code. It
produces verification conditions that are encoded and printed into various formats and syntax so that a large
set of interactive and automatic provers can be used to discharge the verification conditions.

Among automated provers, our own tool Alt-Ergo [58] is an SMT solver that is able to deal with quantifiers,
arithmetic in integers or real numbers, and a few other theories. Gappa [10] is a prover designed to support
arithmetic on real numbers and floating-point rounding. As front-ends, our tool Krakatoa [104] reads annotated
Java source code and produces Why3 code. The tool Jessie [111], [11] is a plug-in for the Frama-C environment
(which we designed in collaboration with CEA-List); it does the same for annotated C code. The GnatProve
tool is a prototype developed by Adacore company; it reads annotated Ada code and also produces Why3 code.
Spark is an ancestor of GnatProve developed by Altran-Praxis company; it has a dedicated prover but it was
recently modified so as to produce verification conditions in a suitable format for Alt-Ergo.

Last but not least, the modeling of programs semantics and the specification of their expected behaviors is
based on some libraries of mathematical theories that we develop, either in the logic language of Why3 or in
Coq. These are the yellow boxes of the diagram. For example, we developed in Coq the Flocq library for the
formalization of floating-point computations [6].

3. Research Program

3.1. Introduction
In the former ProVal project, we have been working on the design of methods and tools for deductive
verification of programs. One of our originalities is our ability to conduct proofs by using automatic provers
and proof assistants at the same time, depending on the difficulty of the program, and specifically the difficulty
of each particular verification condition. We thus believe that we are in a good position to propose a bridge
between the two families of approaches of deductive verification presented above. This is a new goal of the
team: we want to provide methods and tools for deductive program verification that can offer both a high
amount of proof automation and a high guarantee of validity. Toward this objective, we propose a new axis of
research: to develop certified tools, i.e. analysis tools that are themselves formally proved correct.

As mentioned above, some of the members of the team have an internationally-recognized expertise on
deductive program verification involving floating-point computation [6], including both interactive proving
and automated solving [10]. Indeed we noticed that the verification of numerical programs is a representative
case that can benefit a lot from combining automatic and interactive theorem proving [64], [5]. This motivated
our research on the formal verification of numerical programs.

Moreover, we continue the fundamental studies we conducted in the past concerning deductive program
verification in general. This is why our detailed scientific programme is structured into three themes:

1. Formally Verified Programs,

2. Certified Tools,

3. Numerical Programs.

Project-Team TOCCATA 5

KML-annotated
Java programs

ACSL-annotated
C programs

Annotated
Ada programs

Krakatoa Frama-C

Jessie plug-in

GnatProve Spark

Why3 VC generator

Verification
Conditions

Why3 encoders/printers

Automatic provers
CVC3, Eprover, Simplify
SPASS, Vampire, veriT

Yices, Z3, etc. Alt-ErgoGappa

Interactive provers
Coq, PVS,

Isabelle/HOL, etc.

Why3 theories

Coq libraries
Flocq, etc.

Figure 1. Interactions between our tools and with others

6 Activity Report INRIA 2014

3.2. Formally Verified Programs
Formal program verification is a research theme that builds upon our expertise in the development of methods
and tools for proving programs, from source codes annotated with specifications to proofs. In the past, we
tackled programs written in mainstream programming languages, with the system Why3 and the front-ends
Krakatoa for Java source code, and Frama-C/Jessie for C code. However, Java and C programming languages
were designed a long time ago, and certainly not with the objective of formal verification in mind. This
raises a lot of difficulties when designing specification languages on top of them, and verification condition
generators to analyze them. On the other hand, we designed and/or used the Coq and Why3 languages and
tools for performing deductive verification, but those were not designed as programming languages that can
be compiled into executable programs.

Thus, a new axis of research we propose is the design of an environment that is aimed to both programming
and proving, hence that will allow to develop correct-by-construction programs. To achieve this goal, there
are two major axes of theoretical research that needs to be conducted, concerning, on the one hand, methods
required to support genericity and reusability of verified components, and, on the other hand, the automation
of the proof of the verification conditions that will be generated.

3.2.1. Genericity and Reusability of Verified Components
A central ingredient for the success of deductive approaches in program verification is the ability to reuse
components that are already proved. This is the only way to scale the deductive approach up to programs of
larger size. As for programming languages, a key aspect that allow reusability is genericity. In programming
languages, genericity typically means parametricity with respect to data types, e.g. polymorphic types in
functional languages like ML, or generic classes in object-oriented languages. Such genericity features are
essential for the design of standard libraries of data structures such as search trees, hash tables, etc. or libraries
of standard algorithms such as for searching, sorting.

In the context of deductive program verification, designing reusable libraries also requires designing of generic
specifications which typically involve parametricity not only with respect to data types but also with respect to
other program components. For example, a generic component for sorting an array needs to be parametrized by
the type of data in the array but also by the comparison function that will be used. This comparison function is
thus another program component that is a parameter of the sorting component. For this parametric component,
one needs to specify some requirements, at the logical level (such as being a total ordering relation), but also
at the program execution level (like being side-effect free, i.e. comparing of data should not modify the data).
Typically such a specification may require higher-order logic.

Another central feature that is needed to design libraries of data structures is the notion of data invariants. For
example, for a component providing generic search trees of reasonable efficiency, one would require the trees
to remain well-balanced, over all the life time of a program.

This is why the design of reusable verified components requires advanced features, such as higher-order
specifications and programs, effect polymorphism and specification of data invariants. Combining such
features is considered as an important challenge in the current state of the art (see e.g. [98]). The well-
known proposals for solving it include Separation logic [121], implicit dynamic frames [118], and considerate
reasoning [120]. Part of our recent research activities were aimed at solving this challenge: first at the level of
specifications, e.g. we proposed generic specification constructs upon Java [122] or a system of theory cloning
in our system Why3 [2]; second at the level of programs, which mainly aims at controlling side-effects to
avoid unexpected breaking of data invariants, thanks to advanced type checking: approaches based on memory
regions, linearity and capability-based type systems [72], [96], [51].

A concrete challenge that should be solved in the future is: what additional constructions should we provide
in a specification language like ACSL for C, in order to support modular development of reusable software
components? In particular, what would be an adequate notion of module, that would provide a good notion of
abstraction, both at the level of program components and at the level of specification components?

Project-Team TOCCATA 7

3.2.2. Automated Deduction for Program Verification
Verifying that a program meets formal specifications typically amounts to generating verification condi-
tions e.g. using a weakest precondition calculus. These verification conditions are purely logical formu-
las—typically in first-order logic and involving arithmetic in integers or real numbers—that should be checked
to be true. This can be done using either automatic provers or interactive proof assistants. Automatic provers
do not need user interaction, but may run forever or give no conclusive answer.

There are several important issues to tackle. Of course, the main general objective is to improve automation
as much as possible. We continue our efforts around our own automatic prover Alt-Ergo towards more
expressivity, efficiency, and usability, in the context of program verification. More expressivity means that
the prover should better support the various theories that we use for modeling. Toward this direction, we aim
at designing specialized proof search strategies in Alt-Ergo, directed by rewriting rules, in the spirit of what
we did for the theory of associativity and commutativity [7].

A key challenge also lies in the handling of quantifiers. SMT solvers, including Alt-Ergo, deal with quantifiers
with a somewhat ad-hoc mechanism of heuristic instantiation of quantified hypotheses using the so-called
triggers that can be given by hand [83], [84]. This is completely different from resolution-based provers of
the TPTP category (E-prover, Vampire, etc.) which use unification to apply quantified premises. A challenge
is thus to find the best way to combine these two different approaches of quantifiers. Another challenge is to
add some support for higher-order functions and predicates in this SMT context, since as said above, reusable
verified components will require higher-order specifications. A few solutions have been proposed, essentially
based on encoding of higher-order goals into first-order goals [96].

Generally speaking, there are several theories, interesting for program verification, that we would like to add
as built-in decision procedures in an SMT context. First, although there already exist decision procedures
for variants of bit-vectors, they are not complete enough to support what is needed to reason on programs
that manipulate data at the bit-level, in particular if conversions from bit-vectors to integers or floating-point
numbers are involved [114]. Regarding floating-point numbers, an important challenge is to integrate in an
SMT context a decision procedure like the one implemented in our tool Gappa.

Another goal is to improve the feedback given by automatic provers: failed proof attempts should be turned
into potential counterexamples, so as to help debugging programs or specifications. A pragmatic goal would be
to allow cooperation with other verification techniques. For instance, testing could be performed on unproved
goals. Regarding this cooperation objective, an important goal is a deeper integration of automated procedures
in interactive proofs, like it already exists in Isabelle [70]. We now have a Why3 tactic in Coq that we plan to
improve.

3.2.3. An Environment for Both Programming and Proving
As said before, a new axis of research we follow is the design of a language and an environment for both
programming and proving. We believe that this will be a fruitful approach for designing highly trustable
software. This is a similar goal as projects Plaid, Trellys, ATS, or Guru, mentioned above.

The basis of this research direction is the Why3 system, which is in fact a reimplementation from scratch of
the former Why tool, that we started in January 2011. This new system supports our research at various levels.
It is already used as an intermediate language for deductive verification.

The next step for us is to develop its use as a true programming language. Our objective is to propose a language
where programs could be both executed (e.g. thanks to a compiler to, say, OCaml) and proved correct. The
language would basically be purely applicative (i.e. without side-effects, e.g. close to ML) but incorporating
specifications in its core. There are, however, some programs (e.g. some clever algorithms) where a bit of
imperative programming is desirable. Thus, we want to allow some form of imperative features, but in a very
controlled way: it should provide a strict form of imperative programming that is clearly more amenable to
proof, in particular dealing with data invariants on complex data structures.

8 Activity Report INRIA 2014

As already said before, reusability is a key issue. Our language should propose some form of modules with
interfaces abstracting away implementation details. Our plan is to reuse the known ideas of data refinement
[110] that was the foundation of the success of the B method. But our language will be less constrained than
what is usually the case in such a context, in particular regarding the possibility of sharing data, and the
constraints on composition of modules, there will be a need for advanced type systems like those based on
regions and permissions.

The development of such a language will be the basis of the new theme regarding the development of certified
tools, that is detailed in Section 3.3 below.

3.2.4. Extra Exploratory Axes of Research
Concerning formal verification of programs, there are a few extra exploratory topics that we plan to explore.

Concurrent Programming So far, we only investigated the verification of sequential programs. However,
given the spreading of multi-core architectures nowadays, it becomes important to be able to verify concurrent
programs. This is known to be a major challenge. We plan to investigate this direction, but in a very careful
way. We believe that the verification of concurrent programs should be done only under restrictive conditions
on the possible interleaving of processes. In particular, the access and modification of shared data should be
constrained by the programming paradigm, to allow reasonable formal specifications. In this matter, the issues
are close to the ones about sharing data between components in sequential programs, and there are already
some successful approaches like separation logic, dynamic frames, regions, and permissions.

Resource Analysis The deductive verification approaches are not necessarily limited to functional behavior
of programs. For example, a formal termination proof typically provides a bound on the time complexity
of the execution. Thus, it is potentially possible to verify resources consumption in this way, e.g. we could
prove WCET (Worst Case Execution Times) of programs. Nowadays, WCET analysis is typically performed
by abstract interpretation, and is applied on programs with particular shape (e.g. no unbounded iteration, no
recursion). Applying deductive verification techniques in this context could allow to establish good bounds on
WCET for more general cases of programs.

Other Programming Paradigms We are interested in the application of deductive methods in other cases
than imperative programming à la C, Java or Ada. Indeed, in the recent years, we applied proof techniques to
randomized programs [1], to cryptographic programs [50]. We plan to use proof techniques on applications
related to databases. We also have plans to support low-level programs such as assembly code [86], [113]
and other unstructured programming paradigm. We are also investigating more and more applications of SMT
solving, e.g. in model-checking approach (for example in Cubicle 1 [76]) or abstract interpretation techniques
(project Cafein, started in 2013) and also for discharging proof obligations coming from other systems like
Atelier B [109] (project BWare).

3.3. Certified Tools
One of our goals is to guarantee the soundness of the tools we develop. In fact, it goes beyond that; our goal
is to promote our future Why3 environment so that others could develop certified tools. Tools like automated
provers or program analyzers are good candidate case studies because they are mainly performing symbolic
computations, and as such they are usually programmed in a mostly purely functional style.

We conducted several experiments of development of certified software in the past. First, we have a strong
expertise in the development of libraries in Coq: the Coccinelle library [78] formalizing term rewriting
systems, the Alea library [1] for the formalization of randomized algorithms, several libraries formalizing
floating-point numbers (Floats [60], Gappalib [107], and now Flocq [6] which unifies the formers). Second we
conducted the development of a certified decision procedure [103] that corresponds to a core part of Alt-Ergo.
Third we developed, still in Coq, certified verification condition generators, in a first step [94] for a language
similar to Why, and in a second step [93] for C annotated in ACSL [56], based on the operational semantics
formalized in the CompCert certified compiler project [102].

1http://cubicle.lri.fr/

http://cubicle.lri.fr/

Project-Team TOCCATA 9

To go further, we have several directions of research in mind.

3.3.1. Formalization of Binders
Using the Why3 programming language instead of Coq allows for more freedom. For example, it should
allow one to use a bit of side-effects when the underlying algorithm justifies it (e.g. hash-consing, destructive
unification). On the other hand, we will lose some Coq features like dependent types that are usually useful
when formalizing languages. Among the issues that should be studied, we believe that the question of the
formalization of binders is both central and challenging (as exemplified by the POPLmark international
challenge [47]).

The support of binders in Why3 should not be built-in, but should be under the form of a reusable Why3
library, that should already contain a lot of proved lemmas regarding substitution, alpha-equivalence and such.
Of course we plan to build upon the former experiments done for the POPLmark challenge. Although, it is not
clear yet that the support of binders only via a library will be satisfactory. We may consider addition of built-in
constructs if this shows useful. This could be a form of (restricted) dependent types as in Coq, or subset types
as in PVS.

3.3.2. Theory Realizations, Certification of Transformations
As an environment for both programming and proving, Why3 should come with a standard library that includes
both verified libraries of programs, but also libraries of specifications (e.g. theories of sets, maps, etc.).

The certification of those Why3 libraries of specifications should be addressed too. Why3 libraries for
specifying models of programs are commonly expressed using first-order axiomatizations, which have the
advantage of being understood by many different provers. However, such style of formalization does not
offer strong guarantees of consistency. More generally, the fact that we are calling different kind of provers
to discharge our verification conditions raises several challenges for certification: we typically apply various
transformations to go from the Why3 language to those of the provers, and these transformations should be
certified too.

A first attempt in considering such an issue was done in earlier work [109]. It was proposed to certify the
consistency of a library of specification using a so-called realization, which amounts to “implementing” the
library in a proof assistant like Coq. This is an important topic of the ANR project BWare.

3.3.3. Certified Theorem Proving
The goal is to develop certified provers, in the sense that they are proved to give a correct answer. This is an
important challenge since there have been a significant amount of soundness bugs discovered in the past, in
many tools of this kind.

The former work on the certified core of Alt-Ergo [103] should be continued to support more features: more
theories (full integer arithmetic, real arithmetic, arrays, etc.), quantifiers. Development of a certified prover
that supports quantifiers should build upon the previous topic about binders.

In a similar way, the Gappa prover, which is specialized to solving constraints on real numbers and floating-
point numbers, should be certified too. However, for very complex decision procedures, developing a certified
proof search might be too ambitious. Instead, the idea is to ask Gappa to produce Coq proofs on a per-goal
basis, so as to check a posteriori the soundness of its result on the given instance. More generally, we can have
Gappa produce traces of its execution that can later be processed by a certified trace checker. This approach
was used in the past for certified proofs of termination of rewriting systems [79], and it was also used internally
in CompCert for several passes of compilation [102].

3.3.4. Certified VC Generation
The other kind of tools that we would like to certify are the VC generators. This is a continuation of the work on
developing in Coq a certified VC generator for C code annotated in ACSL [93]. We develop such a generator
in Why3 instead of Coq [105]. As before, this builds upon a formalization of binders. There are various kinds
of VC generators that are interesting. A generator for a simple language in the style of those of Why3 is a first

10 Activity Report INRIA 2014

step. Other interesting cases are: a generator implementing the so-called fast weakest preconditions [99], and
a generator for unstructured programs like assembly, that would operate on an arbitrary control-flow graph.

On a longer term, we wish to be able to certify advanced verification methods like those involving refinement,
alias control, regions, permissions, etc.

An interesting question is how one could certify a VC generator that involves a highly expressive logic, like
higher-order logic, as it is the case of the CFML method [73] which allows one to use the whole Coq language
to specify the expected behavior. One challenging aspect of such a certification is that a tool that produces
Coq definitions, including inductive definitions and module definitions, cannot be directly proved correct in
Coq, because inductive definitions and module definitions cannot be generated through the evaluation of Coq
definitions. Therefore, it seems necessary to involve, in a way or another, a “deep embedding”, that is, a
formalization of Coq in Coq, possibly by reusing the deep embedding developed by B. Barras [53].

3.4. Numerical Programs
In recent years, we demonstrated our capability towards specifying and proving properties of floating-point
programs, properties which are both complex and precise about the behavior of those programs: see the
publications [67], [123], [62], [117], [66], [61], [108], [106] as well as the web galleries of certified programs
at our Web page 2, the Hisseo project 3, S. Boldo’s page 4, and industrial case studies in the U3CAT ANR
project. The ability to express such complex properties comes from models developed in Coq [6]. The ability
to combine proof by reasoning and proof by computation is a key aspect when dealing with floating-point
programs. Such a modeling provides a safe basis when dealing with C source code [5]. However, the proofs can
get difficult even on short programs. To build these proofs, some automation is needed. It can be obtained by
combining SMT solvers and Gappa [64], [82], [46], [10]. Finally, the precision of the verification is obtained
thanks to precise models of floating-point computations, taking into account the peculiarities of the architecture
(e.g., x87 80-bit floating-point unit) and also the compiler optimizations [68], [113].

The directions of research concerning floating-point programs that we pursue are the following.

3.4.1. Making Formal Verification of Floating-point Programs Easier
A first goal is to ease the formal verification of floating-point programs: the primary objective is still to improve
the scope and efficiency of our methods, so as to ease further the verification of numerical programs. The on-
going development of the Flocq library continues towards the formalization of bit-level manipulations and
also of exceptional values (e.g. infinities). We believe that good candidates for applications of our techniques
are advanced algorithms to compute efficiently with floats, which operate at the bit-level. The formalization of
real numbers is being revamped too: higher-level numerical algorithms are usually built on some mathematical
properties (e.g. computable approximations of ideal approximations), which then have to be proved during the
formal verification of these algorithms.

Easing the verification of numerical programs also implies more automation. SMT solvers are generic provers
well-suited for automatically discharging verification conditions, but they appear to loose their effectiveness
when floating-point arithmetic is involved [77]. Our goal is to improve the arithmetic theories of Alt-Ergo,
so that they support floating-point arithmetic along their other theories, if possible by reusing the heuristics
developed for Gappa.

3.4.2. Continuous Quantities, Numerical Analysis
Our goal is to handle floating-point programs that are related to continuous quantities. This includes numerical
analysis programs we have already worked on [63], [62], [4]. But our work is only a beginning: we were able
to solve the difficulties to prove one particular scheme for one particular partial differential equation. We need
to be able to easily prove other programs of this kind. This requires new results that handle generic schemes
and many partial differential equations. The idea is to design a toolbox to prove these programs with as much

2http://toccata.lri.fr/gallery/index.en.html
3http://hisseo.saclay.inria.fr/
4http://www.lri.fr/~sboldo/research.html

http://toccata.lri.fr/gallery/index.en.html
http://hisseo.saclay.inria.fr/
http://www.lri.fr/~sboldo/research.html

Project-Team TOCCATA 11

automation as possible. We wish this could be used by numerical analysts that are not or hardly familiar with
formal methods, but are nevertheless interested in the formal correctness of their schemes and their programs.

Another very interesting kind of programs (especially for industrial developers) are those based on hybrid
systems, that is where both discrete and continuous quantities are involved. This is a longer-term goal, but we
may try to go towards this direction. A first problem is to be able to specify hybrid systems: what are they
exactly expected to do? Correctness usually means not going into a forbidden state but we may want additional
behavioral properties. A second problem is the interface with continuous systems, such as sensors. How can
we describe their behavior? Can we be sure that the formal specification fits? We may think about Ariane
V where one piece of code was shamelessly reused from Ariane IV. Ensuring that such a reuse is allowed
requires to correctly specify the input ranges and bandwidths of physical sensors.

Studying hybrid systems is among the goals of the new ANR project Cafein.

3.4.3. Certification of Floating-point Analyses
In coordination with our second theme, another objective is to port the kernel of Gappa into either Coq or
Why3, and then extract a certified executable. Rather than verifying the results of the tool a posteriori with a
proof checker, they would then be certified a priori. This would simplify the inner workings of Gappa, help to
support new features (e.g. linear arithmetic, elementary functions), and make it scale better to larger formulas,
since the tool would no longer need to carry certificates along its computations. Overall the tool would then
be able to tackle a wider range of verification conditions.

An ultimate goal would be to develop the decision procedure for floating-point computations, for SMT context,
that is mentioned in Section 3.2.2, directly as a certified program in Coq or Why3.

4. Application Domains

4.1. Mission-Critical Software
The application domains we target involve safety-critical software, that is where a high-level guarantee of
soundness of functional execution of the software is wanted. The domains of application include the following.
For each of them we refer to our past or current actions, in particular in relations with projects, contracts
and industrial partners. Currently our industrial collaborations mainly belong to the first of these domains,
transportation.

• Transportation including aeronautics, railroad, space flight, automotive.

These domains were considered in the context of the ANR U3CAT project, led by CEA, in
partnership with Airbus France, Dassault Aviation, Sagem Défense et Sécurité. It included proof of C
programs via Frama-C/Jessie/Why, proof of floating-point programs, the use of the Alt-Ergo prover
via CAVEAT tool (CEA) or Frama-C/WP. This action is continued in the new project Soprano.

Aeronautics is the main target of the Verasco project, leaded by Verimag, on the development of
certified static analyzers, in partnership with Airbus.

The former FUI project Hi-Lite, led by Adacore company, uses Why3 and Alt-Ergo as back-end to
SPARK2014, an environment for verification of Ada programs. This is applied to the domain of
aerospace (Thales, EADS Astrium). This action is continued in the new joint laboratory ProofInUse.
A recent paper [71] provides an extensive list of applications of SPARK, a major one being the
British air control management.

In the current ANR project BWare, we investigate the use of Why3 and Alt-Ergo as an al-
ternative back-end for checking proof obligations generated by Atelier B, whose main appli-
cations are railroad-related software (http://www.methode-b.com/documentation_b/ClearSy-
Industrial_Use_of_B.pdf), a collaboration with Mitsubishi Electric R&D Centre Europe (Rennes)
and ClearSy (Aix-en-Provence).

http://www.methode-b.com/documentation_b/ClearSy-Industrial_Use_of_B.pdf
http://www.methode-b.com/documentation_b/ClearSy-Industrial_Use_of_B.pdf

12 Activity Report INRIA 2014

• Energy is naturally an application in particular with our long-term partner CEA, in the context of
U3CAT and Soprano projects.

• Communications and Data in particular in contexts with a particular need for security or confiden-
tiality: smart phones, Web applications, health records, electronic voting, etc.

Part of the applications of SPARK [71] include verification of security-related properties, including
cryptographic algorithms.

Our new AJACS project addresses issues related to security and privacy in web applications written
in Javascript, also including correctness properties.

The Cubicle model checker modulo theories based on the Alt-Ergo SMT prover, in collaboration
with Intel Strategic Cad Labs (Hillsboro, OR, USA) is particularly targeted to the verification of
concurrent programs and protocols (http://cubicle.lri.fr/).

• Medicine, including diagnostic devices, computer-assisted surgery

Such applications involve techniques for control and command close to what is done in transporta-
tion. Moreover, in this context, there is a need for modeling using differential equations, finite ele-
ments, hybrid systems, which are considered in other projects of us: FastRelax, ELFIC, Cafein.

• Financial applications, banking
We add projects in the past about safety and security of smart cards, in collaboration with Gemalto
(European project VerifiCard, two CIFRE theses). Banking is naturally a domain of application of
techniques dealing with security and confidentiality already mentioned above.

5. New Software and Platforms

5.1. The Why3 system
Participants: Jean-Christophe Filliâtre [contact], Claude Marché, Guillaume Melquiond, Andrei Paskevich.

Criteria for Software Self-Assessment: A-3-up, SO-4, SM-4, EM-4, SDL-5, OC-4.5

Why3 is the next generation of Why. Why3 clearly separates the purely logical specification part from
generation of verification conditions for programs. It features a rich library of proof task transformations
that can be chained to produce a suitable input for a large set of theorem provers, including SMT solvers,
TPTP provers, as well as interactive proof assistants.

It is distributed as open source, under GPL license, at http://why3.lri.fr/. It is also distributed as part of major
Linux distributions and in the OPAM packaging system http://opam.ocaml.org/packages/why3/why3.0.85/.

Why3 is used as back-end of our own tools Krakatoa and Jessie, but also as back-end of the GNATprove tool
(Adacore company), and of the WP plugin of Frama-C. Why3 has been used to develop and prove a significant
part of the programs of our team gallery http://proval.lri.fr/gallery/index.en.html, and used for teaching (e.g.,
at the Master Parisien de Recherche en Informatique).

Why3 is used by other academic research groups, e.g. within the CertiCrypt/EasyCrypt project (http://
easycrypt.gforge.inria.fr/) for certifying cryptographic programs. The Why3 web site http://why3.lri.fr lists
a few other works done by external researchers and relying on the use of Why3.

Two versions were released in 2014: 0.83 released in March and 0.84 in September, plus a few days later a
bugfix version 0.85.

5self-evaluation following the guidelines (http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.
pdf) of the Software Working Group of Inria Evaluation Committee (http://www.inria.fr/institut/organisation/instances/commission-d-
evaluation)

http://cubicle.lri.fr/
http://why3.lri.fr/
http://opam.ocaml.org/packages/why3/why3.0.85/
http://proval.lri.fr/gallery/index.en.html
http://easycrypt.gforge.inria.fr/
http://easycrypt.gforge.inria.fr/
http://why3.lri.fr
http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.pdf
http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.pdf
http://www.inria.fr/institut/organisation/instances/commission-d-evaluation
http://www.inria.fr/institut/organisation/instances/commission-d-evaluation

Project-Team TOCCATA 13

5.2. The Alt-Ergo theorem prover
Participants: Sylvain Conchon [contact], Évelyne Contejean, Alain Mebsout, Mohamed Iguernelala.

Criteria for Software Self-Assessment: A-3-up, SO-4, SM-4-up, EM-4, SDL-5, OC-4.

Alt-Ergo is an automated proof engine, dedicated to program verification, whose development started in 2006.
It is fully integrated in the program verification tool chain developed in our team. It solves goals that are
directly written ina Why’s annotation language; this means that Alt-Ergo fully supports first order polymorphic
logic with quantifiers. Alt-Ergo also supports the standard [116] defined by the SMT-lib initiative.

Figure 2.

It is currently used in our team to prove correctness of C and Java programs as part of the Why platform and the
new Why3 system. It is used as back-end prover in the environments Frama-C and CAVEAT for static analysis
of C developed at CEA. In this context, Alt-Ergo has been qualified by Airbus and is integrated in the next
generation of Airbus development process. Alt-Ergo is usable as a back-end prover in the SPARK verifier for
ADA programs, since Oct 2010, and is also the main back-end prover of the new SPARK2014.

Alt-Ergo is integrated in several other tools and platforms: the Bware platform for discharging VCs generated
by Atelier B, the EasyCrypt environment for verifying cryptographic protocols, the Pangolin programming
language http://code.google.com/p/pangolin-programming-language/, etc.

Last but not least, Alt-Ergo is the solver used by the Cubicle model checker described below.

Alt-Ergo is distributed as open source, under the CeCILL-C license, at URL http://alt-ergo.lri.fr/, and in the
OPAM packaging system http://opam.ocaml.org/packages/alt-ergo/alt-ergo.0.95.2/. Latest public version is
0.99.1, released in Dec. 2014. Maintenance is done by the OcamlPro company http://alt-ergo.ocamlpro.com/.

5.3. The Cubicle model checker modulo theories
Participants: Sylvain Conchon [contact], Alain Mebsout.

Partners: A. Goel, S. Krstić (Intel Strategic Cad Labs in Hillsboro, OR, USA), F. Zaïdi (LRI, Université Paris-
sud)

Cubicle is an open source model checker for verifying safety properties of array-based systems, which
corresponds to a syntactically restricted class of parametrized transition systems with states represented
as arrays indexed by an arbitrary number of processes. Cache coherence protocols and mutual exclusion
algorithms are typical examples of such systems.

http://code.google.com/p/pangolin-programming-language/
http://alt-ergo.lri.fr/
http://opam.ocaml.org/packages/alt-ergo/alt-ergo.0.95.2/
http://alt-ergo.ocamlpro.com/

14 Activity Report INRIA 2014

Cubicle model-checks by a symbolic backward-reachability analysis on infinite sets of states represented by
specific simple formulas, called cubes. Cubicle is based on ideas introduced by MCMT (http://users.mat.
unimi.it/users/ghilardi/mcmt/) from which, in addition to revealing the implementation details, it differs in a
more friendly input language and a concurrent architecture. Cubicle is written in OCaml. Its SMT solver is a
tightly integrated, lightweight and enhanced version of Alt-Ergo; and its parallel implementation relies on the
Functory library.

Cubicle is distributed as open source, under the Apache license, at URL http://cubicle.lri.fr/, and in the OPAM
packaging system http://opam.ocaml.org/packages/cubicle/cubicle.1.0.1/. Latest version is 1.0.1, released in
Nov. 2014.

5.4. The Flocq library
Participants: Sylvie Boldo [contact], Guillaume Melquiond.

Criteria for Software Self-Assessment: A-2, SO-3, SM-3, EM-3, SDL-5, OC-4.

The Flocq library for the Coq proof assistant is a comprehensive formalization of floating-point arithmetic:
core definitions, axiomatic and computational rounding operations, high-level properties [6]. It provides a
framework for developers to formally certify numerical applications.

Flocq is currently used by the CompCert certified compiler for its support of floating-point computations.

It is distributed as open source, under a LGPL license, at http://flocq.gforge.inria.fr/. It was first released in
2010. Current version is 2.4.0 released in Sep. 2014.

5.5. The Gappa tool
Participant: Guillaume Melquiond [contact].

Criteria for Software Self-Assessment: A-3, SO-4, SM-4, EM-3, SDL-5, OC-4.

Given a logical property involving interval enclosures of mathematical expressions, Gappa tries to verify
this property and generates a formal proof of its validity. This formal proof can be machine-checked by an
independent tool like the Coq proof-checker, so as to reach a high level of confidence in the certification [82],
[123].

Since these mathematical expressions can contain rounding operators in addition to usual arithmetic operators,
Gappa is especially well suited to prove properties that arise when certifying a numerical application, be it
floating-point or fixed-point. Gappa makes it easy to compute ranges of variables and bounds on absolute or
relative roundoff errors.

Gappa is being used to certify parts of the mathematical libraries of several projects, including CRlibm, FLIP,
and CGAL. It is distributed as open source, under a Cecill-B / GPL dual-license, at http://gappa.gforge.inria.fr/.
Latest version is 1.1.2 released in October 2014.

Part of the work on this tool was done while in the Arénaire team (Inria Rhône-Alpes), until 2008.

5.6. The Interval package for Coq
Participants: Guillaume Melquiond [contact], Érik Martin-Dorel.

Criteria for Software Self-Assessment: A-3, SO-4, SM-3, EM-3, SDL-4, OC-4.

The Interval package provides several tactics for helping a Coq user to prove theorems on enclosures of real-
valued expressions. The proofs are performed by an interval kernel which relies on a computable formalization
of floating-point arithmetic in Coq.

Versions 1.0 and 2.0 were released in 2014. Version 2.0 integrates the CoqApprox library for computing Taylor
models, so as to greatly improve performances when bounding univariate expressions [43].

http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://cubicle.lri.fr/
http://opam.ocaml.org/packages/cubicle/cubicle.1.0.1/
http://flocq.gforge.inria.fr/
http://gappa.gforge.inria.fr/

Project-Team TOCCATA 15

It is distributed as open source, under a CeCILL-C license, at http://coq-interval.gforge.inria.fr/. Latest version
is 2.0 released in November 2014.

Part of the work on this library was done while in the Mathematical Components team (Microsoft Re-
search–Inria Joint Research Center).

5.7. The Coquelicot library for real analysis
Participants: Sylvie Boldo [contact], Catherine Lelay, Guillaume Melquiond.

Criteria for Software Self-Assessment: A-3, SO-4, SM-2, EM-3, SDL-4, OC-4.

The Coquelicot library is designed with three principles in mind. The first is the user-friendliness, achieved by
implementing methods of automation, but also by avoiding dependent types in order to ease the stating and
readability of theorems. This latter part was achieved by defining total function for basic operators, such as
limits or integrals. The second principle is the comprehensiveness of the library. By experimenting on several
applications, we ensured that the available theorems are enough to cover most cases. We also wanted to be
able to extend our library towards more generic settings, such as complex analysis or Euclidean spaces. The
third principle is for the Coquelicot library to be a conservative extension of the Coq standard library, so that it
can be easily combined with existing developments based on the standard library. Moreover, we achieved this
compatibility without adding any additional axiom.

The result is the Coquelicot library available at http://coquelicot.saclay.inria.fr. Latest version is 2.0.1 released
in March 2014. It contains about 1,700 theorems and 37,000 lines of Coq.

5.8. The CFML tool for verifying OCaml code
Participant: Arthur Charguéraud [contact].

Criteria for Software Self-Assessment: A-2, SO-4, SM-2, EM-3, SDL-1, OC-4.

The CFML tool supports the verification of OCaml programs through interactive Coq proofs. CFML proofs
establish the full functional correctness of the code with respect to a specification. They may also be used to
formally establish bounds on the asymptotic complexity of the code. The tool is made of two parts: on the
one hand, a characteristic formula generator implemented as an OCaml program that parses OCaml code
and produces Coq formulae; and, on the other hand, a Coq library that provides notation and tactics for
manipulating characteristic formulae interactively in Coq.

CFML is distributed under the LGPL license, and is available at http://arthur.chargueraud.org/softs/cfml/. It
has been continuously extended since its first release in 2010. In particular, in 2014 support for the verification
of asymptotic complexity bounds has been added.

5.9. Other Maintained Tools
5.9.1. The ALEA library for randomized algorithms

Participant: Christine Paulin-Mohring [contact].

Criteria for Software Self-Assessment: A-2, SO-3, SM-2, EM-3, SDL-4, OC-4.

The ALEA library is a Coq development for modeling randomized functional programs as distributions using
a monadic transformation. It contains an axiomatisation of the real interval [0, 1] and its extension to positive
real numbers. It introduces definition of distributions and general rules for approximating the probability that
a program satisfies a given property.

ALEA is used as a basis of the Certicrypt environment (MSR-Inria joint research center, Imdea Madrid, Inria
Sophia-Antipolis) for formal proofs for computational cryptography [55]. It is also experimented in LABRI
as a basis to study formal proofs of probabilistic distributed algorithms.

ALEA is distributed as open source, at http://www.lri.fr/~paulin/ALEA. Latest version is 8 released in May
2013. In particular, it includes a module to reason about random variables with values in positive real numbers.

http://coq-interval.gforge.inria.fr/
http://coquelicot.saclay.inria.fr
http://arthur.chargueraud.org/softs/cfml/
http://www.lri.fr/~paulin/ALEA

16 Activity Report INRIA 2014

5.9.2. Bibtex2html
Participants: Jean-Christophe Filliâtre [contact], Claude Marché.

Criteria for Software Self-Assessment: A-5, SO-3, SM-3, EM-3, SDL-5, OC-4.

Bibtex2html is a generator of HTML pages of bibliographic references. Distributed as open source since 1997,
under the GPL license, at http://www.lri.fr/~filliatr/bibtex2html/. Latest version is 1.98 released in July 2014.
Bibtex2html is also distributed as a package in most Linux distributions, and in the OPAM packaging system
http://opam.ocaml.org/packages/bibtex2html/bibtex2html.1.98/.

We estimate that between 10000 and 100000 web pages have been generated using Bibtex2html.

5.9.3. The Coccinelle library for term rewriting
Participant: Évelyne Contejean [contact].

Criteria for Software Self-Assessment: A-2, SO-3, SM-2, EM-2, SLD-2, OC-4.

Coccinelle is a Coq library for term rewriting. Besides the usual definitions and theorems of term algebras,
term rewriting and term ordering, it also models a number of algorithms implemented in the CiME toolbox,
such as matching, matching modulo associativity-commutativity, computation of the one-step reducts of a
term, recursive path ordering (RPO) comparison between two terms, etc. The RPO algorithm can effectively
be run inside Coq, and is used in the Color developement (http://color.inria.fr/) as well as for certifying Spike
implicit induction theorems in Coq (Sorin Stratulat).

Coccinelle is available at http://www.lri.fr/~contejea/Coccinelle, and is distributed under the Cecill-C license.

5.9.4. OCamlgraph
Participants: Jean-Christophe Filliâtre [contact], Sylvain Conchon.

OCamlgraph is a graph library for OCaml. It features many graph data structures, together with many graph
algorithms. Data structures and algorithms are provided independently of each other, thanks to OCaml module
system. OCamlgraph is distributed as open source, under the LGPL license, at http://OCamlgraph.lri.fr/. Latest
version is 1.8.5, released in March 2014. It is also distributed as a package in several Linux distributions.
OCamlgraph is now widely spread among the community of OCaml developers, and available as an OPAM
package http://opam.ocaml.org/packages/ocamlgraph/ocamlgraph.1.8.5/.

5.9.5. Mlpost
Participant: Jean-Christophe Filliâtre [contact].

Mlpost is a tool to draw scientific figures to be integrated in LaTeX documents. Contrary to other tools such as
TikZ or MetaPost, it does not introduce a new programming language; it is instead designed as a library of an
existing programming language, namely OCaml. Yet it is based on MetaPost internally and thus provides high-
quality PostScript figures and powerful features such as intersection points or clipping. Mlpost is distributed
as open source, under the LGPL license, at http://mlpost.lri.fr/. Mlpost was presented at JFLA’09 [52].

Mlpost is available as an OPAM package http://opam.ocaml.org/packages/mlpost/mlpost.0.8.1/.

5.9.6. Functory
Participant: Jean-Christophe Filliâtre [contact].

Functory is a distributed computing library for OCaml. The main features of this library include (1) a
polymorphic API, (2) several implementations to adapt to different deployment scenarios such as sequential,
multi-core or network, and (3) a reliable fault-tolerance mechanism. Functory was presented at JFLA 2011
[91] and at TFP 2011 [90].

Functory is distributed as open source, under the LGPL license, at http://functory.lri.fr/, and in the OPAM
packaging system http://opam.ocaml.org/packages/functory/functory.0.5/. Latest version is 0.5, release in
March 2013.

http://www.lri.fr/~filliatr/bibtex2html/
http://opam.ocaml.org/packages/bibtex2html/bibtex2html.1.98/
http://color.inria.fr/
http://www.lri.fr/~contejea/Coccinelle
http://OCamlgraph.lri.fr/
http://opam.ocaml.org/packages/ocamlgraph/ocamlgraph.1.8.5/
http://mlpost.lri.fr/
http://opam.ocaml.org/packages/mlpost/mlpost.0.8.1/
http://functory.lri.fr/
http://opam.ocaml.org/packages/functory/functory.0.5/

Project-Team TOCCATA 17

5.9.7. The Why Environment
Participants: Claude Marché [contact], Jean-Christophe Filliâtre, Guillaume Melquiond, Andrei Paskevich.

Criteria for Software Self-Assessment: A-3, SO-4, SM-3, EM-2, SDL-5-down, OC-4.

The Why platform is a set of tools for deductive verification of Java and C source code. In both cases, the
requirements are specified as annotations in the source, in a special style of comments. For Java (and Java
Card), these specifications are given in JML and are interpreted by the Krakatoa tool. Analysis of C code must
be done using the external Frama-C environment, and its Jessie plugin which is distributed in Why.

The platform is distributed as open source, under GPL license, at http://why.lri.fr/.

It also distributed as part of major Linux distributions and in the OPAM packaging system http://opam.ocaml.
org/packages/why/why.2.34/. Version 2.34 was released in August 2014, to provide a version compatible with
both Frama-CNeon and Why3 0.83.

The internal VC generator and the translators to external provers are no longer under active development,
as superseded by the Why3system described above. The Krakatoa and Jessie front-ends are still maintained,
although using now by default the Why3 VC generator. These front-ends are described in a specific web
page http://krakatoa.lri.fr/. They are used for teaching (University of Evry, École Polytechnique, etc.), used by
several research groups in the world, e.g at Fraunhofer Institute in Berlin [92], at Universidade do Minho in
Portugal [50], at Moscow State University, Russia (http://journal.ub.tu-berlin.de/eceasst/article/view/255).

6. New Results

6.1. Highlights of the Year
• The ACM Software System Award 2013 was given, during a ceremony in June 2014 in San

Francisco, to the Coq proof assistant (http://awards.acm.org/software_system/). The prestigious
ACM price was previously awarded to the LLVM compiler infrastructure (2012) and to the Eclipse
IDE (2011). Among the 9 recipients of the 2013 award are Christine Paulin and Jean-Christophe
Filliâtre, from the Toccata team.

• The Concours Castor informatique (http://castor-informatique.fr/) had an even larger success than
in the previous years. In November 2014, more than 228,000 teenagers from over 1500 schools
participated and solved the interactive tasks of the contest. Arthur Charguéraud and Sylvie Boldo,
from the Toccata team, significantly contributed to the prepation of the tasks and to the organization
of the contest.

6.2. Deductive Verification
• J.-C. Filliâtre, L. Gondelman, and A. Paskevich have formalized the notion of ghost code imple-

mented in Why3, in a paper The Spirit of Ghost Code [35] presented at CAV 2014. This is an outcome
of L. Gondelman’s M2 internship (spring/summer 2013).

• M. Clochard published at the POPL conference a paper presenting a work done during an internship
at Rice University (Houston, TX, USA) with S. Chaudhuri and A. Solar-Lezama [29]. It is a
new technique for parameter synthesis under boolean and quantitative objectives. The input to
the technique is a “sketch”—a program with missing numerical parameters—and a probabilistic
assumption about the program’s inputs. The goal is to automatically synthesize values for the
parameters such that the resulting program satisfies: (1) a boolean specification, which states that
the program must meet certain assertions, and (2) a quantitative specification, which assigns a real
valued rating to every program and which the synthesizer is expected to optimize.

http://why.lri.fr/
http://opam.ocaml.org/packages/why/why.2.34/
http://opam.ocaml.org/packages/why/why.2.34/
http://krakatoa.lri.fr/
http://journal.ub.tu-berlin.de/eceasst/article/view/255
http://awards.acm.org/software_system/
http://castor-informatique.fr/

18 Activity Report INRIA 2014

• J.-C. Filliâtre, C. Marché, and A. Paskevich, together with F. Bobot (CEA LIST), took part in the
VerifyThis program verification competition, held at the 18th FM symposium in August 2012.
They used Why3 to solve three challenges (which can be found at http://fm2012.verifythis.org/
challenges/), and their solutions have been published in a special issue of the journal Software Tools
for Technology Transfer [16].

• M. Clochard developed, using Why3, verified implementations of several data structures, including
random-access lists and ordered maps. These are derived from a common parametric implementation
of self-balancing binary trees in the style of Adelson-Velskii and Landis trees (so-called AVLs).
This work appeared at the VSTTE conference [30]. Its originality relies on the genericity of the
specifications and the code, and the very high level of proof automation. Such a case study is aimed
at illustrating the capabilities of Why3 for designing certified libraries. Development is available
from our gallery at http://toccata.lri.fr/gallery/avl.fr.html.

• S. Conchon and A. Mebsout have extended the core algorithm of the Cubicle model checker with
a mechanism for inferring invariants. This new algorithm, called BRAB, is able to automatically
infer invariants strong enough to prove industrial cache coherence protocols. BRAB computes over-
approximations of backward reachable states that are checked to be unreachable in a finite instance
of the system. These approximations (candidate invariants) are then model-checked together with the
original safety properties. Completeness of the approach is ensured by a mechanism for backtracking
on spurious traces introduced by too coarse approximations. Details can be found in A. Mebsout’s
PhD thesis [15].

• A. Charguéraud extended his tool CFML to support, in addition to the verification of the full
functional correctness of a piece of code, the verification of the asymptotic complexity of the code.
Even though it had been previously established that, in theory, amortized analysis can be explained
as the manipulation of time credits, and that time credits can be encoded as resources in Separation
Logic, CFML is the first practical tool to support the formal verification of amortized analyses for
arbitrarily-complex pieces of code. The time-credit extension to CFML was put to practice to verify
dynamic arrays (Julien Grangier’s internship), and to verify a chunked sequence data structure [26],
particularly challenging due to its use of Tarjan’s data structural bootstrapping technique. The latter
piece of work was presented in July at the workshop Semantics of proofs and certified mathematics,
which took place at the Institut Henri Pointcaré. A paper describing the time-credit extension to
CFML is under preparation.

6.3. Floating-Point and Numerical Programs
• C. Marché published in the Science of Computer Programming journal [22] a detailed description

of an industrial research initially conducted in the context of the U3CAT project (ended in 2012) on
static analysis of critical C code. The code involves floating-point computations on quaternions that
should be of norm 1. Because of the round-off errors, a drift of this norm is observed over time. In
this work a bound on this drift is determined and formally proved correct, using Frama-C, Jessie and
Why3. Proofs are done using automated provers and in a few complex cases the Coq proof assistant.
The published version is up to date with the recent versions of those tools, and the development is
available on our gallery at http://toccata.lri.fr/gallery/quat.en.html

• S. Boldo, C. Lelay, and G. Melquiond worked on the Coquelicot library, designed to be a user-
friendly Coq library about real analysis. An easier way of writing formulas and theorem statements
is achieved by relying on total functions in place of dependent types for limits, derivatives, integrals,
power series, and so on. To help with the proof process, the library comes with a comprehensive set
of theorems and some automation. We have exercised the library on several use cases: in an exam
at university entry level, for the definitions and properties of Bessel functions, and for the solution
of the one-dimensional wave equation. These results are published in the journal Mathematics in
Computer Science [19].

http://fm2012.verifythis.org/challenges/
http://fm2012.verifythis.org/challenges/
http://toccata.lri.fr/gallery/avl.fr.html
http://toccata.lri.fr/gallery/quat.en.html

Project-Team TOCCATA 19

• S. Boldo and G. Melquiond, with J.-H. Jourdan and X. Leroy (Gallium team, Inria Paris - Rocquen-
court) extended the CompCert compiler to get the first formally verified C compiler that provably
preserves the semantics of floating-point programs This work, published in the Journal of Auto-
mated Reasoning [18], also covers the formalization of numerous algorithms of conversion between
integers and floating-point numbers.

• S. Boldo, C. Lelay, and G. Melquiond, have conducted a survey on the formalization of real arith-
metic and real analysis in various proof systems. This work, published in the journal Mathematical
Structures in Computer Science [20], details the axioms, definitions, theorems, and methods of au-
tomation, available in these systems.

• É. Martin-Dorel and G. Melquiond worked on integrating the CoqInterval and CoqApprox libraries
into a single package. The CoqApprox library is dedicated to computing verified Taylor models of
univariate functions so as to compute approximation errors. The CoqInterval library reuses this work
to automatically prove bounds on real-valued expressions. A large formalization effort took place
during this work, so as to get rid of all the holes remaining in the formal proofs of CoqInterval. It
was also the chance to perform a comparison between numerous decision procedures dedicated to
proving nonlinear inequalities involving elementary functions. A report is available [43].

• S. Boldo, J.-C. Filliâtre, and G. Melquiond, with F. Clément and P. Weis (POMDAPI team, Inria
Paris - Rocquencourt), and M. Mayero (LIPN), completed the formal proof of a numerical analysis
program: the second-order centered finite-difference scheme for the one-dimensional acoustic wave.
This proof was published with a focus towards numerical analysts, in the journal Computers and
Mathematics with Applications [17].

• P. Roux formalized the influence of double rounding on the accuracy of floating-point arithmetic
operators. In particular, this includes all the corner cases that were ignored from Figueroa’s original
pen-and-paper proof. Results appeared in the Journal of Formalized Reasoning [24].

• P. Roux formalized a theory of numerical analysis for bounding the round-off errors of a floating-
point algorithm. This approach was applied to the formal verification of a program for checking
that a matrix is semi-definite positive. The challenge here is that testing semi-definiteness involves
algebraic number computations, yet it needs to be implemented using only approximate floating-
point operations. A report is available [45].

6.4. Automated Reasoning
• In the context of the BWare project, aiming at using Why3 and Alt-Ergo for discharging proof

obligations generated by Atelier B, we made progress into several directions. New drivers have
been designed for Why3, in order to use new back-end provers Zenon modulo and iProver modulo.
A notion of rewrite rule was introduced into Why3, and a transformation for simplifying goals before
sending them to back-end provers was designed. Intermediate results obtained so far in the project
were presented both at the French conference AFADL [38] and at the international conference on
Abstract State Machines, Alloy, B, VDM, and Z [34].

On the side of Alt-Ergo, recent developments have been made to efficiently discharge proof obliga-
tions generated by Atelier B. This includes a new plugin architecture to facilitate experiments with
different SAT engines, new heuristics to handle quantified formulas, and important modifications
in its internal data structures to boost performances of core decision procedures. Benchmarks real-
ized on more than 10,000 proof obligations generated from industrial B projects show significant
improvements [33].

• C. Dross defended her PhD thesis in April 2014 [14], on the topic of automated reasoning modulo
theories, and in particular the handling of quantifiers in the SMT approach. The main results of
the thesis are: (1) a formal semantics of the notion of triggers typically used to control quantifier
instantiation in SMT solvers, (2) a general setting to show how a first-order axiomatization with
triggers can be proved correct, complete, and terminating, and (3) an extended DPLL(T) algorithm

20 Activity Report INRIA 2014

to integrate a first-order axiomatization with triggers as a decision procedure for the theory it defines.
Significant case studies were conducted on examples coming from SPARK programs, and on the
benchmarks on B set theory constructed within the BWare project.

6.5. Certification of Languages, Tools and Systems
• M. Clochard, C. Marché, and A. Paskevich developed a general setting for developing programs

involving binders, using Why3. This approach was successfully validated on two case studies: a
verified implementation of untyped lambda-calculus and a verified tableaux-based theorem prover.
This work was presented at the PLPV conference in January 2014 [32].

• M. Clochard, J.-C. Filliâtre, C. Marché, and A. Paskevich developed a case study on the formal-
ization of semantics of programming languages using Why3. This case study aimed at illustrating
recent improvements of Why3 regarding the support for higher-order logic features in the input logic
of Why3, and how these are encoded into first-order logic, so that goals can be discharged by au-
tomated provers. This case study also illustrates how reasoning by induction can be done without
need for interactive proofs, via the use of lemma functions. This works was presented at the VSTTE
conference [31].

• M. Clochard and L. Gondelman developed a formalization of a simple compiler in Why3. It compiles
a simple imperative language into assembler instructions for a stack machine. This case study was
inspired by a similar example developed using Coq and interactive theorem proving. The aim is to
improve significantly the degree of automation in the proofs. This is achieved by the formalization
of a Hoare logic and a Weakest Precondition Calculus on assembly programs, so that the correctness
of compilation is seen as a formal specification of the assembly instructions generated. This work
conducted in 2014 will be presented at the JFLA conference in January 2015 [75].

• S. Dumbrava and É. Contejean, with V. Benzaken (VALS team, at LRI) proposed a Coq formalization
of the relational data model which underlies relational database systems. More precisely, they have
presented and formalized the data definition part of the model including integrity constraints. They
have modelled two different query language formalisms: relational algebra and conjunctive queries.
They also present logical query optimization and prove the main “database theorems”: algebraic
equivalences, the homomorphism theorem and conjunctive query minimization. This work has been
published at ESOP 2014 [27].

• A. Charguéraud, together with the other members of the JsCert team have developed this year the
first complete formalization of the semantics of the JavaScript programming language. This project
is joint work with Philippa Gardner, Sergio Maffeis, Gareth Smith, Daniele Filaretti and Daiva
Naudziuniene from Imperial College, and Alan Schmitt and Martin Bodin from Inria Rennes (see
http://jscert.org). The formalization consists of a set of inductive rules translating the prose from the
ECMAScript Language Specification, version 5, using the pretty-big-step semantics [74]. These rules
can be used to formally reason about program behaviors or to establish the correctness of program
transformations. In addition to the inductive rules, a reference interpreter has been proved correct.
This interpreter may be used to run actual JavaScript program following the rules of the formal
semantics. It has been used in particular to validate the formal semantics against official JavaScript
test suites. The formalization of JavaScript has been published at POPL [28].

6.6. Miscellaneous
A. Charguéraud worked together with Umut Acar and Mike Rainey, as part of the ERC project
DeepSea, on the developement of efficient data structures and algorithms targeting modern, shared
memory multicore architectures. Two major results were obtained this year.

The first result is a sequence data structure that provides amortized constant-time access at the
two ends, and logarithmic time concatenation and splitting at arbitrary positions. These operations
are essential for programming efficient computation in the fork-join model. Compared with prior

http://jscert.org

Project-Team TOCCATA 21

work, this novel sequence data structure achieves excellent constant factors, allowing it to be used
as a replacement for traditional, non-splittable sequence data structures. This data structure, called
chunked sequence due to its use of chunks (fixed-capacity arrays), has been implemented both in
C++ and in OCaml. It is described in a paper published at ESA [26].

Another result by A. Charguéraud and his co-authors is the development of fast and robust parallel
graph traversal algorithms, more precisely for parallel BFS and parallel DFS. The new algorithms
leverage the aforementioned sequence data structure for representing the set of edges remaining to be
visited. In particular, it uses the split operation for balancing the edges among the several processors
involved in the computation. Compared with prior work, these new algorithms are designed to be
efficient not just for particular classes of graphs, but for all input graphs. This work has not yet
been published, however it is described in details in a technical report [40]. Note that these two
graph algorithms, which involve nontrivial use of concurrent data structures, will be very interesting
targets for formal verification.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. ProofInUse Joint Laboratory

Participants: Claude Marché [contact], Jean-Christophe Filliâtre, Andrei Paskevich.

ProofInUse is a joint project between the Toccata team and the SME AdaCore. It was selected and funded
by the ANR programme “Laboratoires communs”, starting from April 2014, for 3 years http://www.spark-
2014.org/proofinuse.

The SME AdaCore is a software publisher specializing in providing software development tools for critical
systems. A previous successful collaboration between Toccata and AdaCore enabled Why3 technology to be
put into the heart of the AdaCore-developed SPARK technology.

The goal is now to promote and transfer the use of deduction-based verification tools to industry users, who
develop critical software using the programming language Ada. The proof tools are aimed at replacing or
complementing the existing test activities, whilst reducing costs.

7.1.2. CIFRE contract with Adacore
Participants: Claude Marché [contact], Andrei Paskevich, Claire Dross.

Jointly with the thesis of C. Dross, supervised in collaboration with the AdaCore company, we established a
3-year bilateral collaboration contract, that ended in April 2014.

The aim was to strengthen the usability of the Alt-Ergo theorem prover in the context of the GnatProve
environment for the verification of safety-critical Ada programs [84]. A focus was made on programs involving
Ada containers [85]. C. Dross defended her PhD in April 1st 2014 [14].

7.2. Bilateral Grants with Industry
7.2.1. Intel Grant

Participants: Sylvain Conchon [contact], Alain Mebsout.

S. Conchon has obtained an academic grant by Intel corporation on the development of the Cubicle model
checker, for 2 years starting from Dec. 2012 The goal of this project is to develop a new version of Cubicle
with significantly improved model-checking power. This required innovative algorithmic enhancements to be
implemented and evaluated.

Partner: Intel Strategic Cad Labs in Hillsboro, OR, USA

http://www.spark-2014.org/proofinuse
http://www.spark-2014.org/proofinuse

22 Activity Report INRIA 2014

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. Coquelicot

Participants: Sylvie Boldo [contact], Catherine Lelay, Guillaume Melquiond.

Coquelicot is a 3-year Digiteo project that started in September 2011. http://coquelicot.saclay.inria.fr/.
S. Boldo is the principal investigator of this project.

The Coquelicot project aims at creating a modern formalization of the real numbers in Coq, with a focus on
practicality [101], [65], [100],[19]. This is sorely needed to ease the verification of numerical applications,
especially those involving advanced mathematics.

Partners: team SpecFun from LIX (Palaiseau), University Paris 13

8.1.2. ELFIC
Participants: Sylvie Boldo [contact], Claude Marché, Guillaume Melquiond.

ELFIC is a working group of the Digicosme Labex. S. Boldo is the principal investigator.

Project ELFIC focuses on proving the correctness of the FELiScE (Finite Elements for Life Sciences and
Engineering) C++ library which implements the finite element method for approximating solutions to partial
differential equations. Finite elements are at the core of numerous simulation programs used in industry. The
formal verification of this library will greatly increase confidence in all the programs that rely on it. Verification
methods developed in this project will be a breakthrough for the finite element method, but more generally for
the reliability of critical software relying on intricate numerical algorithms.

Partners: Inria team Pomdapi; Ecole Polytechnique, LIX; CEA LIST; Université Paris 13, LIPN; UTC, LMAC
(Compiègne).

8.2. National Initiatives
8.2.1. ANR Ajacs

Participant: Arthur Charguéraud [contact].

The AJACS research project is funded by the programme “Société de l’information et de la communication”
of the ANR, for a period of 42 months, starting on October 1st, 2014.

The goal of the AJACS project is to provide strong security and privacy guarantees on the client side for web
application scripts implemented in JavaScript, the most widely used language for the Web. The proposal is
to prove correct analyses for JavaScript programs, in particular information flow analyses that guarantee no
secret information is leaked to malicious parties. The definition of sub-languages of JavaScript, with certified
compilation techniques targeting them, will allow deriving more precise analyses. Another aspect of the
proposal is the design and certification of security and privacy enforcement mechanisms for web applications,
including the APIs used to program real-world applications. On the Toccata side, the focus will be on the
formalization of secure subsets of JavaScript, and on the mechanization of proofs of translations from high-
level languages into JavaScript.

Partners: team Celtique (Inria Rennes - Bretagne Atlantique), team Prosecco (Inria Paris - Rocquencourt),
team Indes (Inria Sophia Antipolis - Méditerranée), and Imperial College (London).

8.2.2. ANR FastRelax
Participants: Sylvie Boldo [contact], Guillaume Melquiond.

This is a research project funded by the programme “Ingénierie Numérique & Sécurité” of the ANR. It is
funded for a period of 48 months and it has started on October 1st, 2014. http://fastrelax.gforge.inria.fr/

http://coquelicot.saclay.inria.fr/
http://fastrelax.gforge.inria.fr/

Project-Team TOCCATA 23

Our aim is to develop computer-aided proofs of numerical values, with certified and reasonably tight
error bounds, without sacrificing efficiency. Applications to zero-finding, numerical quadrature or global
optimization can all benefit from using our results as building blocks. We expect our work to initiate a "fast and
reliable" trend in the symbolic-numeric community. This will be achieved by developing interactions between
our fields, designing and implementing prototype libraries and applying our results to concrete problems
originating in optimal control theory.

Partners: team ARIC (Inria Grenoble Rhône-Alpes), team MARELLE (Inria Sophia Antipolis - Méditerranée),
team SPECFUN (Inria Saclay - Île-de-France), Université Paris 6, and LAAS (Toulouse).

8.2.3. ANR Soprano
Participants: Sylvain Conchon [contact], Évelyne Contejean, Guillaume Melquiond.

The Soprano research project is funded by the programme “Sciences et technologies logicielles” of the ANR,
for a period of 42 months, starting on October 1st, 2014.

The SOPRANO project aims at preparing the next generation of verification-oriented solvers by gathering
experts from academia and industry. We will design a new framework for the cooperation of solvers,
focused on model generation and borrowing principles from SMT (current standard) and CP (well-known
in optimization). Our main scientific and technical objectives are the following. The first objective is to design
a new collaboration framework for solvers, centered around synthesis rather than satisfiability and allowing
cooperation beyond that of Nelson-Oppen while still providing minimal interfaces with theoretical guarantees.
The second objective is to design new decision procedures for industry-relevant and hard-to-solve theories. The
third objective is to implement these results in a new open-source platform. The fourth objective is to ensure
industrial-adequacy of the techniques and tools developed through periodical evaluations from the industrial
partners.

Partners: team DIVERSE (Inria Rennes - Bretagne Atlantique), Adacore, CEA List, Université Paris-Sud, and
OCamlPro.

8.2.4. ANR CAFEIN
Participant: Sylvain Conchon [contact].

The CAFEIN research project is funded by the programme “Ingénierie Numérique & Sécurité” of the ANR,
for a period of 3 years, starting on February 1st, 2013. https://cavale.enseeiht.fr/CAFEIN/.

This project addresses the formal verification of functional properties at specification level, for safety critical
reactive systems. In particular, we focus on command and control systems interacting with a physical
environment, specified using the synchronous language Lustre.

A first goal of the project is to improve the level of automation of formal verification, by adapting and
combining existing verification techniques such as SMT-based temporal induction, and abstract interpretation
for invariant discovery. A second goal is to study how knowledge of the mathematical theory of hybrid
command and control systems can help the analysis at the controller’s specification level. Third, the project
addresses the issue of implementing real valued specifications in Lustre using floating-point arithmetic.

Partners: ONERA, CEA List, ENSTA, teams Maxplus (Inria Saclay - Île-de-France), team Parkas (Inria Paris
- Rocquencourt), Perpignan University, Prover Technology, Rockwell Collins.

8.2.5. ANR BWare
Participants: Sylvain Conchon [contact], Évelyne Contejean, Jean-Christophe Filliâtre, Andrei Paskevich,
Claude Marché.

The BWare research project is funded by the programme “Ingénierie Numérique & Sécurité” of the ANR, a
period of 4 years, starting on September 1st, 2012. http://bware.lri.fr.

https://cavale.enseeiht.fr/CAFEIN/
http://bware.lri.fr

24 Activity Report INRIA 2014

BWare is an industrial research project that aims to provide a mechanized framework to support the automated
verification of proof obligations coming from the development of industrial applications using the B method
and requiring high guarantee of confidence. The methodology used in this project consists in building a generic
platform of verification relying on different theorem provers, such as first-order provers and SMT solvers.
The variety of these theorem provers aims at allowing a wide panel of proof obligations to be automatically
verified by the platform. The major part of the verification tools used in BWare have already been involved in
some experiments, which have consisted in verifying proof obligations or proof rules coming from industrial
applications [109]. This therefore should be a driving factor to reduce the risks of the project, which can
then focus on the design of several extensions of the verification tools to deal with a larger amount of proof
obligations.

The partners are: Cedric laboratory at CNAM (CPR Team, project leader); teams Gallium and Deducteam
(Inria Paris - Rocquencourt) ; Mitsubishi Electric R&D Centre Europe, ClearSy (the company which develops
and maintains Atelier B), and the start-up OCamlPro.

8.2.6. ANR Verasco
Participants: Guillaume Melquiond [contact], Sylvie Boldo, Arthur Charguéraud, Claude Marché.

The Versaco research project is funded by the programme “Ingénierie Numérique & Sécurité” of the ANR,
for a period of 4 years, starting on January 1st, 2012. Project website: http://verasco.imag.fr.

The main goal of the project is to investigate the formal verification of static analyzers and of compilers, two
families of tools that play a crucial role in the development and validation of critical embedded software.
More precisely, the project aims at developing a generic static analyzer based on abstract interpretation for the
C language, along with a number of advanced abstract domains and domain combination operators, and prove
the soundness of this analyzer using the Coq proof assistant. Likewise, it will keep working on the CompCert
C formally-verified compiler, the first realistic C compiler that has been mechanically proved to be free of
miscompilation, and carry it to the point where it could be used in the critical software industry.

Partners: teams Gallium and Abstraction (Inria Paris - Rocquencourt), Airbus avionics and simulation
(Toulouse), IRISA (Rennes), Verimag (Grenoble).

8.3. European Initiatives
8.3.1. FP7 & H2020 Projects

Project acronym: ERC Deepsea

Project title: Parallel dynamic computations

Duration: Jun. 2013 - Jun. 2018

Coordinator: Umut A. Acar

Other partners: Carnegie Mellon University

Abstract:

The objective of this project is to develop abstractions, algorithms and languages for parallelism
and dynamic parallelism with applications to problems on large data sets. Umut A. Acar (affiliated
to Carnegie Mellon University and Inria Paris - Rocquencourt) is the principal investigator of this
ERC-funded project. The other main researchers involved are Mike Rainey (Inria, Gallium team),
who is full-time on the project, and Arthur Charguéraud (Inria, Toccata team), who works 40% of
his time to the project. Project website: http://deepsea.inria.fr/.

8.4. International Initiatives
8.4.1. Inria International Partners
8.4.1.1. Declared Inria International Partners

http://verasco.imag.fr
http://deepsea.inria.fr/

Project-Team TOCCATA 25

S. Conchon, A. Mebsout and F. Zaïdi (VALS group, LRI) collaborate with S. Krstic and A. Goel
(Intel Strategic Cad Labs in Hillsboro, OR, USA), in particular around the development of the SMT-
based model checker Cubicle (see above). This collaboration is partly supported by an academic
grant by Intel.

8.5. International Research Visitors
8.5.1. Visits of International Scientists

• P. Roux (ISAE, Onera) visited for 7 months in order to collaborate with S. Boldo and G. Melquiond
on the topic of formal verification of numerical algorithms.

• Bas Spitters visited for 3 months from April to June funded by a Digiteo grant. He worked with
C. Paulin on the extension of the ALEA library to continuous structures and the use of “lower reals”
(monotonic sequences of rationals). He also worked on adapting the Corn and Math-classes libraries
to the new Coq release. During that time he published a final version of a paper presented at the
Workshop on Quantum Physics and Logic in 2012 [119].

• Andrew Tolmach is a visiting researcher from Portland State University, on a one-year Digiteo Chair.
His research project will initiate a new research effort to develop principles, techniques, and tools
for large-scale proof engineering. It is focused on the Coq proof assistant and is designed to take
advantage of the deep pool of expertise available in the Paris area (at Paris-Sud, LIX, Inria, etc.)
concerning both the use and development of Coq. Initial results are expected to include: a precise
description of requirements for large proof management; sample prototype tools addressing one or
more of these requirements; and a technical survey of relevant proof representation options.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. General chair, scientific chair

• J.-C. Filliâtre chaired the fifth meeting of the IFIP Working Group 1.9/2.15 (Verified Software) in
Vienna, Austria, July 2014.

9.1.1.2. Member of the organizing committee
• S. Boldo and G. Melquiond are members of the organizing committee for the 22nd IEEE Symposium

on Computer Arithmetic (ARITH 2015), held in Lyon in June 2015.
• J.-C. Filliâtre organized the sixth meeting of the IFIP Working Group 1.9/2.15 (Verified Software)

in Paris, France, December 2014.
• C. Paulin co-organized with Z. Shao (Harvard University) the Workshop on certification of high-

level and low-level programs, July 7-11, 2014. This workshop was part of the IHP thematic trimester
Semantics of proofs and certified mathematics, which took place in Paris from April to July.

9.1.2. Scientific events selection
9.1.2.1. Member of the conference program committee

• S. Boldo is a member of the program committee of the 7th International Workshop on Numerical
Software Verification (NSV-7). For 2015, she will be in the program committes of the 26th
Journées Francophones des Langages Applicatifs (JFLA 2015), of the 8th International Workshop
on Numerical Software Verification (NSV-8) and of the 22nd IEEE Symposium on Computer
Arithmetic (ARITH 2015).

• A. Charguéraud served on the external review commitee for POPL 2015.

26 Activity Report INRIA 2014

• É. Contejean is a member of the program committee of the ACM SIGPLAN 2014 Workshop
on Partial Evaluation and Program Manipulation, (PEPM 2014) affiliated with the POPL 2014
conference.

• J.-C. Filliâtre is a member of the program committees of the Symposium on Languages, Applications
and Technologies (SLATE 2014) and the Journées Francophones des Langages Applicatifs (JFLA
2014).

• C. Marché, member of program committee of the first international workshop Formal-IDE (F-IDE),
held as a satellite workshop of ETAPS 2014 http://perso.ensta-paristech.fr/~etaps/, and of the next
workshop F-IDE 2015.

• C. Paulin is a member of the program committees of the conference Interactive Theorem Proving
(ITP 2014) and the Coq Workshop 2014. For 2015, she will be in the program committees of
the following conferences: Certified Programs and Proofs (CPP 2015), Mathematics of Program
Construction (MPC 2015) and Types for Proofs and Programs (TYPES 2015).

• A. Paskevich is a member of the program committee of the 11th International Workshop on User
Interfaces for Theorem Provers (UITP 2014) affiliated with the FLoC 2014 conference.

9.1.2.2. Reviewer

The members of the Toccata team have reviewed papers for numerous international conferences, including:
ARITH, CICM, CPP, ESOP, NFM, POPL, SLATE.

9.1.3. Journal
9.1.3.1. Member of the editorial board

• S. Boldo is member of the editorial committee of the popular science web site “)i(”:
http://interstices.info/.

• S. Boldo is member of the editorial board of Binaire http://binaire.blog.lemonde.fr, the blog of the
French Computer Science Society.

• J.-C. Filliâtre is member of the editorial board of the Journal of Functional Programming.

• C. Paulin is member of the editorial board of the Journal of Formalized Reasoning.

9.1.3.2. Reviewer

The members of the Toccata team reviewed numerous papers for numerous international journals, including:
Journal of Automated Reasoning (JAR), Transactions in Computational Sciences (TCS), Theory of Computing
Systems (TCS), IEEE Transactions on Computers (TC), Journal of Scientific Programming, Journal of Field
Robotics (JFR), Mathematical Structures in Computer Science (MSCS), Journal of Automated Software
Engineering.

9.1.4. Invited Talks
• S. Boldo was invited speaker at the 16th GAMM-IMACS International Symposium on Scientific

Computing, Computer Arithmetic and Validated Numerics conference (SCAN 2014) [25] about her
methodology for the formal verification of floating-point programs.

• S. Boldo and G. Melquiond were invited speakers at an international workshop in Lyon, France
called Mathematical Structures of Computation during the week 4: Formal Proof, Symbolic Com-
putation and Computer Arithmetic. http://smc2014.univ-lyon1.fr/doku.php?id=week4.

• C. Lelay was invited speaker at the 25th JFLA (Journées Francophones des Langages Applicatifs),
Fréjus, France, Jan 10th, 2014 about “Coq passe le bac”: she tried the 2013 mathematics test of the
scientific Baccalaureate in Coq at the same time as the students.

• C. Marché, “Calcul de plus faible précondition, revisité en Why3”, 25th JFLA, special session on
selected representative papers of past editions, joint work with A. Tafat, Fréjus, France, Jan 11th,
2014.

http://perso.ensta-paristech.fr/~etaps/
http://interstices.info/
http://binaire.blog.lemonde.fr
http://smc2014.univ-lyon1.fr/doku.php?id=week4

Project-Team TOCCATA 27

• C. Marché, “Beyond SPARK2014: the ProofInUse project”, IFIP WG1.9/2.15, Vienna, Austria, Jul
15th, 2014.

• G. Melquiond was invited speaker at the 12th International Workshop on Satisfiability Modulo
Theories (SMT 2014).

• C. Paulin was invited speaker at the 25th JFLA (Journées Francophones des Langages Applicatifs),
Fréjus, France, Jan 10th, 2014 to give a tutorial presentation of the ALEA library. She also gave an
invited talk during the GDR-GPL “Journées Nationales”.

• C. Paulin was invited speaker at the workshop “All about Proofs, Proofs for All” (APPA) as
part of the Vienna Summer of Logic. She presented an introduction to the Calculus of Inductive
Constructions. She wrote a chapter in the post-conference book [115] to appear next year.

9.1.5. Collective Responsibilities
• S. Boldo, elected member of the Inria Evaluation Committee until August 2014. She was in the

committee in charge of selecting the Inria permanent researchers (CR2) in Bordeaux and Nancy and
in the national committee for first-class Inria permanent researchers (CR1).

• S. Boldo, member of the national Inria admission committee.

• S. Boldo, C. Marché, and G. Melquiond, members of committees in charge of recruiting assistant
professors at Université Paris-Sud.

• S. Boldo, member of the CLFP, comité local de formation permanente.

• S. Boldo, scientific head for Saclay for the MECSI group for networking about computer science
popularization inside Inria.

• S. Boldo, member of the national popularization committee, comité de médiation scientifique, of
Inria.

• A. Charguéraud is vice-president of France-ioi, a non-profit organization in charge of the selection
and the training of the French team to the International Olympiads in Informatics (IOI). France-
ioi also provides online exercises in programming and algorithmics—in average, over 70,000 such
exercises are solved every month on the website.

• A. Charguéraud is a board member of the non-profit organization Animath, which aims at developing
interest in mathematics among young students.

• A. Charguéraud and G. Melquiond are members of the committee for the monitoring of PhD students
(“commission de suivi des doctorants”).

• S. Conchon and A. Paskevich, members of the “commission consultative de spécialistes de
l’université”, Section 27, University Paris-Sud since December 2014.

• É. Contejean, leader of the VALS team since February 2014.

• É. Contejean, nominated member of the “conseil du laboratoire” of LRI since April 2010 till June
2014.

• É. Contejean, elected member of the “section 6 du Comité National de la Recherche Scientifique”
since September 2012.

• É. Contejean, member of the committee of experts for the AERES evaluation of the Verimag
laboratory (2014).

• É. Contejean, reviewer for the ANR (2014).

• É. Contejean, reviewer for the START program of the Austrian Science Fund (FWF) (2014).

• S. Dumbrava, elected member of the “conseil du laboratoire” of LRI since June 2014.

• J.-C. Filliâtre is correcteur au concours d’entrée à l’École Polytechnique (computer science exam-
iner for the entrance exam at École Polytechnique) since 2008.

• C. Lelay, elected member of the “conseil du laboratoire” of LRI from November 2011 to June 2014.

28 Activity Report INRIA 2014

• C. Marché and S. Boldo, members of the “jury de l’agrégation externe de mathématiques” as experts
in computer science, since 2012.

• C. Marché (since April 2007) and C. Paulin (since September 2010), members of the program com-
mittee of Digiteo Labs, the world-class research park in Île-de-France region dedicated to informa-
tion and communication science and technology, http://www.digiteo.fr/. C. Marché, president of this
committee since July 2013.

• C. Marché, member of the executive team of the LRI (as “chargé de mission”), since July 2014.

• C. Marché, president of the hiring committee of one associate professor position (Maître de
Conferences), Université Paris-Sud, April-June 2014. Member of another such committee.

• C. Marché, director of the ProofInUse Joint Laboratory between Inria and AdaCore, http://www.
spark-2014.org/proofinuse

• G. Melquiond and C. Paulin, members of the “commission consultative de spécialistes de
l’université”, Section 27, University Paris-Sud since April 2010. C. Paulin is the president of this
committee since December 2014.

• G. Melquiond, elected officer of the IEEE-1788 standardization committee on interval arithmetic
since 2008.

• C. Paulin, scientific leader of Labex DigiCosme http://labex-digicosme.fr (Digital Worlds: dis-
tributed data, programs and architectures), a project launched by the French Ministry of research
and higher education as part of the program “Investissements d’avenir”, it involves the 14 research
units in computer science and communications from the “Paris-Saclay” cluster.

• C. Paulin, president of the Computer Science Department of the University Paris-Sud https://www.
dep-informatique.u-psud.fr/, since February 2012.

• C. Paulin, president of the assembly of directors of graduate schools at the Université Paris-Sud since
September 2012.

• C. Paulin, chaired the hiring committee for a professor position in computer science at Université
Paris-Sud.

• In 2014, C. Paulin was elected member of the Informatics Section of Academia Europaea http://
www.ae-info.org/.

• A. Paskevich was in charge (together with C. Bastoul in 2012–2013 and B. Cautis in 2013–2014) of
Licence professionnelle PER (L3) at IUT d’Orsay, Paris-Sud University since September 2012 till
August 2014.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Master Parisien de Recherche en Informatique (MPRI) https://wikimpri.dptinfo.ens-cachan.fr/
doku.php: “Proofs of Programs” http://www.lri.fr/~marche/MPRI-2-36-1/ (M2), C. Marché (12h),
A. Charguéraud (12h), Université Paris 7, France.

Licence: “Programmation Fonctionnelle avancée” (L3), M. Clochard (10h), Université Paris-Sud,
France.

Master: “Projet de programmation (compilation)” (M1), M. Clochard (50h), Université Paris-Sud,
France.

Licence: “Programmation fonctionnelle avancée” (L3), S. Conchon (30h), Université Paris-Sud,
France.

Master: “Compilation” (M1), S. Conchon (33h), Université Paris-Sud, France.

DUT (Diplôme Universitaire de Technologie): “Systèmes” (S3), D. Declerck, IUT d’Orsay, Univer-
sité Paris-Sud, France.

http://www.digiteo.fr/
http://www.spark-2014.org/proofinuse
http://www.spark-2014.org/proofinuse
http://labex-digicosme.fr
https://www.dep-informatique.u-psud.fr/
https://www.dep-informatique.u-psud.fr/
http://www.ae-info.org/
http://www.ae-info.org/
https://wikimpri.dptinfo.ens-cachan.fr/doku.php
https://wikimpri.dptinfo.ens-cachan.fr/doku.php
http://www.lri.fr/~marche/MPRI-2-36-1/

Project-Team TOCCATA 29

DUT (Diplôme Universitaire de Technologie): “Programmation et administration des bases de
données” (S2), S. Dumbrava (62h), IUT d’Orsay, Université Paris-Sud, France.
DUT (Diplôme Universitaire de Technologie): “Bases de données avancées” (S3), S. Dumbrava
(36h), IUT d’Orsay, Université Paris-Sud, France.
Licence: “Langages de programmation et compilation” (L3), J.-C. Filliâtre (36h), École Normale
Supérieure, France.
Licence: “INF411: Les bases de l’algorithmique et de la programmation” (L3), J.-C. Filliâtre (16h),
École Polytechnique, France.
Licence: “Mathématiques pour l’informatique” (L2), L. Gondelman (30h), Université Paris-Sud,
France.
Master: “Compilation” (M1), L. Gondelman (28h), Université Paris-Sud, France.
DUT (Diplôme Universitaire de Technologie): “Programmation système” (S4), A. Paskevich (48h),
IUT d’Orsay, Université Paris-Sud, France.

9.2.2. Internships
• Y. Chatelain, a L3 student from Université Paris-Sud, did a 2-month internship under the supervision

of J.-C. Filliâtre and A. Paskevich, on the implementation of a new criterion of termination of
recursive functions in a pure functional language.

• J.-P. Deplaix, a third-year student of Epitech, did a 4-month internship, supervised by J.-C. Filliâtre
and A. Paskevich, on the compilation of Why3 programs to C.

• J. Grangier, a M1 student from ENSIEE, did a 10-week internship under the supervision of
A. Charguéraud, on the verification of the functional correctness and the asymptotic complexity
of a dynamic array data structure.

• X. Onfroy, a L3 student form ENS-Lyon, did a 6-week internship, supervised by G. Melquiond, on
the formalization of the gauge integral in the setting of the Coquelicot library.

9.2.3. Supervision
HDR: É. Contejean, “Facettes de la preuve, Jeux de reflets entre démonstration automatique et
preuve assistée” [13], Université Paris-Sud, June 13th, 2014.
HDR: S. Boldo, “Deductive Formal Verification: How To Make Your Floating-Point Programs
Behave” [12], Université Paris-Sud, October 6th, 2014.
PhD: C. Dross, “Theories and Techniques for Automated Proof of programs” [14], Université Paris-
Sud, Apr. 1st, 2014, supervised by C. Marché, A. Paskevich, and with industrial supervisors Y. Moy
and J. Kanig (AdaCore company).
PhD: A. Mebsout, “SMT-based Model-Checking” [15], Université Paris-Sud, Sep. 29th, 2014,
supervised by F. Zaïdi (LRI) and S. Conchon.
PhD in progress: C. Lelay, “Real numbers for the Coq proof assistant”, since Oct. 2011, supervised
by S. Boldo and G. Melquiond.
PhD in progress: S. Dumbrava, “Towards data certification”, since Oct. 2012, supervised by
V. Benzaken (LRI) and É. Contejean.
PhD in progress: L. Gondelmans, “Obtention de programmes corrects par raffinement dans un
langage de haut niveau”, since Oct. 2013, supervised by J.-C. Filliâtre and A. Paskevich.
PhD in progress: M. Clochard, “A unique language for developing programs and prove them at the
same time”, since Oct. 2013, supervised by C. Marché and A. Paskevich.
PhD in progress: J. C. Mbiada Djanda, “Augmented Semantics for the Non-interference of critical C
Code”, since Nov. 2013, supervised by C. Marché and J. Signoles (CEA LIST).
PhD in progress: D. Declerck, “Vérification par des techniques de test et model checking de
programmes C11”, since Sep. 2014, supervised by F. Zaïdi (LRI) and S. Conchon.

30 Activity Report INRIA 2014

9.2.4. Juries
S. Boldo: examiner, PhD committee of Mohamed Amine Najahi, “Synthesis of certified programs
in fixed-point arithmetic, and its application to linear algebra basic blocks”, Perpignan, France,
December 2014.
J.-C. Filliâtre: examiner, PhD committee of Jonathan Protzenko, “Mezzo: the language of the future”,
Université Paris Diderot, September 2014.
C. Marché: reviewer, PhD committee of T. Bormer “Advancing Deductive Program-Level Verifica-
tion for Real-World Application”, Karlsruhe Institute of Technology, Karlsruhe, Germany, October
2014.
C. Marché: examiner, HDR committee of S. Boldo, “Deductive Formal Verification: How To Make
Your Floating-Point Programs Behave”, Université Paris-Sud, October 2014.
C. Paulin: examiner, PhD committee of Guillaume Cano, “Interaction entre algèbre linéaire et
analyse en formalisation des mathématiques”, University of Nice-Sophia Antipolis, March 2014.
C. Paulin: examiner, HDR committee of Évelyne Contejean, “Facettes de la preuve, Jeux de reflets
entre démonstration automatique et preuve assistée”, Université Paris-Sud, June 2014.
C. Paulin: president of the PhD committee of Peva Blanchard “Synchronization and Fault-tolerance
in Distributed Algorithms”, Université Paris-Sud, September 2014.
C. Paulin: examiner, HDR committee of Stéphane Graham-Lengrand “Polarities & Focussing: a
Journey from Realisability to Automated Reasoning”, Université Paris-Sud, December 2014.

9.3. Popularization
• S. Boldo presented the Concours Castor informatique to computer sciences teachers (ISN) in

Nancy on April 17th, 2014. A video of the talk is available at http://videos.univ-lorraine.fr/index.
php?act=view&id=1369.

• S. Boldo gave a 2-hour course entitled Les nombres et l’ordinateur at the École Normale Supérieure
de Cachan, France, on September 9th.

• S. Boldo gave a 2-hour course Pourquoi mon ordinateur calcule faux? to a general audience at the
Université Inter-Âge in Versailles, France, on March 4th.

• S. Boldo gave a talk for computer sciences teachers (ISN) in Créteil on March 24th
• S. Boldo gave a talk for teenagers at the lycée Maximilien Perretin Alfortville on May 22nd.
• S. Boldo wrote an article with Jean-Michel Muller (ARIC) in the popularization journal La

Recherche [42].
• S. Boldo wrote in 2013 an article for the French blog celebrating 2013 as the “Mathematics of Planet

Earth” year: http://mpt2013.fr/meme-les-ordinateurs-font-des-erreurs/. This article was selected to
be published in a book published in 2014 [41].

• S. Boldo is member of the editorial committee of the popular science Interstices web site, since April
2008. http://interstices.info/.

• S. Boldo is member of the editorial board of Binaire http://binaire.blog.lemonde.fr, the blog of the
French Computer Science Society.

• S. Boldo, G. Melquiond, A. Paskevich, and C. Paulin animated two stands at the Fête de la science.
• A. Charguéraud and S. Boldo contributed to the preparation of the exercises of the Concours Castor

informatique http://castor-informatique.fr/. A. Charguéraud is also one of the three organizers of
this contest. The purpose of the Concours Castor in to introduce pupils (from 6ème to terminale) to
computer sciences. More than 228,000 teenagers played with the interactive exercises in November
2014.

• S. Conchon and J.-C. Filliâtre published a book “Apprendre à programmer avec OCaml” for
undergraduate students learning computer programming [39] (Eyrolles, September 2014).

http://videos.univ-lorraine.fr/index.php?act=view&id=1369
http://videos.univ-lorraine.fr/index.php?act=view&id=1369
http://mpt2013.fr/meme-les-ordinateurs-font-des-erreurs/
http://interstices.info/
http://binaire.blog.lemonde.fr
http://castor-informatique.fr/

Project-Team TOCCATA 31

10. Bibliography
Major publications by the team in recent years

[1] P. AUDEBAUD, C. PAULIN-MOHRING. Proofs of Randomized Algorithms in Coq, in "Science of Computer
Programming", 2009, vol. 74, no 8, pp. 568–589, http://hal.inria.fr/inria-00431771/en/

[2] F. BOBOT, J.-C. FILLIÂTRE, C. MARCHÉ, A. PASKEVICH. Why3: Shepherd Your Herd of Provers, in "Boogie
2011: First International Workshop on Intermediate Verification Languages", Wrocław, Poland, August 2011,
pp. 53–64, http://hal.inria.fr/hal-00790310

[3] F. BOBOT, A. PASKEVICH. Expressing Polymorphic Types in a Many-Sorted Language, in "Frontiers of
Combining Systems, 8th International Symposium, Proceedings", Saarbrücken, Germany, C. TINELLI, V.
SOFRONIE-STOKKERMANS (editors), Lecture Notes in Computer Science, October 2011, vol. 6989, pp.
87–102

[4] S. BOLDO. Floats & Ropes: a case study for formal numerical program verification, in "36th International
Colloquium on Automata, Languages and Programming", Rhodos, Greece, Lecture Notes in Computer
Science - ARCoSS, Springer, July 2009, vol. 5556, pp. 91–102

[5] S. BOLDO, C. MARCHÉ. Formal verification of numerical programs: from C annotated programs to mechanical
proofs, in "Mathematics in Computer Science", 2011, vol. 5, pp. 377–393, http://hal.inria.fr/hal-00777605

[6] S. BOLDO, G. MELQUIOND. Flocq: A Unified Library for Proving Floating-point Algorithms in Coq, in
"Proceedings of the 20th IEEE Symposium on Computer Arithmetic", Tübingen, Germany, E. ANTELO, D.
HOUGH, P. IENNE (editors), 2011, pp. 243–252, http://hal.archives-ouvertes.fr/inria-00534854/

[7] S. CONCHON, É. CONTEJEAN, M. IGUERNELALA. Canonized Rewriting and Ground AC Completion Modulo
Shostak Theories, in "Tools and Algorithms for the Construction and Analysis of Systems", Saarbrücken,
Germany, P. A. ABDULLA, K. R. M. LEINO (editors), Lecture Notes in Computer Science, Springer, April
2011, vol. 6605, pp. 45-59, http://hal.inria.fr/hal-00777663

[8] É. CONTEJEAN, P. COURTIEU, J. FOREST, O. PONS, X. URBAIN. Automated Certified Proofs with CiME3,
in "22nd International Conference on Rewriting Techniques and Applications (RTA 11)", Novi Sad, Ser-
bia, M. SCHMIDT-SCHAUSS (editor), Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011, vol. 10, pp. 21–30, http://hal.inria.fr/hal-00777669

[9] J.-C. FILLIÂTRE. Deductive Program Verification, Université Paris-Sud, December 2011, Thèse d’habilitation

[10] G. MELQUIOND. Proving bounds on real-valued functions with computations, in "Proceedings of the 4th Inter-
national Joint Conference on Automated Reasoning", Sydney, Australia, A. ARMANDO, P. BAUMGARTNER,
G. DOWEK (editors), Lecture Notes in Artificial Intelligence, 2008, vol. 5195, pp. 2–17

[11] Y. MOY, C. MARCHÉ. Modular Inference of Subprogram Contracts for Safety Checking, in "Journal of
Symbolic Computation", 2010, vol. 45, pp. 1184-1211, http://hal.inria.fr/inria-00534331/en/

Publications of the year
Doctoral Dissertations and Habilitation Theses

http://hal.inria.fr/inria-00431771/en/
http://hal.inria.fr/hal-00790310
http://hal.inria.fr/hal-00777605
http://hal.archives-ouvertes.fr/inria-00534854/
http://hal.inria.fr/hal-00777663
http://hal.inria.fr/hal-00777669
http://hal.inria.fr/inria-00534331/en/

32 Activity Report INRIA 2014

[12] S. BOLDO. Deductive Formal Verification: How To Make Your Floating-Point Programs Behave, Université
Paris-Sud, October 2014, Reviewers: Yves Bertot; John Harrison; Philippe Langlois, Habilitation à diriger des
recherches, https://hal.inria.fr/tel-01089643

[13] É. CONTEJEAN. Facettes de la preuve, Université Paris-Sud, June 2014, Habilitation à diriger des recherches,
https://hal.inria.fr/tel-01089490

[14] C. DROSS. Generic decision procedures for axiomatic first-order theories, Université Paris Sud - Paris XI,
April 2014, https://tel.archives-ouvertes.fr/tel-01002190

[15] A. MEBSOUT. Invariants inference for model checking of parameterized systems, Université Paris Sud - Paris
XI, September 2014, https://tel.archives-ouvertes.fr/tel-01073980

Articles in International Peer-Reviewed Journals

[16] F. BOBOT, J.-C. FILLIÂTRE, C. MARCHÉ, A. PASKEVICH. Let’s Verify This with Why3, in "Software Tools
for Technology Transfer (STTT)", March 2014, https://hal.inria.fr/hal-00967132

[17] S. BOLDO, F. CLÉMENT, J.-C. FILLIÂTRE, M. MAYERO, G. MELQUIOND, P. WEIS. Trusting Computa-
tions: a Mechanized Proof from Partial Differential Equations to Actual Program, in "Computers and Math-
ematics with Applications", August 2014, vol. 68, no 3, 28 p. [DOI : 10.1016/J.CAMWA.2014.06.004],
https://hal.inria.fr/hal-00769201

[18] S. BOLDO, J.-H. JOURDAN, X. LEROY, G. MELQUIOND. Verified Compilation of Floating-Point
Computations, in "Journal of Automated Reasoning", February 2015, vol. 54, no 2, pp. 135-163
[DOI : 10.1007/S10817-014-9317-X], https://hal.inria.fr/hal-00862689

[19] S. BOLDO, C. LELAY, G. MELQUIOND. Coquelicot: A User-Friendly Library of Real Analysis for Coq, in
"Mathematics in Computer Science", June 2014, 22 p. [DOI : 10.1007/S11786-014-0181-1], https://hal.
inria.fr/hal-00860648

[20] S. BOLDO, C. LELAY, G. MELQUIOND. Formalization of Real Analysis: A Survey of Proof
Assistants and Libraries, in "Mathematical Structures in Computer Science", 2014, 38 p.
[DOI : 10.1017/S0960129514000437], https://hal.inria.fr/hal-00806920

[21] C. MARCHÉ, J. KANIG. Bridging the Gap between Testing and Formal Verification in Ada Development, in
"ERCIM News", January 2015, vol. 100, 2 p. , https://hal.inria.fr/hal-01102242

[22] C. MARCHÉ. Verification of the Functional Behavior of a Floating-Point Program: an Indus-
trial Case Study, in "Science of Computer Programming", March 2014, vol. 93, no 3, pp. 279–296
[DOI : 10.1016/J.SCICO.2014.04.003], https://hal.inria.fr/hal-00967124

[23] É. MARTIN-DOREL, G. HANROT, M. MAYERO, L. THÉRY. Formally verified certificate checkers for
hardest-to-round computation, in "Journal of Automated Reasoning", 2015, vol. 54, no 1, pp. 1-29
[DOI : 10.1007/S10817-014-9312-2], https://hal.inria.fr/hal-00919498

[24] P. ROUX. Innocuous Double Rounding of Basic Arithmetic Operations, in "Journal of Formalized Reasoning",
November 2014, vol. 7, no 1, pp. 131-142, https://hal.archives-ouvertes.fr/hal-01091186

https://hal.inria.fr/tel-01089643
https://hal.inria.fr/tel-01089490
https://tel.archives-ouvertes.fr/tel-01002190
https://tel.archives-ouvertes.fr/tel-01073980
https://hal.inria.fr/hal-00967132
https://hal.inria.fr/hal-00769201
https://hal.inria.fr/hal-00862689
https://hal.inria.fr/hal-00860648
https://hal.inria.fr/hal-00860648
https://hal.inria.fr/hal-00806920
https://hal.inria.fr/hal-01102242
https://hal.inria.fr/hal-00967124
https://hal.inria.fr/hal-00919498
https://hal.archives-ouvertes.fr/hal-01091186

Project-Team TOCCATA 33

Invited Conferences

[25] S. BOLDO. Formal verification of tricky numerical computations, in "16th GAMM-IMACS International
Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics", Würzburg, Germany,
M. NEHMEIER (editor), September 2014, 39 p. , https://hal.inria.fr/hal-01088692

International Conferences with Proceedings

[26] U. A. ACAR, A. CHARGUÉRAUD, M. RAINEY. Theory and Practice of Chunked Sequences, in "European
Symposium on Algorithms", Wrocław, Poland, A. SCHULZ, D. WAGNER (editors), Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, September 2014, no 8737, pp. 25 - 36 [DOI : 10.1007/978-3-
662-44777-2_3], https://hal.inria.fr/hal-01087245

[27] V. BENZAKEN, É. CONTEJEAN, S. DUMBRAVA. A Coq Formalization of the Relational Data Model, in
"ESOP - 23rd European Symposium on Programming", Grenoble, France, Z. SHAO (editor), Lecture Notes in
Computer Science, Springer, April 2014, https://hal.inria.fr/hal-00924156

[28] M. BODIN, A. CHARGUÉRAUD, D. FILARETTI, P. GARDNER, S. MAFFEIS, D. NAUDZIUNIENE, A.
SCHMITT, G. SMITH. A Trusted Mechanised JavaScript Specification, in "POPL 2014 - 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages", San Diego, United States, January 2014,
https://hal.inria.fr/hal-00910135

[29] S. CHAUDHURI, M. CLOCHARD, A. SOLAR-LEZAMA. Bridging Boolean and Quantitative Synthesis Using
Smoothed Proof Search, in "POPL - 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages", San Diego, United States, ACM Press, January 2014, https://hal.inria.fr/hal-00920955

[30] M. CLOCHARD. Automatically verified implementation of data structures based on AVL trees, in "6th
Working Conference on Verified Software: Theories, Tools and Experiments (VSTTE)", Vienna, Austria, D.
GIANNAKOPOULOU, D. KROENING (editors), Lecture Notes in Computer Science, Springer, July 2014, vol.
8471, https://hal.inria.fr/hal-01067217

[31] M. CLOCHARD, J.-C. FILLIÂTRE, C. MARCHÉ, A. PASKEVICH. Formalizing Semantics with an Automatic
Program Verifier, in "6th Working Conference on Verified Software: Theories, Tools and Experiments
(VSTTE)", Vienna, Austria, D. GIANNAKOPOULOU, D. KROENING (editors), Lecture Notes in Computer
Science, Springer, July 2014, vol. 8471, https://hal.inria.fr/hal-01067197

[32] M. CLOCHARD, C. MARCHÉ, A. PASKEVICH. Verified Programs with Binders, in "Programming Languages
meets Program Verification", San Diego, United States, ACM Press, January 2014, https://hal.inria.fr/hal-
00913431

[33] S. CONCHON, M. IGUERNELALA. Tuning the Alt-Ergo SMT Solver for B Proof Obligations, in "ABZ",
Toulouse, France, June 2014, https://hal.inria.fr/hal-01093000

[34] D. DELAHAYE, C. DUBOIS, C. MARCHÉ, D. MENTRÉ. The BWare Project: Building a Proof Platform for
the Automated Verification of B Proof Obligations, in "Abstract State Machines, Alloy, B, VDM, and Z",
Toulouse, France, Lecture Notes in Computer Science, Springer, June 2014, vol. 8477, pp. 290-293, https://
hal.inria.fr/hal-00998092

https://hal.inria.fr/hal-01088692
https://hal.inria.fr/hal-01087245
https://hal.inria.fr/hal-00924156
https://hal.inria.fr/hal-00910135
https://hal.inria.fr/hal-00920955
https://hal.inria.fr/hal-01067217
https://hal.inria.fr/hal-01067197
https://hal.inria.fr/hal-00913431
https://hal.inria.fr/hal-00913431
https://hal.inria.fr/hal-01093000
https://hal.inria.fr/hal-00998092
https://hal.inria.fr/hal-00998092

34 Activity Report INRIA 2014

[35] J.-C. FILLIÂTRE, L. GONDELMAN, A. PASKEVICH. The Spirit of Ghost Code, in "CAV - Computer Aided
Verification - 26th International Conference", Vienna Summer Logic 2014, Austria, July 2014, https://hal.
inria.fr/hal-00873187

National Conferences with Proceedings

[36] M. CLOCHARD, L. GONDELMAN. Double WP : Vers une preuve automatique d’un compilateur, in "Journées
Francophones des Langages Applicatifs", Val d’Ajol, France, January 2015, https://hal.inria.fr/hal-01094488

[37] S. CONCHON, L. MARANGET, A. MEBSOUT, D. DECLERCK. Vérification de programmes C concurrents
avec Cubicle : Enfoncer les barrières, in "JFLA", Fréjus, France, January 2014, https://hal.inria.fr/hal-
01088655

[38] D. DELAHAYE, C. MARCHÉ, D. MENTRÉ. Le projet BWare : une plate-forme pour la vérification automa-
tique d’obligations de preuve B, in "Approches Formelles dans l’Assistance au Développement de Logiciels",
Paris, France, EasyChair, June 2014, https://hal.inria.fr/hal-00998094

Scientific Books (or Scientific Book chapters)

[39] S. CONCHON, J.-C. FILLIÂTRE. Apprendre à programmer avec OCaml, Noire, Eyrolles, September 2014,
429 p. , https://hal.inria.fr/hal-01063853

Research Reports

[40] A. ACAR, A. CHARGUÉRAUD, M. RAINEY. Data Structures and Algorithms for Robust and Fast Parallel
Graph Search, Inria, December 2014, https://hal.inria.fr/hal-01089125

Scientific Popularization

[41] S. BOLDO. Même les ordinateurs font des erreurs !, in "Brèves de maths", M. ANDLER, L. BEL, S. BENZONI-
GAVAGE, T. GOUDON, C. IMBERT, A. ROUSSEAU (editors), Nouveau Monde Editions, October 2014, pp.
136-137, https://hal.inria.fr/hal-01089095

[42] J.-M. MULLER, S. BOLDO. Des ordinateurs capables de calculer plus juste, in "La Recherche", October
2014, pp. 46-53, https://hal-ens-lyon.archives-ouvertes.fr/ensl-01069744

Other Publications

[43] É. MARTIN-DOREL, G. MELQUIOND. Proving Tight Bounds on Univariate Expressions in Coq, 2014,
https://hal.inria.fr/hal-01086460

[44] C. PAULIN-MOHRING. Introduction to the Calculus of Inductive Constructions, November 2014, https://hal.
inria.fr/hal-01094195

[45] P. ROUX. Formal Proofs of Rounding Error Bounds With application to an automatic positive definiteness
check, 2014, https://hal.archives-ouvertes.fr/hal-01091189

References in notes

https://hal.inria.fr/hal-00873187
https://hal.inria.fr/hal-00873187
https://hal.inria.fr/hal-01094488
https://hal.inria.fr/hal-01088655
https://hal.inria.fr/hal-01088655
https://hal.inria.fr/hal-00998094
https://hal.inria.fr/hal-01063853
https://hal.inria.fr/hal-01089125
https://hal.inria.fr/hal-01089095
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01069744
https://hal.inria.fr/hal-01086460
https://hal.inria.fr/hal-01094195
https://hal.inria.fr/hal-01094195
https://hal.archives-ouvertes.fr/hal-01091189

Project-Team TOCCATA 35

[46] A. AYAD, C. MARCHÉ. Multi-Prover Verification of Floating-Point Programs, in "Fifth International Joint
Conference on Automated Reasoning", Edinburgh, Scotland, J. GIESL, R. HÄHNLE (editors), Lecture Notes
in Artificial Intelligence, Springer, July 2010, vol. 6173, pp. 127–141, http://hal.inria.fr/inria-00534333

[47] B. E. AYDEMIR, A. BOHANNON, M. FAIRBAIRN, J. N. FOSTER, B. C. PIERCE, P. SEWELL, D. VYTINIO-
TIS, G. WASHBURN, S. WEIRICH, S. ZDANCEWIC. Mechanized metatheory for the masses: The POPLmark
Challenge, in "Proceedings of the Eighteenth International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2005)", Lecture Notes in Computer Science, Springer, 2005, no 3603, pp. 50–65

[48] T. BALL, B. COOK, V. LEVIN, S. RAJAMANI. SLAM and Static Driver Verifier: Technology Transfer of
Formal Methods inside Microsoft, in "Integrated Formal Methods", E. BOITEN, J. DERRICK, G. SMITH
(editors), Lecture Notes in Computer Science, Springer, 2004, vol. 2999, pp. 1–20

[49] T. BALL, R. MAJUMDAR, T. MILLSTEIN, S. K. RAJAMANI. Automatic predicate abstraction of C programs,
in "Proceedings of the ACM SIGPLAN 2001 conference on Programming Language Design and Implemen-
tation", ACM Press, 2001, pp. 203–213

[50] M. BARBOSA, J.-C. FILLIÂTRE, J. S. PINTO, B. VIEIRA. A Deductive Verification Platform for Crypto-
graphic Software, in "4th International Workshop on Foundations and Techniques for Open Source Software
Certification (OpenCert 2010)", Pisa, Italy, Electronic Communications of the EASST, September 2010, vol.
33

[51] R. BARDOU. Verification of Pointer Programs Using Regions and Permissions, Université Paris-Sud, October
2011, http://tel.archives-ouvertes.fr/tel-00647331

[52] R. BARDOU, J.-C. FILLIÂTRE, J. KANIG, S. LESCUYER. Faire bonne figure avec Mlpost, in "Vingtièmes
Journées Francophones des Langages Applicatifs", Saint-Quentin sur Isère, Inria, January 2009

[53] B. BARRAS, B. WERNER. Coq in Coq, 1997

[54] C. BARRETT, C. TINELLI. CVC3, in "19th International Conference on Computer Aided Verification", Berlin,
Germany, W. DAMM, H. HERMANNS (editors), Lecture Notes in Computer Science, Springer, July 2007, vol.
4590, pp. 298–302

[55] G. BARTHE, B. GRÉGOIRE, S. Z. BÉGUELIN. Formal certification of code-based cryptographic proofs, in
"POPL", Savannah, GA, USA, Z. SHAO, B. C. PIERCE (editors), ACM Press, January 2009, pp. 90-101

[56] P. BAUDIN, J.-C. FILLIÂTRE, C. MARCHÉ, B. MONATE, Y. MOY, V. PREVOSTO. ACSL: ANSI/ISO C
Specification Language, version 1.4, 2009

[57] P. BEHM, P. BENOIT, A. FAIVRE, J.-M. MEYNADIER. METEOR : A successful application of B in a large
project, in "Proceedings of FM’99: World Congress on Formal Methods", J. M. WING, J. WOODCOCK, J.
DAVIES (editors), Lecture Notes in Computer Science (Springer-Verlag), Springer Verlag, September 1999,
pp. 369–387

[58] F. BOBOT, S. CONCHON, É. CONTEJEAN, M. IGUERNELALA, S. LESCUYER, A. MEBSOUT. The Alt-Ergo
Automated Theorem Prover, 2008

http://hal.inria.fr/inria-00534333
http://tel.archives-ouvertes.fr/tel-00647331

36 Activity Report INRIA 2014

[59] F. BOBOT, S. CONCHON, É. CONTEJEAN, M. IGUERNELALA, A. MAHBOUBI, A. MEBSOUT, G.
MELQUIOND. A Simplex-Based Extension of Fourier-Motzkin for Solving Linear Integer Arithmetic, in "IJ-
CAR 2012: Proceedings of the 6th International Joint Conference on Automated Reasoning", Manchester,
UK, B. GRAMLICH, D. MILLER, U. SATTLER (editors), Lecture Notes in Computer Science, Springer, June
2012, vol. 7364, pp. 67–81, http://hal.inria.fr/hal-00687640

[60] S. BOLDO. Preuves formelles en arithmétiques à virgule flottante, École Normale Supérieure de Lyon, 2004

[61] S. BOLDO. Kahan’s algorithm for a correct discriminant computation at last formally proven, in "IEEE
Transactions on Computers", February 2009, vol. 58, no 2, pp. 220-225, http://hal.inria.fr/inria-00171497/en/

[62] S. BOLDO, F. CLÉMENT, J.-C. FILLIÂTRE, M. MAYERO, G. MELQUIOND, P. WEIS. Formal Proof of
a Wave Equation Resolution Scheme: the Method Error, in "Proceedings of the First Interactive Theorem
Proving Conference", Edinburgh, Scotland, M. KAUFMANN, L. C. PAULSON (editors), LNCS, Springer, July
2010, vol. 6172, pp. 147–162, http://hal.inria.fr/inria-00450789/

[63] S. BOLDO, F. CLÉMENT, J.-C. FILLIÂTRE, M. MAYERO, G. MELQUIOND, P. WEIS. Wave Equation
Numerical Resolution: Mathematics and Program, Inria, December 2011, no 7826, 30 p. , http://hal.inria.
fr/hal-00649240/en/

[64] S. BOLDO, J.-C. FILLIÂTRE, G. MELQUIOND. Combining Coq and Gappa for Certifying Floating-Point
Programs, in "16th Symposium on the Integration of Symbolic Computation and Mechanised Reasoning",
Grand Bend, Canada, Lecture Notes in Artificial Intelligence, Springer, July 2009, vol. 5625, pp. 59–74

[65] S. BOLDO, C. LELAY, G. MELQUIOND. Improving Real Analysis in Coq: a User-Friendly Approach to
Integrals and Derivatives, in "Proceedings of the Second International Conference on Certified Programs
and Proofs", Kyoto, Japan, C. HAWBLITZEL, D. MILLER (editors), Lecture Notes in Computer Science,
December 2012, vol. 7679, pp. 289–304, http://hal.inria.fr/hal-00712938

[66] S. BOLDO, G. MELQUIOND. Emulation of FMA and Correctly-Rounded Sums: Proved Algorithms Using
Rounding to Odd, in "IEEE Transactions on Computers", 2008, vol. 57, no 4, pp. 462–471, http://hal.inria.fr/
inria-00080427/

[67] S. BOLDO, J.-M. MULLER. Exact and Approximated error of the FMA, in "IEEE Transactions on Computers",
February 2011, vol. 60, no 2, pp. 157–164, http://hal.inria.fr/inria-00429617/en/

[68] S. BOLDO, T. M. T. NGUYEN. Proofs of numerical programs when the compiler optimizes, in "Innovations
in Systems and Software Engineering", 2011, vol. 7, pp. 151–160, http://hal.inria.fr/hal-00777639

[69] L. BURDY, Y. CHEON, D. R. COK, M. D. ERNST, J. R. KINIRY, G. T. LEAVENS, K. R. M. LEINO, E.
POLL. An overview of JML tools and applications, in "International Journal on Software Tools for Technology
Transfer (STTT)", June 2005, vol. 7, no 3, pp. 212–232

[70] S. BÖHME, T. NIPKOW. Sledgehammer: Judgement Day, in "IJCAR", J. GIESL, R. HÄHNLE (editors),
Lecture Notes in Computer Science, Springer, 2010, vol. 6173, pp. 107-121

[71] R. CHAPMAN, F. SCHANDA. Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK, in
"Interactive Theorem Proving - 5th International Conference, ITP 2014, Held as Part of the Vienna Summer

http://hal.inria.fr/hal-00687640
http://hal.inria.fr/inria-00171497/en/
http://hal.inria.fr/inria-00450789/
http://hal.inria.fr/hal-00649240/en/
http://hal.inria.fr/hal-00649240/en/
http://hal.inria.fr/hal-00712938
http://hal.inria.fr/inria-00080427/
http://hal.inria.fr/inria-00080427/
http://hal.inria.fr/inria-00429617/en/
http://hal.inria.fr/hal-00777639

Project-Team TOCCATA 37

of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings", G. KLEIN, R. GAMBOA (editors),
Lecture Notes in Computer Science, Springer, 2014, vol. 8558, pp. 17–26

[72] A. CHARGUÉRAUD, F. POTTIER. Functional Translation of a Calculus of Capabilities, in "ACM SIGPLAN
International Conference on Functional Programming (ICFP)", September 2008, pp. 213–224

[73] A. CHARGUÉRAUD. Characteristic formulae for the verification of imperative programs, in "Proceeding of
the 16th ACM SIGPLAN international conference on Functional Programming (ICFP)", Tokyo, Japan, M. M.
T. CHAKRAVARTY, Z. HU, O. DANVY (editors), ACM, September 2011, pp. 418-430

[74] A. CHARGUÉRAUD. Pretty-Big-Step Semantics, in "Proceedings of the 22nd European Symposium on
Programming", M. FELLEISEN, P. GARDNER (editors), Lecture Notes in Computer Science, Springer, March
2013, vol. 7792, pp. 41–60, http://hal.inria.fr/hal-00798227

[75] M. CLOCHARD, L. GONDELMAN. Double WP: vers une preuve automatique d’un compilateur, in "Vingt-
sixièmes Journées Francophones des Langages Applicatifs", Val d’Ajol, France, January 2015, https://hal.
inria.fr/hal-01094488

[76] S. CONCHON, A. GOEL, S. KRSTIĆ, A. MEBSOUT, F. ZAÏDI. Cubicle: A Parallel SMT-based Model Checker
for Parameterized Systems, in "CAV 2012: Proceedings of the 24th International Conference on Computer
Aided Verification", Berkeley, California, USA, M. PARTHASARATHY, S. A. SESHIA (editors), Lecture Notes
in Computer Science, Springer, July 2012, vol. 7358, http://hal.archives-ouvertes.fr/hal-00799272

[77] S. CONCHON, G. MELQUIOND, C. ROUX, M. IGUERNELALA. Built-in Treatment of an Axiomatic Floating-
Point Theory for SMT Solvers, in "SMT workshop", Manchester, UK, P. FONTAINE, A. GOEL (editors),
LORIA, 2012, pp. 12–21

[78] É. CONTEJEAN. Coccinelle, a Coq library for rewriting, in "Types", Torino, Italy, March 2008

[79] É. CONTEJEAN, P. COURTIEU, J. FOREST, A. PASKEVICH, O. PONS, X. URBAIN. A3PAT, an Approach for
Certified Automated Termination Proofs, in "Partial Evaluation and Program Manipulation", Madrid, Spain, J.
P. GALLAGHER, J. VOIGTLÄNDER (editors), ACM Press, January 2010, pp. 63-72

[80] P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX, X. RIVAL. The ASTRÉE
Analyzer, in "ESOP", Lecture Notes in Computer Science, 2005, no 3444, pp. 21–30

[81] M. DAHLWEID, M. MOSKAL, T. SANTEN, S. TOBIES, W. SCHULTE. VCC: Contract-based modular
verification of concurrent C, in "31st International Conference on Software Engineering, ICSE 2009, May
16-24, 2009, Vancouver, Canada, Companion Volume", IEEE Comp. Soc. Press, 2009, pp. 429-430

[82] M. DAUMAS, G. MELQUIOND. Certification of bounds on expressions involving rounded operators, in
"Transactions on Mathematical Software", 2010, vol. 37, no 1, http://hal.archives-ouvertes.fr/inria-00534350/
fr/

[83] C. DROSS, S. CONCHON, J. KANIG, A. PASKEVICH. Reasoning with Triggers, Inria, June 2012, no RR-
7986, 29 p. , http://hal.inria.fr/hal-00703207

http://hal.inria.fr/hal-00798227
https://hal.inria.fr/hal-01094488
https://hal.inria.fr/hal-01094488
http://hal.archives-ouvertes.fr/hal-00799272
http://hal.archives-ouvertes.fr/inria-00534350/fr/
http://hal.archives-ouvertes.fr/inria-00534350/fr/
http://hal.inria.fr/hal-00703207

38 Activity Report INRIA 2014

[84] C. DROSS, S. CONCHON, J. KANIG, A. PASKEVICH. Reasoning with Triggers, in "SMT workshop",
Manchester, UK, P. FONTAINE, A. GOEL (editors), LORIA, 2012

[85] C. DROSS, J.-C. FILLIÂTRE, Y. MOY. Correct Code Containing Containers, in "5th International Conference
on Tests and Proofs (TAP’11)", Zurich, Lecture Notes in Computer Science, Springer, June 2011, vol. 6706,
pp. 102–118, http://hal.inria.fr/hal-00777683

[86] J.-C. FILLIÂTRE. Formal Verification of MIX Programs, in "Journées en l’honneur de Donald E. Knuth",
Bordeaux, France, October 2007

[87] J.-C. FILLIÂTRE. Deductive Software Verification, in "International Journal on Software Tools for Technology
Transfer (STTT)", August 2011, vol. 13, no 5, pp. 397-403

[88] J.-C. FILLIÂTRE. Combining Interactive and Automated Theorem Proving in Why3 (invited talk), in "Automa-
tion in Proof Assistants 2012", Tallinn, Estonia, K. HELJANKO, H. HERBELIN (editors), April 2012

[89] J.-C. FILLIÂTRE. Verifying Two Lines of C with Why3: an Exercise in Program Verification, in "Verified
Software: Theories, Tools, Experiments (4th International Conference VSTTE)", Philadelphia, USA, R.
JOSHI, P. MÜLLER, A. PODELSKI (editors), Lecture Notes in Computer Science, Springer, January 2012,
vol. 7152, pp. 83–97

[90] J.-C. FILLIÂTRE, K. KALYANASUNDARAM. Functory: A Distributed Computing Library for Objective Caml,
in "Trends in Functional Programming", Madrid, Spain, Lecture Notes in Computer Science, May 2011, vol.
7193, pp. 65–81

[91] J.-C. FILLIÂTRE, K. KALYANASUNDARAM. Une bibliothèque de calcul distribué pour Objective Caml,
in "Vingt-deuxièmes Journées Francophones des Langages Applicatifs", La Bresse, France, S. CONCHON
(editor), Inria, January 2011

[92] J. GERLACH, J. BURGHARDT. An Experience Report on the Verification of Algorithms in the C++ Standard
Library using Frama-C, in "Formal Verification of Object-Oriented Software, Papers Presented at the Inter-
national Conference", Paris, France, B. BECKERT, C. MARCHÉ (editors), Karlsruhe Reports in Informatics,
June 2010, pp. 191–204, http://hal.inria.fr/hal-00772519

[93] P. HERMS. Certification of a Tool Chain for Deductive Program Verification, Université Paris-Sud, January
2013, http://tel.archives-ouvertes.fr/tel-00789543

[94] P. HERMS, C. MARCHÉ, B. MONATE. A Certified Multi-prover Verification Condition Generator, in "Verified
Software: Theories, Tools, Experiments (4th International Conference VSTTE)", Philadelphia, USA, R.
JOSHI, P. MÜLLER, A. PODELSKI (editors), Lecture Notes in Computer Science, Springer, January 2012,
vol. 7152, pp. 2–17, http://hal.inria.fr/hal-00639977

[95] K. KALYANASUNDARAM, C. MARCHÉ. Automated Generation of Loop Invariants using Predicate Abstrac-
tion, Inria, August 2011, no 7714, http://hal.inria.fr/inria-00615623/en/

[96] J. KANIG, J.-C. FILLIÂTRE. Who: A Verifier for Effectful Higher-order Programs, in "ACM SIGPLAN
Workshop on ML", Edinburgh, Scotland, UK, August 2009, http://hal.inria.fr/hal-00777585

http://hal.inria.fr/hal-00777683
http://hal.inria.fr/hal-00772519
http://tel.archives-ouvertes.fr/tel-00789543
http://hal.inria.fr/hal-00639977
http://hal.inria.fr/inria-00615623/en/
http://hal.inria.fr/hal-00777585

Project-Team TOCCATA 39

[97] G. KLEIN, J. ANDRONICK, K. ELPHINSTONE, G. HEISER, D. COCK, P. DERRIN, D. ELKADUWE,
K. ENGELHARDT, R. KOLANSKI, M. NORRISH, T. SEWELL, H. TUCH, S. WINWOOD. seL4: Formal
verification of an OS kernel, in "Communications of the ACM", June 2010, vol. 53, no 6, pp. 107–115

[98] G. T. LEAVENS, K. R. M. LEINO, P. MÜLLER. Specification and verification challenges for sequential
object-oriented programs, in "Formal Aspects of Computing", 2007, pp. 159–189

[99] K. R. M. LEINO. Efficient weakest preconditions, in "Information Processing Letters", 2005, vol. 93, no 6,
pp. 281-288

[100] C. LELAY. A New Formalization of Power Series in Coq, in "5th Coq Workshop", Rennes, France, July 2013,
pp. 1–2, http://hal.inria.fr/hal-00880212

[101] C. LELAY, G. MELQUIOND. Différentiabilité et intégrabilité en Coq. Application à la formule de d’Alembert,
in "Vingt-troisièmes Journées Francophones des Langages Applicatifs", Carnac, France, February 2012, http://
hal.inria.fr/hal-00642206/fr/

[102] X. LEROY. A formally verified compiler back-end, in "Journal of Automated Reasoning", 2009, vol. 43, no

4, pp. 363–446, http://hal.inria.fr/inria-00360768/en/

[103] S. LESCUYER. Formalisation et développement d’une tactique réflexive pour la démonstration automatique
en Coq, Université Paris-Sud, January 2011, http://tel.archives-ouvertes.fr/tel-00713668

[104] C. MARCHÉ. The Krakatoa tool for Deductive Verification of Java Programs, January 2009, Winter School
on Object-Oriented Verification, Viinistu, Estonia

[105] C. MARCHÉ, A. TAFAT. Calcul de plus faible précondition, revisité en Why3, in "Vingt-quatrièmes Journées
Francophones des Langages Applicatifs", Aussois, France, February 2013, http://hal.inria.fr/hal-00778791

[106] G. MELQUIOND. De l’arithmétique d’intervalles à la certification de programmes, École Normale
Supérieure de LyonLyon, France, 2006

[107] G. MELQUIOND. Floating-point arithmetic in the Coq system, in "Proceedings of the 8th Conference on Real
Numbers and Computers", Santiago de Compostela, Spain, 2008, pp. 93–102

[108] G. MELQUIOND, S. PION. Formally certified floating-point filters for homogeneous geometric predicates, in
"Theoretical Informatics and Applications", 2007, vol. 41, no 1, pp. 57–70

[109] D. MENTRÉ, C. MARCHÉ, J.-C. FILLIÂTRE, M. ASUKA. Discharging Proof Obligations from Atelier B
using Multiple Automated Provers, in "ABZ’2012 - 3rd International Conference on Abstract State Machines,
Alloy, B and Z", Pisa, Italy, S. REEVES, E. RICCOBENE (editors), Lecture Notes in Computer Science,
Springer, June 2012, vol. 7316, pp. 238–251, http://hal.inria.fr/hal-00681781/en/

[110] C. MORGAN. Programming from specifications (2nd ed.), Prentice Hall International (UK) Ltd., 1994

[111] Y. MOY, C. MARCHÉ. The Jessie plugin for Deduction Verification in Frama-C — Tutorial and Reference
Manual, Inria & LRI, 2011

http://hal.inria.fr/hal-00880212
http://hal.inria.fr/hal-00642206/fr/
http://hal.inria.fr/hal-00642206/fr/
http://hal.inria.fr/inria-00360768/en/
http://tel.archives-ouvertes.fr/tel-00713668
http://hal.inria.fr/hal-00778791
http://hal.inria.fr/hal-00681781/en/

40 Activity Report INRIA 2014

[112] J.-M. MULLER, N. BRISEBARRE, F. DE DINECHIN, C.-P. JEANNEROD, V. LEFÈVRE, G. MELQUIOND,
N. REVOL, D. STEHLÉ, S. TORRES. Handbook of Floating-Point Arithmetic, Birkhäuser, 2010

[113] T. M. T. NGUYEN, C. MARCHÉ. Hardware-Dependent Proofs of Numerical Programs, in "Certified
Programs and Proofs", J.-P. JOUANNAUD, Z. SHAO (editors), Lecture Notes in Computer Science, Springer,
December 2011, pp. 314–329, http://hal.inria.fr/hal-00772508

[114] T. M. T. NGUYEN. Taking architecture and compiler into account in formal proofs of numerical programs,
Université Paris-Sud, June 2012, http://tel.archives-ouvertes.fr/tel-00710193

[115] C. PAULIN-MOHRING. Introduction to the Calculus of Inductive Constructions, in "All about Proofs,
Proofs for All", London, UK, D. DELAHAYE, B. WOLTZENLOGEL PALEO (editors), Mathematical Logic
and Foundations, College Publications, 01 2015, http://hal.inria.fr/hal-01094195

[116] S. RANISE, C. TINELLI. The Satisfiability Modulo Theories Library (SMT-LIB), 2006

[117] S. M. RUMP, P. ZIMMERMANN, S. BOLDO, G. MELQUIOND. Computing predecessor and successor in
rounding to nearest, in "BIT", June 2009, vol. 49, no 2, pp. 419–431, http://hal.inria.fr/inria-00337537/

[118] J. SMANS, B. JACOBS, F. PIESSENS. Implicit Dynamic Frames: Combining Dynamic Frames and Separation
Logic, in "ECOOP 2009 — Object-Oriented Programming", S. DROSSOPOULOU (editor), Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2009, pp. 148-172

[119] B. SPITTERS, S. VICKERS, S. WOLTERS. Gelfand spectra in Grothendieck toposes using geometric
mathematics, in "Proceedings 9th Workshop on Quantum Physics and Logic", R. DUNCAN, P. PANANGADEN
(editors), EPTCS, 2014, vol. 158, pp. 77–107

[120] A. J. SUMMERS, S. DROSSOPOULOU. Considerate Reasoning and the Composite Design Pattern, in
"VMCAI", G. BARTHE, M. V. HERMENEGILDO (editors), Lecture Notes in Computer Science, Springer,
2010, vol. 5944, pp. 328-344

[121] H. TUCH, G. KLEIN, M. NORRISH. Types, Bytes, and Separation Logic, in "Proc. 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’07)", Nice, France, M. HOFMANN,
M. FELLEISEN (editors), January 2007, pp. 97-108

[122] E. TUSHKANOVA, A. GIORGETTI, C. MARCHÉ, O. KOUCHNARENKO. Specifying Generic Java Programs:
two case studies, in "Tenth Workshop on Language Descriptions, Tools and Applications", C. BRABRAND,
P.-E. MOREAU (editors), ACM Press, 2010, http://hal.inria.fr/inria-00525784/en/

[123] F. DE DINECHIN, C. LAUTER, G. MELQUIOND. Certifying the floating-point implementation of an
elementary function using Gappa, in "IEEE Transactions on Computers", 2011, vol. 60, no 2, pp. 242–253,
http://hal.inria.fr/inria-00533968/en/

[124] L. DE MOURA, N. BJØRNER. Z3, An Efficient SMT Solver, in "TACAS", Lecture Notes in Computer Science,
Springer, 2008, vol. 4963, pp. 337–340

http://hal.inria.fr/hal-00772508
http://tel.archives-ouvertes.fr/tel-00710193
http://hal.inria.fr/hal-01094195
http://hal.inria.fr/inria-00337537/
http://hal.inria.fr/inria-00525784/en/
http://hal.inria.fr/inria-00533968/en/

