
IN PARTNERSHIP WITH:
CNRS

Université Pierre et Marie Curie
(Paris 6)

Activity Report 2014

Team WHISPER

Well Honed Infrastructure Software for
Programming Environments and Runtimes

IN COLLABORATION WITH: Laboratoire d’informatique de Paris 6 (LIP6)

RESEARCH CENTER
Paris - Rocquencourt

THEME
Distributed Systems and middleware

Table of contents

1. Members . 1
2. Overall Objectives . 1
3. Research Program . 2

3.1. Scientific Foundations 2
3.1.1. Program analysis 2
3.1.2. Domain Specific Languages 3

3.1.2.1. Traditional approach. 3
3.1.2.2. Embedding DSLs. 3
3.1.2.3. Certifying DSLs. 4

3.2. Research direction: developing drivers using Genes 4
3.3. Research direction: developing infrastructure software using Domain Specific Languages 5

4. Application Domains .6
4.1. Linux 6
4.2. Device Drivers 6

5. New Software and Platforms . 7
5.1.1. Coccinelle 7
5.1.2. Better Linux 8

6. New Results . 9
6.1. Highlights of the Year 9
6.2. Lock profiling in Java servers 9
6.3. Software engineering for infrastructure software 10
6.4. Bugs in Linux 2.6 10
6.5. Memory Monitoring in Smart Home gateways 10

7. Bilateral Contracts and Grants with Industry . 11
8. Partnerships and Cooperations . 11

8.1. National Initiatives 11
8.1.1. ANR 11
8.1.2. Multicore Inria Project Lab 12

8.2. European Initiatives 12
8.3. International Initiatives 12
8.4. International Research Visitors 12

9. Dissemination . 13
9.1. Promoting Scientific Activities 13

9.1.1. Scientific events organisation 13
9.1.2. Scientific events selection 13
9.1.3. Journal 13

9.2. Teaching - Supervision - Juries 13
9.2.1. Teaching 13
9.2.2. Supervision 13
9.2.3. Juries 13

9.3. Popularization 14
10. Bibliography .14

Team WHISPER

Keywords: Infrastructure Software, Operating System, Software Engineering, Safety, Proofs Of
Programs

Creation of the Team: 2014 May 15.

1. Members
Research Scientists

Gilles Muller [Team leader, Inria, Senior Researcher, HdR]
Julia Lawall [Inria, Senior Researcher, HdR]
Pierre-Evariste Dagand [CNRS, from Oct. 2014]

Faculty Members
Bertil Folliot [Univ. Paris VI, Professor, HdR]
Gaël Thomas [Univ. Paris VI, Associate Professor, until Sep 2014, HdR]

Engineers
Xavier Clerc [Inria]
Quentin Lambert [Inria, from Nov 2014]

PhD Students
Brice Berna [ENS Cachan]
Antoine Blin [Cifre Renault]
Florian David [Univ. Paris VI]
Lisong Guo [Inria]
Valentin Rothberg [Inria, from Oct 2014]
Peter Senna Tschudin [Inria]

Administrative Assistant
Hélène Milome [Inria]

2. Overall Objectives
2.1. Overall Objectives

The focus of Whisper is on how to develop (new) and improve (existing) infrastructure software. Infrastructure
software (also called systems software) is the software that underlies all computing. Such software allows
applications to access resources and provides essential services such as memory management, synchronization
and inter-process interactions. Starting bottom-up from the hardware, examples include virtual machine
hypervisors, operating systems, managed runtime environments, standard libraries, and browsers, which
amount to the new operating system layer for Internet applications. For such software, efficiency and
correctness are fundamental. Any overhead will impact the performance of all supported applications. Any
failure will prevent the supported applications from running correctly. Since computing now pervades our
society, with few paper backup solutions, correctness of software at all levels is critical. Formal methods are
increasingly being applied to operating systems code in the research community [50], [46], [76]. Still, such
efforts require a huge amount of manpower and a high degree of expertise which makes this work difficult to
replicate in standard infrastructure-software development.

In terms of methodology, Whisper is at the interface of the domains of operating systems, software engineering
and programming languages. Our approach is to combine the study of problems in the development of real-
world infrastructure software with concepts in programming language design and implementation, e.g., of
domain-specific languages, and knowledge of low-level system behavior. A focus of our work is on providing
support for legacy code, while taking the needs and competences of ordinary system developers into account.

2 Activity Report INRIA 2014

We aim at providing solutions that can be easily learned and adopted by system developers in the short term.
Such solutions can be tools, such as Coccinelle [1], [8], [9] for transforming C programs (see Section 5.1.1), or
domain-specific languages such as Devil [7] and Bossa [6] for designing drivers and kernel schedulers. Due to
the small size of the team, Whisper will mainly target operating system kernels and runtimes for programming
languages. We will put an emphasis on achieving measurable improvements in performance and safety in
practice, and on feeding these improvements back to the infrastructure software developer community.

3. Research Program

3.1. Scientific Foundations
3.1.1. Program analysis

A fundamental goal of the research in the Whisper team is to elicit and exploit the knowledge found in
existing code. To do this in a way that scales to a large code base, systematic methods are needed to infer
code properties. We may build on either static [39], [41], [42] or dynamic analysis [58], [60], [65]. Static
analysis consists of approximating the behavior of the source code from the source code alone, while dynamic
analysis draws conclusions from observations of sample executions, typically of test cases. While dynamic
analysis can be more accurate, because it has access to information about actual program behavior, obtaining
adequate test cases is difficult. This difficulty is compounded for infrastructure software, where many, often
obscure, cases must be handled, and external effects such as timing can have a significant impact. Thus, we
expect to primarily use static analyses. Static analyses come in a range of flavors, varying in the extent to
which the analysis is sound, i.e., the extent to which the results are guaranteed to reflect possible run-time
behaviors.

One form of sound static analysis is abstract interpretation [41]. In abstract interpretation, atomic terms
are interpreted as sound abstractions of their values, and operators are interpreted as functions that soundly
manipulate these abstract values. The analysis is then performed by interpreting the program in a compositional
manner using these abstracted values and operators. Alternatively, dataflow analysis [49] iteratively infers
connections between variable definitions and uses, in terms of local transition rules that describe how various
kinds of program constructs may impact variable values. Schmidt has explored the relationship between
abstract interpretation and dataflow analysis [70]. More recently, more general forms of symbolic execution
[39] have emerged as a means of understanding complex code. In symbolic execution, concrete values are used
when available, and these are complemented by constraints that are inferred from terms for which only partial
information is available. Reasoning about these constraints is then used to prune infeasible paths, and obtain
more precise results. A number of works apply symbolic execution to operating systems code [36], [37].

While sound approaches are guaranteed to give correct results, they typically do not scale to the very diverse
code bases that are prevalent in infrastructure software. An important insight of Engler et al. [44] was that
valuable information could be obtained even when sacrificing soundness, and that sacrificing soundness could
make it possible to treat software at the scales of the kernels of the Linux or BSD operating systems. Indeed,
for certain types of problems, on certain code bases, that may mostly follow certain coding conventions, it
may mostly be safe to e.g., ignore the effects of aliases, assume that variable values are unchanged by calls to
unanalyzed functions, etc. Real code has to be understood by developers and thus cannot be too complicated, so
such simplifying assumptions are likely to hold in practice. Nevertheless, approaches that sacrifice soundness
also require the user to manually validate the results. Still, it is likely to be much more efficient for the user
to perform a potentially complex manual analysis in a specific case, rather than to implement all possible
required analyses and apply them everywhere in the code base. A refinement of unsound analysis is the
CEGAR approach [40], in which a highly approximate analysis is complemented by a sound analysis that
checks the individual reports of the approximate analysis, and then any errors in reasoning detected by the
sound analysis are used to refine the approximate analysis. The CEGAR approach has been applied effectively
on device driver code in tools developed at Microsoft [28]. The environment in which the driver executes,
however, is still represented by possibly unsound approximations.

Team WHISPER 3

Going further in the direction of sacrificing soundness for scalability, the software engineering community has
recently explored a number of approaches to code understanding based on techniques developed in the areas
of natural language understanding, data mining, and information retrieval. These approaches view code, as
well as other software-reated artifacts, such as documentation and postings on mailing lists, as bags of words
structured in various ways. Statistical methods are then used to collect words or phrases that seem to be highly
correlated, independently of the semantics of the program constructs that connect them. The obliviousness to
program semantics can lead to many false positives (invalid conclusions) [54], but can also highlight trends
that are not apparent at the low level of individual program statements. We have explored combining such
statistical methods with more traditional static analysis in identifying faults in the usage of constants in Linux
kernel code [53].

3.1.2. Domain Specific Languages
Writing low-level infrastructure code is tedious and difficult, and verifying it is even more so. To produce non-
trivial programs, we could benefit from moving up the abstraction stack for both programming and proving
as quickly as possible. Domain-specific languages (DSLs), also known as little languages, are a means to that
end [5] [62].

3.1.2.1. Traditional approach.

Using little languages to aid in software development is a tried-and-trusted technique [72] by which program-
mers can express high-level ideas about the system at hand and avoid writing large quantities of formulaic C
boilerplate.

This approach is typified by the Devil language for hardware access [7]. An OS programmer describes the
register set of a hardware device in the high-level Devil language, which is then compiled into a library
providing C functions to read and write values from the device registers. In doing so, Devil frees the
programmer from having to write extensive bit-manipulation macros or inline functions to map between the
values the OS code deals with, and the bit-representation used by the hardware: Devil generates code to do
this automatically.

However, DSLs are not restricted to being “stub” compilers from declarative specifications. The Bossa
language [6] is a prime example of a DSL involving imperative code (syntactically close to C) while offering
a high-level of abstraction. This design of Bossa enables the developer to implement new process scheduling
policies at a level of abstraction tailored to the application domain.

Conceptually, a DSL both abstracts away low-level details and justifies the abstraction by its semantics. In
principle, it reduces development time by allowing the programmer to focus on high-level abstractions. The
programmer needs to write less code, in a language with syntax and type checks adapted to the problem at
hand, thus reducing the likelihood of errors.

3.1.2.2. Embedding DSLs.

The idea of a DSL has yet to realize its full potential in the OS community. Indeed, with the notable exception
of interface definition languages for remote procedure call (RPC) stubs, most OS code is still written in a low-
level language, such as C. Where DSL code generators are used in an OS, they tend to be extremely simple
in both syntax and semantics. We conjecture that the effort to implement a given DSL usually outweighs
its benefit. We identify several serious obstacles to using DSLs to build a modern OS: specifying what the
generated code will look like, evolving the DSL over time, debugging generated code, implementing a bug-
free code generator, and testing the DSL compiler.

Filet-o-Fish (FoF) [3] addresses these issues by providing a framework in which to build correct code
generators from semantic specifications. This framework is presented as a Haskell library, enabling DSL
writers to embed their languages within Haskell. DSL compilers built using FoF are quick to write, simple,
and compact, but encode rigorous semantics for the generated code. They allow formal proofs of the run-
time behavior of generated code, and automated testing of the code generator based on randomized inputs,
providing greater test coverage than is usually feasible in a DSL. The use of FoF results in DSL compilers that
OS developers can quickly implement and evolve, and that generate provably correct code. FoF has been used

4 Activity Report INRIA 2014

to build a number of domain-specific languages used in Barrelfish, [30] an OS for heterogeneous multicore
systems developed at ETH Zurich.

The development of an embedded DSL requires a few supporting abstractions in the host programming
language. FoF was developed in the purely functional language Haskell, thus benefiting from the type
class mechanism for overloading, a flexible parser offering convenient syntactic sugar, and purity enabling
a more algebraic approach based on small, composable combinators. Object-oriented languages – such as
Smalltalk [45] and its descendant Pharo [33] – or multi-paradigm languages – such as the Scala programming
language [64] – also offer a wide range of mechanisms enabling the development of embedded DSLs. Perhaps
suprisingly, a low-level imperative language – such as C – can also be extended so as to enable the development
of embedded compilers [31].

3.1.2.3. Certifying DSLs.

Whilst automated and interactive software verification tools are progressively being applied to larger and larger
programs, we have not yet reached the point where large-scale, legacy software – such as the Linux kernel –
could formally be proved “correct”. DSLs enable a pragmatic approach, by which one could realistically
strengthen a large legacy software by first narrowing down its critical component(s) and then focus our
verification efforts onto these components.

Dependently-typed languages, such as Coq or Idris, offer an ideal environment for embedding DSLs [38],
[34] in a unified framework enabling verification. Dependent types support the type-safe embedding of object
languages and Coq’s mixfix notation system enables reasonably idiomatic domain-specific concrete syntax.
Coq’s powerful abstraction facilities provide a flexible framework in which to not only implement and verify
a range of domain-specific compilers [3], but also to combine them, and reason about their combination.

Working with many DSLs optimizes the “horizontal” compositionality of systems, and favors reuse of building
blocks, by contrast with the “vertical” composition of the traditional compiler pipeline, involving a stack of
comparatively large intermediate languages that are harder to reuse the higher one goes. The idea of building
compilers from reusable building blocks is a common one, of course. But the interface contracts of such blocks
tend to be complex, so combinations are hard to get right. We believe that being able to write and verify formal
specifications for the pieces will make it possible to know when components can be combined, and should help
in designing good interfaces.

Furthermore, the fact that Coq is also a system for formalizing mathematics enables one to establish a
close, formal connection between embedded DSLs and non-trivial domain-specific models. The possibility
of developing software in a truly “model-driven” way is an exciting one. Following this methodology, we
have implemented a certified compiler from regular expressions to x86 machine code [4]. Interestingly, our
development crucially relied on an existing Coq formalization, due to Braibant and Pous, [35] of the theory of
Kleene algebras.

While these individual experiments seem to converge toward embedding domain-specific languages in rich
type theories, further experimental validation is required. Indeed, Barrelfish is an extremely small software
compared to the Linux kernel. The challenge lies in scaling this methodology up to large software systems.
Doing so calls for a unified platform enabling the development of a myriad of DSLs, supporting code reuse
across DSLs as well as providing support for mechanically-verified proofs.

3.2. Research direction: developing drivers using Genes
We believe that weaknesses of previous methods for easing device driver development arise from an insuffi-
cient understanding of the range and scope of driver functionality, as required by real devices and OSes. We
propose a new methodology for understanding device drivers, inspired by the biological field of genomics.
Rather than focusing on the input/output behavior of a device, we take the radically new methodology of
studying existing device driver code itself. On the one hand, this methodology makes it possible to identify
the behaviors performed by real device drivers, whether to support the features of the device and the OS, or
to improve properties such as safety or performance. On the other hand, this methodology makes it possible
to capture the actual patterns of code used to implement these behaviors, raising the level of abstraction from

Team WHISPER 5

individual operations to collections of operations implementing a single functionality, which we refer to as
genes. Because the requirements of the device remain fixed, regardless of the OS, we expect to find genes
with common behaviors across different OSes, even when those genes have a different internal structure. This
leads to a view of a device driver as being constructed as a composition of genes, thus opening the door to new
methodologies to address the problems faced by real driver developers. Among these, we have so far identified
the problems of developing drivers, porting existing drivers to other OSes, backporting existing drivers to older
OS versions, and long-term maintenance of the driver code.

Our short term goal is to “sequence” the complete set of genes for a set of related drivers. In the longer term,
we plan to develop methodologies based on genes for aiding in driver development and maintenance. This
work is currently financed by a grant from the Direction Générale de l’Armement (DGA) that supports the
PhD of Peter Senna Tschudin. Valentin Rothberg’s PhD is supported by an Inria Cordi-S grant.

3.3. Research direction: developing infrastructure software using Domain
Specific Languages
We wish to pursue a declarative approach to developing infrastructure software. Indeed, there exists a signifi-
cant gap between the high-level objectives of these systems and their implementation in low-level, imperative
programming languages. To bridge that gap, we propose an approach based on domain-specific languages
(DSLs). By abstracting away boilerplate code, DSLs increase the productivity of systems programmers. By
providing a more declarative language, DSLs reduce the complexity of code, thus the likelihood of bugs.

Traditionally, systems are built by accretion of several, independent DSLs. For example, one might use
Devil [7] to interact with devices, Bossa [6] to implement the scheduling policies, and Zebu [2] to implement
some networking protocols. However, much effort is duplicated in implementing the back-ends of the
individual DSLs. Our long term goal is to design a unified framework for developing and composing DSLs,
following our work on Filet-o-Fish [3]. By providing a single conceptual framework, we hope to amortize the
development cost of a myriad of DSLs through a principled approach to reusing and composing DSLs.

Beyond the software engineering aspects, a unified platform brings us closer to the implementation
of mechanically-verified DSLs. Dagand’s recent work using the Coq proof assistant as an x86 macro-
assembler [4] is a step in that direction, which belongs to a larger trend of hosting DSLs in dependent type
theories [34], [63], [38]. A key benefit of those approaches is to provide – by construction – a formal, mech-
anized semantics to the DSLs thus developed. This semantics offers a foundation on which to base further
verification efforts, whilst allowing interaction with non-verified code. We advocate a methodology based on
incremental, piece-wise verification. Whilst building fully-certified systems from the top-down is a worthwhile
endeavor [50], we wish to explore a bottom-up approach by which one focuses first and foremost on crucial
subsystems and their associated properties.

We plan to apply this methodology for implementing a certified DSL for describing serializers and deserial-
izers of binary datastreams. This work will build on our experience in designing Zebu [2], a DSL for describ-
ing text-based protocols. Inspired by our experience implementing a certified regular expression compiler in
x86 [4], we wish to extend Zebu to manipulate binary data. Such a DSL should require a single description
of a binary format and automatically generate a serializer/deserializer pair. This dual approach – relating a
binary format to its semantic model – is inspired by the Parsifal [55] and Nail [29] format languages. A second
challenge consists in guaranteeing the functional correctness of the serializer/deserializer pair generated by
the DSL: one would wish to prove that any serialized data can be deserialized to itself, and conversely. The
RockSalt’s project [63] provides the conceptual tools, in a somewhat simpler setting, to address this question.

Packet filtering is another sweet spot for DSLs. First, one needs a DSL for specifying the filtering rules.
This is standard practice [61]. However, in our attempt to establish the correctness of the packet filter, we
will be led to equip this DSL with a mechanized semantics, formally describing the precise meaning of each
construct of the language. Second, packet filters are usually implemented through a matching engine that
is, essentially, a bytecode interpreter. To establish the correctness of the packet filter, we shall then develop
a mechanized semantics of this bytecode and prove that the compilation from filtering rules to bytecode

6 Activity Report INRIA 2014

preserves the intended semantics. Because a packet filter lies at the entry-point of a network, safety is crucial:
we would like to guarantee that the packet filter cannot crash and is not vulnerable to an attack. Beyond mere
safety, functional correctness is essential too: we must guarantee that the high-level filtering rules are indeed
applied as expected by the matching engine. A loophole in the compilation could leave the network open to an
attack or prevent legitimate traffic from reaching its destination. Finally, the safety of the packet filter cannot
be established at the expense of performance. Indeed, if the packet filter were to become a bottleneck, the
infrastructure it aimed at protecting would easily become subject to Denial of Service (DoS) attacks. Filtering
rules should therefore be compiled efficiently: the corresponding optimizations will have to be verified [74].

4. Application Domains

4.1. Linux
Linux is an open-source operating system that is used in settings ranging from embedded systems to
supercomputers. The most recent release of the Linux kernel, v3.17, comprises over 12 million lines of code,
and supports 29 different families of CPU architectures, 73 file systems, and thousands of device drivers. Linux
is also in a rapid stage of development, with new versions being released roughly every 2.5 months. Recent
versions have each incorporated around 13,500 commits, from around 1500 developers. These developers have
a wide range of expertise, with some providing hundreds of patches per release, while others have contributed
only one. Overall, the Linux kernel is critical software, but software in which the quality of the developed
source code is highly variable. These features, combined with the fact that the Linux community is open to
contributions and to the use of tools, make the Linux kernel an attractive target for software researchers. Tools
that result from research can be directly integrated into the development of real software, where it can have a
high, visible impact.

Starting from the work of Engler et al. [43], numerous research tools have been applied to the Linux kernel,
typically for finding bugs [42], [57], [66], [73] or for computing software metrics [47], [75]. In our work,
we have studied generic C bugs in Linux code , bugs in function protocol usage [51], [52], issues related to
the processing of bug reports [21] and crash dumps [19], and the problem of backporting (work in progress),
illustrating the variety of issues that can be explored on this code base. Unique among research groups working
in this area, we have furthermore developed numerous contacts in the Linux developer community. These
contacts provide insights into the problems actually faced by developers and serve as a means of validating the
practical relevance of our work. Section 5.1.2 presents our dissemination efforts to the Linux community.

4.2. Device Drivers
Device drivers are essential to modern computing, to provide applications with access, via the operating
system, to physical devices such as keyboards, disks, networks, and cameras. Development of new computing
paradigms, such as the internet of things, is hampered because device driver development is challenging and
error-prone, requiring a high level of expertise in both the targeted OS and the specific device. Furthermore,
implementing just one driver is often not sufficient; today’s computing landscape is characterized by a number
of OSes, e.g., Linux, Windows, MacOS, BSD and many real time OSes, and each is found in a wide range
of variants and versions. All of these factors make the development, porting, backporting, and maintenance of
device drivers a critical problem for device manufacturers, industry that requires specific devices, and even for
ordinary users.

The last fifteen years have seen a number of approaches directed towards easing device driver development.
Réveillère, who was supervised by G. Muller, proposes Devil [7], a domain-specific language for describing
the low-level interface of a device. Chipounov et al. propose RevNic, [37] a template-based approach for
porting device drivers from one OS to another. Ryzhyk et al. propose Termite, [67], [68] an approach for
synthesizing device driver code from a specification of an OS and a device. Currently, these approaches have
been successfully applied to only a small number of toy drivers. Indeed, Kadav and Swift [48] observe that

Team WHISPER 7

these approaches make assumptions that are not satisfied by many drivers; for example, the assumption that
a driver involves little computation other than the direct interaction between the OS and the device. At the
same time, a number of tools have been developed for finding bugs in driver code. These tools include SDV,
[28] Coverity [43], CP-Miner, [56] PR-Miner [57], and Coccinelle [8]. These approaches, however, focus on
analyzing existing code, and do not provide guidelines on structuring drivers.

In summary, there is still a need for a methodology that first helps the developer understand the software
architecture of drivers for commonly used operating systems, and then provides guidelines and tools for the
maintenance and the development of new drivers. Section 3.2 describes this research direction.

5. New Software and Platforms

5.1. Platforms
5.1.1. Coccinelle

Our recent research is in the area of code manipulation tools for C code, particularly targeting Linux kernel
code. This work has led to the Coccinelle tool that we are continuing to develop. Coccinelle serves both as a
basis for our future research and the foundation of our interaction with the Linux developer community.

The need to find patterns of code, and potentially to transform them, is pervasive in software development.
Examples abound. When a bug is found, it is often fruitful to see whether the same pattern occurs elsewhere
in the code. For example, the recent Heartbleed bug in OpenSSL partly involves the same fragment of code in
two separate files. 1 Likewise, when the interface of an API function changes, all of the users of that function
have to be updated to reflect the new usage requirements. This generalizes to the case of code modernization,
in which a code base needs to be adapted to a new compiler, new libraries, or a new coding standards. Finding
patterns of code is also useful in code understanding, e.g., to find out whether a particular function is ever
called with a particular lock held, and in software engineering research, e.g., to understand the prevalence
of various kinds of code structures, which may then be correlated with other properties of the software. For
all of these tasks, there is a need for an easy to use tool that will allow developers to express patterns and
transformations that are relevant to their source code, and to apply these patterns and transformations to the
code efficiently and without disrupting the overall structure of the code base.

To meet these needs, we have developed the Coccinelle program matching and transformation tool for C code.
Coccinelle has been under development for over 7 years, and is mature software, available in a number of
Linux distributions (Ubuntu, Debian, Fedora, etc.). Coccinelle allows matching and transformation rules to
be expressed in terms of fragments of C code, more precisely in the form of a patch, in which code to add
and remove is highlighted by using + and -, respectively, in the leftmost column, and other, unannotated,
code fragments may be provided to describe properties of the context. The C language is extended with
a few operators, such as metavariables, for abstracting over subterms, and a notion of positions, which
are useful for reporting bugs. The pattern matching rules can interspersed with rules written in Python or
OCaml, for further expressiveness. The process of matching patterns against the source code furthermore
takes into account some semantic information, such as the types of expressions and reachability in terms of a
function’s (intraprocedural) control-flow graph, and thus we refer to Coccinelle matching and transformation
specifications as semantic patches.

Coccinelle was originally motivated by the goal of modernizing Linux 2.4 drivers for use with Linux 2.6,
and was originally validated on a collection of 60 transformations that had been used in modernizing Linux
2.4 drivers [8]. Subsequent research involving Coccinelle included a formalization of the logic underlying
its implementation [1] and a novel mechanism for identifying API usage protocols [51]. More recently,
Coccinelle has served as a practical and flexible tool in a number of research projects that somehow involve
code understanding or transformation. These include identifying misuses of named constants in Linux code

1http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902

http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902

8 Activity Report INRIA 2014

[53], extracting critical sections into procedures to allow the implementation of a centralized locking service
[59], generating a debugging interface for Linux driver developers [32], detecting resource release omission
faults in Linux and other infrastructure software [69], and understanding the structure of device driver code in
our current DrGene project [71].

Throughout the development of Coccinelle, we have also emphasized contact with the developer community,
particularly the developers of the Linux kernel. We submitted the first patches to the Linux kernel based on
Coccinelle in 2007. Since then, over 2000 patches have been accepted into the Linux kernel based on the use of
Coccinelle, including around 700 by around 90 developers from outside our research group. Over 40 semantic
patches are available in the Linux kernel source code itself, with appropriate infrastructure for developers to
apply these semantic patches to their code within the normal make process. Many of these semantic are also
included in a 0-day build-testing system for Linux patches maintained by Intel. 2 Julia Lawall was invited
to the Linux Kernel Summit as a core attendee (invitation only) in 2010 and 2014, and has been invited to
the internal 2014 SUSE Labs Conference. She has also presented Coccinelle at developer events such as
LinuxCon Europe, Kernel Recipes (Paris), FOSDEM (Brussels), and RTWLS, and has supervised a summer
intern financed by the Linux Foundation, as part of the GNOME Foundation’s Outreach Program for Women.

Finally, we are aware of several companies that use Coccinelle for modernizing code bases. These include
Metaware in Paris, with whom we have had a 5-month contract in 2013-2014 for the customization and
maintenance of Coccinelle. We hope to be able to organize other such contracts in the future.

5.1.2. Better Linux
Over the past few years, Julia Lawall and Gilles Muller have designed and developed of a number of tools such
as Coccinelle, Diagnosys [32] [31] and Hector [69], to improve the process of developing and maintaining
systems code. The BtrLinux action aims to increase the visibility of these tools, and to highlight Inria’s
potential contributions to the open source community. We will develop a web site https://BtrLinux.

inria.fr, to centralize the dissemination of the tools, collect documentation, and collect results. This action
is supported by Inria by the means of a young engineer (ADT), Quentin Lambert. In the case of Coccinelle,
we will focus on enhancing its visibility and its dissemination, by using it to find and fix faults in Linux
kernel code, and by submitting the resulting patches to the Linux maintainers. We now present the other tools
considered in the BtrLinux action in more detail.

Diagnosys is a hybrid static and dynamic analysis tool that first collects information about Linux kernel APIs
that may be misused, and then uses this information to generate wrapper functions that systematically log at
runtime any API invocations or return values that may reflect such misuse. A developer can then use a specific
make-like command to build an executable driver that transparently uses these wrapper functions. At runtime,
the wrappers write log messages into a crash resilient region of memory that the developer can inspect after
any crash. Diagnosys is complementary to Coccinelle in the kind of information that it provides to developers.
While Coccinelle directly returns a report for every rule match across the code base, often including false
positives that have to be manually isolated by the developer, Diagnosys only reports on conditions that occur
in the actual execution of the code. Diagnosys thus produces less information, but the information produced
is more relevant to the particular problem currently confronting the developer. As such, it is well suited to the
case of initial code development, where the code is changing frequently, and the developer wants to debug
a specific problem, rather than ensuring that the complete code base is fault free. Diagnosys is a complete
functioning system, but it needs to be kept up to date with changes in the kernel API functions. As part of the
BtrLinux action, we will regularly run the scripts that collect information about how to create the wrappers,
and then validate and make public the results.

Hector addresses the problem of leaking resources in error-handling code. Releasing resources when they
are no longer needed is critical, so that adequate resources remain available over the long execution periods
characteristic of systems software. Indeed, when resource leaks accumulate, they can cause unexpected
resource unavailability, and even single leaks can put the system into an inconsistent state that can cause
crashes and open the door to possible attacks. Nevertheless, developers often forget to release resources,

2E.g., http://comments.gmane.org/gmane.linux.kernel.kbuild/269

https://BtrLinux.inria.fr
https://BtrLinux.inria.fr
http://comments.gmane.org/gmane.linux.kernel.kbuild/269

Team WHISPER 9

because doing so often does not make any direct contribution to a program’s functionality. A major challenge
in detecting resource-release omission faults is to know when resource release is required. Indeed, the C
language does not provide any built-in support for resource management, and thus resource acquisition and
release are typically implemented using ad hoc operations that are, at best, only known to core developers.
Previous work has focused on mining sequences of such functions that are used frequently across a code
base, [44], [57] but these approaches have very high rates of false negatives and false positives. [54] We have
proposed Hector, a static analysis tool that finds resource-release omission faults based on inconsistencies in
the operations performed within a single function, rather than on usage frequency. This strategy allows Hector
to have a low false positive rate, of 23% in our experiments, while still being able to find hundreds of faults in
Linux and other systems.

Hector was developed as part of the PhD thesis of Suman Saha and was presented at DSN 2013, where it
received the William C. Carter award for the best student paper. Hector is complementary to Coccinelle, in
that it has a more restricted scope, focusing on only one type of fault, but it uses a more precise static analysis,
tailored for this type of fault, to ensure a low false positive rate. Hector, like Coccinelle, is also complementary
to Diagnosys, in that it exhaustively reports on faults in a code base, rather than only those relevant to a
particular execution, and is thus better suited for use by experienced developers of relatively stable software.
Over 70 patches have been accepted into Linux based on the results of Hector. The current implementation,
however, is somewhat in a state of disarray. As part of the BtrLinux action, we will first return the code to
working condition and then actively use it to find faults in Linux. Based on these results, we will either submit
appropriate patches to the Linux developers or notify the relevant developer when the corresponding fix is not
clear.

6. New Results

6.1. Highlights of the Year
The paper “Faults in Linux 2.6” was published in the ACM journal Transactions on Computer Systems in
June 2014 . It has been downloaded from the ACM digital library almost 300 times since then. The paper was
reviewed in the Linux Weekly News, in the German professional IT website golem.de, and was the subject of
an invited presentation at a joint session of the Linux Kernel Summit and LinuxCon North America.

Julia Lawall was invited to the 2014 Linux Kernel Summit, an invitation-only meeting of core Linux
developers. She was subsequently invited to participate in the plenary Linux Kernel Developer Panel at
LinuxCon Europe, with 2000 attendees.

Julia Lawall was invited to give a keynote at the conference Modularity (formerly AOSD) on her work on
Coccinelle [17].
BEST PAPER AWARD :
[15] Faults in Linux 2.6 in ACM Transactions on Computer Systems. N. PALIX, G. THOMAS, S. SAHA,
C. CALVÈS, G. MULLER, J. L. LAWALL.

6.2. Lock profiling in Java servers
Today, Java is regularly used to implement large multi-threaded server-class applications that use locks to
protect access to shared data. However, understanding the impact of locks on the performance of a system
is complex, and thus the use of locks can impede the progress of threads on configurations that were not
anticipated by the developer, during specific phases of the execution. In our paper, “Continuously Measuring
Critical Section Pressure with the Free-Lunch Profiler” [26], presented at OOPSLA 2014, we propose Free
Lunch, a new lock profiler for Java application servers, specifically designed to identify, in-vivo, phases where
the progress of the threads is impeded by a lock. Free Lunch is designed around a new metric, critical section
pressure (CSP), which directly correlates the progress of the threads to each of the locks. Using Free Lunch, we
have identified phases of high CSP, which were hidden with other lock profilers, in the distributed Cassandra

10 Activity Report INRIA 2014

NoSQL database and in several applications from the DaCapo 9.12, the SPECjvm2008 and the SPECjbb2005
benchmark suites. Our evaluation of Free Lunch shows that its overhead is never greater than 6%, making it
suitable for in-vivo use.

6.3. Software engineering for infrastructure software
A kernel oops is an error report that logs the status of the Linux kernel at the time of a crash. Such a report
can provide valuable first-hand information for a Linux kernel maintainer to conduct postmortem debugging.
Recently, a repository has been created that systematically collects kernel oopses from Linux users. However,
debugging based on only the information in a kernel oops is difficult. In a paper published at MSR [19], we
consider the initial problem of finding the offending line, i.e., the line of source code that incurs the crash.
For this, we propose a novel algorithm based on approximate sequence matching, as used in bioinformatics,
to automatically pinpoint the offending line based on information about nearby machine-code instructions, as
found in a kernel oops. Our algorithm achieves 92% accuracy compared to 26% for the traditional approach
of using only the oops instruction pointer.

2014 was the second year of a two-year cooperation between Julia Lawall and David Lo of Singapore
Management University, as part of the Merlion cooperation grant program of the Insitut Français. This
cooperation resulted in four papers: two on word similarity [22], [27], one on bug localization [24], and
one on an empirical study of testing practices in open source software [20]. As an offshoot of this work, Julia
Lawall worked with the PhD student Ripon Saha of UT Austin and his advisors on the topic of assessing the
effectiveness of a state-of-the-art bug localization technique on C programs as compared to Java programs
[21]. This work built on the C parser developed for Coccinelle.

Finally, with colleagues from Aalborg University and with Nicolas Palix of Grenoble, Julia Lawall published
an article in Science of Computer Programming assessing the applicability of Coccinelle to checking the
coding style guidelines of the CERT C Secure Coding Standard [14].

6.4. Bugs in Linux 2.6
In August 2011, Linux entered its third decade. Ten years before, Chou et al. published a study of faults found
by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the
drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result
inspired numerous efforts on improving the reliability of driver code. Today, Linux is used in a wider range
of environments, provides a wider range of services, and has adopted a new development and release model.
What has been the impact of these changes on code quality? To answer this question, in an article published
in ACM TOCS, we have transported Chou et al.’s experiments to all versions of Linux 2.6; released between
2003 and 2011. We find that Linux has more than doubled in size during this period, but the number of faults
per line of code has been decreasing. Moreover, the fault rate of drivers is now below that of other directories,
such as arch. These results can guide further development and research efforts for the decade to come. To
allow updating these results as Linux evolves, we define our experimental protocol and make our checkers
available.

6.5. Memory Monitoring in Smart Home gateways
Smart Home market players aim to deploy component-based and service-oriented applications from untrusted
third party providers on a single OSGi execution environment. This creates the risk of resource abuse by
buggy and malicious applications, which raises the need for resource monitoring mechanisms. Existing
resource monitoring solutions either are too intrusive or fail to identify the relevant resource consumer
in numerous multi-tenant situations. In our paper “Memory Monitoring in a Multi-tenant OSGi Execution
Environment” [16], presented at CBSE 2014, we propose a system to monitor the memory consumed by each
tenant, while allowing them to continue communicating directly to render services. We propose a solution
based on a list of configurable resource accounting rules between tenants, which is far less intrusive than
existing OSGi monitoring systems. We modified an experimental Java Virtual Machine in order to provide the

Team WHISPER 11

memory monitoring features for the multi-tenant OSGi environment. Our evaluation of the memory monitoring
mechanism on the DaCapo benchmarks shows an overhead below 46%. This work has been done as part of
the PhD of Koutheir Attouchi [10] who was supported by a CIFRE grant with Orange Labs.

7. Bilateral Contracts and Grants with Industry
7.1. Bilateral Contracts with Industry

A 5-month contract with the company Metaware to provide support for Metaware’s use of Coccinelle ended
in February 2014. This contract resulted in numerous improvements in Coccinelle of interest to the general
Coccinelle user community, including better handling of declarations involving multiple variables and better
pretty printing of the gernated code.

The PhD of Koutheir Attouchi [10] on managing resources in the context of Smart Home gateway was
supported by a CIFRE grant with Orange Labs.

Together with Julien Sopena from REGAL, we are collaborating with Renault, in the context of the PhD of
Antoine Blin (CIFRE), on hierarchical scheduling in multicore platforms for real-time embedded systems.
This work is a dissemination of our previous research on the Bossa domain-specific language [6].

8. Partnerships and Cooperations
8.1. National Initiatives
8.1.1. ANR

InfraJVM - (2012 - 2015)
Members: LIP6 (Regal-Whisper), Ecole des Mines de Nantes (Constraint), IRISA (Triskell), LaBRI
(LSR).
Coordinator: Gaël Thomas
Whisper members: Julia Lawall, Gilles Muller
Funding: ANR Infra, 202 000 euros.
Objectives: The design of the Java Virtual Machine(JVM) was last revised in 1999, at atime when a
single program running on a uniprocessor desktop machine was the norm. Today’s computing envi-
ronment, however, is radically different, being characterized by many different kinds of computing
devices, which are often mobile and which need to interact within the context of a single applica-
tion. Supporting such applications, involving multiple mutually untrusted devices, requires resource
management and scheduling strategies that were not planned for in the 1999 JVM design. The goal
of InfraJVM is to design strategies that can meet the needs of such applications and that provide the
good performance that is required in an MRE.
Chronos network, Time and Events in Computer Science, Control Theory, Signal Processing,
Computer Music, and Computational Neurosciences and Biology
Coordinator: Gerard Berry
Whisper member: Gilles Muller
Funding: ANR 2014, Défi “Société de l’information et de la communication”.

The Chronos interdisciplinary network aims at placing in close contact and cooperation researchers
of a variety of scientific fields: computer science, control theory, signal processing, computer music,
neurosciences, and computational biology. The scientific object of study will be the understanding,
modeling, and handling of time- and event-based computation across the fields.

Chronos will work by organizing a regular global seminar on subjects ranging from open questions
to concrete solutions in the research fields, workshops gathering subsets of the Chronos researchers
to address specific issues more deeply, a final public symposium presenting the main contributions
and results, and an associated compendium.

12 Activity Report INRIA 2014

8.1.2. Multicore Inria Project Lab
The Multicore IPL is an Inria initiative led by Gilles Muller, whose goal is to develop techniques for
being able to deploy parallel programs on heterogeneous multicore machines while preserving scalability
and performance. The IPL brings together researchers from the ALF, Algorille, CAMUS, Compsys, DALI,
REGAL, Runtime and Whisper Inria Teams. These connections provide access to a diversity of expertise
on open source development and parallel computing, respectively. In this context, we are working with Jens
Gustedt of Inria Lorraine and on developing a domain-specific language that eases programming with the
ordered read-write lock (ORWL) execution model. The goal of this work is to provide a single execution
model for parallel programs and allow them to be deployed on multicore machines with varying architectures.

8.2. European Initiatives
8.2.1. Collaborations in European Programs, except FP7 & H2020

Program: COST Action IC1001
Project acronym: Euro-TM
Project title: Transactional Memories: Foundations, Algorithms, Tools, and Applications
Duration: 2011 - 2014
Coordinator: Dr. Paolo Romano (INESC)
Whisper member: Gilles Muller, leader of the working group on Hardware’s & Operating System’s
Supports
Other partners: Austria, Czech Republic, Denmark, France, Germany, Greece, Israel, Italy, Norway,
Poland, Portugal, Serbia, Spain, Sweden, Switzerland, Turkey, United Kingdom.
Abstract: Parallel programming (PP) used to be an area once confined to a few niches, such
as scientific and high-performance computing applications. However, with the proliferation of
multicore processors, and the emergence of new, inherently parallel and distributed deployment
platforms, such as those provided by cloud computing, parallel programming has definitely become
a mainstream concern. Transactional Memories(TMs) answer the need to find a better programming
model for PP, capable of boosting developer’s productivity and allowing ordinary programmers to
unleash the power of parallel and distributed architectures avoiding the pitfalls of manual, lock based
synchronization. It is therefore no surprise that TM has been subject to intense research in the last
years. This Action aims at consolidating European research on this important field, by coordinating
the European research groups working on the development of complementary, interdisciplinary
aspects of Transactional Memories, including theoretical foundations, algorithms, hardware and
operating system support, language integration and development tools, and applications.

8.3. International Initiatives
8.3.1. Participation In other International Programs

Julia Lawall obtained the renewal of a Merlion collaboration grant, started in 2013, for collaboration with
David Lo of Singapore Management University. This collaboration resulted in a two-week visit of Julia Lawall
to Singapore Management University, a one-week visit of David Lo to the Whisper team, and a two-week visit
of Lo’s PhD student Ferdian Thung to the Whisper team. It also resulted in four publications during 2014 [27],
[22], [24], [20].

8.4. International Research Visitors
8.4.1. Visits of International Scientists
8.4.1.1. Internships

Julia Lawall supervised the remote internships of Himangi Saraogi (summer 2014) and Tapasweni Pathak
(winter 2014, in progress) as part of the Gnome Outreach Program for Women (OPW). Both interns carried
out projects related to Coccinelle and the Linux kernel. Julia Lawall has taken over the responsability for the
coordination of the Linux kernel’s participation in the OPW program in winter 2014.

Team WHISPER 13

Julia Lawall also supervised the internship of the undergraduate student (L2) Chi Pham from the University of
Copenhagen. Pham developed a tool for transforming Coccinelle semantic patches to make them suitable for
inclusion in the Linux kernel.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. Member of the organizing committee

Julia Lawall was a member of the SIGPLAN Executive Committee, which supervises the organization of the
various conferences sponsored by SIGPLAN, as well as other SIGPLAN activities.

Gilles Muller is a member of the steering committee of the EuroSys conference.

9.1.2. Scientific events selection
9.1.2.1. Member of the conference program committee

Gilles Muller was a PC member for the conferences VEE, TRIOS, for the workshop APSYS and for the jury
of the best EuroSys PhD (Roger Needham award).

Julia Lawall was a PC member for the conferences Modularity and ICDCS.

Pierre-Évariste Dagand was a PC member for WGP 2014, the workshop on generic programming.

9.1.3. Journal
9.1.3.1. Member of the editorial board

Julia Lawall: Higher-Order and Symbolic Computation, Science of Computer Programming.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

9.2.2. Supervision
PhD : Koutheir Attouchi, Managing Resource Sharing Conflicts in an Open Embedded Software
Environment, Université Pierre et Marie Curie, 11 juillet 2014, Gilles Muller et Gaël Thomas, CIFRE
Orange

PhD : Jean-Pierre Lozi, Towards more scalable mutual exclusion for multicore architectures, Uni-
versité Pierre et Marie Curie, 16 juillet 2014, Gilles Muller et Gaël Thomas

PhD : Lisong Guo, Boost the Reliability of the Linux Kernel: Debugging Kernel Oopses, Université
Pierre et Marie Curie, 18 décembre 2014, Julia Lawall et Gilles Muller

PhD in progress : Florian David, A profiler for locks in Java servers, octobre 2011, Gilles Muller et
Gaël Thomas

PhD in progress : Peter Senna Tschudin, Développement Rapide de Pilotes de Périphériques, mai
2014, Julia Lawall et Gilles Muller

PhD in progress : Valentin Rothberg, Exploration de la génétique des pilotes périphériques, octobre
2014, Julia Lawall et Gilles Muller

PhD in progress : Antoine Blin, Execution of real-time applications on a small multicore embedded
system, avril 2012, Gilles Muller et Julien Sopena (Regal), CIFRE Renault

9.2.3. Juries

14 Activity Report INRIA 2014

• Gilles Muller:

– HDR: David Bromberg (University of Bordeaux, reviewer), Michaël Hauspie (reviewer).

– PhD: Jigar Solanki (University of Bordeaux, rapporteur), Pierre-Louis Aublin (University
of Grenoble, reviewer), Baptiste Lepers (University of Grenoble), Etienne Millon (Univer-
sity of Pierre et Marie Curie, President)

• Julia Lawall:

– HDR: David Bromberg (University of Bordeaux, reviewer), Nicolas Anquetil (University
of Lille).

– PhD: Alexandre Lissy (University of Tours, reviewer), Lucia (Singapore Management
University)

9.3. Popularization
Julia Lawall presented a tutorial on Coccinelle at ENS (Masters students), the IT University of Copenhagen
(PhD students), at the Suse Labs conference (developers), at LinuxCon Europe (developers), and at Middle-
ware (PhD students and researchers).

10. Bibliography
Major publications by the team in recent years

[1] J. BRUNEL, D. DOLIGEZ, R. R. HANSEN, J. L. LAWALL, G. MULLER. A foundation for flow-based program
matching using temporal logic and model checking, in "POPL", Savannah, GA, USA, ACM, January 2009,
pp. 114–126

[2] L. BURGY, L. RÉVEILLÈRE, J. L. LAWALL, G. MULLER. Zebu: A Language-Based Approach for Network
Protocol Message Processing, in "IEEE Trans. Software Eng.", 2011, vol. 37, no 4, pp. 575-591

[3] P.-É. DAGAND, A. BAUMANN, T. ROSCOE. Filet-o-Fish: practical and dependable domain-specific languages
for OS development, in "Programming Languages and Operating Systems (PLOS)", 2009, pp. 51–55

[4] A. KENNEDY, N. BENTON, J. B. JENSEN, P.-É. DAGAND. Coq: The World’s Best Macro Assembler?, in
"PPDP", Madrid, Spain, ACM, 2013, pp. 13–24

[5] G. MULLER, C. CONSEL, R. MARLET, L. P. BARRETO, F. MÉRILLON, L. RÉVEILLÈRE. Towards Robust
OSes for Appliances: A New Approach Based on Domain-specific Languages, in "Proceedings of the 9th
Workshop on ACM SIGOPS European Workshop: Beyond the PC: New Challenges for the Operating System",
Kolding, Denmark, 2000, pp. 19–24

[6] G. MULLER, J. L. LAWALL, H. DUCHESNE. A Framework for Simplifying the Development of Kernel Sched-
ulers: Design and Performance Evaluation, in "HASE - High Assurance Systems Engineering Conference",
Heidelberg, Germany, IEEE, October 2005, pp. 56–65

[7] F. MÉRILLON, L. RÉVEILLÈRE, C. CONSEL, R. MARLET, G. MULLER. Devil: An IDL for hardware
programming, in "Proceedings of the Fourth Symposium on Operating Systems Design and Implementation
(OSDI)", San Diego, California, USENIX Association, October 2000, pp. 17–30

Team WHISPER 15

[8] Y. PADIOLEAU, J. L. LAWALL, R. R. HANSEN, G. MULLER. Documenting and Automating Collateral
Evolutions in Linux Device Drivers, in "EuroSys", Glasgow, Scotland, March 2008, pp. 247–260

[9] N. PALIX, G. THOMAS, S. SAHA, C. CALVÈS, J. L. LAWALL, G. MULLER. Faults in Linux: Ten Years Later,
in "ASPLOS", Newport Beach, CA, USA, ACM, March 2011, pp. 305–318

Publications of the year
Doctoral Dissertations and Habilitation Theses

[10] K. ATTOUCHI. Managing Resource Sharing Conflicts in an Open Embedded Software Environment, Univer-
sité Pierre et Marie Curie, July 2014, https://hal.archives-ouvertes.fr/tel-01088028

[11] L. GUO. Boost the Reliability of the Linux Kernel: Debugging Kernel Oopses, UPMC, Paris Sorbonne,
December 2014, https://hal.inria.fr/tel-01096662

[12] J.-P. LOZI. Towards more scalable mutual exclusion for multicore architectures, Université Pierre et Marie
Curie - Paris VI, July 2014, https://tel.archives-ouvertes.fr/tel-01067244

Articles in International Peer-Reviewed Journals

[13] T. F. BISSYANDÉ, L. RÉVEILLÈRE, J. LAWALL, G. MULLER. Ahead of Time Static Analysis for Automatic
Generation of Debugging Interfaces to the Linux Kernel, in "Automated Software Engineering", May 2014,
pp. 1-39 [DOI : 10.1007/S10515-014-0152-4], https://hal.archives-ouvertes.fr/hal-00992283

[14] M. C. OLESEN, R. R. HANSEN, J. L. LAWALL, N. PALIX. Coccinelle: Tool support for automated CERT C
Secure Coding Standard certification, in "Science of Computer Programming", October 2014, vol. 91, no B,
pp. 141–160, https://hal.inria.fr/hal-01096185

[15] Best Paper
N. PALIX, G. THOMAS, S. SAHA, C. CALVÈS, G. MULLER, J. L. LAWALL. Faults in Linux 2.6, in "ACM
Transactions on Computer Systems", June 2014, vol. 32, no 2, pp. 1–40 [DOI : 10.1145/2619090], https://
hal.archives-ouvertes.fr/hal-01022704.

Invited Conferences

[16] K. ATTOUCHI, G. THOMAS, A. BOTTARO, G. MULLER. Memory Monitoring in a Multi-tenant OSGi
Execution Environment, in "CBSE ’14 -17th international ACM Sigsoft symposium on Component-based
software engineering", Marcq-en-Baroeul, France, ACM, June 2014 [DOI : 10.1145/2602458.2602467],
https://hal.archives-ouvertes.fr/hal-01080634

[17] J. L. LAWALL. Coccinelle: reducing the barriers to modularization in a large C code base, in "MODU-
LARITY - 13th International Conference on Modularity", Lugano, Switzerland, W. BINDER, E. ERNST, A.
PETERNIER, R. HIRSCHFELD (editors), ACM, April 2014, pp. 5-6 [DOI : 10.1145/2584469.2584661],
https://hal.inria.fr/hal-01001894

International Conferences with Proceedings

https://hal.archives-ouvertes.fr/tel-01088028
https://hal.inria.fr/tel-01096662
https://tel.archives-ouvertes.fr/tel-01067244
https://hal.archives-ouvertes.fr/hal-00992283
https://hal.inria.fr/hal-01096185
https://hal.archives-ouvertes.fr/hal-01022704
https://hal.archives-ouvertes.fr/hal-01022704
https://hal.archives-ouvertes.fr/hal-01080634
https://hal.inria.fr/hal-01001894

16 Activity Report INRIA 2014

[18] F. DAVID, G. THOMAS, J. LAWALL, G. MULLER. Continuously Measuring Critical Section Pressure
with the Free-Lunch Profiler, in "OOPSLA 2014", Portland, Oregon, United States, ACM, October 2014
[DOI : 10.1145/2660193.2660210], https://hal.inria.fr/hal-01080277

[19] L. GUO, J. LAWALL, G. MULLER. Oops! Where did that code snippet come from?, in "11th Working
Conference on Mining Software Repositories", Hyderabad, India, P. T. DEVANBU, S. KIM, M. PINZGER
(editors), ACM, May 2014, pp. 52-61 [DOI : 10.1145/2597073.2597094], https://hal.inria.fr/hal-01001878

[20] K. PAVNEET SINGH, F. THUNG, D. LO, J. LAWALL. An Empirical Study on the Adequacy of Testing in Open
Source Projects, in "21st Asia-Pacific Software Engineering Conference", Jeju, South Korea, December 2014,
https://hal.inria.fr/hal-01096132

[21] R. K. SAHA, J. L. LAWALL, S. KHURSHID, D. E. PERRY. On the Effectiveness of Information Retrieval Based
Bug Localization for C Programs, in "ICSME 2014 - 30th International Conference on Software Maintenance
and Evolution", Victoria, Canada, IEEE, September 2014, pp. 161-170 [DOI : 10.1109/ICSME.2014.38],
https://hal.inria.fr/hal-01086082

[22] Y. TIAN, D. LO, J. LAWALL. Automated construction of a software-specific word similarity database, in
"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering, CSMR-WCRE", Antwerp, Belgium, IEEE, February 2014, pp. 44-53, https://hal.inria.fr/hal-
01086077

[23] Y. TIAN, D. LO, J. LAWALL. SEWordSim: software-specific word similarity database, in "ICSE’14
- 36th International Conference on Software Engineering, Companion Proceedings", Hyderabad, In-
dia, P. JALOTE, L. C. BRIAND, A. VAN DER HOEK (editors), ACM/IEEE, June 2014, pp. 568-571
[DOI : 10.1145/2591062.2591071], https://hal.inria.fr/hal-01001892

[24] S. WANG, D. LO, J. LAWALL. Compositional Vector Space Models for Improved Bug Localization, in "30th
International Conference on Software Maintenance and Evolution", Victoria, Canada, IEEE, September 2014,
pp. 171-180, https://hal.inria.fr/hal-01086084

Research Reports

[25] K. ATTOUCHI, G. THOMAS, A. BOTTARO, J. L. LAWALL, G. MULLER. Incinerator - Eliminating Stale
References in Dynamic OSGi Applications, Inria, February 2014, no RR-8485, 22 p. , https://hal.inria.fr/hal-
00952327

[26] F. DAVID, G. THOMAS, J. LAWALL, G. MULLER. Continuously Measuring Critical Section Pressure with
the Free Lunch Profiler, Inria Whisper, March 2014, no RR-8486, 24 p. , https://hal.inria.fr/hal-00957154

Other Publications

[27] Y. TIAN, D. LO, J. LAWALL. SEWordSim: software-specific word similarity database, ACM, May 2014, pp.
568-571, ICSE Companion 2014 - Companion Proceedings of the 36th International Conference on Software
Engineering [DOI : 10.1145/2591062.2591071], https://hal.inria.fr/hal-01086079

References in notes

[28] T. BALL, E. BOUNIMOVA, B. COOK, V. LEVIN, J. LICHTENBERG, C. MCGARVEY, B. ONDRUSEK, S. K.
RAJAMANI, A. USTUNER. Thorough Static Analysis of Device Drivers, in "EuroSys", 2006, pp. 73–85

https://hal.inria.fr/hal-01080277
https://hal.inria.fr/hal-01001878
https://hal.inria.fr/hal-01096132
https://hal.inria.fr/hal-01086082
https://hal.inria.fr/hal-01086077
https://hal.inria.fr/hal-01086077
https://hal.inria.fr/hal-01001892
https://hal.inria.fr/hal-01086084
https://hal.inria.fr/hal-00952327
https://hal.inria.fr/hal-00952327
https://hal.inria.fr/hal-00957154
https://hal.inria.fr/hal-01086079

Team WHISPER 17

[29] J. BANGERT, N. ZELDOVICH. Nail: A Practical Tool for Parsing and Generating Data Formats, in "11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI)", October 2014, pp. 615–628

[30] A. BAUMANN, P. BARHAM, P.-É. DAGAND, T. HARRIS, R. ISAACS, S. PETER, T. ROSCOE, A. SCHÜP-
BACH, A. SINGHANIA. The multikernel: A new OS architecture for scalable multicore systems, in "SOSP",
2009, pp. 29–44

[31] T. F. BISSYANDÉ, L. RÉVEILLÈRE, J. L. LAWALL, Y.-D. BROMBERG, G. MULLER. Implementing an
embedded compiler using program transformation rules, in "Software: Practice and Experience", 2013

[32] T. F. BISSYANDÉ, L. RÉVEILLÈRE, J. L. LAWALL, G. MULLER. Diagnosys: automatic generation of a
debugging interface to the Linux kernel, in "IEEE/ACM International Conference on Automated Software
Engineering (ASE)", 2012, pp. 60–69

[33] A. P. BLACK, S. DUCASSE, O. NIERSTRASZ, D. POLLET. Pharo by Example, Square Bracket Associates,
2010

[34] E. BRADY, K. HAMMOND. Resource-Safe Systems Programming with Embedded Domain Specific Languages,
in "14th International Symposium on Practical Aspects of Declarative Languages (PADL)", LNCS, Springer,
2012, vol. 7149, pp. 242–257

[35] T. BRAIBANT, D. POUS. An Efficient Coq Tactic for Deciding Kleene Algebras, in "1st International
Conference on Interactive Theorem Proving (ITP)", LNCS, Springer, 2010, vol. 6172, pp. 163–178

[36] C. CADAR, D. DUNBAR, D. R. ENGLER. KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs, in "OSDI", 2008, pp. 209–224

[37] V. CHIPOUNOV, G. CANDEA. Reverse Engineering of Binary Device Drivers with RevNIC, in "EuroSys",
2010, pp. 167–180

[38] A. CHLIPALA. The Bedrock Structured Programming System: Combining Generative Metaprogramming and
Hoare Logic in an Extensible Program Verifier, in "ICFP", 2013, pp. 391–402

[39] L. A. CLARKE. A system to generate test data and symbolically execute programs, in "IEEE Transactions on
Software Engineering", 1976, vol. 2, no 3, pp. 215–222

[40] E. CLARKE, O. GRUMBERG, S. JHA, Y. LU, H. VEITH. Counterexample-guided abstraction refinement for
symbolic model checking, in "J. ACM", 2003, vol. 50, no 5, pp. 752–794

[41] P. COUSOT, R. COUSOT. Abstract Interpretation: Past, Present and Future, in "CSL-LICS", 2014, pp.
2:1–2:10

[42] I. DILLIG, T. DILLIG, A. AIKEN. Sound, complete and scalable path-sensitive analysis, in "PLDI", June
2008, pp. 270–280

[43] D. R. ENGLER, B. CHELF, A. CHOU, S. HALLEM. Checking System Rules Using System-Specific,
Programmer-Written Compiler Extensions, in "OSDI", 2000, pp. 1–16

18 Activity Report INRIA 2014

[44] D. R. ENGLER, D. Y. CHEN, A. CHOU, B. CHELF. Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code, in "SOSP", 2001, pp. 57–72

[45] A. GOLDBERG, D. ROBSON. Smalltalk-80: The Language and Its Implementation, Addison-Wesley, 1983

[46] L. GU, A. VAYNBERG, B. FORD, Z. SHAO, D. COSTANZO. CertiKOS: A Certified Kernel for Secure Cloud
Computing, in "Proceedings of the Second Asia-Pacific Workshop on Systems (APSys)", 2011, pp. 3:1–3:5

[47] A. ISRAELI, D. G. FEITELSON. The Linux kernel as a case study in software evolution, in "Journal of Systems
and Software", 2010, vol. 83, no 3, pp. 485–501

[48] A. KADAV, M. M. SWIFT. Understanding modern device drivers, in "ASPLOS", 2012, pp. 87–98

[49] G. A. KILDALL. A Unified Approach to Global Program Optimization, in "POPL", 1973, pp. 194–206

[50] G. KLEIN, K. ELPHINSTONE, G. HEISER, J. ANDRONICK, D. COCK, P. DERRIN, D. ELKADUWE,
K. ENGELHARDT, R. KOLANSKI, M. NORRISH, T. SEWELL, H. TUCH, S. WINWOOD. seL4: formal
verification of an OS kernel, in "SOSP", 2009, pp. 207–220

[51] J. L. LAWALL, J. BRUNEL, N. PALIX, R. R. HANSEN, H. STUART, G. MULLER. WYSIWIB: Exploiting
fine-grained program structure in a scriptable API-usage protocol-finding process, in "Software, Practice
Experience", 2013, vol. 43, no 1, pp. 67–92

[52] J. L. LAWALL, B. LAURIE, R. R. HANSEN, N. PALIX, G. MULLER. Finding Error Handling Bugs in
OpenSSL using Coccinelle, in "Proceeding of the 8th European Dependable Computing Conference (EDCC)",
Valencia, Spain, April 2010, pp. 191–196

[53] J. L. LAWALL, D. LO. An automated approach for finding variable-constant pairing bugs, in "25th
IEEE/ACM International Conference on Automated Software Engineering", Antwerp, Belgium, September
2010, pp. 103–112

[54] C. LE GOUES, W. WEIMER. Specification Mining with Few False Positives, in "TACAS", York, UK, Lecture
Notes in Computer Science, March 2009, vol. 5505, pp. 292–306

[55] O. LEVILLAIN. Parsifal: a Pragmatic Solution to the Binary Parsing Problem, in "LangSec Workshop at IEEE
Security & Privacy", May 2014

[56] Z. LI, S. LU, S. MYAGMAR, Y. ZHOU. CP-Miner: A Tool for Finding Copy-paste and Related Bugs in
Operating System Code, in "OSDI", 2004, pp. 289–302

[57] Z. LI, Y. ZHOU. PR-Miner: automatically extracting implicit programming rules and detecting violations
in large software code, in "Proceedings of the 10th European Software Engineering Conference", 2005, pp.
306–315

[58] D. LO, S. KHOO. SMArTIC: towards building an accurate, robust and scalable specification miner, in "FSE",
2006, pp. 265–275

Team WHISPER 19

[59] J.-P. LOZI, F. DAVID, G. THOMAS, J. L. LAWALL, G. MULLER. Remote Core Locking: migrating critical-
section execution to improve the performance of multithreaded applications, in "USENIX Annual Technical
Conference", Boston, MA, USA, June 2012, pp. 65–76

[60] S. LU, S. PARK, Y. ZHOU. Finding Atomicity-Violation Bugs through Unserializable Interleaving Testing, in
"IEEE Transactions on Software Engineering", 2012, vol. 38, no 4, pp. 844–860

[61] S. MCCANNE, V. JACOBSON. The BSD Packet Filter: A New Architecture for User-level Packet Capture, in
"USENIX Winter", 1993, pp. 259–269

[62] M. MERNIK, J. HEERING, A. M. SLOANE. When and How to Develop Domain-specific Languages, in "ACM
Comput. Surv.", December 2005, vol. 37, no 4, pp. 316–344, http://dx.doi.org/10.1145/1118890.1118892

[63] G. MORRISETT, G. TAN, J. TASSAROTTI, J.-B. TRISTAN, E. GAN. RockSalt: better, faster, stronger SFI for
the x86, in "PLDI", 2012, pp. 395-404

[64] M. ODERSKY, T. ROMPF. Unifying functional and object-oriented programming with Scala, in "Commun.
ACM", 2014, vol. 57, no 4, pp. 76–86

[65] T. REPS, T. BALL, M. DAS, J. LARUS. The Use of Program Profiling for Software Maintenance with
Applications to the Year 2000 Problem, in "ESEC/FSE", 1997, pp. 432–449

[66] C. RUBIO-GONZÁLEZ, H. S. GUNAWI, B. LIBLIT, R. H. ARPACI-DUSSEAU, A. C. ARPACI-DUSSEAU.
Error propagation analysis for file systems, in "PLDI", Dublin, Ireland, ACM, June 2009, pp. 270–280

[67] L. RYZHYK, P. CHUBB, I. KUZ, E. LE SUEUR, G. HEISER. Automatic device driver synthesis with Termite,
in "SOSP", 2009, pp. 73–86

[68] L. RYZHYK, A. WALKER, J. KEYS, A. LEGG, A. RAGHUNATH, M. STUMM, M. VIJ. User-Guided Device
Driver Synthesis, in "OSDI", 2014, pp. 661–676

[69] S. SAHA, J.-P. LOZI, G. THOMAS, J. L. LAWALL, G. MULLER. Hector: Detecting Resource-Release
Omission Faults in error-handling code for systems software, in "43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN)", June 2013, pp. 1–12

[70] D. A. SCHMIDT. Data Flow Analysis is Model Checking of Abstract Interpretations, in "POPL", 1998, pp.
38–48

[71] P. SENNA TSCHUDIN, L. RÉVEILLÈRE, L. JIANG, D. LO, J. L. LAWALL, G. MULLER. Understanding the
Genetic Makeup of Linux Device Drivers, in "PLOS", November 2013

[72] M. SHAPIRO. Purpose-built languages, in "Commun. ACM", 2009, vol. 52, no 4, pp. 36–41

[73] R. TARTLER, D. LOHMANN, J. SINCERO, W. SCHRÖDER-PREIKSCHAT. Feature consistency in compile-
time-configurable system software: facing the Linux 10,000 feature problem, in "EuroSys", 2011, pp. 47–60

[74] J.-B. TRISTAN, X. LEROY. Formal verification of translation validators: a case study on instruction
scheduling optimizations, in "POPL", 2008, pp. 17–27

http://dx.doi.org/10.1145/1118890.1118892

20 Activity Report INRIA 2014

[75] W. WANG, M. GODFREY. A Study of Cloning in the Linux SCSI Drivers, in "Source Code Analysis and
Manipulation (SCAM)", IEEE, 2011

[76] J. YANG, C. HAWBLITZEL. Safe to the Last Instruction: Automated Verification of a Type-safe Operating
System, in "PLDI", 2010, pp. 99–110

