
IN PARTNERSHIP WITH:
Université Rennes 1

Activity Report 2015

Project-Team ALF

Amdahl’s Law is Forever

IN COLLABORATION WITH: Institut de recherche en informatique et systèmes aléatoires (IRISA)

RESEARCH CENTER
Rennes - Bretagne-Atlantique

THEME
Architecture, Languages and Compi-
lation

Table of contents

1. Members . 1
2. Overall Objectives . 2
3. Research Program . 3

3.1. Motivations 3
3.2. The context 3

3.2.1. Technological context: The advent of multi- and many- core architecture 3
3.2.2. The application context: multicores, but few parallel applications 4
3.2.3. The overall picture 4

3.3. Technology induced challenges 4
3.3.1. The power and temperatures walls 4
3.3.2. The memory wall 4

3.4. Need for efficient execution of parallel applications 5
3.4.1. The diversity of parallelisms 5
3.4.2. Portability is the new challenge 5
3.4.3. The need for performance on sequential code sections 5

3.4.3.1. Most software will exhibit substantial sequential code sections 5
3.4.3.2. Future parallel applications will require high performance sequential processing on

1000’s cores chip 6
3.4.3.3. The success of 1000’s cores architecture will depend on single thread performance 6

3.5. Performance evaluation/guarantee 6
3.6. General research directions 7

3.6.1. Microarchitecture research directions 7
3.6.1.1. Enhancing complex core microarchitecture 7
3.6.1.2. Exploiting heterogeneous multicores on single process 8
3.6.1.3. Temperature issues 8

3.6.2. Processor simulation research 8
3.6.3. Compiler research directions 9

3.6.3.1. General directions 9
3.6.3.2. Portability of applications and performance through virtualization 9

3.6.4. Performance predictability for real-time systems 10
4. Application Domains .11
5. Highlights of the Year .11
6. New Software and Platforms . 11

6.1. ATC 11
6.2. ATMI 11
6.3. Barra 12
6.4. HEPTANE 12
6.5. If-memo 13
6.6. Padrone 13
6.7. STiMuL 13
6.8. TPCalc 14
6.9. tiptop 14
6.10. Parasuite 15

7. New Results . 15
7.1. Processor Architecture 15

7.1.1. Microarchitecture 15
7.1.1.1. Branch prediction 15
7.1.1.2. Revisiting Value Prediction 16
7.1.1.3. Cost-Effective Speculative Scheduling in High Performance Processors 17

2 Activity Report INRIA 2015

7.1.1.4. Criticality-aware Resource Allocation in OOO Processors 17
7.1.1.5. Efficient Execution on Guarded Instruction Sets 18
7.1.1.6. Clustered microarchitecture 18
7.1.1.7. Adaptive Intelligent Memory Systems 18
7.1.1.8. Hardware data prefetching 19
7.1.1.9. Prediction-based superpage-friendly TLB designs 19

7.1.2. Microarchitecture Performance Modeling 19
7.1.2.1. Symbiotic scheduling on SMT cores and symmetric multicores 19
7.1.2.2. Modeling multi-threaded programs execution time in the many-core era 20
7.1.2.3. Optimal cache replacement 20

7.1.3. Hardware/Software Approaches 20
7.1.3.1. Helper threads 20
7.1.3.2. Branch Prediction and Performance of Interpreter 21
7.1.3.3. Augmenting superscalar architecture for efficient many-thread parallel execution 21

7.2. Compiler, vectorization, interpretation 22
7.2.1. Improving sequential performance through memoization 22
7.2.2. Code Obfuscation 22
7.2.3. Dynamic Binary Re-vectorization 22
7.2.4. Dynamic Parallelization of Binary Executables 23
7.2.5. Hardware Accelerated JIT Compilation for Embedded VLIW Processors 23
7.2.6. Performance Assessment of Sequential Code 23
7.2.7. Compilers for emerging throughput architectures 23
7.2.8. Deterministic floating-point primitives for high-performance computing 24

7.3. WCET estimation and optimization 24
7.3.1. WCET estimation for architectures with faulty caches 24
7.3.2. Speeding up Static Probabilistic Timing Analysis 25
7.3.3. Traceability of flow information for WCET estimation 25
7.3.4. WCET estimation for many core processors 25

8. Bilateral Contracts and Grants with Industry . 26
8.1. Bilateral Contracts with Industry 26
8.2. Bilateral Grants with Industry 26

9. Partnerships and Cooperations . 26
9.1. National Initiatives 26

9.1.1. Capacités: Projet "Investissement d’Avenir", 1/11/14 to 31/01/2018 26
9.1.2. Inria Project Lab: Multicore 2013-2016 27
9.1.3. ADT IPBS 2013-2015 27
9.1.4. ANR Continuum 2015–2019 27
9.1.5. ANR CHIST-ERA SECODE 2016-2018 27
9.1.6. ANR W-SEPT 2012-2015 27

9.2. European Initiatives 28
9.2.1. FP7 & H2020 Projects 28

9.2.1.1. ANTAREX 28
9.2.1.2. Eurolab-4-HPC 28
9.2.1.3. DAL 29
9.2.1.4. ARGO 30

9.2.2. Collaborations in European Programs, except FP7 & H2020 30
9.2.3. Collaborations with Major European Organizations 31

9.3. International Initiatives 31
9.3.1. Inria Associate Teams not involved in an Inria International Labs 31
9.3.2. Inria International Partners 31
9.3.3. Participation In other International Programs 32

Project-Team ALF 3

9.4. International Research Visitors 32
9.4.1.1. Explorer programme 32
9.4.1.2. Research stays abroad 32

10. Dissemination . 32
10.1. Promoting Scientific Activities 32

10.1.1. Scientific events organisation 32
10.1.1.1. General chair, scientific chair 32
10.1.1.2. Member of the organizing committees 32

10.1.2. Scientific events selection 33
10.1.2.1. Chair of conference program committees 33
10.1.2.2. Member of the conference program committees 33
10.1.2.3. Reviewer 33

10.1.3. Journal 33
10.1.3.1. Member of the editorial boards 33
10.1.3.2. Reviewer - Reviewing activities 33

10.1.4. Invited talks 33
10.1.5. Scientific expertise 33
10.1.6. Research administration 34

10.2. Teaching - Supervision - Juries 34
10.2.1. Teaching 34
10.2.2. Supervision 34
10.2.3. Juries 35

11. Bibliography .35

Project-Team ALF

Creation of the Team: 2009 January 01, updated into Project-Team: 2011 January 01

Keywords:

Computer Science and Digital Science:
1.1. - Architectures
1.1.1. - Multicore
1.1.2. - Hardware accelerators (GPGPU, FPGA, etc.)
1.1.3. - Memory models
1.1.4. - High performance computing
1.6. - Green Computing
2.2. - Compilation
2.2.2. - Memory models
2.2.3. - Run-time systems
2.2.4. - Parallel architectures
2.2.5. - GPGPU, FPGA, etc.
2.2.6. - Adaptive compilation
2.3.1. - Embedded systems
2.3.3. - Real-time systems

Other Research Topics and Application Domains:
1. - Life sciences
2. - Health
3. - Environment and planet
4. - Energy
5. - Industry of the future
6. - IT and telecom
7. - Transport and logistics
8. - Smart Cities and Territories
9. - Society and Knowledge

1. Members
Research Scientists

André Seznec [Team leader, Inria, Senior Researcher, HdR]
Sylvain Collange [Inria, Researcher]
Pierre Michaud [Inria, Researcher]
Erven Rohou [Inria, Senior Researcher, HdR]

Faculty Members
Damien Hardy [Univ. Rennes I, Associate Professor]
Isabelle Puaut [Univ. Rennes I, Professor, HdR]

Engineers
Arthur Perais [Inria, from Oct 2015]
Thibault Person [Inria, until Oct 2015]

2 Activity Report INRIA 2015

Emmanuel Riou [Inria, granted by Nano 2017]
PhD Students

Arif Ali Ana-Pparakkal [Inria, from Feb 2015,granted by Nano 2017]
Rabab Bouziane [Inria, from Nov 2015]
Nabil Hallou [Inria]
Sajith Kalathingal [Inria, granted by FP7 ERC DAL project]
Surya Khizakanchery Natarajan [Inria, until Jun 2015, granted by FP7 ERC DAL project]
Hanbing Li [Inria, until Oct 2015, granted by ANR W-SEPT project]
Andrea Mondelli [Inria, granted by FP7 ERC DAL project]
Bharath Narasimha Swamy [Inria, until Mar 2015, granted by FP7 ERC DAL project]
Viet Anh Nguyen [Univ. Rennes I, from Feb 2015]
Arthur Perais [Inria, until Sep 2015, granted by FP7 ERC DAL project]
Benjamin Rouxel [Univ. Rennes I, from Sept 2015]
Aswinkumar Sridharan [Inria, granted by FP7 ERC DAL project]
Arjun Suresh [Inria, granted by FP7 ERC DAL project]

Post-Doctoral Fellows
Fernando Endo [Inria, from Oct 2015]
Biswabandan Panda [Inria, from Nov 2015]
Tao Sun [Inria, until Aug 2015, granted by FP7 ERC DAL project]

Administrative Assistant
Virginie Desroches [Inria]

2. Overall Objectives

2.1. Panorama
Multicore processors have now become mainstream for both general-purpose and embedded computing. In
the near future, every hardware platform will feature thread level parallelism. Therefore, the overall computer
science research community, but also industry, is facing new challenges; parallel architectures will have to be
exploited by every application from HPC computing, web and entreprise servers, but also PCs, smartphones
and ubiquitous embedded systems.

Within a decade, it will become technologically feasible to implement 1000s of cores on a single chip.
However, several challenges must be addressed to allow the end-user to benefit from these 1000’s cores chips.
At that time, most applications will not be fully parallelized, therefore the effective performance of most
computer systems will strongly depend on their performance on sequential sections and sequential control
threads: Amdahl’s law is forever. Parallel applications will not become mainstream if they have to be adapted to
each new platform, therefore a simple performance scalability/portability path is needed for these applications.
In many application domains, particularly in real-time systems, the effective use of multicore chips will depend
on the ability of the software and hardware vendors to accurately assess the performance of applications.

The ALF team regroups researchers in computer architecture, software/compiler optimization, and real-time
systems. The long-term goal of the ALF project-team is to allow the end-user to benefit from the 2020’s
many-core platform. We address this issue through architecture, i.e. we try to influence the definition of
the 2020’s many-core architecture, compiler, i.e. we intend to provide new code generation techniques for
efficient execution on many-core architectures and performance prediction/guarantee, i.e. we try to propose
new software and architecture techniques to predict/guarantee the response time of many-core architectures.

Project-Team ALF 3

High performance on single thread process and sequential code is a key issue for enabling overall high
performance on a 1000’s cores system. Therefore, we anticipate that future manycore architectures will
implement heterogeneous design featuring many simple cores and a few complex cores. Hence the research in
the ALF project focuses on refining the microarchitecture to achieve high performance on single thread process
and/or sequential code sections. We focus our architecture research in two main directions 1) enhancing
the microarchitecture of high-end superscalar processors, 2) exploiting/modifying heterogeneous multicore
architecture on a single thread. We also tackle a technological/architecture issue, the temperature wall.

Compilers are keystone solutions for any approach that deals with high performance on 100+ core systems.
But general-purpose compilers try to embrace so many domains and try to serve so many constraints that
they frequently fail to achieve very high performance. They need to be deeply revisited. We identify four
main compiler/software related issues that must be addressed in order to allow efficient use of multi- and
many-cores: 1) programming 2) resource management 3) application deployment 4) portable performance.
Addressing these challenges requires to revisit parallel programming and code generation extensively.

While compiler and architecture research efforts often focus on maximizing average case performance,
applications with real-time constraints do not only need high performance but also performance guarantees
in all situations, including the worst-case situation. Worst-Case Execution Time estimates (WCET) need to
be upper bounds of any possible execution time. The amount of safety required depends on the criticality of
applications. Within the ALF team, our objective is to study performance guarantees for both (i) sequential
codes running on complex cores ; (ii) parallel codes running on multicores.

Our research is partially supported by industry (Intel,STmicroelectronics), the ANR W-SEPT, ANR Contin-
uum and ANR CHIST-ERA SECODE projects, the "projet d’investissement d’avenir" Usine Nouvelle (the
project Capacités) and the European Union (NoE HiPEAC3, ERC grant DAL, Antarex, Eurolab-4-HPC,
ARGO and COST action TACLe).

3. Research Program
3.1. Motivations

Multicores have become mainstream in general-purpose as well as embedded computing in the last few years.
The integration technology trend allows to anticipate that a 1000-core chip will become feasible before 2020.
On the other hand, while traditional parallel application domains, e.g. supercomputing and transaction servers,
are benefiting from the introduction of multicores, there are very few new parallel applications that have
emerged during the last few years.

In order to allow the end-user to benefit from the technological breakthrough, new architectures have to be
defined for the 2020’s many-cores, new compiler and code generation techniques as well as new performance
prediction/guarantee techniques have to be proposed .

3.2. The context
3.2.1. Technological context: The advent of multi- and many- core architecture

For almost 30 years since the introduction of the first microprocessor, the processor industry was driven by the
Moore’s law till 2002, delivering performance that doubled every 18-24 months on a uniprocessor. However
since 2002 , and despite new progress in integration technology, the efforts to design very aggressive and very
complex wide issue superscalar processors have essentially been stopped due to poor performance returns, as
well as power consumption and temperature walls.

Since 2002-2003, the microprocessor industry has followed a new path for performance: the so-called
multicore approach, i.e., integrating several processors on a single chip. This direction has been followed
by the whole processor industry. At the same time, most of the computer architecture research community
has taken the same path, focusing on issues such as scalability in multicores, power consumption, temperature
management and new execution models, e.g. hardware transactional memory.

4 Activity Report INRIA 2015

In terms of integration technology, the current trend will allow to continue to integrate more and more
processors on a single die. Doubling the number of cores every two years will soon lead to up to a thousand
processor cores on a single chip. The computer architecture community has coined these future processor
chips as many-cores.

3.2.2. The application context: multicores, but few parallel applications
For the past five years, small scale parallel processor chips (hyperthreading, dual and quad-core) have become
mainstream in general-purpose systems. They are also entering the high-end embedded system market. At
the same time, very few (scalable) mainstream parallel applications have been developed. Such development
of scalable parallel applications is still limited to niche market segments (scientific applications, transaction
servers).

3.2.3. The overall picture
Till now, the end-user of multicores is experiencing improved usage comfort because he/she is able to
run several applications at the same time. Eventually, in the near future with the 8-core or the 16-core
generation, the end-user will realize that he/she is not experiencing any functionality improvement or
performance improvement on current applications. The end-user will then realize that he/she needs more
effective performance rather than more cores. The end-user will then ask either for parallel applications or for
more effective performance on sequential applications.

3.3. Technology induced challenges
3.3.1. The power and temperatures walls

The power and the temperature walls largely contributed to the emergence of the small-scale multicores. For
the past five years, mainstream general-purpose multicores have been built by assembling identical superscalar
cores on a chip (e.g. IBM Power series). No new complex power hungry mechanisms were introduced in
the core architectures, while power saving techniques such as power gating, dynamic voltage and frequency
scaling were introduced. Therefore, since 2002, the designers have been able to keep the power consumption
budget and the temperature of the chip within reasonable envelopes while scaling the number of cores with
the technology.

Unfortunately, simple and efficient power saving techniques have already caught most of the low hanging
fruits on energy consumption. Complex power and thermal management mechanisms are now becoming
mainstream; e.g. the Intel Montecito (IA64) featured an adjunct (simple) core whose unique mission is to
manage the power and temperature on two cores. Processor industry will require more and more heroic efforts
on this power and temperature management policy to maintain its current performance scaling path. Hence the
power and temperature walls might slow the race towards 100’s and 1000’s cores unless the processor industry
takes a new paradigm shift from the current "replicating complex cores" (e.g. Intel Nehalem) towards many
simple cores (e.g. Intel Larrabee) or heterogeneous manycores (e.g. new GPUs, IBM Cell).

3.3.2. The memory wall
For the past 20 years, the memory access time has been one of the main bottlenecks for performance in
computer systems. This was already true for uniprocessors. Complex memory hierarchies have been defined
and implemented in order to limit the visible memory access time as well as the memory traffic demands. Up
to three cache levels are implemented for uniprocessors. For multi- and many-cores the problems are even
worse. The memory hierarchy must be replicated for each core, memory bandwidth must be shared among
the distinct cores, data coherency must be maintained. Maintaining cache coherency for up to 8 cores can be
handled through relatively simple bus protocols. Unfortunately, these protocols do not scale for large numbers
of cores, and there is no consensus on coherency mechanism for manycore systems. Moreover there is no
consensus on core organization (flat ring? flat grid? hierarchical ring or grid?).

Project-Team ALF 5

Therefore, organizing and dimensioning the memory hierarchy will be a major challenge for the computer
architects. The successful architecture will also be determined by the abilitty of the applications (i.e., the
programmers or the compilers or the run-time) to efficiently place data in the memory hierarchy and achieve
high performance.

Finally new technology opportunities may demand to revisit the memory hierarchy. As an example, 3D
memory stacking enables a huge last-level cache (maybe several gigabytes) with huge bandwidth (several
Kbits/ processor cycle). This dwarfs the main memory bandwidth and may lead to other architectural tradeoffs.

3.4. Need for efficient execution of parallel applications
Achieving high performance on future multicores will require the development of parallel applications, but
also an efficient compiler/runtime tool chain to adapt codes to the execution platform.

3.4.1. The diversity of parallelisms
Many potential execution parallelism patterns may coexist in an application. For instance, one can express
some parallelism with different tasks achieving different functionalities. Within a task, one can expose different
granularities of parallelism; for instance a first layer message passing parallelism (processes executing the
same functionality on different parts of the data set), then a shared memory thread level parallelism and fine
grain loop parallelism (a.k.a vector parallelism).

Current multicores already feature hardware mechanisms to address these different parallelisms: physically
distributed memory — e.g. the new Intel Nehalem already features 6 different memory channels — to address
task parallelism, thread level parallelism — e.g. on conventional multicores, but also on GPUs or on Cell-
based machines —, vector/SIMD parallelism — e.g. multimedia instructions. Moreover they also attack finer
instruction level parallelism and memory latency issues. Compilers have to efficiently discover and manage
all these forms to achieve effective performance.

3.4.2. Portability is the new challenge
Up to now, most parallel applications were developed for specific application domains in high end computing.
They were used on a limited set of very expensive hardware platforms by a limited number of expert users.
Moreover, they were executed in batch mode.

In contrast, the expectation of most end-users of the future mainstream parallel applications running on
multicores will be very different. The mainstream applications will be used by thousands, maybe millions of
non-expert users. These users consider functional portability of codes as granted. They will expect their codes
to run faster on new platforms featuring more cores. They will not be able to tune the application environment
to optimize performance. Finally, multiple parallel applications may have to be executed concurrently.

The variety of possible hardware platforms, the lack of expertise of the end-users and the varying run-time
execution environments will represent major difficulties for applications in the multicore era.

First of all, the end user considers functional portability without recompilation as granted, this is a major
challenge on parallel machines. Performance portability/scaling is even more challenging. It will become
inconceivable to rewrite/retune each application for each new parallel hardware platform generation to exploit
them. Therefore, apart from the initial development of parallel applications, the major challenge for the next
decade will be to efficiently run parallel applications on hardware architectures radically different from their
original hardware target.

3.4.3. The need for performance on sequential code sections
3.4.3.1. Most software will exhibit substantial sequential code sections

For the foreseeable future, the majority of applications will feature important sequential code sections.

6 Activity Report INRIA 2015

First, many legacy codes were developed for uniprocessors. Most of these codes will not be completely
redeveloped as parallel applications, but will evolve to applications using parallel sections for the most
compute-intensive parts. Second, the overwhelming majority of the programmers have been educated to
program in a sequential programming style. Parallel programming is much more difficult, time consuming
and error prone than sequential programming. Debugging and maintaining a parallel code is a major issue.
Investing in the development of a parallel application will not be cost-effective for the vast majority of software
developments. Therefore, sequential programming style will continue to be dominant in the foreseeable future.
Most developers will rely on the compiler to parallelize their application and/or use some software components
from parallel libraries.

3.4.3.2. Future parallel applications will require high performance sequential processing on 1000’s cores chip

With the advent of universal parallel hardware in multicores, large diffusion parallel applications will have to
run on a broad spectrum of parallel hardware platforms. They will be used by non-expert users who will not
be able to tune the application environment to optimize performance. They will be executed concurrently with
other processes which may be interactive.

The variety of possible hardware platforms, the lack of expertise of the end-user and the varying run-
time execution environments are major difficulties for parallel applications. This tends to constrain the
programming style and therefore reinforces the sequential structure of the control of the application.

Therefore, most future parallel applications will rely on a single main thread or a few main threads in charge
of distinct functionalities of the application. Each main thread will have a general sequential control and can
initiate and control the parallel execution of parallel tasks.

In 1967, Amdahl [50] pointed out that, if only a portion of an application is accelerated, the execution time
cannot be reduced below the execution time of the residual part of the application. Unfortunately, even highly
parallelized applications exhibit some residual sequential part. For parallel applications, this indicates that the
effective performance of the future 1000’s cores chip will significantly depend on their ability to be efficient
on the execution of the control portions of the main thread as well as on the execution of sequential portions
of the application.

3.4.3.3. The success of 1000’s cores architecture will depend on single thread performance

While the current emphasis of computer architecture research is on the definition of scalable multi- many- core
architectures for highly parallel applications, we believe that the success of the future 1000-core architecture
will depend not only on their performance on parallel applications including sequential sections, but also on
their performance on single thread workloads.

3.5. Performance evaluation/guarantee
Predicting/evaluating the performance of an application on a system without explicitly executing the appli-
cation on the system is required for several usages. Two of these usages are central to the research of the
ALF project-team: microarchitecture research (the system to be be evaluated does not exist) and Worst Case
Execution Time estimation for real-time systems (the numbers of initial states or possible data inputs is too
large).

When proposing a micro-architecture mechanism, its impact on the overall processor architecture has to
be evaluated in order to assess its potential performance advantages. For microarchitecture research, this
evaluation is generally done through the use of cycle-accurate simulation. Developing such simulators is quite
complex and microarchitecture research was helped but also biased by some popular public domain research
simulators (e.g. Simplescalar [52]). Such simulations are CPU consuming and simulations cannot be run on a
complete application.

Project-Team ALF 7

Real-time systems need a different use of performance prediction; on hard real-time systems, timing con-
straints must be respected independently from the data inputs and from the initial execution conditions. For
such a usage, the Worst Case Execution Time (WCET) of an application must be evaluated and then checked
against the timing constraints. While safe and tight WCET estimation techniques and tools exist for reasonably
simple embedded processors (e.g. techniques based on abstract interpretation such as [55]), accurate evaluation
of the WCET of an algorithm on a complex uniprocessor system is a difficult problem. Accurately modelling
data cache behavior [3] and complex superscalar pipelines are still research questions as illustrated by the
presence of so-called timing anomalies in dynamically scheduled processors, resulting from complex inter-
actions between processor elements (among others, interactions between caching and instruction scheduling)
[59].

With the advance of multicores, evaluating / guaranteeing a computer system response time is becoming much
more difficult. Interactions between processes occurs at different levels. The execution time on each core
depends on the behavior of the other cores. Simulations of 1000’s cores micro-architecture will be needed
in order to evaluate future many-core proposals. While a few multiprocessor simulators are available for the
community, these simulators cannot handle realistic 1000’s cores micro-architecture. New techniques have
to be invented to achieve such simulations. WCET estimations on multicore platforms will also necessitate
radically new techniques, in particular, there are predictability issues on a multicore where many resources
are shared; those resources include the memory hierarchy, but also the processor execution units and all the
hardware resources if SMT is implemented [66].

3.6. General research directions
The overall performance of a 1000’s core system will depend on many parameters including architecture,
operating system, runtime environment, compiler technology and application development. In the ALF
project, we will essentially focus on architecture, compiler/execution environment as well as performance
predictability, and in particular WCET estimation. Moreover, architecture research, and to a smaller extent,
compiler and WCET estimation researches rely on processor simulation. A significant part of the effort in ALF
will be devoted to define new processor simulation techniques.

3.6.1. Microarchitecture research directions
We have identified that high performance on single threads and sequential codes is one of the key issues for
enabling overall high performance on a 1000’s core system and we anticipate that the general architecture of
such 1000’s core chip will feature many simple cores and a few very complex cores.

Therefore our research in the ALF project will focus on refining the microarchitecture to achieve high
performance on single process and/or sequential code sections within the general framework of such an
heteregeneous architecture. This leads to two main research directions 1) enhancing the microarchitecture
of high-end superscalar processors, 2) exploiting/modifying heterogeneous multicore architecture on a single
process. The temperature wall is also a major technological/architectural issue for the design of future
processor chips.

3.6.1.1. Enhancing complex core microarchitecture

Research on wide issue superscalar processors was merely stopped around 2002 due to limited performance
returns and the power consumption wall.

When considering a heterogeneous architecture featuring hundreds of simple cores and a few complex cores,
these two obstacles will partially vanish: 1) the complex cores will represent only a fraction of the chip and
a fraction of its power consumption. 2) any performance gain on (critical) sequential threads will result in a
performance gain of the whole system

On the complex core, the performance of a sequential code is limited by several factors. At first, on current
architectures, it is limited by the peak performance of the processor. To push back this first limitation, we
will explore new microarchitecture mechanisms to increase the potential peak performance of a complex core
enabling larger instruction issue width. The processor performance is also limited by control dependencies.

8 Activity Report INRIA 2015

To push back this limitation, we will explore new branch prediction mechanisms as well as new directions for
reducing branch misprediction penalties [10]. As data dependencies may strongly limit performance, we will
revisit data prediction. Processor performance is also often highly dependent on the presence or absence of
data in a particular level of the memory hierarchy. For the ALF multicore, we will focus on sharing the access
to the memory hierarchy in order to adapt the performance of the main thread to the performance of the other
cores. All these topics should be studied with the new perspective of quasi unlimited silicon budget.

3.6.1.2. Exploiting heterogeneous multicores on single process

When executing a sequential section on the complex core, the simple cores will be free. Two main research
directions to exploit thread level parallelism on a sequential thread have been initiated in late 90’s within the
context of simultaneous multithreading and early chip multiprocessor proposals: helper threads and speculative
multithreading.

Helper threads were initially proposed to improve the performance of the main threads on simultaneous
multithreaded architectures [53]. The main idea of helper threads is to execute codes that will accelerate
the main thread without modifying its semantic.

In many cases, the compiler cannot determine if two code sections are independent due to some unresolved
memory dependency. When no dependency occurs at execution time, the code sections can be executed in
parallel. Thread-Level Speculation has been proposed to exploit coarse grain speculative parallelism. Several
hardware-only proposals were presented [61], but the most promising solutions integrate hardware support for
software thread-level speculation [64].

In the context of future manycores, thread-level speculation and helper threads should be revisited. Many
simple cores will be available for executing helper threads or speculative thread execution during the execution
of sequential programs or sequential code sections. The availability of these many cores is an opportunity as
well as a challenge. For example, one can try to use the simple cores to execute many different helper threads
that could not be implemented within a simultaneous multithreaded processor. For thread level speculation,
the new challenge is the use of less powerful cores for speculative threads. Moreover the availability of many
simple cores may lead to the use of helper threads and thread level speculation at the same time.

3.6.1.3. Temperature issues

Temperature is one of the constraints that have prevented the processor clock frequency to be increased in
recent years. Besides techniques to decrease the power consumption, the temperature issue can be tackled with
dynamic thermal management [9] through techniques such as clock gating or throttling and activity migration
[62][5].

Dynamic thermal management (DTM) is now implemented on existing processors. For high performance,
processors are dimensioned according to the average situation rather than to the worst case situation.
Temperature sensors are used on the chip to trigger dynamic thermal management actions, for instance thermal
throttling whenever necessary. On multicores, it is possible to migrate the activity from one core to another in
order to limit temperature.

A possible way to increase sequential performance is to take advantage of the smaller gate delay that comes
with miniaturization, which permits in theory to increase the clock frequency. However increasing the clock
frequency generally requires to increase the instantaneous power density. This is why DTM and activity
migration will be key techniques to deal with Amdahl’s law in future many-core processors.

3.6.2. Processor simulation research
Architecture studies, and in particular microarchitecture studies, require extensive validations through detailed
simulations. Cycle accurate simulators are needed to validate the microarchitectural mechanisms.

Within the ALF project, we can distinguish two major requirements on the simulation: 1) single process and
sequential code simulations 2) parallel code sections simulations.

Project-Team ALF 9

For simulating parallel code sections, a cycle-accurate microarchitecture simulator of a 1000-core architecture
will be unacceptably slow. In [6], we showed that mixing analytical modeling of the global behavior of
a processor with detailed simulation of a microarchitecture mechanism allows to evaluate this mechanism.
Karkhanis and Smith [56] further developed a detailed analytical simulation model of a superscalar processor.
Building on top of these preliminary researches, simulation methodology mixing analytical modeling of the
simple cores with a more detailed simulation of the complex cores is appealing. The analytical model of
the simple cores will aim at approximately modeling the impact of the simple core execution on the shared
resources (e.g. data bandwidth, memory hierarchy) that are also used by the complex cores.

Other techniques such as regression modeling [57] can also be used for decreasing the time required to explore
the large space of microarchitecture parameter values. We will explore these techniques in the context of many-
core simulation.

In particular, research on temperature issues will require the definition and development of new simulation
tools able to simulate several minutes or even hours of processor execution, which is necessary for modeling
thermal effects faithfully.

3.6.3. Compiler research directions
3.6.3.1. General directions

Compilers are keystone solutions for any approach that deals with high performance on 100+ processors
systems. But general-purpose compilers try to embrace so many domains and try to serve so many constraints
that they frequently fail to achieve very high performance. They need to be deeply revisited. We identify four
main compiler/software related issues that must be addressed in order to allow efficient use of multi- and
many-cores: 1) programming 2) resource management 3) application deployment 4) portable performance.
Addressing these challenges will require to revisit parallel programming and code generation extensively.

The past of parallel programming is scattered with hundreds of parallel languages. Most of these languages
were designed to program homogeneous architectures and were targeting a small and well-trained community
of HPC programmers. With the new diversity of parallel hardware platforms and the new community of
non-expert developers, expressing parallelism is not sufficient anymore. Resource management, application
deployment and portable performance are intermingled issues that require to be addressed holistically.

As many decisions should be taken according to the available hardware, resource management cannot be
separated from parallel programming. Deploying applications on various systems without having to deal
with thousands of hardware configurations (different numbers of cores, accelerators, ...) will become a major
concern for software distribution. The grail of parallel computing is to be able to provide portable performance
on a large set of parallel machines and varying execution contexts.

Recent techniques are showing promises. Iterative compilation techniques, exploiting the huge CPU cycle
count now available, can be used to explore the optimization space at compile-time. Second, machine-learning
techniques can be used to automatically improve compilers and code generation strategies. Speculation can be
used to deal with necessary but missing information at compile-time. Finally, dynamic techniques can select or
generate at run-time the most efficient code adapted to the execution context and available hardware resources.

Future compilers will benefit from past research, but they will also need to combine static and dynamic
techniques. Moreover, domain specific approaches might be needed to ensure success. The ALF research
effort will focus on these static and dynamic techniques to address the multicore application development
challenges.

3.6.3.2. Portability of applications and performance through virtualization

The life cycle is much longer for applications than for hardware. Unfortunately the multicore era jeopardizes
the old binary compatibility recipe. Binaries cannot automatically exploit additional computing cores or new
accelerators available on the silicon. Moreover maintaining backward binary compatibility on future parallel
architectures will rapidly become a nightmare, applications will not run at all unless some kind of dynamic
binary translation is at work.

10 Activity Report INRIA 2015

Processor virtualization addresses the problem of portability of functionalities. Applications are not compiled
to the final native code but to a target independent format. This is the purpose of languages such as Java and
.NET. Bytecode formats are often a priori perceived as inappropriate for performance intensive applications
and for embedded systems. However, it was shown that compiling a C or C++ program to a bytecode format
produces a code size similar to dense instruction sets [2]. Moreover, this bytecode representation can be
compiled to native code with performance similar to static compilation [1]. Therefore processor virtualization
for high performance, i.e., for languages like C or C++, provides significant advantages: 1) it simplifies
software engineering with fewer tools to maintain and upgrade; 2) it allows better code readability and easier
code maintenance since it avoids code specialization for specific targets using compile time macros such as
#ifdef ; 3) the execution code deployed on the system is the execution code that has been debugged and
validated, as opposed to the same source code has been recompiled for another platform; 4) new architectures
will come with their JIT compiler. The JIT will (should) automatically take advantage of new architecture
features such as SIMD/vector instructions or extra processors.

Our objective is to enrich processor virtualization to allow both functional portability and high performance
using JIT at runtime, or bytecode-to-native code offline compiler. Split compilation can be used to annotate
the bytecode with relevant information that can be helpful to the JIT at runtime or to the bytecode to native
code offline compiler. Because the first compilation pass occurs offline, aggressive analyses can be run and
their outcomes encoded in the bytecode. For example, such information include vectorizability, memory
references (in)dependencies, suggestions derived from iterative compilation, polyhedral analysis, or integer
linear programming. Virtualization allows to postpone some optimizations to run time, either because they
increase the code size and would increase the cost of an embedded system or because the actual hardware
platform characteristics are unknown.

3.6.4. Performance predictability for real-time systems
While compiler and architecture research efforts often focus on maximizing average case performance,
applications with real-time constraints do not need only high performance but also performance guarantees
in all situations, including the worst-case situation. Worst-Case Execution Time estimates (WCET) need
to be upper bounds of any possible execution time. The safety level required depends on the criticality of
applications: missing a frame on a video in the airplane for passenger in seat 20B is less critical than a safety
critical decision in the control of the airplane.

Within the ALF project, our objective is to study performance guarantees for both (i) sequential codes running
on complex cores ; (ii) parallel codes running on the multicores. This results in two quite distinct problems.

For sequential code executing on a single core, one can expect that, in order to provide real-time possibility, the
architecture will feature an execution mode where a given processor will be guaranteed to access a fixed portion
of the shared resources (caches, memory bandwidth). Moreover, this guaranteed share could be optimized at
compile time to enforce the respect of the time constraints. However, estimating the WCET of an application
on a complex micro-architecture is still a research challenge. This is due to the complex interaction of micro-
architectural elements (superscalar pipelines, caches, branch prediction, out-of-order execution) [59]. We will
continue to explore pure analytical and static methods. However when accurate static hardware modeling
methods cannot handle the hardware complexity, new probabilistic methods [58] might be needed to explore
to obtain as safe as possible WCET estimates.

Providing performance guarantees for parallel applications executed on a multicore is a new and challenging
issue. Entirely new WCET estimation methods have to be defined for these architectures to cope with dynamic
resource sharing between cores, in particular on-chip memory (either local memory or caches) are shared, but
also buses, network-on-chip and the access to the main memory. Current pure analytical methods are too
pessimistic at capturing interferences between cores [67], therefore hardware-based or compiler methods
such as [65] have to be defined to provide some degree of isolation between cores. Finally, similarly to
simulation methods, new techniques to reduce the complexity of WCET estimation will be explored to cope
with manycore architectures.

Project-Team ALF 11

4. Application Domains

4.1. Any computer usage
The ALF team is working on the fundamental technologies for computer science: processor architecture,
performance-oriented compilation and guaranteed response time for real-time. The research results may have
impacts on any application domain that requires high performance execution (telecommunication, multimedia,
biology, health, engineering, environment ...), but also on many embedded applications that exhibit other
constraints such as power consumption, code size and guaranteed response time. Our research activity implies
the development of software prototypes.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

Pierre Michaud won the 2nd Data Prefetching Championship held in conjunction with ISCA 2015 (Portland,
June 2015).

BEST PAPER AWARD:

[27]
P. MICHAUD. A Best-Offset Prefetcher, in "2nd Data Prefetching Championship", Portland, United States,
June 2015, https://hal.inria.fr/hal-01165600

6. New Software and Platforms

6.1. ATC
Address Trace Compression
KEYWORDS: Compressing - Decompressing - Address traces
FUNCTIONAL DESCRIPTION

ATC is a utility and a C library for compressing/decompressing address traces. It implements a new lossless
transformation, Bytesort, that exploits spatial locality in address traces. ATC leverages existing general-
purpose compressors such as gzip and bzip2. ATC also provides a lossy compression mode that yields higher
compression ratios while preserving certain important characteristics of the original trace.

• Participant: Pierre Michaud

• Contact: Pierre Michaud

• URL: https://team.inria.fr/alf/software/atc/

6.2. ATMI
Modeling microprocessor temperature.

SCIENTIFIC DESCRIPTION

Research on temperature-aware computer architecture requires a chip temperature model. General purpose
models based on classical numerical methods like finite differences or finite elements are not appropriate
for such research, because they are generally too slow for modeling the time-varying thermal behavior of a
processing chip.

https://hal.inria.fr/hal-01165600
https://team.inria.fr/alf/software/atc/

12 Activity Report INRIA 2015

We have developed an ad hoc temperature model, ATMI (Analytical model of Temperature in MIcroproces-
sors), for studying thermal behaviors over a time scale ranging from microseconds to several minutes. ATMI
is based on an explicit solution to the heat equation and on the principle of superposition. ATMI can model
any power density map that can be described as a superposition of rectangle sources, which is appropriate for
modeling the microarchitectural units of a microprocessor.

• Participant: Pierre Michaud

• Contact: Pierre Michaud

• URL: https://team.inria.fr/alf/software/atmi/

6.3. Barra
Modelisation of a GPU architecture
KEYWORDS: Simulator - GPU - Computer architecture
SCIENTIFIC DESCRIPTION

Research on throughput-oriented architectures demands accurate and representative models of GPU architec-
tures in order to be able to evaluate new architectural ideas, explore design spaces and characterize applica-
tions. The Barra project is a simulator of the NVIDIA Tesla GPU architecture.

Barra builds upon knowledge acquired through micro-benchmarking, in order to provide a baseline model
representative of industry practice. The simulator provides detailed statistics to identify optimization opportu-
nities and is fully customizable to experiment ideas of architectural modifications. Barra incorporates both a
functional model and a cycle-level performance model.
FUNCTIONAL DESCRIPTION

Barra simulates CUDA programs at the assembly language level (Tesla ISA). Its ultimate goal is to provide a
100 % bit-accurate simulation, offering bug-for-bug compatibility with NVIDIA G80-based GPUs. It works
directly with CUDA executables, neither source modification nor recompilation is required.

Barra is primarily intended as a tool for research in computer architecture, although it can also be used to
debug, profile and optimize CUDA programs at the lowest level.

• Participants: Sylvain Collange, David Defour, Alexandre Kouyoumdjian and Fabrice Mouhartem

• Contact: Sylvain Collange

• URL: http://barra.gforge.inria.fr/

6.4. HEPTANE
Static analyser of Worst-Case Execution Time
KEYWORD: WCET
FUNCTIONAL DESCRIPTION

The aim of Heptane is to produce upper bounds of the execution times of applications. It is targeted at
applications with hard real-time requirements (automotive, railway, aerospace domains). Heptane computes
WCETs using static analysis at the binary code level. It includes static analyses of microarchitectural elements
such as caches and cache hierarchies.
Status: Registered with APP (Agence de Protection des Programmes). Available under GNU General Public
License v3, with number IDDN.FR.001.510039.000.S.P.2003.000.10600.

• Participants: Isabelle Puaut, Damien Hardy, Benjamin Lesage, Thomas Piquet and François Joulaud

• Partner: Université de Rennes 1

• Contact: Isabelle Puaut or Damien Hardy

• URL: https://team.inria.fr/alf/software/heptane/

https://team.inria.fr/alf/software/atmi/
http://barra.gforge.inria.fr/
https://team.inria.fr/alf/software/heptane/

Project-Team ALF 13

6.5. If-memo
KEYWORD: Performance, function memoization, dynamic optimization
Status: Ongoing development, early prototype. Registered with APP (Agence de Protection des Programmes)
under number IDDN.FR.001.250013.000.S.P.2015.000.10800.

SCIENTIFIC DESCRIPTION

Memoization is the technique of saving result of executions so that future executions can be omitted when the
inputs repeat. Memoization has been proposed in previous literature at the instruction level, basic block level
and function level using hardware as well as pure software level approaches including changes to programming
language.

We proposed software memoization of pure functions for procedural languages. We rely on the operating
system loader, taking advantage of the LD_PRELOAD feature of UNIX systems. By setting this variable to
the path of a shared library, we instruct the loader to first look to missing symbols in that library. Our library
redefines the functions we wish to intercept. The interception code is very straightforward: it receives the same
parameter as the target function and checks in a table (a software cache) if this value is readily available. In
the favorable case, the result value is immediately returned. Otherwise, we invoke the original function, and
store the result in the cache before returning it.

Our technique does not require the availability of source code and thus can be applied even to commercial
applications as well as applications with legacy codes. As far as users are concerned, enabling memoization
is as simple as setting an environment variable. We validated If-memo with x86-64 platform using both GCC
and icc compiler tool-chains, and ARM cortex-A9 platform using GCC.
• Participants: Erven Rohou and Arjun Suresh
• Contact: Erven Rohou

6.6. Padrone
KEYWORDS: Legacy code - Optimization - Performance analysis - Dynamic Optimization
Status: Registered with APP (Agence de Protection des Programmes) under number IDDN.FR.001.250013.000.S.P.2015.000.10800.

FUNCTIONAL DESCRIPTION

Padrone is new platform for dynamic binary analysis and optimization. It provides an API to help clients design
and develop analysis and optimization tools for binary executables. Padrone attaches to running applications,
only needing the executable binary in memory. No source code or debug information is needed. No application
restart is needed either. This is especially interesting for legacy or commercial applications, but also in
the context of cloud deployment, where actual hardware is unknown, and other applications competing for
hardware resources can vary. The profiling overhead is minimum.
• Participants: Erven Rohou and Emmanuel Riou
• Contact: Erven Rohou
• https://team.inria.fr/alf/software/Padrone/

6.7. STiMuL
Steady temperature in Multi-Layers components
FUNCTIONAL DESCRIPTION

STiMuL is a C library for modeling steady-state heat conduction in microprocessors. It can be used to obtain
temperature from power density or power density from temperature. It can also be used to model stacked dies.
STiMuL does not model time-varying temperature. For time-varying temperature, other models must be used,
such as ATMI.
• Participant: Pierre Michaud
• Contact: Pierre Michaud
• URL: https://team.inria.fr/alf/software/stimul/

https://team.inria.fr/alf/software/Padrone/
https://team.inria.fr/alf/software/stimul/

14 Activity Report INRIA 2015

6.8. TPCalc
Throughput calculator
KEYWORDS: Architecture - Performance analysis
FUNCTIONAL DESCRIPTION

TPCalc is a throughput calculator for microarchitecture studies concerned with multi-program workloads
consisting of sequential programs. Because microarchitecture simulators are slow, it is difficult to simulate
throughput experiments where a multicore executes many jobs that enter and leave the system. The usual
practice of measuring instantaneous throughput on independent coschedules chosen more or less randomly
is not a rigorous practice because it assumes that all the coschedules are equally important, which is not
always true. TPCalc can compute the average throughput of a throughput experiment without actually doing
the throughput experiment. The user first defines the workload heterogeneity (number of different job types),
the multicore configuration (number of cores and symmetries). TPCalc provides a list of base coschedules.
The user then simulates these coschedules, using some benchmarks of his choice, and feeds back to TPCalc
the measured execution rates (e.g., instructions per cycle or instructions per second).TPCalc eventually outputs
the average throughput.
• Participant: Pierre Michaud
• Partner: Ghent University
• Contact: Pierre Michaud
• URL: http://www.irisa.fr/alf/downloads/michaud/tpcalc.html

6.9. tiptop
KEYWORDS: Performance, hardware counters, analysis tool.
SCIENTIFIC DESCRIPTION

Status: Registered with APP (Agence de Protection des Programmes). Available under GNU General Public
License v2, with number IDDN.FR.001.450006.000.S.P.2011.000.10800. Current version is 2.3, released June
2015.

Tiptop is a new simple and flexible user-level tool that collects hardware counter data on Linux platforms
(version 2.6.31+). Tiptop has been integrated in major Linux distributions, such as Fedora, Debian, Ubuntu.
FUNCTIONAL DESCRIPTION The goal is to make the collection of performance and bottleneck data as simple
as possible, including simple installation and usage. In particular, we stress the following points.
• Installation is only a matter of compiling the source code. No patching of the Linux kernel is needed,

and no special-purpose module needs to be loaded.
• No privilege is required, any user can run tiptop — non-privileged users can only watch processes

they own, ability to monitor anybody’s process opens the door to side-channel attacks.
• The usage is similar to top. There is no need for the source code of the applications of interest,

making it possible to monitor proprietary applications or libraries. And since there is no probe to
insert in the application, understanding of the structure and implementation of complex algorithms
and code bases is not required.

• Applications do not need to be restarted, and monitoring can start at any time (obviously, only events
that occur after the start of tiptop are observed).

• Events can be counted per thread, or per process.
• Any expression can be computed, using the basic arithmetic operators, constants, and counter values.
• A configuration file lets users define their prefered setup, as well as custom expressions.
• Participant: Erven Rohou
• Contact: Erven Rohou
• URL: http://tiptop.gforge.inria.fr

http://www.irisa.fr/alf/downloads/michaud/tpcalc.html
http://tiptop.gforge.inria.fr

Project-Team ALF 15

6.10. Parasuite
Participants: Sylvain Collange, Thibault Person, Erven Rohou, André Seznec.

Parasuite: parallel benchmarks for multi-core CPUs, clusters and accelerators

Despite the ubiquity of parallel architectures in all computing segments, the research community often lacks
benchmarks representative of parallel applications. The Inria Parallel Benchmark Suite (Parasuite) seeks to
address this need by providing a set of representative parallel benchmarks for the architecture, compiler and
system research communities. Parasuite targets the main contemporary parallel programming technologies:
shared-memory multi-thread parallelism for multi-core, message-passing parallelism for clusters and fine-
grained data-level parallelism for GPU architectures and SIMD extensions.

All benchmarks come with input datasets of various sizes, to accommodate use cases ranging from microarchi-
tecture simulation to large-scale performance evaluation. Correctness checks on the computed results enable
automated regression testing. In order to support computer arithmetic optimization and approximate comput-
ing research scenarios, the correctness checks favor accuracy metrics evaluating domain-specific relevance
rather than bit-exact comparisons against an arbitrary reference output.

Visit http://parasuite.inria.fr/

7. New Results

7.1. Processor Architecture
Participants: Pierre Michaud, Bharath Narasimha Swamy, Sylvain Collange, Erven Rohou, André Seznec,
Arthur Perais, Surya Khizakanchery Natarajan, Sajith Kalathingal, Tao Sun, Andrea Mondelli, Aswinkumar
Sridharan, Biswabandan Panda, Fernando Endo.

Processor, cache, locality, memory hierarchy, branch prediction, multicore, power, temperature

Multicore processors have now become mainstream for both general-purpose and embedded computing.
Instead of working on improving the architecture of the next generation multicore, with the DAL project, we
deliberately anticipate the next few generations of multicores. While multicores featuring 1000s of cores might
become feasible around 2020, there are strong indications that sequential programming style will continue to
be dominant. Even future mainstream parallel applications will exhibit large sequential sections. Amdahl’s
law indicates that high performance on these sequential sections is needed to enable overall high performance
on the whole application. On many (most) applications, the effective performance of future computer systems
using a 1000-core processor chip will significantly depend on their performance on both sequential code
sections and single threads.

We envision that, around 2020, the processor chips will feature a few complex cores and many (maybe 1000’s)
simpler, more silicon and power effective cores.

In the DAL research project, https://team.inria.fr/alf/members/andre-seznec/defying-amdahls-law-dal/, we ex-
plore the microarchitecture techniques that will be needed to enable high performance on such heterogeneous
processor chips. Very high performance will be required on both sequential sections, -legacy sequential codes,
sequential sections of parallel applications-, and critical threads on parallel applications, -e.g. the main thread
controlling the application. Our research focuses essentially on enhancing single process performance.

7.1.1. Microarchitecture
7.1.1.1. Branch prediction

Participant: André Seznec.

This research was done in collaboration with Joshua San Miguel and Jorge Albericio from University of
Toronto

http://parasuite.inria.fr/
https://team.inria.fr/alf/members/andre-seznec/defying-amdahls-law-dal/

16 Activity Report INRIA 2015

The most efficient branch predictors proposed in academic literature exploit both global branch history and
local branch history. However, local history branch predictor components introduce major design challenges,
particularly for the management of speculative histories. Therefore, most effective hardware designs use only
global history components and very limited forms of local histories such as a loop predictor. The wormhole
(WH) branch predictor was recently introduced to exploit branch outcome correlation in multidimensional
loops. For some branches encapsulated in a multidimensional loop, their outcomes are correlated with those
of the same branch in neighbor iterations, but in the previous outer loop iteration. Unfortunately, the practical
implementation of the WH predictor is even more challenging than the implementation of local history
predictors.

In [36], we introduce practical predictor components to exploit this branch outcome correlation in multidi-
mensional loops: the IMLI-based predictor components. The iteration index of the inner most loop in an
application can be efficiently monitored at instruction fetch time using the Inner Most Loop Iteration (IMLI)
counter. The outcomes of some branches are strongly correlated with the value of this IMLI counter. A single
PC+IMLI counter indexed table, the IMLI-SIC table, added to a neural component of any recent predictor
(TAGE-based or perceptron-inspired) captures this correlation. Moreover, using the IMLI counter, one can
efficiently manage the very long local histories of branches that are targeted by the WH predictor. A second
IMLI-based component, IMLI-OH, allows for tracking the same set of hard-to-predict branches as WH. Man-
aging the speculative states of the IMLI-based predictor components is quite simple. Our experiments show
that augmenting a state-of-the-art global history predictor with IMLI components outperforms previous state-
of-the-art academic predictors leveraging local and global history at much lower hardware complexity (i.e.,
smaller storage budget , smaller number of tables and simpler management of speculative states).

7.1.1.2. Revisiting Value Prediction
Participants: Arthur Perais, André Seznec.

Value prediction was proposed in the mid 90’s to enhance the performance of high-end microprocessors. The
research on Value Prediction techniques almost vanished in the early 2000’s as it was more effective to increase
the number of cores than to dedicate some silicon area to Value Prediction. However high end processor chips
currently feature 8-16 high-end cores and the technology will allow to implement 50-100 of such cores on a
single die in a foreseeable future. Amdahl’s law suggests that the performance of most workloads will not scale
to that level. Therefore, dedicating more silicon area to value prediction in high-end cores might be considered
as worthwhile for future multicores.

At a first step, we showed that all predictors are amenable to very high accuracy at the cost of some loss
on prediction coverage [7]. This greatly diminishes the number of value mispredictions and allows to delay
validation until commit-time. As such, no complexity is added in the out-of-order engine because of VP (save
for ports on the register file) and pipeline squashing at commit-time can be used to recover.

This allows to leverage the possibility of validating predictions at commit to introduce a new microarchitecture,
EOLE [19]. EOLE features Early Execution to execute simple instructions whose operands are ready in
parallel with Rename and Late Execution to execute simple predicted instructions and high confidence
branches just before Commit. EOLE depends on Value Prediction to provide operands for Early Execution and
predicted instructions for Late Execution. However, Value Prediction requires EOLE to become truly practical.
That is, EOLE allows to reduce the out-of-order issue-width by 33% without impeding performance. As such,
the number of ports on the register file diminishes. Furthermore, optimizations of the register file such as
banking further reduce the number of required ports. Overall EOLE possesses a register file whose complexity
is on-par with that of a regular wider-issue superscalar while the out-of-order components (scheduler, bypass)
are greatly simplified. Moreover, thanks to Value Prediction, speedup is obtained on many benchmarks of the
SPEC’00/’06 suite.

However complexity in the value predictor infrastructure itself is also problematic. First, multiple predictions
must be generated each cycle, but multi-ported structures should be avoided. Second, the predictor should
be small enough to be considered for implementation, yet coverage must remain high enough to increase
performance. In [32], to address these remaining concerns, we first propose a block-based value prediction

Project-Team ALF 17

scheme mimicking current instruction fetch mechanisms, BeBoP. It associates the predicted values with a fetch
block rather than distinct instructions. Second, to remedy the storage issue, we present the Differential VTAGE
predictor. This new tightly coupled hybrid predictor covers instructions predictable by both VTAGE and
Stride-based value predictors, and its hardware cost and complexity can be made similar to those of a modern
branch predictor. Third, we show that block-based value prediction allows to implement the checkpointing
mechanism needed to provide D-VTAGE with last computed/predicted values at moderate cost. Overall,
we establish that EOLE with a 32.8KB block-based D-VTAGE predictor and a 4-issue OoO engine can
significantly outperform a baseline 6-issue superscalar processor, by up to 62.2 % and 11.2 % on average
(gmean), on our benchmark set.

The overall study on value prediction is presented in Arthur Perais’s PhD [14].
7.1.1.3. Cost-Effective Speculative Scheduling in High Performance Processors

Participants: André Seznec, Arthur Perais, Pierre Michaud.

This study was done in collaboration with Andreas Sembrant and Erik Hagersten from Upsala University

To maximize performance, out-of-order execution processors sometimes issue instructions without having the
guarantee that operands will be available in time; e.g. loads are typically assumed to hit in the L1 cache and
dependent instructions are issued assuming a L1 hit. This form of speculation ?that we refer to as speculative
scheduling? has been used for two decades in real processors, but has received little attention from the research
community. In particular, as pipeline depth grows and the distance between the Issue and the Execute stages
increases, it becomes critical to issue dependents on variable-latency instructions as soon as possible, rather
than to wait for the actual cycle at which the result becomes available. Unfortunately, due to the uncertain
nature of speculative scheduling, the scheduler may wrongly issue an instruction that will not have its source(s)
on the bypass network when it reaches the Execute stage. Therefore, this instruction must be canceled and
replayed, which can potentially impair performance and increase energy consumption.

In [31] we focus on ways to reduce the number of replays that are agnostic of the replay scheme. First,
we propose an easily implementable, low-cost solution to reduce the number of replays caused by L1 bank
conflicts. Schedule Shifting always assumes that, given a dual-load issue capacity, the second load issued
in a given cycle will be delayed because of a bank conflict. Its dependents are thus always issued with a
corresponding delay. Second, we also improve on existing L1 hit/miss prediction schemes by taking into
account instruction criticality. That is, for some criterion of criticality and for loads whose hit/miss behavior
is hard to predict, we show that it is more cost-effective to stall dependents if the load is not predicted critical.
In total, in our experiments assuming a 4-cycle issue-to-execute delay, we found that the vast majority of
instructions replays due to L1 data cache banks conflicts and L1 hit mispredictions can be avoided, thus
leading to a 3.4% performance gain and a 13.4% decrease in the number of issued instructions, over a baseline
speculative scheduling scheme.

7.1.1.4. Criticality-aware Resource Allocation in OOO Processors
Participants: André Seznec, Arthur Perais, Pierre Michaud.

This study was done in collaboration with Andreas Sembrant, Erik Hagersten, David Black-Schaffer and
Trevor Carlson from Upsala University.

Modern processors employ large structures (IQ, LSQ, register file, etc.) to expose instruction-level parallelism
(ILP) and memory-level parallelism (MLP). These resources are typically allocated to instructions in program
order. This wastes resources by allocating resources to instructions that are not yet ready to be executed
and by eagerly allocating resources to instructions that are not part of the application’s critical path. In [35],
we explore the possibility of allocating pipeline resources only when needed to expose MLP, and thereby
enabling a processor design with significantly smaller structures, without sacrificing performance. First we
identify the classes of instructions that should not reserve resources in program order and evaluate the potential
performance gains we could achieve by delaying their allocations. We then use this information to "park"
such instructions in a simpler, and therefore more efficient, Long Term Parking (LTP) structure. The LTP
stores instructions until they are ready to execute, without allocating pipeline resources, and thereby keeps
the pipeline available for instructions that can generate further MLP. LTP can accurately and rapidly identify

18 Activity Report INRIA 2015

which instructions to park, park them before they execute, wake them when needed to preserve performance,
and do so using a simple queue instead of a complex IQ. We show that even a very simple queue-based LTP
design allows us to significantly reduce IQ (64→ 32) and register file (128→ 96) sizes while retaining MLP
performance and improving energy efficiency.

7.1.1.5. Efficient Execution on Guarded Instruction Sets
Participant: André Seznec.

ARM ISA based processors are no longer low complexity processors. Nowadays, ARM ISA based processor
manufacturers are struggling to implement medium-end to high-end processor cores which implies implement-
ing a state-of-the-art out-of-order execution engine. Unfortunately providing efficient out-of-order execution
on legacy ARM codes may be quite challenging due to guarded instructions.

Predicting the guarded instructions addresses the main serialization impact associated with guarded instruc-
tions execution and the multiple definition problem. Moreover, guard prediction allows to use a global branch-
and-guard history predictor to predict both branches and guards, often improving branch prediction accuracy.
Unfortunately such a global branch-and-guard history predictor requires the systematic use of guard predic-
tions. In that case, poor guard prediction accuracy would lead to poor overall performance on some applica-
tions.

Building on top of recent advances in branch prediction and confidence estimation, we propose a hybrid
branch and guard predictor, combining a global branch history component and global branch-and-guard history
component. The potential gain or loss due to the systematic use of guard prediction is dynamically evaluated
at run-time. Two computing modes are enabled: systematic guard prediction and high confidence only guard
prediction. Our experiments show that on most applications, an overwhelming majority of guarded instructions
are predicted. Therefore a relatively inefficient but simple hardware solution can be used to execute the few
unpredicted guarded instructions. Significant performance benefits are observed on most applications while
applications with poorly predictable guards do not suffer from performance loss [8].

This study was accepted to ACM Transactions on Architecture and Compiler Optimizations (Dec. 2014) and
presented at the HIPEAC conference in January 2015.

7.1.1.6. Clustered microarchitecture
Participants: Andrea Mondelli, Pierre Michaud, André Seznec.

In the last 10 years, the clock frequency of high-end superscalar processors did not increase significantly.
Performance keeps being increased mainly by integrating more cores on the same chip and by introducing
new instruction set extensions. However, this benefits only to some applications and requires rewriting and/or
recompiling these applications. A more general way to increase performance is to increase the IPC, the number
of instructions executed per cycle.

In [18], we argue that some of the benefits of technology scaling should be used to increase the IPC of future
superscalar cores. Starting from microarchitecture parameters similar to recent commercial high-end cores,
we show that an effective way to increase the IPC is to increase the issue width. But this must be done
without impacting the clock cycle. We propose to combine two known techniques: clustering and register
write specialization. The objective of past work on clustered microarchitecture was to allow a higher clock
frequency while minimizing the IPC loss. This led researchers to consider narrow-issue clusters. Our objective,
instead, is to increase the IPC without impacting the clock cycle, which means wide-issue clusters. We show
that, on a wide-issue dual cluster, a very simple steering policy that sends 64 consecutive instructions to the
same cluster, the next 64 instructions to the other cluster, and so on, permits tolerating an inter-cluster delay
of several cycles. We also propose a method for decreasing the energy cost of sending results of one cluster to
the other cluster.

7.1.1.7. Adaptive Intelligent Memory Systems
Participants: André Seznec, Aswinkumar Sridharan.

Project-Team ALF 19

Multi-core processors employ shared Last Level Caches (LLC). This trend will continue in the future with
large multi-core processors (16 cores and beyond) as well. At the same time, the associativity of this LLC
tends to remain in the order of sixteen. Consequently, with large multicore processors, the number of cores
that share the LLC becomes larger than the associativity of the cache itself. LLC management policies have
been extensively studied for small scale multi-cores (4 to 8 cores) and associativity degree in the 16 range.
However, the impact of LLC management on large multi-cores is essentially unknown, in particular when the
associativity degree is smaller than the number of cores.

In [43], we introduce Adaptive Discrete and deprioritized Application PrioriTization (ADAPT), an LLC
management policy addressing the large multi-cores where the LLC associativity degree is smaller than the
number of cores. ADAPT builds on the use of the Footprint-number metric. Footprint-number is defined as the
number of unique accesses (block addresses) that an application generates to a cache set in an interval of time.
We propose a monitoring mechanism that dynamically samples cache sets to estimate the Footprint-number
of applications and classifies them into discrete (distinct and more than two) priority buckets. The cache
replacement policy leverages this classification and assigns priorities to cache lines of applications during
cache replacement operations. Footprint-number is computed periodically to account the dynamic changes
in applications behavior. We further find that de- prioritizing certain applications during cache replacement
is beneficial to the overall performance. We evaluate our proposal on 16, 20 and 24-core multi-programmed
workloads and discuss other aspects in detail.

[43] has been accepted for publication at the IPDPS 2016 conference.

7.1.1.8. Hardware data prefetching
Participant: Pierre Michaud.

Hardware prefetching is an important feature of modern high-performance processors. When an application’s
working set is too large to fit in on-chip caches, disabling hardware prefetchers may result in severe
performance reduction. We propose a new hardware data prefetcher, the Best-Offset (BO) prefetcher. The
BO prefetcher is an offset prefetcher using a new method for selecting the best prefetch offset taking into
account prefetch timeliness. The hardware required for implementing the BO prefetcher is very simple. The
BO prefetcher won the last Data Prefetching Championship [27].

A paper describing and studying the BO prefetcher has been accepted for publication at the HPCA 2016
conference.

7.1.1.9. Prediction-based superpage-friendly TLB designs
Participant: André Seznec.

This research was done in collaboration with Misel-Myrto Papadopoulou, Xin Tong and Andreas Moshovos
from University of Toronto

In [30], we demonstrate that a set of commercial and scale-out applications exhibit significant use of
superpages and thus suffer from the fixed and small superpage TLB structures of some modern core designs.
Other processors better cope with superpages at the expense of using power-hungry and slow fully-associative
TLBs. We consider alternate designs that allow all pages to freely share a single, power-efficient and fast
set-associative TLB. We propose a prediction-guided multi-grain TLB design that uses a superpage prediction
mechanism to avoid multiple lookups in the common case. In addition, we evaluate the previously proposed
skewed TLB which builds on principles similar to those used in skewed associative caches . We enhance the
original skewed TLB design by using page size prediction to increase its effective associativity. Our prediction-
based multi-grain TLB design delivers more hits and is more power efficient than existing alternatives. The
predictor uses a 32-byte prediction table indexed by base register values.

7.1.2. Microarchitecture Performance Modeling
7.1.2.1. Symbiotic scheduling on SMT cores and symmetric multicores

Participant: Pierre Michaud.

This research was done in collaboration with Stijn Eyerman and Wouter Rogiest from Ghent University.

20 Activity Report INRIA 2015

When several independent tasks execute concurrently on a simultaneous multithreaded (SMT) core or on a
multicore, they share hardware resources. Hence the execution rate of a task is influenced by the other tasks
running at the same time. Based on this observation, Snavely and Tullsen proposed symbiotic scheduling,
i.e., the idea that performance can be increased by co-scheduling tasks that do not stress the same shared
resources [63]. They claim that, when the number of concurrent tasks exceeds the number of logical cores,
symbiotic scheduling increases performance substantially. A more recent study by Eyerman and Eeckhout
reached similar conclusions [54].

We have revisited symbiotic scheduling for SMT cores and symmetric multicores [22], and we obtained
very modest throughput gains, which seemingly contradicts the above mentioned studies. We analyzed the
reasons for this discrepancy and found that previous studies did not measure throughput but average response
time. Response time reductions can be magnified by setting the job arrival rate very close to the maximum
throughput, which turns a tiny throughput increase into a large response time reduction. Also, the proposed
scheduling policies are approximately equivalent to scheduling the shortest jobs first, which mechanically
reduces the average response time independently of any symbiosis effect.

We identified three typical situations where symbiotic scheduling yields little to no throughput gain: (1) most
of the time is spent executing a single type of job, or (2) jobs’ execution rates barely depend on which other
jobs are running concurrently, or (3) jobs’ execution rates are proportional to the fraction they get of a certain
shared resource (e.g., instruction decode bandwidth in an SMT core). In our experiments, most workloads
were close to one of the three situations above.

7.1.2.2. Modeling multi-threaded programs execution time in the many-core era
Participants: Surya Khizakanchery Natarajan, Bharath Narasimha Swamy, André Seznec.

Estimating the potential performance of parallel applications on the yet-to-be-designed future many cores is
very speculative. The simple models proposed by Amdahl’s law (fixed input problem size) or Gustafson’s law
(fixed number of cores) do not completely capture the scaling behaviour of a multi-threaded (MT) application
leading to over estimation of performance in the many-core era. On the other hand, modeling many-core by
simulation is too slow to study the applications performance. In [28], [13], we propose a more refined but still
tractable, high level empirical performance model for multi-threaded applications, the Serial/Parallel Scaling
(SPS) Model to study the scalability and performance of application in many-core era. SPS model learns
the application behavior on a given architecture and provides realistic estimates of the performance in future
many-cores. Considering both input problem size and the number of cores in modeling, SPS model can help
in making high level decisions on the design choice of future many-core applications and architecture. We
validate the model on the Many-Integrated Cores (MIC) xeon-phi with 240 logical cores.

7.1.2.3. Optimal cache replacement
Participant: Pierre Michaud.

This research was done in collaboration with Mun-Kyu Lee, Jeong Seop Sim and DaeHun Nyang from Inha
University.

The replacement policy for a cache is the algorithm, implemented in hardware, selecting a block to evict
for making room for an incoming block. This research topic has been revitalized in recent years. The MIN
replacement policy, which evicts the block referenced furthest in the future, was introduced by Belady [51]
and was later shown to be optimal by Mattson et al. [60]. The MIN policy is an offline policy that cannot be
implemented in real processors, as it needs the knowledge of future memory accesses. Still, a possible way
to improve online replacement policies would be to emulate the MIN policy, trying to use past references
to predict future ones. However, the MIN policy is not intuitive, and Mattson et al.’s proof of optimality is
quite involved. We believe that new intuition about the MIN policy will help microarchitects improve cache
replacement policies. As a first step toward this goal, we produced a new, intuitive proof of optimality of the
MIN policy [17].

7.1.3. Hardware/Software Approaches
7.1.3.1. Helper threads

Participants: Bharath Narasimha Swamy, André Seznec.

Project-Team ALF 21

Heterogeneous Many Cores (HMC) architectures that mix many simple/small cores with a few complex/large
cores are emerging as a design alternative that can provide both fast sequential performance for single threaded
workloads and power-efficient execution for throughput oriented parallel workloads. The availability of many
small cores in a HMC presents an opportunity to utilize them as low-power helper cores to accelerate memory-
intensive sequential programs mapped to a large core. However, the latency overhead of accessing small cores
in a loosely coupled system limits their utility as helper cores. Also, it is not clear if small cores can execute
helper threads sufficiently in advance to benefit applications running on a larger, much powerful, core.

In [12] we present a hardware/software framework called core-tethering to support efficient helper threading
on heterogeneous many-cores. Core-tethering provides a co-processor like interface to the small cores that (a)
enables a large core to directly initiate and control helper execution on the helper core and (b) allows efficient
transfer of execution context between the cores, thereby reducing the performance overhead of accessing small
cores for helper execution. Our evaluation on a set of memory intensive programs chosen from the standard
benchmark suites show that, helper threads using moderately sized small cores can significantly accelerate a
larger core compared to using a hardware prefetcher alone. We also find that a small core provides a good
trade-off against using an equivalent large core to run helper threads in a HMC.

In summary, despite the latency overheads of accessing prefetched cache lines from the shared L3 cache, helper
thread based prefetching on small cores looks as a promising way to improve single thread performance on
memory intensive workloads in HMC architectures.

This research was partially done in collaboration with Alain Ketterlin from the Inria Camus project-team in
Strasbourg.

7.1.3.2. Branch Prediction and Performance of Interpreter
Participants: Erven Rohou, André Seznec, Bharath Narasimha Swamy.

Interpreters have been used in many contexts. They provide portability and ease of development at the expense
of performance. The literature of the past decade covers analysis of why interpreters are slow, and many
software techniques to improve them. A large proportion of these works focuses on the dispatch loop, and in
particular on the implementation of the switch statement: typically an indirect branch instruction. Folklore
attributes a significant penalty to this branch, due to its high misprediction rate. In [34], we revisit this
assumption, considering state-of-the-art branch predictors and the three most recent Intel processor generations
on current interpreters. Using both hardware counters on Haswell, the latest Intel processor generation, and
simulation of the ITTAGE predictor [10], we show that the accuracy of indirect branch prediction is no longer
critical for interpreters. We further compare the characteristics of these interpreters and analyze why the
indirect branch is less important than before.

7.1.3.3. Augmenting superscalar architecture for efficient many-thread parallel execution
Participants: Sylvain Collange, André Seznec, Sajith Kalathingal.

Threads of Single-Program Multiple-Data (SPMD) applications often exhibit very similar control flows,
i.e. they execute the same instructions on different data. In [42] we propose the Dynamic Inter-Thread
Vectorization Architecture (DITVA) to leverage this implicit Data Level Parallelism on SPMD applications
to create dynamic vector instructions at runtime. DITVA extends an in-order SMT processor with SIMD
units with an inter-thread vectorization execution mode. In this mode, identical instructions of several threads
running in lockstep are aggregated into a single SIMD instruction. DITVA leverages existing SIMD units and
maintains binary compatibility with existing CPU architectures. To balance TLP and DLP, threads are statically
grouped into fixed-size warps, inside which threads run in lockstep. At instruction fetch time, if the instruction
streams of several threads within a warp are synchronized, then DITVA aggregates the instructions of the
threads as dynamic vectors. To maximize vectorization opportunities, we use resource sharing arbitration
policies that favor thread synchronization within warps. The policies do not require any compiler hints or
modified algorithms for the existing SPMD applications and allow to run unmodified CPU binaries. A dynamic
vector instruction is executed as a single unit. This allows to execute m identical instructions from m different
threads on m parallel execution lanes while activating the I-fetch, the decode, and the overall pipeline control
only once.

22 Activity Report INRIA 2015

Our evaluation on the SPMD applications from the PARSEC and SPLASH benchmarks shows that a 4-warp
4-lane 4-issue DITVA architecture with a realistic bank-interleaved cache achieves 44% higher performance
than a 4-thread 4-issue SMT architecture with AVX instructions while fetching and issuing 40 % fewer
instrructions, achieving an overall 22% energy reduction.

7.2. Compiler, vectorization, interpretation
Participants: Erven Rohou, Emmanuel Riou, Bharath Narasimha Swamy, Arjun Suresh, André Seznec, Nabil
Hallou, Sylvain Collange.

7.2.1. Improving sequential performance through memoization
Participants: Erven Rohou, Emmanuel Riou, Bharath Narasimha Swamy, André Seznec, Arjun Suresh.

Many applications perform repetitive computations, even when properly programmed and optimized. Perfor-
mance can be improved by caching results of pure functions, and retrieving them instead of recomputing a
result (a technique called memoization).

We propose [20] a simple technique for enabling software memoization of any dynamically linked pure
function and we illustrate our framework using a set of computationally expensive pure functions – the
transcendental functions.

Our technique does not need the availability of source code and thus can be applied even to commercial
applications as well as applications with legacy codes. As far as users are concerned, enabling memoization is
as simple as setting an environment variable.

Our framework does not make any specific assumptions about the underlying architecture or compiler tool-
chains, and can work with a variety of current architectures.

We present experimental results for x86-64 platform using both gcc and icc compiler tool-chains, and for ARM
cortex-A9 platform using gcc. Our experiments include a mix of real world programs and standard benchmark
suites: SPEC and Splash2x. On standard benchmark applications that extensively call the transcendental
functions we report memoization benefits of upto 16 %, while much higher gains were realized for programs
that call the expensive Bessel functions. Memoization was also able to regain a performance loss of 76 % in
bwaves due to a known performance bug in the gcc libm implementation of pow function.

This work has been published in ACM TACO 2015 [20] and accepted for presentation at the International
Conference HiPEAC 2016.

7.2.2. Code Obfuscation
Participant: Erven Rohou.

This research is done in collaboration with the group of Prof. Ahmed El-Mahdy at E-JUST, Alexandria, Egypt.

We propose [24] to leverage JIT compilation to make software tamper-proof. The idea is to constantly generate
different versions of an application, even while it runs, to make reverse engineering hopeless. More precisely
a JIT engine is used to generate new versions of a function each time it is invoked, applying different
optimizations, heuristics and parameters to generate diverse binary code. A strong random number generator
will guarantee that generated code is not reproducible, though the functionality is the same.

This work was presented in January 2015 at the International Workshop on Dynamic Compilation Everywhere
(DCE-2015) [24].

7.2.3. Dynamic Binary Re-vectorization
Participants: Erven Rohou, Nabil Hallou, Emmanuel Riou.

This work is done in collaboration with Philippe Clauss and Alain Ketterlin (Inria CAMUS).

Project-Team ALF 23

Applications are often under-optimized for the hardware on which they run. Several reasons contribute to
this unsatisfying situation, including the use of legacy code, commercial code distributed in binary form,
or deployment on compute farms. In fact, backward compatibility of instruction sets guarantees only the
functionality, not the best exploitation of the hardware. In particular SIMD instruction sets are always evolving.

We proposed [23] a runtime re-vectorization platform that dynamically adapts applications to execution
hardware. The platform is built on top of Padrone. Programs distributed in binary forms are re-vectorized
at runtime for the underlying execution hardware. Focusing on the x86 SIMD extensions, we are able to
automatically convert loops vectorized for SSE into the more recent and powerful AVX. A lightweight
mechanism leverages the sophisticated technology put in a static vectorizer and adjusts, at minimal cost,
the width of vectorized loops. We achieve speedups in line with a native compiler targeting AVX. Our re-
vectorizer is implemented inside a dynamic optimization platform; its usage is completely transparent to the
user and requires neither access to source code nor rewriting binaries.

7.2.4. Dynamic Parallelization of Binary Executables
Participants: Erven Rohou, Nabil Hallou, Emmanuel Riou.

We address runtime automatic parallelization of binary executables, assuming no previous knowledge on the
executable code. The Padrone platform is used to identify candidate functions and loops. Then we disassemble
the loops and convert them to the intermediate representation of the LLVM compiler (thanks to the external
tool McSema). This allows us to leverage the power of the polyhedral model for auto-parallelizing loops. Once
optimized, new native code is generated just-in-time in the address space of the target process.

Our approach enables user transparent auto-parallelization of legacy and/or commercial applications with
auto-parallelization.

This work is done in collaboration with Philippe Clauss (Inria CAMUS).

7.2.5. Hardware Accelerated JIT Compilation for Embedded VLIW Processors
Participant: Erven Rohou.

Just-in-time (JIT) compilation is widely used in current embedded systems (mainly because of Java Virtual
Machine). When targeting Very Long Instruction Word (VLIW) processors, JIT compilation back-ends grow
more complex because of the instruction scheduling phase. This tends to reduce the benefits of JIT compilation
for such systems. We propose a hybrid JIT compiler where JIT management is handled in software and
the back-end is performed by specialized hardware. Experimental studies show that this approach leads to
a compilation up to 15 times faster and 18 times more energy efficient than a pure software compilation.

This work is done in collaboration with the CAIRN team (Steven Derrien and Simon Rokicki).

7.2.6. Performance Assessment of Sequential Code
Participant: Erven Rohou.

The advent of multicore and manycore processors, including GPUs, in the customer market encouraged
developers to focus on extraction of parallelism. While it is certainly true that parallelism can deliver
performance boosts, parallelization is also a very complex and error-prone task, and many applications are
still dominated by sequential sections. Micro-architectures have become extremely complex, and they usually
do a very good job at executing fast a given sequence of instructions. When they occasionally fail, however,
the penalty is severe. Pathological behaviors often have their roots in very low-level details of the micro-
architecture, hardly available to the programmer. In [33], we argue that the impact of these low-level features
on performance has been overlooked, often relegated to experts. We show that a few metrics can be easily
defined to help assess the overall performance of an application, and quickly diagnose a problem. Finally, we
illustrate our claim with a simple prototype, along with use cases.

7.2.7. Compilers for emerging throughput architectures
Participant: Sylvain Collange.

24 Activity Report INRIA 2015

This work is done in collaboration with Douglas de Couto and Fernando Pereira from UFMG.

The increasing popularity of Graphics Processing Units (GPUs) has brought renewed attention to old problems
related to the Single Instruction, Multiple Data execution model. One of these problems is the reconvergence
of divergent threads. A divergence happens at a conditional branch when different threads disagree on the
path to follow upon reaching this split point. Divergences may impose a heavy burden on the performance of
parallel programs.

We have proposed a compiler-level optimization to mitigate the performance loss due to branch divergence on
GPUs. This optimization consists in merging function call sites located at different paths that sprout from the
same branch. We show that our optimization adds negligible overhead on the compiler. When not applicable,
it does not slow down programs and it accelerates substantially those in which it is applicable. As an example,
we have been able to speed up the well known SPLASH Fast Fourier Transform benchmark by 11 %.

7.2.8. Deterministic floating-point primitives for high-performance computing
Participant: Sylvain Collange.

This work is done in collaboration with David Defour (UPVD), Stef Graillat and Roman Iakymchuk (LIP6).

Parallel algorithms such as reduction are ubiquitous in parallel programming, and especially high-performance
computing. Although these algorithms rely on associativity, they are used on floating-point data, on which
operations are not associative. As a result, computations become non-deterministic, and the result may change
according to static and dynamic parameters such as machine configuration or task scheduling.

We introduced a solution to compute deterministic sums of floating-point numbers efficiently and with the best
possible accuracy. A multi-level algorithm incorporating a filtering stage that uses fast vectorized floating-point
expansions and an accumulation stage based on superaccumulators in a high-radix carry-save representation
guarantees accuracy to the last bit even on degenerate cases while maintaining high performance in the
common cases [16]. Leveraging these algorithms, we build a reproducible BLAS library [49] and extend
the approach to triangular solvers [25].

7.3. WCET estimation and optimization
Participants: Hanbing Li, Isabelle Puaut, Erven Rohou, Damien Hardy, Viet Anh Nguyen, Benjamin Rouxel.

7.3.1. WCET estimation for architectures with faulty caches
Participants: Damien Hardy, Isabelle Puaut.

This is joint work with Yannakis Sazeides from University of Cyprus

Fine-grained disabling and reconfiguration of hardware elements (functional units, cache blocks) will become
economically necessary to recover from permanent failures, whose rate is expected to increase dramatically
in the near future. This fine-grained disabling will lead to degraded performance as compared to a fault-free
execution.

Until recently, all static worst-case execution time (WCET) estimation methods were assuming fault-free pro-
cessors, resulting in unsafe estimates in the presence of faults. The first static WCET estimation technique
dealing with the presence of permanent faults in instruction caches was proposed in [4]. This study probabilis-
tically quantified the impact of permanent faults on WCET estimates. It demonstrated that the probabilistic
WCET (pWCET) estimates of tasks increase rapidly with the probability of faults as compared to fault-free
WCET estimates.

New results show that very simple reliability mechanisms allow mitigating the impact of faulty cache blocks
on pWCETs. Two mechanisms, that make part of the cache resilient to faults are analyzed. Experiments show
that the gain in pWCET for these two mechanisms are on average 48% and 40% as compared to an architecture
with no reliability mechanism.

This work will appear at DATE 2016.

Project-Team ALF 25

7.3.2. Speeding up Static Probabilistic Timing Analysis
Participants: Damien Hardy, Isabelle Puaut.

This is joint work with Suzana Milutinovic, Jaume Abella, Eduardo Quinones and Francisco J. Cazorla from
Barcelona Supercomputing Center.

Probabilistic Timing Analysis (PTA) has emerged recently to derive trustworthy and tight WCET estimates.
For its static variant, called SPTA, we identify one of the main elements that jeopardizes its scalability to real-
size programs: its high computation time cost. This SPTA’s high computational costs are due to convolution,
a mathematical operator used by SPTA and also deployed in many domains including signal and image
processing.

In [40], we show how convolution is applied in SPTA, and qualitatively and quantitatively evaluate opti-
mizations developed in other domains to reduce convolution time cost when applied to SPTA, and SPTA-
specific optimizations. We show that SPTA-specific optimizations provide larger execution time reductions
than generic cores.

7.3.3. Traceability of flow information for WCET estimation
Participants: Hanbing Li, Isabelle Puaut, Erven Rohou.

This research is part of the ANR W-SEPT project.

Control-flow information is mandatory for WCET estimation, to guarantee that programs terminate (e.g.
provision of bounds for the number of loop iterations) but also to obtain tight estimates (e.g. identification
of infeasible or mutually exclusive paths). Such flow information is expressed through annotations, that may
be calculated automatically by program/model analysis, or provided manually.

The objective of this work is to address the challenging issue of the mapping and transformation of the flow
information from high level down to machine code. In our recent work, we have proposed a framework to
systematically transform flow information from source code to machine code. The framework [11] defines
a set of formulas to transform flow information for standard compiler optimizations. Transforming the flow
information is done within the compiler, in parallel with transforming the code. There thus is no guessing what
flow information have become, it is transformed along with the code.

Our most recent results in this framework were to add support for vectorization [26]. We implemented our
approach in the LLVM compiler. In addition, we show through measurements on single-path programs that
vectorization improves not only average-case performance but also WCETs. The WCET improvement ratio
ranges from 1.18x to 1.41x depending on the target architecture on a benchmark suite designed for vectorizing
compilers (TSVC).

This work is part of a more general traceability framework, designed and implemented within the ANR W-
SEPT project and described in paper [21]. In this paper, we introduce a complete semantic-aware WCET
estimation workflow. We introduce some program analysis to find infeasible paths: they can be performed
at design, C or binary level, and may take into account information provided by the user. We design an
annotation-aware compilation process that enables to trace the infeasible path properties through the program
transformations performed by the compilers. Finally, we adapt the WCET estimation tool to take into account
the kind of annotations produced by the workflow.

7.3.4. WCET estimation for many core processors
Participants: Viet Anh Nguyen, Damien Hardy, Isabelle Puaut.

This research is part of the PIA Capacités project.

The overall goal of this research is to defined WCET estimation methods for parallel applications running on
many-core architectures, such as the Kalray MPPA machine.

26 Activity Report INRIA 2015

Some approaches to reach this goal have been proposed, but they assume the mapping of parallel applications
on cores already done. Unfortunately, on architectures with caches, task mapping requires a priori known
WCETs for tasks, which in turn requires knowing task mapping (i.e., co-located tasks, co-running tasks) to
have tight WCET bounds. Therefore, scheduling parallel applications and estimating their WCET introduce a
chicken and egg situation.

In [41], we address this issue by developing an optimal integer linear programming formulation for solving the
scheduling problem, whose objective is to minimize the WCET of a parallel application. Our proposed static
partitioned non-preemptive mapping strategy addresses the effect of local caches to tighten the estimated
WCET of the parallel application. We report preliminary results obtained on synthetic parallel applications.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. Intel research grant ALF-INTEL2014-8957

Participants: André Seznec, Fernando Endo.

Intel is supporting the research of the ALF project-team on "Mixing branch and value prediction to enable
high sequential performance".

8.2. Bilateral Grants with Industry
8.2.1. Nano 2017 PSAIC

Participants: Arif Ali Ana-Pparakkal, Erven Rohou, Emmanuel Riou.

Nano 2017 PSAIC is a collaborative R&D program involving Inria and STMicroelectronics. The PSAIC (Per-
formance and Size Auto-tuning through Iterative Compilation) project concerns the automation of program
optimization through the combination of several tools and techniques such as: compiler optimization, profil-
ing, trace analysis, iterative optimization and binary analysis/rewriting. For any given application, the objective
is to devise through a fully automated process a compiler profile optimized for performance and code size. For
this purpose, we are developing instrumentation techniques that can be focused and specialized to a specific
part of the application aimed to be monitored.

The project involves the Inria teams ALF, AriC, CAMUS and CORSE. ALF contributes program analyses at
the binary level, as well as binary transformations. We will also study the synergy between static (compiler-
level) and dynamic (run-time) analyses.

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. Capacités: Projet "Investissement d’Avenir", 1/11/14 to 31/01/2018

Participants: Damien Hardy, Isabelle Puaut.

The project objective is to develop a hardware and software platform based on manycore architectures, and
to demonstrate the relevance of these manycore architectures (and more specifically the Kalray manycore)
for several industrial applications. The Kalray MPPA manycore architecture is currently the only one able to
meet the needs of embedded systems simultaneously requiring high performance, lower power consumption,
and the ability to meet the requirements of critical systems (low latency I/O, deterministic processing times,
and dependability). The project partners are Kalray (lead), Airbus, Open-Wide, Safran Sagem, IS2T, Real
Time ar Work, Dassault Aviation, Eurocopter, MBDA, ProbaYes, IRIT, Onera, Verimag, Inria, Irisa, Tima and
Armines.

Project-Team ALF 27

9.1.2. Inria Project Lab: Multicore 2013-2016
Participants: Erven Rohou, Nabil Hallou.

The Inria Project Lab (formerly Action d’Envergure) started in 2013. It is entitled “Large scale multicore
virtualization for performance scaling and portability”. Partner project-teams include: ALF, ALGORILLE,
CAMUS, REGAL, RUNTIME, as well as DALI. This project aims to build collaborative virtualization
mechanisms that achieve essential tasks related to parallel execution and data management. We want to
unify the analysis and transformation processes of programs and accompanying data into one unique virtual
machine.

9.1.3. ADT IPBS 2013-2015
Participants: Sylvain Collange, Erven Rohou, André Seznec, Thibault Person.

As multi-core CPUs and parallel accelerators become pervasive, all execution platforms are now parallel.
Research on architecture, compilers and systems now focuses on parallel platforms. New contributions need to
be validated against parallel applications that are expected to be representative of current or future workloads.
The research community relies today on a few benchmarks sets (SPLASH, PARSEC ...) Existing parallel
benchmarks are scarce, and some of them have issues such as aging workloads or non-representative input
sets. The IPBS initiative aims at leveraging the diversity of parallel applications developed within Inria to
provide a set of benchmarks, named the Inria Parallel Benchmark Suite http://parasuite.inria.fr/, to the research
community.

9.1.4. ANR Continuum 2015–2019
Participant: Erven Rohou.

The CONTINUUM project aims to address the energy-efficiency challenge in future computing systems by
investigating a design continuum for compute nodes, which seamlessly goes from software to technology
levels via hardware architecture. Power saving opportunities exist at each of these levels, but the real mea-
surable gains will come from the synergistic focus on all these levels as considered in this project. Then, a
cross-disciplinary collaboration is promoted between computer science and microelectronics, to achieve two
main breakthroughs: i) combination of state-of-the-art heterogeneous adaptive embedded multicore architec-
tures with emerging communication and memory technologies and, ii) power-aware dynamic compilation
techniques that suitably match such a platform.

Continuum started on Oct 1st 2015. Partners are LIRMM and Cortus SAS.

9.1.5. ANR CHIST-ERA SECODE 2016-2018
Participants: Damien Hardy, Erven Rohou.

SECODE (Secure Codes to thwart Cyber-physical Attacks) was accepted, and will start on January 1st 2016.

In this project, we specify and design error correction codes suitable for an efficient protection of sensitive
information in the context of Internet of Things (IoT) and connected objects. Such codes mitigate passive
attacks, like memory disclosure, and active attacks, like stack smashing. The innovation of this project is
to leverage these codes for protecting against both cyber and physical attacks. The main advantage is a full
coverage of attacks of the connected embedded systems, which is considered as a smart connected device and
also a physical device. The outcome of the project is first a method to generate and execute cyber-resilient
software, and second to protect data and its manipulation from physical threats like side-channel attacks.
Theses results are demonstrated by using a smart sensor application with hardened embedded firmware and
tamper-proof hardware platform.

Partners are Télécom Paris Tech, Université Paris 8, University of Sabancı(Turkey), and Université Catholique
de Louvain (Belgium).

9.1.6. ANR W-SEPT 2012-2015
Participants: Hanbing Li, Isabelle Puaut, Erven Rohou.

http://parasuite.inria.fr/

28 Activity Report INRIA 2015

Critical embedded systems are generally composed of repetitive tasks that must meet drastic timing con-
straints, such as termination deadlines. Providing an upper bound of the worst-case execution time (WCET)
of such tasks at design time is thus necessary to prove the correctness of the system. Static WCET estimation
methods, although safe, may produce largely over-estimated values. The objective of the project is to produce
tighter WCET estimates by discovering and transforming flow information at all levels of the software de-
sign process, from high level-design models (e.g. Scade, Simulink) down to binary code. The ANR W-SEPT
project partners are Verimag Grenoble, IRIT Toulouse, Inria Rennes. A case study is provided by Continental
Toulouse.

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. ANTAREX

Participant: Erven Rohou.

Title: Auto-Tuning and Adaptivity appRoach for Energy efficient exascale HPC Systems
Programm: H2020
Duration: September 2015 - September 2018
Coordinator: Politecnico di Milano, Italy (POLIMI)
Partners:

Consorzio Interuniversitario Cineca (Italy)
Dompe Farmaceutici Spa (Italy)
Eidgenoessische Technische Hochschule Zuerich (Switzerland)
Vysoka Skola Banska - Technicka Univerzita Ostrava (Czech Republic)
Politecnico di Milano (Italy)
Sygic As (Slovakia)
Universidade Do Porto (Portugal)

Inria contact: Erven Rohou
Energy-efficient heterogeneous supercomputing architectures need to be coupled with a radically
new software stack capable of exploiting the benefits offered by the heterogeneity at all the
different levels (supercomputer, job, node) to meet the scalability and energy efficiency required
by Exascale supercomputers. ANTAREX will solve these challenging problems by proposing a
disruptive holistic approach spanning all the decision layers composing the supercomputer software
stack and exploiting effectively the full system capabilities (including heterogeneity and energy
management). The main goal of the ANTAREX project is to provide a breakthrough approach to
express application self-adaptivity at design-time and to runtime manage and autotune applications
for green and heterogenous High Performance Computing (HPC) systems up to the Exascale level.

9.2.1.2. Eurolab-4-HPC
Participant: André Seznec.

Title: EuroLab-4-HPC: Foundations of a European Research Center of Excellence in High Perfor-
mance Computing Systems
Programm: H2020
Duration: September 2015 - September 2017
Coordinator: CHALMERS TEKNISKA HOEGSKOLA AB
Partners:

Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (Spain)
Chalmers Tekniska Hoegskola (Sweden)

Project-Team ALF 29

Ecole Polytechnique Federale de Lausanne (Switzerland)
Foundation for Research and Technology Hellas (Greece)
Universitaet Stuttgart (Germany)
Rheinisch-Westfaelische Technische Hochschule Aachen (Germany)
Technion - Israel Institute of Technology (Israel)
Universitaet Augsburg (Germany)
The University of Edinburgh (United Kingdom)
Universiteit Gent (Belgium)
The University of Manchester (United Kingdom)

Inria contact: Albert Cohen (Inria Paris)
Europe has built momentum in becoming a leader in large parts of the HPC ecosystem. It has brought
together technical and business stakeholders from application developers via system software to
exascale systems. Despite such gains, excellence in high performance computing systems is often
fragmented and opportunities for synergy missed. To compete internationally, Europe must bring
together the best research groups to tackle the longterm challenges for HPC. These typically cut
across layers, e.g., performance, energy efficiency and dependability, so excellence in research must
target all the layers in the system stack. The EuroLab-4-HPC project’s bold overall goal is to build
connected and sustainable leadership in high-performance computing systems by bringing together
the different and leading performance oriented communities in Europe, working across all layers of
the system stack and, at the same time, fueling new industries in HPC.

9.2.1.3. DAL
Participants: Pierre Michaud, Bharath Narasimha Swamy, Sylvain Collange, Erven Rohou, André Seznec,
Arthur Perais, Surya Khizakanchery Natarajan, Sajith Kalathingal, Tao Sun, Andrea Mondelli, Aswinkumar
Sridharan.

Title: DAL: Defying Amdahl’s Law
Program: FP7
Type: ERC
Duration: April 2011 - March 2016
Coordinator: Inria
Inria contact: André Seznec
Multicore processors have now become mainstream for both general-purpose and embedded com-
puting. Instead of working on improving the architecture of the next generation multicore, with
the DAL project, we deliberately anticipate the next few generations of multicores. While multi-
cores featuring 1000’s of cores might become feasible around 2020, there are strong indications that
sequential programming style will continue to be dominant. Even future mainstream parallel appli-
cations will exhibit large sequential sections. Amdahl’s law indicates that high performance on these
sequential sections is needed to enable overall high performance on the whole application. On many
(most) applications, the effective performance of future computer systems using a 1000-core proces-
sor chip will significantly depend on their performance on both sequential code sections and single
thread. We envision that, around 2020, the processor chips will feature a few complex cores and
many (may be 1000’s) simpler, more silicon and power effective cores. In the DAL research project,
we will explore the microarchitecture techniques that will be needed to enable high performance
on such heterogeneous processor chips. Very high performance will be required on both sequential
sections -legacy sequential codes, sequential sections of parallel applications- and critical threads
on parallel applications -e.g. the main thread controlling the application. Our research will focus on
enhancing single process performance. On the microarchitecture side, we will explore both a radi-
cally new approach, the sequential accelerator, and more conventional processor architectures. We
will also study how to exploit heterogeneous multicore architectures to enhance sequential thread
performance.

30 Activity Report INRIA 2015

9.2.1.4. ARGO
Participants: Isabelle Puaut, Damien Hardy.

Title: Argo: WCET-Aware Parallelization of Model-Based Applications for Heterogeneous Parallel
Systems

Program: H2020

Type: RIA

Duration: Jan 2016 - Dec 2018

Coordinator: Karlsruher Institut fuer Technologie (KIT)

Université Rennes I contact: Steven Derrien

Partners:

Karlsruher Institut fuer Technologie (KIT)

SCILAB enterprises SAS

Recore Systems BV

Université de Rennes 1

Technologiko Ekpaideftiko Idryma (TEI) Dytikis Elladas

Absint GmbH

Deutsches Zentrum fuer Luft - und Raumfahrt EV

Fraunhofer

Increasing performance and reducing costs, while maintaining safety levels and programmability are
the key demands for embedded and cyber-physical systems in European domains, e.g. aerospace, au-
tomation, and automotive. For many applications, the necessary performance with low energy con-
sumption can only be provided by customized computing platforms based on heterogeneous many-
core architectures. However, their parallel programming with time-critical embedded applications
suffers from a complex toolchain and programming process. Argo (WCET-Aware PaRallelization
of Model-Based Applications for HeteroGeneOus Parallel Systems) will address this challenge with
a holistic approach for programming heterogeneous multi- and many-core architectures using au-
tomatic parallelization of model-based real-time applications. Argo will enhance WCET-aware au-
tomatic parallelization by a crosslayer programming approach combining automatic tool-based and
user-guided parallelization to reduce the need for expertise in programming parallel heterogeneous
architectures. The Argo approach will be assessed and demonstrated by prototyping comprehensive
time-critical applications from both aerospace and industrial automation domains on customized
heterogeneous many-core platforms.

9.2.2. Collaborations in European Programs, except FP7 & H2020
9.2.2.1. COST Action TACLe - Timing Analysis on Code-Level (http://www.tacle.eu) 10-2012/09-2016

Participants: Damien Hardy, Isabelle Puaut.

Embedded systems increasingly permeate our daily lives. Many of those systems are business- or safety-
critical, with strict timing requirements. Code-level timing analysis (used to analyze software running on
some given hardware w.r.t. its timing properties) is an indispensable technique for ascertaining whether or not
these requirements are met. However, recent developments in hardware, especially multi-core processors, and
in software organization render analysis increasingly more difficult, thus challenging the evolution of timing
analysis techniques.

Project-Team ALF 31

New principles for building "timing-composable" embedded systems are needed in order to make timing
analysis tractable in the future. This requires improved contacts within the timing analysis community, as well
as with related communities dealing with other forms of analysis such as model-checking and type-inference,
and with computer architectures and compilers. The goal of this COST Action is to gather these forces in order
to develop industrial-strength code-level timing analysis techniques for future-generation embedded systems,
through several working groups:
• WG1 Timing models for multi-cores and timing composability
• WG2 Tooling aspects
• WG3 Early-stage timing analysis
• WG4 Resources other than time

Isabelle Puaut is in the management committee of the COST Action TACLe - Timing Analysis on Code-Level
(http://www.tacle.eu). She is responsible of Short Term Scientific Missions (STSM) within TACLe.

9.2.3. Collaborations with Major European Organizations
9.2.3.1. HiPEAC3 NoE

Participants: Pierre Michaud, Erven Rohou, André Seznec.

P. Michaud, A. Seznec and E. Rohou are members of the European Network of Excellence HiPEAC3.
HiPEAC3 addresses the design and implementation of high-performance commodity computing devices in
the 10+ year horizon, covering both the processor design, the optimizing compiler infrastructure, and the
evaluation of upcoming applications made possible by the increased computing power of future devices.

9.3. International Initiatives
9.3.1. Inria Associate Teams not involved in an Inria International Labs
9.3.1.1. PROSPIEL

Title: Profiling and specialization for locality
International Partner (Institution - Laboratory - Researcher):

Universidade Federal de Minas Gerais (Brazil) - Dpt of Computer Science - Fernando
Magno Quintao Pereira

Start year: 2015
See also: https://team.inria.fr/alf/prospiel/
The PROSPIEL project aims at optimizing parallel applications for high performance on new
throughput-oriented architectures: GPUs and many-core processors. Traditionally, code optimization
is driven by a program analysis performed either statically at compile-time, or dynamically at
run-time. Static program analysis is fully reliable but often over-conservative. Dynamic analysis
provides more accurate data, but faces strong execution time constraints and does not provide any
guarantee. By combining profiling-guided specialization of parallel programs with runtime checks
for correctness, PROSPIEL seeks to capture the advantages of both static analysis and dynamic
analysis. The project relies on the polytope model, a mathematical representation for parallel loops,
as a theoretical foundation. It focuses on analyzing and optimizing performance aspects that become
increasingly critical on modern parallel computer architectures: locality and regularity.

9.3.2. Inria International Partners
9.3.2.1. Informal International Partners

The ALF project-team has informal collaborations (visits, common publications) with University of Wisconsin
at Madison (Pr Wood), University of Toronto (Pr Moshovos), University of Ghent (Dr Eyerman), University
of Upsalla (Pr Hagersten), University of Cyprus (Pr Sazeides), the Egyptian-Japanese University of Science
and Technology (Pr Ahmed El-Mahdy).

http://www.tacle.eu
https://team.inria.fr/alf/prospiel/

32 Activity Report INRIA 2015

9.3.3. Participation In other International Programs
9.3.3.1. UFMG Chair (Brazil)

Program: Cátedras Francesas UFMG

Title: A language runtime with fault-resiliency for approximate computing

Inria principal investigator: Sylvain Collange

International Partner (Institution - Laboratory - Researcher):

Universidade Federal de Minas Gerais (UFMG) - Computer Science Department - Fer-
nando Pereira

Duration: Sep 2015 - Oct 2015

In this project we propose to implement fault tolerance at the runtime level within a virtual machine
for a managed language. Our approach consists in developing a just-in-time compiler analysis that
identifies and extracts side-effect free computations, such as pure functions, within the code. For each
of these computations, an approximate implementation will be generated in addition to the regular
native code. When the computation is invoked during execution, the runtime will first execute the
approximate implementation. In case the quality or accuracy of the result is not sufficient at the time
it is needed, the runtime will transparently re-execute the computation in exact mode.

9.4. International Research Visitors
9.4.1. Visits to International Teams
9.4.1.1. Explorer programme

Perais Arthur

Date: Jan 2015 - Apr 2015

Institution: Carnegie Mellon University (United States)

9.4.1.2. Research stays abroad

Sylvain Collange has been invited on a professor chair at Universidade Federal de Minas Gerais, Brazil
(September-October 2015).

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific events organisation
10.1.1.1. General chair, scientific chair

• André Seznec is the PC chair for ISCA 2016.

• Isabelle Puaut and Damien Hardy have organized the Ecole d’été Temps Réel in Rennes in August
2015.

• Isabelle Puaut is the chair of the RTNS steering committee.

10.1.1.2. Member of the organizing committees

• Isabelle Puaut is a member of the Executive committee of IEEE Technical Committee on Real-Time
Systems

• Isabelle Puaut is member of the Steering committees of ECRTS and WCET conferences.

• Sylvain Collange was a member of the organization committee of Rencontres Arithmétiques de
l’Informatique Mathématique (RAIM) 2015 in Rennes.

http://www.cmu.edu/

Project-Team ALF 33

10.1.2. Scientific events selection
10.1.2.1. Chair of conference program committees

• André Seznec is the PC chair for ISCA 2016.

10.1.2.2. Member of the conference program committees

• Isabelle Puaut was a member of ECRTS 2015, RTAS 2015, RTCSA 2015 RTNS 2015 and WCET
2015 program committees. She is a member of the ECRTS 2016 program committee.

• Damien Hardy was a member of RTNS 2015 and WCET 2015 program committees

• André Seznec was a member of the MICRO 2015 and the SAMOS 2015 program committees.

• Pierre Michaud was a member of the program committee of the OMHI 2015 workshop.

• Erven Rohou was a member of the program committee of DITAM-PARMA and ISPA 2015.

• Sylvain Collange is a member of the ISCA 2016 program committee.

10.1.2.3. Reviewer

ALF members have been reviewers for many conferences and journals.

10.1.3. Journal
10.1.3.1. Member of the editorial boards

• André Seznec is a member of the editorial board of IEEE Micro and an associate editor of ACM
TACO.

10.1.3.2. Reviewer - Reviewing activities

ALF members have been reviewers for many conferences and journals.

10.1.4. Invited talks
• Isabelle Puaut. "Multicore timing verification: towards more integrated WCET and schedulability

analysis. TACLe COST action Focussed meeting on timing analysis of parallel programs in many-
core architectures". Porto, Portugal, Nov. 2015.

• André Seznec. "Skewed Compressed Cache", AMD, Sunnyvale, Aug. 2015

• Arthur Perais. "Cost-Effective Speculative Scheduling in High Performance Processors" Intel,
Hillsboro June 2015

• Damien Hardy . "Worst Case Execution Time Estimation and Permanent Faults" at "9ièmes rencon-
tres de la communauté française de compilation", Jan. 2015.

• Erven Rohou. "Branch Prediction and the Performance of Interpreters: Don’t Trust Folklore", at
Dixièmes rencontres de la communauté française de compilation, Sep 2015.

• Erven Rohou. "Traceability of Flow Information: Reconciling Compiler Optimizations and WCET
Estimation", at Neuvièmes rencontres de la communauté française de compilation, Jan 2015.

10.1.5. Scientific expertise
André Seznec was member of the ERC Advanced grants panel.

34 Activity Report INRIA 2015

10.1.6. Research administration
• Erven Rohou is a member of the Inria CDT (Commission du Développement Technologique)
• As “correspondant scientifique des relations internationales” for Inria Rennes Bretagne Atlantique,

Erven Rohou is a member of the Inria COST GTRI (Groupe de Travail "Relations Internationales"
du Comité d’Orientation Scientifique et Technologique).

• A. Seznec is an elected member of the administration board of Inria since November 2014.
• Erven Rohou was a member of the Inria CR2 recruitment committee.
• Erven Rohou was a member of the recruitment committee of an assistant professor at Uppsala

University (Sweden).
• Isabelle Puaut is member of the ISTIC council.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master research : A. Seznec, E.Rohou, I. Puaut, Performance et Microarchitecture, 24 hours, M2,
Université de Rennes I, France
Master research: I. Puaut, E. Rohou, Rédaction d’articles scientifiques, 18 hours, M2, Université de
Rennes I, France
Master: I. Puaut, D. Hardy, Operating systems, 130 hours, M1, Université de Rennes I, France
Master: I. Puaut, D. Hardy, Systèmes temps-réel, 69 hours, M1, Université de Rennes I, France
Licence: D. Hardy, Informatique temps-réel, 40 hours, L3, Université de Rennes I, France
Master: D. Hardy Systèmes d’exploitation, 40 hours, M1, Université de Rennes I, France
Master: D. Hardy Systèmes d’exploitation, 60 hours, M2 CCI, Université de Rennes I, France
Master: S. Collange, Programmation parallèle, 22 hours, M1, Université de Rennes I, France
Master/PhD: S. Collange, GPU programming, 30 hours, MSc/PhD programs, Universidade Federal
de Minas Gerais, Brazil

10.2.2. Supervision
HdR: Erven Rohou, Infrastructures and Compilation Strategies for the Performance of Computing
Systems, Université Rennes 1, Nov 2015
PhD : Hanbing Li, Extraction and Traceability of Annotations for WCET Estimation, Université
Rennes 1, Oct 2015, co-advisors E. Rohou and I. Puaut
PhD : Arthur Perais, "Increasing the performance of superscalar processors through value predic-
tion", Université Rennes 1, Sept 2015, advisor A. Seznec
PhD : Surya Khizakanchery Natarajan,"Modeling performance of serial and parallel sections of
multi-threaded programs in manycore era", Université Rennes 1, June 2016, advisor A. Seznec
PhD : Bharath Narasimha Swamy, "Exploiting heterogeneous manycores on sequential code",
Université Rennes 1, March 2015, advisor A. Seznec
PhD in progress: Nabil Hallou, Université Rennes 1, Feb 2013, co-advisors E. Rohou and P. Clauss
(EPI Camus Inria Strasbourg)
PhD in progress: Sajith Kalathingal, Université Rennes 1, Dec 2012, co-advisors S. Collange and A.
Seznec
PhD in progress: Andrea Mondelli, Université Rennes 1, Oct 2013, co-advisors P. Michaud and A.
Seznec
PhD in progress: Aswinkumar Sridharan, Université Rennes 1, Oct 2013, advisor A. Seznec
PhD in progress: Arjun Suresh , Université Rennes 1, Dec 2012, co-advisors E. Rohou and A. Seznec

Project-Team ALF 35

PhD in progress : Rabab Bouziane, Université Rennes 1, Nov 2015, advisor E. Rohou

PhD in progress : Arif Ali Ana-Pparakkal, Université Rennes 1, Feb 2015, advisor E. Rohou

PhD in progress : Simon Rokicki, Université Rennes 1, Sep 2015, co-advisors E. Rohou and Steven
Derrien (CAIRN)

PhD in progress: Benjamin Rouxel, Université Rennes 1, Oct 2015, co-advisors I. Puaut and S.
Derrien

PhD in progress: Viet Anh Nguyen, Université Rennes 1, Jan 2015, co-advisors D. Hardy and I.
Puaut

10.2.3. Juries
The member of ALF have participated to many PhD defense juries in France and abroad.

11. Bibliography
Major publications by the team in recent years

[1] M. CORNERO, R. COSTA, R. FERNÁNDEZ PASCUAL, A. ORNSTEIN, E. ROHOU. An Experimental Environ-
ment Validating the Suitability of CLI as an Effective Deployment Format for Embedded Systems, in "Con-
ference on HiPEAC", Göteborg, Sweden, P. STENSTRÖM, M. DUBOIS, M. KATEVENIS, R. GUPTA, T.
UNGERER (editors), Springer, January 2008, pp. 130–144

[2] R. COSTA, E. ROHOU. Comparing the size of .NET applications with native code, in "3rd Intl Conference
on Hardware/software codesign and system synthesis", Jersey City, NJ, USA, P. ELES, A. JANTSCH, R. A.
BERGAMASCHI (editors), ACM, September 2005, pp. 99–104

[3] D. HARDY, I. PUAUT. WCET analysis of multi-level non-inclusive set-associative instruction caches, in "Proc.
of the 29th IEEE Real-Time Systems Symposium", Barcelona, Spain, December 2008

[4] D. HARDY, I. PUAUT. Static probabilistic Worst Case Execution Time Estimation for architectures with Faulty
Instruction Caches, in "21st International Conference on Real-Time Networks and Systems", Sophia Antipolis,
France, October 2013 [DOI : 10.1145/2516821.2516842], https://hal.inria.fr/hal-00862604

[5] P. MICHAUD, Y. SAZEIDES, A. SEZNEC, T. CONSTANTINOU, D. FETIS. A study of thread migration in
temperature-constrained multi-cores, in "ACM Transactions on Architecture and Code Optimization", 2007,
vol. 4, no 2, 9 p.

[6] P. MICHAUD, A. SEZNEC, S. JOURDAN. An Exploration of Instruction Fetch Requirement in Out-of-Order
Superscalar Processors, in "International Journal of Parallel Programming", 2001, vol. 29, no 1, pp. 35-58

[7] A. PERAIS, A. SEZNEC. Practical data value speculation for future high-end processors, in "International
Symposium on High Performance Computer Architecture", Orlando, FL, United States, IEEE, February 2014,
pp. 428 - 439 [DOI : 10.1109/HPCA.2014.6835952], https://hal.inria.fr/hal-01088116

[8] N. PRÉMILLIEU, A. SEZNEC. Efficient Out-of-Order Execution of Guarded ISAs, in "ACM Transactions on
Architecture and Code Optimization (TACO) ", December 2014, 21 p. [DOI : 10.1145/2677037], https://
hal.inria.fr/hal-01103230

https://hal.inria.fr/hal-00862604
https://hal.inria.fr/hal-01088116
https://hal.inria.fr/hal-01103230
https://hal.inria.fr/hal-01103230

36 Activity Report INRIA 2015

[9] E. ROHOU, M. SMITH. Dynamically managing processor temperature and power, in "Second Workshop on
Feedback-Directed Optimizations", 1999

[10] A. SEZNEC, P. MICHAUD. A case for (partially)-tagged geometric history length predictors, in "Journal of
Instruction Level Parallelism (http://www.jilp.org/vol8)", April 2006, http://www.jilp.org/vol8

Publications of the year
Doctoral Dissertations and Habilitation Theses

[11] H. LI. Extraction and traceability of annotations for WCET estimation, Université Rennes 1, October 2015,
https://tel.archives-ouvertes.fr/tel-01232613

[12] B. NARASIMHA SWAMY. Exploiting heterogeneous manycores on sequential code, UNIVERSITE DE
RENNES 1, March 2015, https://hal.inria.fr/tel-01126807

[13] S. N. NATARAJAN. Modeling performance of serial and parallel sections of multi-threaded programs in
manycore era, Inria Rennes - Bretagne Atlantique and University of Rennes 1, France, June 2015, https://hal.
inria.fr/tel-01170039

[14] A. PERAIS. Increasing the Performance of Superscalar Processors through Value Prediction, Rennes 1,
September 2015, https://hal.inria.fr/tel-01235370

[15] E. ROHOU. Infrastructures and Compilation Strategies for the Performance of Computing Systems, Université
de Rennes 1, November 2015, Habilitation à diriger des recherches, https://hal.inria.fr/tel-01237164

Articles in International Peer-Reviewed Journals

[16] S. COLLANGE, D. DEFOUR, S. GRAILLAT, R. IAKYMCHUK. Numerical Reproducibility for the Parallel
Reduction on Multi- and Many-Core Architectures, in "Parallel Computing", September 2015, vol. 49, pp.
83-97 [DOI : 10.1016/J.PARCO.2015.09.001], http://hal-lirmm.ccsd.cnrs.fr/lirmm-01206348

[17] M.-K. LEE, P. MICHAUD, J. S. SIM, D. NYANG. A simple proof of optimality for the MIN cache replacement
policy, in "Information Processing Letters", September 2015, 3 p. [DOI : 10.1016/J.IPL.2015.09.004],
https://hal.inria.fr/hal-01199424

[18] P. MICHAUD, A. MONDELLI, A. SEZNEC. Revisiting Clustered Microarchitecture for Future Superscalar
Cores: A Case for Wide Issue Clusters, in "ACM Transactions on Architecture and Code Optimization (TACO)
", August 2015, vol. 13, no 3, 22 p. [DOI : 10.1145/2800787], https://hal.inria.fr/hal-01193178

[19] A. PERAIS, A. SEZNEC. EOLE: Toward a Practical Implementation of Value Prediction, in "IEEE Micro",
June 2015, vol. 35, no 3, pp. 114 - 124 [DOI : 10.1109/MM.2015.45], https://hal.inria.fr/hal-01193287

[20] A. SURESH, B. NARASIMHA SWAMY, E. ROHOU, A. SEZNEC. Intercepting Functions for Memoization: A
Case Study Using Transcendental Functions, in "ACM Transactions on Architecture and Code Optimization
(TACO) ", July 2015, vol. 12, no 2, 23 p. [DOI : 10.1145/2751559], https://hal.inria.fr/hal-01178085

International Conferences with Proceedings

http://www.jilp.org/vol8
https://tel.archives-ouvertes.fr/tel-01232613
https://hal.inria.fr/tel-01126807
https://hal.inria.fr/tel-01170039
https://hal.inria.fr/tel-01170039
https://hal.inria.fr/tel-01235370
https://hal.inria.fr/tel-01237164
http://hal-lirmm.ccsd.cnrs.fr/lirmm-01206348
https://hal.inria.fr/hal-01199424
https://hal.inria.fr/hal-01193178
https://hal.inria.fr/hal-01193287
https://hal.inria.fr/hal-01178085

Project-Team ALF 37

[21] A. BONENFANT, F. CARRIER, H. CASSÉ, P. CUENOT, D. CLARAZ, N. HALBWACHS, H. LI, C. MAIZA, M.
DE MICHIEL, V. MUSSOT, C. PARENT-VIGOUROUX, I. PUAUT, P. RAYMOND, E. ROHOU, P. SOTIN. When
the worst-case execution time estimation gains from the application semantics, in "8th European Congress
on Embedded Real-Time Software and Systems", Toulouse, France, January 2016, https://hal.inria.fr/hal-
01235781

[22] S. EYERMAN, P. MICHAUD, W. ROGIEST. Revisiting Symbiotic Job Scheduling, in "IEEE International
Symposium on Performance Analysis of Systems and Software", Philadelphia, United States, March 2015
[DOI : 10.1109/ISPASS.2015.7095791], https://hal.inria.fr/hal-01139807

[23] N. HALLOU, E. ROHOU, P. CLAUSS, A. KETTERLIN. Dynamic Re-Vectorization of Binary Code, in
"International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation -
SAMOS XV", Agios Konstantinos, Greece, July 2015, https://hal.inria.fr/hal-01155207

[24] M. HATABA, A. EL-MAHDY, E. ROHOU. OJIT: A Novel Obfuscation Approach Using Standard Just-In-Time
Compiler Transformations, in "International Workshop on Dynamic Compilation Everywhere", Amsterdam,
Netherlands, January 2015, https://hal.inria.fr/hal-01162998

[25] R. IAKYMCHUK, D. DEFOUR, S. COLLANGE, S. GRAILLAT. Reproducible Triangular Solvers for High-
Performance Computing, in "ITNG’2015: 12th International Conference on Information Technology - New
Generations", Las Vegas, NV, United States, April 2015, pp. 353-358 [DOI : 10.1109/ITNG.2015.63],
http://hal-lirmm.ccsd.cnrs.fr/lirmm-01206371

[26] H. LI, I. PUAUT, E. ROHOU. Tracing Flow Information for Tighter WCET Estimation: Application to
Vectorization, in "21st IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications", Hong-Kong, China, August 2015, 10 p. , https://hal.inria.fr/hal-01177902

[27] Best Paper
P. MICHAUD. A Best-Offset Prefetcher, in "2nd Data Prefetching Championship", Portland, United States,
June 2015, https://hal.inria.fr/hal-01165600.

[28] S. N. NATARAJAN, B. NARASIMHA SWAMY, A. SEZNEC. An Empirical High Level Performance Model
For FutureMany-cores, in "Proceedings of the 12th ACM International Conference on Computing Frontiers",
Ischia, Italy, 2015 [DOI : 10.1145/2742854.2742867], https://hal.inria.fr/hal-01170038

[29] S. N. NATARAJAN, A. SEZNEC. Sequential and Parallel Code Sections are Different: they may require
different Processors, in "PARMA-DITAM ’15 - 6th Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures", Amsterdam, Netherlands, 6th Workshop on Parallel
Programming and Run-Time Management Techniques for Many-core Architectures and 4th Workshop on
Design Tools and Architectures for Multicore Embedded Computing Platforms, ACM, January 2015, pp. 13-
18 [DOI : 10.1145/2701310.2701314], https://hal.inria.fr/hal-01170061

[30] M.-M. PAPADOPOULOU, X. TONG, A. SEZNEC, A. MOSHOVOS. Prediction-based superpage-friendly TLB
designs, in "21st IEEE symposium on High Performance Computer Architecture", San Francisco, United
States, 2015 [DOI : 10.1109/HPCA.2015.7056034], https://hal.inria.fr/hal-01193176

[31] A. PERAIS, A. SEZNEC, P. MICHAUD, A. SEMBRANT, E. HAGERSTEN. Cost-Effective Speculative Schedul-
ing in High Performance Processors, in "International Symposium on Computer Architecture", Portland,

https://hal.inria.fr/hal-01235781
https://hal.inria.fr/hal-01235781
https://hal.inria.fr/hal-01139807
https://hal.inria.fr/hal-01155207
https://hal.inria.fr/hal-01162998
http://hal-lirmm.ccsd.cnrs.fr/lirmm-01206371
https://hal.inria.fr/hal-01177902
https://hal.inria.fr/hal-01165600
https://hal.inria.fr/hal-01170038
https://hal.inria.fr/hal-01170061
https://hal.inria.fr/hal-01193176

38 Activity Report INRIA 2015

United States, Proceedings of the International Symposium on Computer Architecture, ACM/IEEE, June 2015,
vol. 42, pp. 247-259 [DOI : 10.1145/2749469.2749470], https://hal.inria.fr/hal-01193233

[32] A. PERAIS, A. SEZNEC. BeBoP: A Cost Effective Predictor Infrastructure for Superscalar Value Prediction,
in "International Symposium on High Performance Computer Architecture", San Francisco, United States,
IEEE, February 2015, vol. 21, pp. 13 - 25) [DOI : 10.1109/HPCA.2015.7056018], https://hal.inria.fr/hal-
01193175

[33] E. ROHOU, D. GUYON. Sequential Performance: Raising Awareness of the Gory De-
tails, in "International Conference on Computational Science", Reykjavik, Iceland, June 2015
[DOI : 10.1016/J.PROCS.2015.05.347], https://hal.inria.fr/hal-01162336

[34] E. ROHOU, B. NARASIMHA SWAMY, A. SEZNEC. Branch Prediction and the Performance of Interpreters
- Don’t Trust Folklore, in "International Symposium on Code Generation and Optimization", Burlingame,
United States, February 2015, https://hal.inria.fr/hal-01100647

[35] A. SEMBRANT, T. CARLSON, E. HAGERSTEN, D. BLACK-SHAFFER, A. PERAIS, A. SEZNEC, P.
MICHAUD. Long Term Parking (LTP): Criticality-aware Resource Allocation in OOO Processors, in "In-
ternational Symposium on Microarchitecture, Micro 2015", Honolulu, United States, Proceeding of the In-
ternational Symposium on Microarchitecture, Micro 2015, ACM, December 2015, 11 p. , https://hal.inria.fr/
hal-01225019

[36] A. SEZNEC, J. SAN MIGUEL, J. ALBERICIO. The Inner Most Loop Iteration counter: a new dimension in
branch history , in "48th International Symposium On Microarchitecture", Honolulu, United States, ACM,
December 2015, 11 p. , https://hal.inria.fr/hal-01208347

[37] A. SEZNEC. Bank-interleaved cache or memory indexing does not require euclidean division, in "11th Annual
Workshop on Duplicating, Deconstructing and Debunking", Portland, United States, June 2015, https://hal.
inria.fr/hal-01208356

[38] C. SILVANO, G. AGOSTA, A. BARTOLINI, A. R. BECCARI, L. BENINI, J. BISPO, R. CMAR, J. M.
P. CARDOSO, C. CAVAZZONI, J. MARTINOVIČ, G. PALERMO, M. PALKOVIČ, P. PINTO, E. ROHOU,
N. SANNA, K. SLANINOVÁ. AutoTuning and Adaptivity appRoach for Energy efficient eXascale HPC
systems: the ANTAREX Approach, in "Design, Automation, and Test in Europe", Dresden, Germany, Design,
Automation, and Test in Europe, March 2016, https://hal.inria.fr/hal-01235741

[39] C. SILVANO, G. AGOSTA, A. BARTOLINI, A. BECCARI, L. BENINI, J. M. P. CARDOSO, C. CAVAZZONI,
J. MARTINOVIČ, G. PALERMO, M. PALKOVIČ, E. ROHOU, N. SANNA, K. SLANINOVA. ANTAREX –
AutoTuning and Adaptivity appRoach for Energy efficient eXascale HPC systems, in "18th IEEE International
Conference on Computational Science and Engineering", Porto, Portugal, October 2015, https://hal.inria.fr/
hal-01235713

[40] M. SUZANA, J. ABELLA, D. HARDY, E. QUINONES, I. PUAUT, F. J. CAZORLA. Speeding up Static
Probabilistic Timing Analysis, in "International Conference on Architecture of Computing Systems", Porto,
Portugal, Springer Lecture Notes on Computer Science (LNCS) series, March 2015, https://hal.inria.fr/hal-
01235544

Conferences without Proceedings

https://hal.inria.fr/hal-01193233
https://hal.inria.fr/hal-01193175
https://hal.inria.fr/hal-01193175
https://hal.inria.fr/hal-01162336
https://hal.inria.fr/hal-01100647
https://hal.inria.fr/hal-01225019
https://hal.inria.fr/hal-01225019
https://hal.inria.fr/hal-01208347
https://hal.inria.fr/hal-01208356
https://hal.inria.fr/hal-01208356
https://hal.inria.fr/hal-01235741
https://hal.inria.fr/hal-01235713
https://hal.inria.fr/hal-01235713
https://hal.inria.fr/hal-01235544
https://hal.inria.fr/hal-01235544

Project-Team ALF 39

[41] V. A. NGUYEN, D. HARDY, I. PUAUT. Scheduling of parallel applications on many-core architectures
with caches: bridging the gap between WCET analysis and schedulability analysis, in "9th Junior Researcher
Workshop on Real-Time Computing (JRWRTC 2015)", Lille, France, November 2015, https://hal.inria.fr/hal-
01236191

Research Reports

[42] S. KALATHINGAL, S. COLLANGE, B. NARASIMHA SWAMY, A. SEZNEC. Transforming TLP into DLP with
the Dynamic Inter-Thread Vectorization Architecture, Inria Rennes Bretagne Atlantique, December 2015, no

RR-8830, https://hal.inria.fr/hal-01244938

[43] A. SRIDHARAN, A. SEZNEC. Discrete Cache Insertion Policies for Shared Last Level Cache Management
on Large Multicores, Inria-IRISA Rennes Bretagne Atlantique, équipe ALF, December 2015, no RR-8816,
https://hal.inria.fr/hal-01236706

Other Publications

[44] S. COLLANGE, D. DEFOUR, S. GRAILLAT, R. IAKYMCHUK. Numerical Reproducibility for the Parallel
Reduction on Multi- and Many-Core Architectures, September 2015, working paper or preprint, https://hal.
archives-ouvertes.fr/hal-00949355

[45] R. IAKYMCHUK, S. COLLANGE, D. DEFOUR, S. GRAILLAT. ExBLAS: Reproducible and Accurate BLAS
Library, July 2015, working paper or preprint, https://hal.archives-ouvertes.fr/hal-01202396

[46] R. IAKYMCHUK, S. COLLANGE, D. DEFOUR, S. GRAILLAT. Reproducibility and Accuracy for High-
Performance Computing, April 2015, working paper or preprint, https://hal.archives-ouvertes.fr/hal-01140531

[47] R. IAKYMCHUK, D. DEFOUR, S. COLLANGE, S. GRAILLAT. Reproducible and Accurate Matrix Multipli-
cation for GPU Accelerators, January 2015, working paper or preprint, https://hal.archives-ouvertes.fr/hal-
01102877

[48] R. IAKYMCHUK, D. DEFOUR, S. COLLANGE, S. GRAILLAT. Reproducible Triangular Solvers for
High-Performance Computing, February 2015, working paper or preprint, https://hal.archives-ouvertes.fr/hal-
01116588

[49] R. IAKYMCHUK, S. GRAILLAT, S. COLLANGE, D. DEFOUR. ExBLAS: Reproducible and Accurate BLAS
Library, April 2015, RAIM’2015: 7ème Rencontre Arithmétique de l’Informatique Mathématique, Poster,
https://hal.archives-ouvertes.fr/hal-01140280

References in notes

[50] G. M. AMDAHL. Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities,
in "SJCC", 1967, pp. 483–485

[51] L. A. BELADY. A study of replacement algorithms for a virtual-storage computer, in "IBM Systems Journal",
1966, vol. 5, no 2, pp. 78-101

[52] D. BURGER, T. M. AUSTIN. The simplescalar tool set, version 2.0, 1997

https://hal.inria.fr/hal-01236191
https://hal.inria.fr/hal-01236191
https://hal.inria.fr/hal-01244938
https://hal.inria.fr/hal-01236706
https://hal.archives-ouvertes.fr/hal-00949355
https://hal.archives-ouvertes.fr/hal-00949355
https://hal.archives-ouvertes.fr/hal-01202396
https://hal.archives-ouvertes.fr/hal-01140531
https://hal.archives-ouvertes.fr/hal-01102877
https://hal.archives-ouvertes.fr/hal-01102877
https://hal.archives-ouvertes.fr/hal-01116588
https://hal.archives-ouvertes.fr/hal-01116588
https://hal.archives-ouvertes.fr/hal-01140280

40 Activity Report INRIA 2015

[53] R. S. CHAPPELL, J. STARK, S. P. KIM, S. K. REINHARDT, Y. N. PATT. Simultaneous subordinate
microthreading (SSMT), in "ISCA ’99: Proceedings of the 26th annual international symposium on Computer
architecture", Washington, DC, USA, IEEE Computer Society, 1999, pp. 186–195, http://doi.acm.org/10.
1145/300979.300995

[54] S. EYERMAN, L. EECKHOUT. Probabilistic job symbiosis modeling for SMT processor scheduling, in
"Proceedings of the 15th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS)", 2010

[55] C. FERDINAND, R. WILHELM. Efficient and Precise Cache Behavior Prediction for Real-Time Systems, in
"Real-Time Systems", 1999, vol. 17, no 2-3, pp. 131–181, http://dx.doi.org/10.1023/A:1008186323068

[56] T. S. KARKHANIS, J. E. SMITH. A First-Order Superscalar Processor Model, in "Proceedings of the
International Symposium on Computer Architecture", Los Alamitos, CA, USA, IEEE Computer Society,
2004, 338 p. , http://doi.ieeecomputersociety.org/10.1109/ISCA.2004.1310786

[57] B. LEE, J. COLLINS, H. WANG, D. BROOKS. CPR : composable performance regression for scalable
multiprocessor models, in "Proceedings of the 41st International Symposium on Microarchitecture", 2008

[58] Y. LIANG, T. MITRA. Cache modeling in probabilistic execution time analysis, in "DAC ’08: Proceedings
of the 45th annual conference on Design automation", New York, NY, USA, ACM, 2008, pp. 319–324,
http://doi.acm.org/10.1145/1391469.1391551

[59] T. LUNDQVIST, P. STENSTRÖM. Timing Anomalies in Dynamically Scheduled Microprocessors, in "RTSS
’99: Proceedings of the 20th IEEE Real-Time Systems Symposium", Washington, DC, USA, IEEE Computer
Society, 1999

[60] R. L. MATTSON, J. GECSEI, D. R. SLUTZ, I. L. TRAIGER. Evaluation techniques for storage hierarchies,
in "IBM Systems Journal", 1970, vol. 9, no 2, pp. 78-117

[61] L. RAUCHWERGER, Y. ZHAN, J. TORRELLAS. Hardware for Speculative Run-Time Parallelization in
Distributed Shared-Memory Multiprocessors, in "HPCA ’98: Proceedings of the 4th International Symposium
on High-Performance Computer Architecture", Washington, DC, USA, IEEE Computer Society, 1998, 162 p.

[62] K. SKADRON, M. STAN, W. HUANG, S. VELUSAMY. Temperature-aware microarchitecture, in "Proceedings
of the International Symposium on Computer Architecture", 2003

[63] A. SNAVELY, D. M. TULLSEN. Symbiotic jobscheduling for a simultaneous multithreading processor, in
"Proceedings of the International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS)", 2000

[64] J. G. STEFFAN, C. COLOHAN, A. ZHAI, T. C. MOWRY. The STAMPede approach to thread-level speculation,
in "ACM Transactions on Computer Systems", 2005, vol. 23, no 3, pp. 253–300, http://doi.acm.org/10.1145/
1082469.1082471

[65] V. SUHENDRA, T. MITRA. Exploring locking & partitioning for predictable shared caches on multi-cores, in
"DAC ’08: Proceedings of the 45th annual conference on Design automation", New York, NY, USA, ACM,
2008, pp. 300–303, http://doi.acm.org/10.1145/1391469.1391545

http://doi.acm.org/10.1145/300979.300995
http://doi.acm.org/10.1145/300979.300995
http://dx.doi.org/10.1023/A:1008186323068
http://doi.ieeecomputersociety.org/10.1109/ISCA.2004.1310786
http://doi.acm.org/10.1145/1391469.1391551
http://doi.acm.org/10.1145/1082469.1082471
http://doi.acm.org/10.1145/1082469.1082471
http://doi.acm.org/10.1145/1391469.1391545

Project-Team ALF 41

[66] D. M. TULLSEN, S. EGGERS, H. M. LEVY. Simultaneous Multithreading: Maximizing On-Chip Parallelism,
in "Proceedings of the 22th Annual International Symposium on Computer Architecture", 1995

[67] J. YAN, W. ZHAN. WCET Analysis for Multi-Core Processors with Shared L2 Instruction Caches, in
"Proceedings of Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS ’08", 2008,
pp. 80-89

