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2. Overall Objectives

2.1. Overall Objectives
The scientific objectives of ASPI are the design, analysis and implementation of interacting Monte Carlo
methods, also known as particle methods, with focus on

• statistical inference in hidden Markov models and particle filtering,

• risk evaluation and simulation of rare events,

• global optimization.

The whole problematic is multidisciplinary, not only because of the many scientific and engineering areas in
which particle methods are used, but also because of the diversity of the scientific communities which have
already contributed to establish the foundations of the field

target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods, etc.

Intuitively speaking, interacting Monte Carlo methods are sequential simulation methods, in which particles

• explore the state space by mimicking the evolution of an underlying random process,

• learn their environment by evaluating a fitness function,

• and interact so that only the most successful particles (in view of the fitness function) are allowed to
survive and to get offsprings at the next generation.

The effect of this mutation / selection mechanism is to automatically concentrate particles (i.e. the available
computing power) in regions of interest of the state space. In the special case of particle filtering, which has
numerous applications under the generic heading of positioning, navigation and tracking, in

target tracking, computer vision, mobile robotics, wireless communications, ubiquitous com-
puting and ambient intelligence, sensor networks, etc.,

each particle represents a possible hidden state, and is replicated or terminated at the next generation on the
basis of its consistency with the current observation, as quantified by the likelihood function. With these
genetic–type algorithms, it becomes easy to efficiently combine a prior model of displacement with or without
constraints, sensor–based measurements, and a base of reference measurements, for example in the form of a
digital map (digital elevation map, attenuation map, etc.). In the most general case, particle methods provide
approximations of Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann distributions,
by means of the weighted empirical probability distribution associated with an interacting particle system,
with applications that go far beyond filtering, in

simulation of rare events, global optimization, molecular simulation, etc.

The main applications currently considered are geolocalisation and tracking of mobile terminals, terrain–aided
navigation, data fusion for indoor localisation, optimization of sensors location and activation, risk assessment
in air traffic management, protection of digital documents.

3. Research Program

3.1. Interacting Monte Carlo methods and particle approximation of
Feynman–Kac distributions
Monte Carlo methods are numerical methods that are widely used in situations where (i) a stochastic (usually
Markovian) model is given for some underlying process, and (ii) some quantity of interest should be evaluated,
that can be expressed in terms of the expected value of a functional of the process trajectory, which includes
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as an important special case the probability that a given event has occurred. Numerous examples can be found,
e.g. in financial engineering (pricing of options and derivative securities) [46], in performance evaluation
of communication networks (probability of buffer overflow), in statistics of hidden Markov models (state
estimation, evaluation of contrast and score functions), etc. Very often in practice, no analytical expression
is available for the quantity of interest, but it is possible to simulate trajectories of the underlying process.
The idea behind Monte Carlo methods is to generate independent trajectories of this process or of an alternate
instrumental process, and to build an approximation (estimator) of the quantity of interest in terms of the
weighted empirical probability distribution associated with the resulting independent sample. By the law of
large numbers, the above estimator converges as the size N of the sample goes to infinity, with rate 1/

√
N and

the asymptotic variance can be estimated using an appropriate central limit theorem. To reduce the variance
of the estimator, many variance reduction techniques have been proposed. Still, running independent Monte
Carlo simulations can lead to very poor results, because trajectories are generated blindly, and only afterwards
are the corresponding weights evaluated. Some of the weights can happen to be negligible, in which case the
corresponding trajectories are not going to contribute to the estimator, i.e. computing power has been wasted.

A recent and major breakthrough, has been the introduction of interacting Monte Carlo methods, also known
as sequential Monte Carlo (SMC) methods, in which a whole (possibly weighted) sample, called system of
particles, is propagated in time, where the particles

• explore the state space under the effect of a mutation mechanism which mimics the evolution of the
underlying process,

• and are replicated or terminated, under the effect of a selection mechanism which automatically
concentrates the particles, i.e. the available computing power, into regions of interest of the state
space.

In full generality, the underlying process is a discrete–time Markov chain, whose state space can be

finite, continuous, hybrid (continuous / discrete), graphical, constrained, time varying, pathwise,
etc.,

the only condition being that it can easily be simulated.

In the special case of particle filtering, originally developed within the tracking community, the algorithms
yield a numerical approximation of the optimal Bayesian filter, i.e. of the conditional probability distribution
of the hidden state given the past observations, as a (possibly weighted) empirical probability distribution of
the system of particles. In its simplest version, introduced in several different scientific communities under
the name of bootstrap filter [49], Monte Carlo filter [54] or condensation (conditional density propagation)
algorithm [51], and which historically has been the first algorithm to include a redistribution step, the selection
mechanism is governed by the likelihood function: at each time step, a particle is more likely to survive and to
replicate at the next generation if it is consistent with the current observation. The algorithms also provide as
a by–product a numerical approximation of the likelihood function, and of many other contrast functions for
parameter estimation in hidden Markov models, such as the prediction error or the conditional least–squares
criterion.

Particle methods are currently being used in many scientific and engineering areas

positioning, navigation, and tracking [50], [43], visual tracking [51], mobile robotics [44], [66],
ubiquitous computing and ambient intelligence, sensor networks, risk evaluation and simulation
of rare events [47], genetics, molecular simulation [45], etc.

Other examples of the many applications of particle filtering can be found in the contributed volume [30] and
in the special issue of IEEE Transactions on Signal Processing devoted to Monte Carlo Methods for Statistical
Signal Processing in February 2002, where the tutorial paper [31] can be found, and in the textbook [63]
devoted to applications in target tracking. Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics, can be found in [62]. A recent overview can also be
found in [32].
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Particle methods are very easy to implement, since it is sufficient in principle to simulate independent
trajectories of the underlying process. The whole problematic is multidisciplinary, not only because of the
already mentioned diversity of the scientific and engineering areas in which particle methods are used, but
also because of the diversity of the scientific communities which have contributed to establish the foundations
of the field

target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods.

These algorithms can be interpreted as numerical approximation schemes for Feynman–Kac distributions, a
pathwise generalization of Gibbs–Boltzmann distributions, in terms of the weighted empirical probability
distribution associated with a system of particles. This abstract point of view [38], [36], has proved
to be extremely fruitful in providing a very general framework to the design and analysis of numerical
approximation schemes, based on systems of branching and / or interacting particles, for nonlinear dynamical
systems with values in the space of probability distributions, associated with Feynman–Kac distributions.
Many asymptotic results have been proved as the number N of particles (sample size) goes to infinity, using
techniques coming from applied probability (interacting particle systems, empirical processes [68]), see e.g.
the survey article [38] or the textbooks [36], [35], and references therein

convergence in Lp, convergence as empirical processes indexed by classes of functions, uniform
convergence in time, see also [59], [60], central limit theorem, see also [56], [40], propagation
of chaos, large deviations principle, etc.

The objective here is to systematically study the impact of the many algorithmic variants on the convergence
results.

3.2. Statistics of HMM
Hidden Markov models (HMM) form a special case of partially observed stochastic dynamical systems, in
which the state of a Markov process (in discrete or continuous time, with finite or continuous state space)
should be estimated from noisy observations. The conditional probability distribution of the hidden state
given past observations is a well–known example of a normalized (nonlinear) Feynman–Kac distribution,
see 3.1. These models are very flexible, because of the introduction of latent variables (non observed) which
allows to model complex time dependent structures, to take constraints into account, etc. In addition, the
underlying Markovian structure makes it possible to use numerical algorithms (particle filtering, Markov
chain Monte Carlo methods (MCMC), etc.) which are computationally intensive but whose complexity is
rather small. Hidden Markov models are widely used in various applied areas, such as speech recognition,
alignment of biological sequences, tracking in complex environment, modeling and control of networks, digital
communications, etc.

Beyond the recursive estimation of a hidden state from noisy observations, the problem arises of statistical
inference of HMM with general state space [33], [41], including estimation of model parameters, early
monitoring and diagnosis of small changes in model parameters, etc.

Large time asymptotics A fruitful approach is the asymptotic study, when the observation time increases to
infinity, of an extended Markov chain, whose state includes (i) the hidden state, (ii) the observation, (iii) the
prediction filter (i.e. the conditional probability distribution of the hidden state given observations at all
previous time instants), and possibly (iv) the derivative of the prediction filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function, the conditional least–squares criterion, and many other
clasical contrast processes, as well as their derivatives with respect to the parameter, as additive functionals of
the extended Markov chain.

The following general approach has been proposed

• first, prove an exponential stability property (i.e. an exponential forgetting property of the initial
condition) of the prediction filter and its derivative, for a misspecified model,
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• from this, deduce a geometric ergodicity property and the existence of a unique invariant probability
distribution for the extended Markov chain, hence a law of large numbers and a central limit
theorem for a large class of contrast processes and their derivatives, and a local asymptotic normality
property,

• finally, obtain the consistency (i.e. the convergence to the set of minima of the associated contrast
function), and the asymptotic normality of a large class of minimum contrast estimators.

This programme has been completed in the case of a finite state space [8], and has been generalized [39] under
an uniform minoration assumption for the Markov transition kernel, which typically does only hold when the
state space is compact. Clearly, the whole approach relies on the existence of an exponential stability property
of the prediction filter, and the main challenge currently is to get rid of this uniform minoration assumption
for the Markov transition kernel [37], [60], so as to be able to consider more interesting situations, where the
state space is noncompact.

Small noise asymptotics Another asymptotic approach can also be used, where it is rather easy to obtain
interesting explicit results, in terms close to the language of nonlinear deterministic control theory [55]. Taking
the simple example where the hidden state is the solution to an ordinary differential equation, or a nonlinear
state model, and where the observations are subject to additive Gaussian white noise, this approach consists
in assuming that covariances matrices of the state noise and of the observation noise go simultaneously to
zero. If it is reasonable in many applications to consider that noise covariances are small, this asymptotic
approach is less natural than the large time asymptotics, where it is enough (provided a suitable ergodicity
assumption holds) to accumulate observations and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the limit (Kullback–Leibler divergence, Fisher
information matrix, asymptotic covariance matrix, etc.) take here a much more explicit form than in the large
time asymptotics.

The following results have been obtained using this approach
• the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global

minima of the Kullback–Leibler divergence), has been obtained using large deviations techniques,
with an analytical approach [52],

• if the abovementioned set M does not reduce to the true parameter value, i.e. if the model is not
identifiable, it is still possible to describe precisely the asymptotic behavior of the estimators [53]:
in the simple case where the state equation is a noise–free ordinary differential equation and using
a Bayesian framework, it has been shown that (i) if the rank r of the Fisher information matrix I is
constant in a neighborhood of the set M , then this set is a differentiable submanifold of codimension
r, (ii) the posterior probability distribution of the parameter converges to a random probability
distribution in the limit, supported by the manifold M , absolutely continuous w.r.t. the Lebesgue
measure on M , with an explicit expression for the density, and (iii) the posterior probability
distribution of the suitably normalized difference between the parameter and its projection on the
manifold M , converges to a mixture of Gaussian probability distributions on the normal spaces to
the manifold M , which generalized the usual asymptotic normality property,

• it has been shown [61] that (i) the parameter dependent probability distributions of the observations
are locally asymptotically normal (LAN) [58], from which the asymptotic normality of the maxi-
mum likelihood estimator follows, with an explicit expression for the asymptotic covariance matrix,
i.e. for the Fisher information matrix I , in terms of the Kalman filter associated with the linear
tangent linear Gaussian model, and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the parameter and suitably normalized,
converges to a Gaussian r.v. with zero mean and covariance matrix I .

3.3. Multilevel splitting for rare event simulation
See 4.2, and 5.1, 5.2, 5.3, and 5.4.

The estimation of the small probability of a rare but critical event, is a crucial issue in industrial areas such as
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nuclear power plants, food industry, telecommunication networks, finance and insurance indus-
try, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly un-
efficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread
technique consists in multilevel splitting [57], where trajectories going towards the critical set are given off-
springs, thus increasing the number of trajectories that eventually reach the critical set. As shown in [5], the
Feynman–Kac formalism of 3.1 is well suited for the design and analysis of splitting algorithms for rare event
simulation.

Propagation of uncertainty Multilevel splitting can be used in static situations. Here, the objective is to learn
the probability distribution of an output random variable Y = F (X), where the function F is only defined
pointwise for instance by a computer programme, and where the probability distribution of the input random
variable X is known and easy to simulate from. More specifically, the objective could be to compute the
probability of the output random variable exceeding a threshold, or more generally to evaluate the cumulative
distribution function of the output random variable for different output values. This problem is characterized
by the lack of an analytical expression for the function, the computational cost of a single pointwise evaluation
of the function, which means that the number of calls to the function should be limited as much as possible,
and finally the complexity and / or unavailability of the source code of the computer programme, which makes
any modification very difficult or even impossible, for instance to change the model as in importance sampling
methods.

The key issue is to learn as fast as possible regions of the input space which contribute most to the computation
of the target quantity. The proposed splitting methods consists in (i) introducing a sequence of intermediate
regions in the input space, implicitly defined by exceeding an increasing sequence of thresholds or levels,
(ii) counting the fraction of samples that reach a level given that the previous level has been reached already,
and (iii) improving the diversity of the selected samples, usually using an artificial Markovian dynamics. In
this way, the algorithm learns

• the transition probability between successive levels, hence the probability of reaching each interme-
diate level,

• and the probability distribution of the input random variable, conditionned on the output variable
reaching each intermediate level.

A further remark, is that this conditional probability distribution is precisely the optimal (zero variance)
importance distribution needed to compute the probability of reaching the considered intermediate level.

Rare event simulation To be specific, consider a complex dynamical system modelled as a Markov process,
whose state can possibly contain continuous components and finite components (mode, regime, etc.), and the
objective is to compute the probability, hopefully very small, that a critical region of the state space is reached
by the Markov process before a final time T , which can be deterministic and fixed, or random (for instance
the time of return to a recurrent set, corresponding to a nominal behaviour).

The proposed splitting method consists in (i) introducing a decreasing sequence of intermediate, more and
more critical, regions in the state space, (ii) counting the fraction of trajectories that reach an intermedi-
ate region before time T , given that the previous intermediate region has been reached before time T , and
(iii) regenerating the population at each stage, through redistribution. In addition to the non–intrusive be-
haviour of the method, the splitting methods make it possible to learn the probability distribution of typical
critical trajectories, which reach the critical region before final time T , an important feature that methods based
on importance sampling usually miss. Many variants have been proposed, whether

• the branching rate (number of offsprings allocated to a successful trajectory) is fixed, which allows
for depth–first exploration of the branching tree, but raises the issue of controlling the population
size,

• the population size is fixed, which requires a breadth–first exploration of the branching tree, with
random (multinomial) or deterministic allocation of offsprings, etc.
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Just as in the static case, the algorithm learns
• the transition probability between successive levels, hence the probability of reaching each interme-

diate level,
• and the entrance probability distribution of the Markov process in each intermediate region.

Contributions have been given to
• minimizing the asymptotic variance, obtained through a central limit theorem, with respect to the

shape of the intermediate regions (selection of the importance function), to the thresholds (levels),
to the population size, etc.

• controlling the probability of extinction (when not even one trajectory reaches the next intermediate
level),

• designing and studying variants suited for hybrid state space (resampling per mode, marginalization,
mode aggregation),

and in the static case, to
• minimizing the asymptotic variance, obtained through a central limit theorem, with respect to

intermediate levels, to the Metropolis kernel introduced in the mutation step, etc.

A related issue is global optimization. Indeed, the difficult problem of finding the set M of global minima of
a real–valued function V can be replaced by the apparently simpler problem of sampling a population from
a probability distribution depending on a small parameter, and asymptotically supported by the set M as the
small parameter goes to zero. The usual approach here is to use the cross–entropy method [64], [34], which
relies on learning the optimal importance distribution within a prescribed parametric family. On the other hand,
multilevel splitting methods could provide an alternate nonparametric approach to this problem.

3.4. Statistical learning: pattern recognition and nonparametric regression
In pattern recognition and statistical learning, also known as machine learning, nearest neighbor (NN)
algorithms are amongst the simplest but also very powerful algorithms available. Basically, given a training
set of data, i.e. an N–sample of i.i.d. object–feature pairs, with real–valued features, the question is how to
generalize, that is how to guess the feature associated with any new object. To achieve this, one chooses some
integer k smaller than N , and takes the mean–value of the k features associated with the k objects that are
nearest to the new object, for some given metric.

In general, there is no way to guess exactly the value of the feature associated with the new object, and the
minimal error that can be done is that of the Bayes estimator, which cannot be computed by lack of knowledge
of the distribution of the object–feature pair, but the Bayes estimator can be useful to characterize the strength
of the method. So the best that can be expected is that the NN estimator converges, say when the sample
size N grows, to the Bayes estimator. This is what has been proved in great generality by Stone [65] for the
mean square convergence, provided that the object is a finite–dimensional random variable, the feature is a
square–integrable random variable, and the ratio k/N goes to 0. Nearest neighbor estimator is not the only
local averaging estimator with this property, but it is arguably the simplest.

The asymptotic behavior when the sample size grows is well understood in finite dimension, but the situation
is radically different in general infinite dimensional spaces, when the objects to be classified are functions,
images, etc.

Nearest neighbor classification in infinite dimension In finite dimension, the k–nearest neighbor classifier
is universally consistent, i.e. its probability of error converges to the Bayes risk as N goes to infinity, whatever
the joint probability distribution of the pair, provided that the ratio k/N goes to zero. Unfortunately, this result
is no longer valid in general metric spaces, and the objective is to find out reasonable sufficient conditions
for the weak consistency to hold. Even in finite dimension, there are exotic distances such that the nearest
neighbor does not even get closer (in the sense of the distance) to the point of interest, and the state space
needs to be complete for the metric, which is the first condition. Some regularity on the regression function is
required next. Clearly, continuity is too strong because it is not required in finite dimension, and a weaker form
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of regularity is assumed. The following consistency result has been obtained: if the metric space is separable
and if some Besicovich condition holds, then the nearest neighbor classifier is weakly consistent. Note that the
Besicovich condition is always fulfilled in finite dimensional vector spaces (this result is called the Besicovich
theorem), and that a counterexample [3] can be given in an infinite dimensional space with a Gaussian measure
(in this case, the nearest neighbor classifier is clearly nonconsistent). Finally, a simple example has been found
which verifies the Besicovich condition with a noncontinuous regression function.

Rates of convergence of the functional k–nearest neighbor estimator Motivated by a broad range of
potential applications, such as regression on curves, rates of convergence of the k–nearest neighbor estimator
of the regression function, based on N independent copies of the object–feature pair, have been investigated
when the object is in a suitable ball in some functional space. Using compact embedding theory, explicit
and general finite sample bounds can be obtained for the expected squared difference between the k–nearest
neighbor estimator and the Bayes regression function, in a very general setting. The results have also been
particularized to classical function spaces such as Sobolev spaces, Besov spaces and reproducing kernel Hilbert
spaces. The rates obtained are genuine nonparametric convergence rates, and up to our knowledge the first of
their kind for k–nearest neighbor regression.

This topic has produced several theoretical advances [1], [2] in collaboration with Gérard Biau (université
Pierre et Marie Curie, ENS Paris and EPI CLASSIC, Inria Paris—Rocquencourt). A few possible target
application domains have been identified in
• the statistical analysis of recommendation systems,
• the design of reduced–order models and analog samplers,

that would be a source of interesting problems.

4. Application Domains
4.1. Localisation, navigation and tracking

Among the many application domains of particle methods, or interacting Monte Carlo methods, ASPI has
decided to focus on applications in localisation (or positioning), navigation and tracking [50], [43], which
already covers a very broad spectrum of application domains. The objective here is to estimate the position
(and also velocity, attitude, etc.) of a mobile object, from the combination of different sources of information,
including
• a prior dynamical model of typical evolutions of the mobile, such as inertial estimates and prior

model for inertial errors,
• measurements provided by sensors,
• and possibly a digital map providing some useful feature (terrain altitude, power attenuation, etc.) at

each possible position.

In some applications, another useful source of information is provided by
• a map of constrained admissible displacements, for instance in the form of an indoor building map,

which particle methods can easily handle (map-matching). This Bayesian dynamical estimation problem is
also called filtering, and its numerical implementation using particle methods, known as particle filtering, has
been introduced by the target tracking community [49], [63], which has already contributed to many of the
most interesting algorithmic improvements and is still very active, and has found applications in

target tracking, integrated navigation, points and / or objects tracking in video sequences,
mobile robotics, wireless communications, ubiquitous computing and ambient intelligence,
sensor networks, etc.

ASPI is contributing (or has contributed recently) to several applications of particle filtering in positioning,
navigation and tracking, such as geolocalisation and tracking in a wireless network, terrain–aided navigation,
and data fusion for indoor localisation.
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4.2. Rare event simulation
See 3.3, and 5.1, 5.2, 5.3, and 5.4.

Another application domain of particle methods, or interacting Monte Carlo methods, that ASPI has decided
to focus on is the estimation of the small probability of a rare but critical event, in complex dynamical systems.
This is a crucial issue in industrial areas such as

nuclear power plants, food industry, telecommunication networks, finance and insurance indus-
try, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly un-
efficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread
technique consists in multilevel splitting [57], where trajectories going towards the critical set are given off-
springs, thus increasing the number of trajectories that eventually reach the critical set. This approach not
only makes it possible to estimate the probability of the rare event, but also provides realizations of the ran-
dom trajectory, given that it reaches the critical set, i.e. provides realizations of typical critical trajectories, an
important feature that methods based on importance sampling usually miss.

ASPI is contributing (or has contributed recently) to several applications of multilevel splitting for rare event
simulation, such as risk assessment in air traffic management, detection in sensor networks, and protection of
digital documents.

5. New Results
5.1. Adaptive multilevel splitting

Participants: Frédéric Cérou, Arnaud Guyader.

We have show last year that an adaptive version of multilevel splitting for rare events is strongly consistent and
that the estimates satisfy a CLT (central limit theorem), with the same asymptotic variance as the non–adaptive
algorithm with the optimal choice of the parameters. This year we have generalized these results to include
Markov kernels used to move the particles (or shakers) are of Metropolis–Hastings type. This is a non–trivial
generalization to a very important case.

5.2. Adaptive multilevel splitting as a Fleming–Viot system
Participants: Frédéric Cérou, Arnaud Guyader.

This is a collaboration with Bernard Delyon (université de Rennes 1) and Mathias Rousset (EPI MATHERI-
ALS, Inria Paris Rocquencourt).

By considering the adaptive multilevel splitting algorithm as a Fleming–Viot particle system for a stochastic
wave, in the sense of [42], we have shown the mean square convergence using a general result [67] about the
convergence of Fleming–Viot (Villemonais, 2013). We are currently working on the proof of a central limit
theorem, but the proof is not yet complete. We have nevertheless identified the expression of the asymptotic
variance.

5.3. Bias and variance reduction in rare event simulation
Participant: François Le Gland.

This is a collaboration with Damien Jacquemart (ONERA, Palaiseau) and Jérôme Morio (ONERA, Toulouse).

In [17], we highlight a bias induced by the discretization of the sampled Markov paths in the splitting
algorithm, and we propose to correct this bias using a deformation of the intermediate regions, as proposed in
[48]. Moreover, we propose two numerical methods to design intermediate regions in the splitting algorithm
that minimise the variance. One is connected with a partial differential equation approach, the other one is
based on the discretization of the state space of the process.
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5.4. Simulation–based algorithms for the optimization of sensor deployment
Participant: François Le Gland.

This is a collaboration with Christian Musso (ONERA, Palaiseau) and with Sébastien Paris (LSIS, université
du Sud Toulon Var).

The problem considered here can be described as follows: a limited number of sensors should be deployed
by a carrier in a given area, and should be activated at a limited number of time instants within a given time
period, so as to maximize the probability of detecting a target (present in the given area during the given time
period). There is an information dissymmetry in the problem: if the target is sufficiently close to a sensor
position when it is activated, then the target can learn about the presence and exact position of the sensor,
and can temporarily modify its trajectory so as to escape away before it is detected. This is referred to as the
target intelligence. Two different simulation–based algorithms have been designed in [23] to solve separately
or jointly this optimization problem, with different and complementary features. One is fast, and sequential:
it proceeds by running a population of targets and by dropping and activating a new sensor (or re–activating
a sensor already available) where and when this action seems appropriate. The other is slow, iterative, and
non–sequential: it proceeds by updating a population of deployment plans with guaranteed and increasing
criterion value at each iteration, and for each given deployment plan, there is a population of targets running
to evaluate the criterion. Finally, the two algorithms can cooperate in many different ways, to try and get the
best of both approaches. A simple and efficient way is to use the deployment plans provided by the sequential
algorithm as the initial population for the iterative algorithm.

5.5. Kalman Laplace filtering
Participant: François Le Gland.

This is a collaboration with Paul Bui Quang (CEA, Bruyères–le–Châtel) and Christian Musso (ONERA,
Palaiseau).

We propose in [21] a new nonlinear Bayesian filtering algorithm where the prediction step is performed
like in the extended Kalman filter, and the update step is done thanks to the Laplace method for integral
approximation. This algorithm is called the Kalman Laplace filter (KLF). The KLF provides a closed–form
non–Gaussian approximation of the posterior density. The hidden state is estimated by the maximum a
posteriori. We describe a way to alleviate the computation cost of this maximization, when the likelihood
is a function of a vector whose dimension is smaller than the state space dimension. The KLF is tested on
three simulated nonlinear filtering problems: target tracking with angle measurements, population dynamics
monitoring, motion reconstruction by neural decoding. It exhibits a good performance, especially when the
observation noise is small.

5.6. Combining analog method and ensemble data assimilation
Participants: François Le Gland, Valérie Monbet, Chau Thi Tuyet Trang.

This is a collaboration with Pierre Ailliot (université de Bretagne Occidentale), Ronan Fablet and Pierre
Tandéo (Télécom Bretagne), Anne Cuzol (université de Bretagne Sud) and Bernard Chapron (IFREMER,
Brest).

Nowadays, ocean and atmosphere sciences face a deluge of data from spatial observations, in situ monitoring
as well as numerical simulations. The availability of these different data sources offer new opportunities, still
largely underexploited, to improve the understanding, modeling and reconstruction of geophysical dynamics.
The classical way to reconstruct the space–time variations of a geophysical system from observations relies
on data assimilation methods using multiple runs of the known dynamical model. This classical framework
may have severe limitations including its computational cost, the lack of adequacy of the model with observed
data, modeling uncertainties. In [24], we explore an alternative approach and develop a fully data–driven
framework, which combines machine learning and statistical sampling to simulate the dynamics of complex
system. As a proof concept, we address the assimilation of the chaotic Lorenz–63 model. We demonstrate that
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a nonparametric sampler from a catalog of historical datasets, namely a nearest neighbor or analog sampler,
combined with a classical stochastic data assimilation scheme, the ensemble Kalman filter and smoother, reach
state–of–the–art performances, without online evaluations of the physical model.

5.7. Markov–switching vector autoregressive models
Participant: Valérie Monbet.

This is a collaboration with Pierre Ailliot (université de Bretagne Occidentale), Julie Bessac (Argonne National
Laboratory, Chicago) and Julien Cattiaux (Météo–France, Toulouse).

Multivariate time series are of interest in many fields including economics and environment. The most popular
tools for studying multivariate time series are the vector autoregressive (VAR) models because of their simple
specification and the existence of efficient methods to fit these models. However, the VAR models do not
allow to describe time series mixing different dynamics. For instance, when meteorological variables are
observed, the resulting time series exhibit an alternance of different temporal dynamics corresponding to
weather regimes. The regime is often not observed directly and is thus introduced as a latent process in
time series models in the spirit of hidden Markov models. Markov switching vector autoregressive (MSVAR)
models have been introduced as a generalization of autoregressive models and hidden Markov models. They
lead to flexible and interpretable models. In this mutivariate context, several questions occur.
• The discrete hidden variable also called regime has to be correctly defined. Indeed the regime can be

local (e.g. link to a subset of the variables) or global (e.g. the same for all the variables). It can also
be observed and inferred a priori or hidden. In the second case, it has to be estimated at the same
time as the model parameters.
The question of the definition of the regime is investigated in [26] for the specific problem of multi
site wind modeling.

• Markov Switching VAR models (MSVAR) suffer of the same dimensionality problem as VAR
models. For large (and even moderate) dimensions, the number of autoregressive coefficients in
each regime can be prohibitively large which results in noisy estimates. When the variables are
correlated, which is the standard situation in multivariate time series, over–learning is frequent. The
estimated parameters contains spurious non–zero coefficients and are then difficult to interpret. The
predictions associated to the model are usually unstable. Collinearity causes also ill–conditioning
of the innovation covariance. In [29], we propose a likelihood penalization method with hard
thresholding for MSVAR models leading to sparse MSVAR. Both autoregressive matrices and
precision matrices are penalized using smoothly clipped absolute deviation (SCAD) penalties.

5.8. Dependent time changed processes
Participant: Valérie Monbet.

This is a collaboration with Pierre Ailliot (université de Bretagne Occidentale), Bernard Delyon (université de
Rennes 1) and Marc Prevosto (IFREMER, Brest).

Many records in environmental sciences exhibit asymmetric trajectories and there is a need for simple and
tractable models which can reproduce such feature. In [25] we explore an approach based on applying both
a time change and a marginal transformation on Gaussian processes. The main originality of the proposed
model is that the time change depends on the observed trajectory. We first show that the proposed model is
stationary and ergodic and provide an explicit characterization of the stationary distribution. This result is then
used to build both parametric and non–parametric estimate of the time change function whereas the estimation
of the marginal transformation is based on up–crossings. Simulation results are provided to assess the quality
of the estimates. The model is applied to wave data and it is shown that the fitted model is able to reproduce
important statistics of the data such as its spectrum and marginal distribution which are important quantities
for practical applications. An important benefit of the proposed model is its ability to reproduce the observed
asymmetries between the crest and the troughs and between the front and the back of the waves by accelerating
the chronometer in the crests and in the front of the waves.
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5.9. An efficient algorithm for video super–resolution based on a sequential
model
Participant: Patrick Héas.

This is a collaboration with Angélique Drémeau (ENSTA Bretagne, Brest) and Cédric Herzet (EPI FLUMI-
NANCE, Inria Rennes–Bretagne Atlantique)

In the work [27], we propose a novel procedure for video super–resolution, that is the recovery of a sequence
of high–resolution images from its low–resolution counterpart. Our approach is based on a sequential model
(i.e. each high–resolution frame is supposed to be a displaced version of the preceding one) and considers
the use of sparsity–enforcing priors. Both the recovery of the high–resolution images and the motion fields
relating them is tackled. This leads to a large–dimensional, non–convex and non–smooth problem. We propose
an algorithmic framework to address the latter. Our approach relies on fast gradient evaluation methods and
modern optimization techniques for non–differentiable/non–convex problems. Unlike some other previous
works, we show that there exists a provably–convergent method with a complexity linear in the problem
dimensions. We assess the proposed optimization method on several video benchmarks and emphasize its
good performance with respect to the state of the art.

5.10. Reduced–order modeling of hidden dynamics
Participant: Patrick Héas.

This is a collaboration with Cédric Herzet (EPI FLUMINANCE, Inria Rennes–Bretagne Atlantique).

The objective of the paper [28] is to investigate how noisy and incomplete observations can be integrated
in the process of building a reduced–order model. This problematic arises in many scientific domains where
there exists a need for accurate low–order descriptions of highly–complex phenomena, which can not be
directly and/or deterministically observed. Within this context, the paper proposes a probabilistic framework
for the construction of POD–Galerkin reduced–order models. Assuming a hidden Markov chain, the inference
integrates the uncertainty of the hidden states relying on their posterior distribution. Simulations show the
benefits obtained by exploiting the proposed framework.

6. Bilateral Contracts and Grants with Industry
6.1. Bilateral contracts with industry
6.1.1. Optimization of sensors location and activation (DUCATI) — contract with DGA /

Techniques navales
Participant: François Le Gland.

See 3.3, 4.2 and 5.4

Inria contract ALLOC 7326 — April 2013 to December 2016.

This is a collaboration with Christian Musso (ONERA, Palaiseau) and with Sébastien Paris (LSIS, université
du Sud Toulon Var).

The objective of this project is to optimize the position and activation times of a few sensors deployed by
one or several platforms over a search zone, so as to maximize the probability of detecting a moving target.
The difficulty here is that the target can detect an activated sensor before it is detected itself, and it can then
modify its own trajectory to escape from the sensor. This makes the optimization problem a spatio–temporal
problem. Our contribution has been to study different ways to merge two different solutions to the optimization
problem : a fast, though suboptimal, solution developped by ONERA in which sensors are deployed where
and when the probability of presence of a target is high enough, and the optimal population–based solution
developped by LSIS and Inria in a previous contract (Inria contract ALLOC 4233) with DGA / Techniques
navales.
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6.2. Bilateral grants with industry
6.2.1. Hybrid indoor navigation — PhD grant at CEA LETI

Participants: François Le Gland, Kersane Zoubert–Ousseni.

This is a collaboration with Christophe Villien (CEA LETI, Grenoble).

The issue here is user localization, and more generally localization–based services (LBS). This problem is
addressed by GPS for outdoor applications, but no such general solution has been provided so far for indoor
applications. The desired solution should rely on sensors that are already available on smartphones and other
tablet computers. Inertial solutions that use MEMS (microelectromechanical system, such as accelerometer,
magnetometer, gyroscope and barometer) are already studied at CEA. An increase in performance should
be possible, provided these data are combined with other available data: map of the building, WiFi signal,
modeling of perturbations of the magnetic field, etc. To be successful, advanced data fusion techniques should
be used, such as particle filtering and the like, to take into account displacement constraints due to walls in
the building, to manage several possible trajectories, and to deal with rather heterogeneous information (map,
radio signals, sensor signals).

The main objective of this thesis is to design and tune localization algorithms that will be tested on platforms
already available at CEA. Special attention is paid to particle smoothing and particle MCMC algorithms, to
exploit some very precise information available at special time instants, e.g. when the user is clearly localized
near a landmark point.

7. Partnerships and Cooperations

7.1. Regional initiatives
7.1.1. Stochastic Model-Data Coupled Representations for the Upper Ocean Dynamics

(SEACS) — inter labex project
Participants: François Le Gland, Valérie Monbet.

January 2015 to December 2017.

This is a joint research initiative supported by the three labex active in Brittany, CominLabs (Communication
and Information Sciences Laboratory), Lebesgue (Centre de Mathématiques Henri Lebesgue) and LabexMER
(Frontiers in Marine Research).

This project aims at exploring novel statistical and stochastic methods to address the emulation, reconstruction
and forecast of fine–scale upper ocean dynamics. The key objective is to investigate new tools and methods
for the calibration and implementation of novel sound and efficient oceanic dynamical models, combining

• recent advances in the theoretical understanding, modeling and simulation of upper ocean dynamics,

• and mass of data routinely available to observe the ocean evolution.

In this respect, the emphasis will be given to stochastic frameworks to encompass multi–scale/multi–source
approaches and benefit from the available observation and simulation massive data. The addressed scientific
questions constitute basic research issues at the frontiers of several disciplines. It crosses in particular
advanced data analysis approaches, physical oceanography and stochastic representations. To develop such an
interdisciplinary initiative, the project gathers a set of research groups associated with these different scientific
domains, which have already proven for several years their capacities to interact and collaborate on topics
related to oceanic data and models. This project will place Brittany with an innovative and leading expertise
at the frontiers of computer science, statistics and oceanography. This transdisciplinary research initiative is
expected to resort to significant advances challenging the current thinking in computational oceanography.

http://www.cominlabs.ueb.eu/
http://www.cominlabs.ueb.eu/
http://www.lebesgue.fr/
http://www.labexmer.eu/en
http://www.labexmer.eu/en
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7.2. National initiatives
7.2.1. Computational Statistics and Molecular Simulation (COSMOS) — ANR challenge

Information and Communication Society
Participant: Frédéric Cérou.

Inria contract ALLOC 9452 — January 2015 to December 2017.

The COSMOS project aims at developing numerical techniques dedicated to the sampling of high–dimensional
probability measures describing a system of interest. There are two application fields of interest: computational
statistical physics (a field also known as molecular simulation), and computational statistics. These two fields
share some common history, but it seems that, in view of the quite recent specialization of the scientists
and the techniques used in these respective fields, the communication between molecular simulation and
computational statistics is not as intense as it should be.

We believe that there are therefore many opportunities in considering both fields at the same time: in particular,
the adaption of a successful simulation technique from one field to the other requires first some abstraction
process where the features specific to the original field of application are discarded and only the heart of the
method is kept. Such a cross–fertilization is however only possible if the techniques developed in a specific
field are sufficiently mature: this is why some fundamental studies specific to one of the application fields are
still required. Our belief is that the embedding in a more general framework of specific developments in a
given field will accelerate and facilitate the diffusion to the other field.

7.2.2. Advanced Geophysical Reduced–Order Model Construction from Image Observations
(GERONIMO) — ANR programme Jeunes Chercheuses et Jeunes Chercheurs
Participant: Patrick Héas.

Inria contract ALLOC 8102 — March 2014 to February 2018.

The GERONIMO project aims at devising new efficient and effective techniques for the design of geophysical
reduced–order models (ROMs) from image data. The project both arises from the crucial need of accurate
low–order descriptions of highly–complex geophysical phenomena and the recent numerical revolution which
has supplied the geophysical scientists with an unprecedented volume of image data. Our research activities
are concerned by the exploitation of the huge amount of information contained in image data in order to reduce
the uncertainty on the unknown parameters of the models and improve the reduced–model accuracy. In other
words, the objective of our researches to process the large amount of incomplete and noisy image data daily
captured by satellites sensors to devise new advanced model reduction techniques. The construction of ROMs
is placed into a probabilistic Bayesian inference context, allowing for the handling of uncertainties associated
to image measurements and the characterization of parameters of the reduced dynamical system.

7.3. International research visitors
7.3.1. Visits to international teams

François Le Gland has been invited by Joaquín Míguez to visit the department of signal theory and communi-
cations of Universidad Carlos III de Madrid, in February 2015.

8. Dissemination

8.1. Promoting scientific activities
8.1.1. Scientific events organisation

Valérie Monbet has co–organized the workshop on Stochastic Model-Data Coupled Representations for the
Upper Ocean Dynamics, the kick–off meeting of the SEACS project, held in Landeda in May 2015.

http://pagesperso.univ-brest.fr/~ailliot/SEACS1.html
http://pagesperso.univ-brest.fr/~ailliot/SEACS1.html
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8.1.2. Journal
Valérie Monbet has been the guest editor of a special issue (volume 156, number 1) on stochastic weather
generators, in Journal de la Société Française de Statistique.

8.1.3. Invited talks
Valérie Monbet has given an invited talk on Markov–switching vector autoregressive models for multivariate
time series of air temperature, at 47èmes Journées de Statistique, held in Lille in June 2015.

8.2. Teaching, supervision, thesis committees
8.2.1. Teaching

Patrick Héas gives a course on Monte Carlo simulation methods in image analysis at université de Rennes 1,
within the SISEA (signal, image, systèmes embarqués, automatique, école doctorale MATISSE) track of the
master in electronical engineering and telecommunications.

François Le Gland gives

• a course on Kalman filtering and hidden Markov models, at université de Rennes 1, within the SISEA
(signal, image, systèmes embarqués, automatique, école doctorale MATISSE) track of the master in
electronical engineering and telecommunications,

• a 3rd year course on Bayesian filtering and particle approximation, at ENSTA (école nationale
supérieure de techniques avancées), Paris, within the systems and control module,

• a 3rd year course on linear and nonlinear filtering, at ENSAI (école nationale de la statistique et de
l’analyse de l’information), Ker Lann, within the statistical engineering track,

• and a 3rd year course on hidden Markov models, at Télécom Bretagne, Brest.

Valérie Monbet gives several courses on data analysis, on time series, and on mathematical statistics, all at
université de Rennes 1 within the master on statistics and econometrics.

8.2.2. Supervision
François Le Gland and Valérie Monbet are jointly supervising one PhD student

• Chau Thi Tuyet Trang, provisional title: Non parametric filtering for Metocean multi–source
data fusion, université de Rennes 1, started in October 2015, expected defense in October 2018,
co–direction: Pierre Ailliot (université de Bretagne Occidentale).

François Le Gland is supervising two others PhD students

• Alexandre Lepoutre, provisional title: Detection issues in track–before–detect, université de
Rennes 1, started in October 2010, expected defense in 2016, funding: ONERA grant, co–direction:
Olivier Rabaste (ONERA, Palaiseau),

• Kersane Zoubert–Ousseni, provisional title: Particle filters for hybrid indoor navigation with smart-
phones, université de Rennes 1, started in December 2014, expected defense in 2017, funding: CEA
grant, co–direction: Christophe Villien (CEA LETI, Grenoble).

Valérie Monbet is supervising one other PhD student

• Audrey Poterie, provisional title: Régression d’une variable ordinale par des données longitudinales
de grande dimension : application à la modélisation des effets secondaires suite à un traitement par
radiothérapie, université de Rennes 1, started in October 2015, expected defense in October 2018,
co–direction : Jean–François Dupuy (INSA de Rennes), Laurent Rouvière (université de Haute
Bretagne).

http://people.rennes.inria.fr/Patrick.Heas/cours.html
http://www.irisa.fr/aspi/legland/rennes-1/
http://www.irisa.fr/aspi/legland/ensta/
http://www.irisa.fr/aspi/legland/ensai/
http://www.irisa.fr/aspi/legland/telecom-bretagne/
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8.2.3. Thesis committees
François Le Gland has been a reviewer for the PhD theses of Jana Kalawoun (université Paris Sud, Orsay,
advisors: Gilles Celeux and Patrick Pamphile) and Antoine Campi (université Paul Sabatier, Toulouse,
advisors: Christophe Baehr, Alain Dabas and Pierre Del Moral). He has also been a member of the committee
for the PhD thesis of Eugenia Koblents (Universidad Carlos III de Madrid, advisor: Joaquín Míguez).

Valérie Monbet has been a member of the committee for the PhD theses of Xavier Kergadallan (École des Pont
ParisTech, advisor: Michel Benoit) and Khalil El Waled (université de Haute Bretagne, advisor: Dominique
Dehay).

8.3. Participation in workshops, seminars, lectures, etc.
In addition to presentations with a publication in the proceedings, which are listed at the end of the document
in the bibliography, members of ASPI have also given the following presentations.

Frédéric Cérou has presented the results about the convergence of ABC at the probability and stochastic
processes seminar of université de Rennes 1, and at the applied mathematics seminar of université de Nantes,
both in November 2015.

Patrick Héas has given a talk on 3D wind field reconstruction by infrared sounding, at EUMETSAT (European
Organisation for the Exploitation of Meteorological Satellites) in Darmstadt, Germany, in June 2015, and a
talk on reduced–order modeling of hidden dynamics, at the international workshop on reduced basis, POD and
PGD model reduction techniques, held in Cachan in November 2015.

François Le Gland has given a talk on simulation–based algorithms for the optimization of sensor deployment
at the department of signal theory and communications of Universidad Carlos III de Madrid, in February 2015,
and a talk on marginalization in rare event simulation for switching diffusions at the ONERA workshop on
particle algorithms, held in Toulouse in May 2015.

Valérie Monbet has given a talk on switching autoregressive models for stochastic weather generators, and
application to temperature series, at the kick–off meeting of the SEACS project, held in Landeda in May 2015.

Kersane Zoubert–Ousseni has given a poster presentation at the summer school on Foundations and Advances
in Stochastic Filtering, held in Barcelona in June 2015.
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