

[image: cover]

 ATEAMS

 Analysis and Transformation based on rEliAble tool coMpositionS

 2015 Project-Team Activity Report
	

 Research centre:
 Lille - Nord Europe

 Field: Algorithmics, Programming, Software and Architecture
Theme: Architecture, Languages and Compilation

 Computer Science and Digital Science:

 	1. - Architectures, systems and networks

 	2. - Software

 	2.1.1. - Semantics of programming languages

 	2.1.10. - Domain-specific languages

 	2.1.2. - Object-oriented programming

 	2.1.3. - Functional programming

 	2.2.1. - Static analysis

 	2.5. - Software engineering

 Other Research Topics and Application Domains:

 	6.1. - Software industry

 	6.1.1. - Software engineering

 	6.1.2. - Software evolution, maintenance

 	6.6. - Embedded systems

 Project-Team Ateams

 Members

 Overall Objectives	Presentation

 Research Program	Research method
	Software analysis
	Refactoring and Transformation
	The Rascal Meta-programming language
	Domain-specific Languages

 Highlights of the Year

 New Software and Platforms	MicroMachinations
	OSSMETER
	Rascal
	Meerkat
	Iguana
	Capsule

 New Results	Faster Immutable Data Structures for the JVM
	Automated Measurement and Analysis of Open Source Software
	Modular Interpreters for the Masses
	One Parser to Rule Them All
	A Pattern-Based Game Mechanics Design Assistant

 Bilateral Contracts and Grants with Industry	Bilateral Grants with Industry

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Initiatives

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2009 July 01, end of the Project-Team: 2015 December 31
Section: Members
Research Scientists
Jurgen Vinju [Team leader, Centrum Wiskunde & Informatica, Professor]
Tijs Van Der Storm [Centrum Wiskunde & Informatica]
Jan Van Eijck [Centrum Wiskunde & Informatica]
Faculty Member
Paul Klint [Centrum Wiskunde & Informatica, Professor]
Engineers
Maarten Dijkema [Centrum Wiskunde & Informatica]
Bert Lisser [Centrum Wiskunde & Informatica]
PhD Students
Ali Afroozeh [Centrum Wiskunde & Informatica]
Pablo Inostroza Valdera [Centrum Wiskunde & Informatica]
Anastasia Izmaylova [Centrum Wiskunde & Informatica]
Davy Landman [Centrum Wiskunde & Informatica]
Michael Steindorfer [Centrum Wiskunde & Informatica]
Riemer Van Rozen [Centrum Wiskunde & Informatica]
Jouke Stoel [Centrum Wiskunde & Informatica]
Administrative Assistant
Sandrine Meilen [Inria]

 Overall Objectives

 	Overall Objectives	Presentation

 Section:
 Overall Objectives

 Presentation

 Software is very complex, and it seems to become more complex every year.
Over the last decades, computer science has delivered various insights how to
organize software better. Via structured programming, modules, objects,
components and agents, these days software systems are more and more evolving
into “systems of systems” that provide services to each other. Each system is
large, uses incompatible — new, outdated or non-standard — technology and
above all, exhibits failures.

 It is becoming more and more urgent to analyze the properties of these
complicated, heterogeneous and very large software systems and to refactor and
transform them to make them simpler and to keep them up-to-date. With the
plethora of different languages and technology platforms it is becoming very
difficult and very expensive to construct tools to achieve this.

 The main challenge of ATEAMS is to address this combination of a need for all
kinds of novel analysis and transformation tools and the existence of the
diversity of programming environments. We do this by investing in a virtual
laboratory called “Rascal”. It is a domain specific programming language for
source code analysis, transformation and generation. Rascal is programming
language parametric, such that it can be used to analyze, transform or
generated source code in any language. By combining concepts from both program
analysis and transformation into this language we can efficiently experiment
with all kinds of tools and algorithms.

 We now focus on three sub-problems. Firstly, we study software analysis: to
extract information from existing software systems and to analyze it. The
extracted information is vital to construct sound abstract models that can
be used in further analysis. We apply these extraction techniques now to
analyze (large bodies of) source code: finding bugs and finding the causes
of software complexity.

 Secondly, we study refactoring: to semi-automatically improve the quality
of a software system without changing its behavior. Refactoring tools are a
combination of analysis and transformations. Implementations of refactoring
tools are complex and often broken. We study better ways of designing
refactorings and we study ways to enable new (more advanced and useful)
refactorings. We apply these refactorings now to isolate design choices in
large software systems and compare systems that are equal except a single
design choice.

 Finally, we study code generation from domain specific languages
(DSLs). Here we also find a combination of analysis and
transformation. Designing, implementing and, very importantly,
maintaining DSLs is costly. We focus on application areas such as
Computational Auditing, Game Economies, and Core Banking to experiment
with this subject. In Computational Auditing we are focusing on
modeling interactive questionnaires. The Game economies domain
involves modeling and verifying the dynamic behaviour of game
play. Core banking requires the formal modeling of financial services
and products.

 Research Program

 	Research Program	Research method
	Software analysis
	Refactoring and Transformation
	The Rascal Meta-programming language
	Domain-specific Languages

 Section:
 Research Program

 Research method

 We are inspired by formal methods and logic to construct new tools for
software analysis, transformation and generation. We try and proof the
correctness of new algorithms using any means necessary.

 Nevertheless we mainly focus on the study of existing (large) software
artifacts to validate the effectiveness of new tools. We apply the
scientific method. To (in)validate our hypothesis we often use detailed
manual source code analysis, or we use software metrics, and we have
started to use more human subjects (programmers).

 Note that we maintain ties with the CWI spinoff “Software Improvement
Group” which services most of the Dutch software industry and
government
and many European companies as well. This provides access to software
systems and information about software systems that is valuable in our
research.

 Section:
 Research Program

 Software analysis

 This research focuses on source code; to analyze it, transform it
and generate it. Each analysis or transformation begins with fact
extraction. After that we may analyze specific software systems or
large bodies of software systems. Our goal is to improve software
systems by understanding and resolving the causes of software
complexity. The approach is captured in the EASY acronym: Extract
Analyze SYnthesize. The first step is to extract facts from source
code. These facts are then enriched and refined in an analysis phase.
Finally the result is synthesized in the form of transformed or
generated source code, a metrics report, a visualization or some
other output artifact.

 The mother and father of fact extraction techniques are probably Lex, a
scanner generator, and AWK, a language intended for fact extraction from
textual records and report generation. Lex is intended to read a file
character-by-character and produce output when certain regular
expressions (for identifiers, floating point constants, keywords) are
recognized. AWK reads its input line-by-line and regular expression
matches are applied to each line to extract facts. User-defined actions
(in particular print statements) can be associated with each successful
match. This approach based on regular expressions is in wide use for
solving many problems such as data collection, data mining, fact
extraction, consistency checking, and system administration. This same
approach is used in languages like Perl, Python, and Ruby. Murphy and
Notkin have specialized the AWK-approach for the domain of fact
extraction from source code. The key idea is to extend the expressivity
of regular expressions by adding context information, in such a way that,
for instance, the begin and end of a procedure declaration can be
recognized. This approach has, for instance, been used for call graph
extraction but becomes cumbersome when more complex context information
has to be taken into account such as scope information, variable
qualification, or nested language constructs. This suggests using
grammar-based approaches as will be pursued in the proposed project.
Another line of research is the explicit instrumentation of existing
compilers with fact extraction capabilities. Examples are: the GNU C
compiler GCC, the CPPX C++ compiler, and the Columbus C/C++ analysis
framework. The Rigi system provides several fixed fact extractors for a
number of languages. The extracted facts are represented as tuples (see
below). The CodeSurfer source code analysis tool extracts a standard
collection of facts that can be further analyzed with built-in tools or
user-defined programs written in Scheme. In all these cases the
programming language as well as the set of extracted facts are fixed thus
limiting the range of problems that can be solved.

 The approach we are exploring is the use of syntax-related program
patterns for fact extraction. An early proposal for such a pattern-based
approach consisted of extending a fixed base language (either C or PL/1 variant)
with pattern matching primitives. In our own previous work on
RScript we have already proposed a query algebra to express direct queries
on the syntax tree. It also allows the querying of information that is
attached to the syntax tree via annotations. A unifying view is to consider
the syntax tree itself as “facts” and to represent it as a relation. This
idea is already quite old. For instance, Linton proposes to represent all
syntactic as well as semantic aspects of a program as relations and to use
SQL to query them. Due to the lack of expressiveness of SQL (notably the
lack of transitive closure) and the performance problems encountered, this
approach has not seen wider use.

 Parsing is a fundamental tool for fact extraction for source code. Our
group has longstanding contributions in the field of Generalized LR
parsing and Scannerless parsing. Such generalized parsing techniques
enable generation of parsers for a wide range of existing (legacy)
programming languages, which is highly relevant for experimental
research and validation.

 Extracted facts are often refined, enriched and queried in the
analysis phase. We propose to use a relational formalization of the
facts. That is, facts are represented as sets of tuples, which can
then be queried using relational algebra operators (e.g., domain,
transitive closure, projection, composition etc.). This relational
representation facilitates dealing with graphs, which are commonly
needed during program analysis, for instance when processing
control-flow or data-flow graphs. The Rascal language integrates a
relational sub-language by providing comprehensions over different
kinds of data types, in combination with powerful pattern matching and
built-in primitives for computing (transitive/reflexive) closures and
fixpoint computations (equation solving).

 Goals

 The main goal is to replace labour-intensive manual programming of
fact extractors by automatic generation based on concise and formal
specification. There is a wide open scientific challenge here: to
create a uniform and generic framework for fact extraction that is
superior to current more ad-hoc approaches, yet flexible enough to be
customized to the analysis case at hand. We expect to develop new
ideas and techniques for generic (language-parametric) fact extraction
from source code and other software artifacts.

 Given the advances made in fact extraction we are starting to apply our
techniques to observe source code and analyze it in detail.

 Section:
 Research Program

 Refactoring and Transformation

 The second goal, to be able to safely refactor or transform source
code can be realized in strong collaboration with extraction and
analysis.

 Software refactoring is usually understood as changing software with
the purpose of increasing its readability and maintainability rather
than changing its external behavior. Refactoring is an essential
tool in all agile software engineering methodologies. Refactoring is
usually supported by an interactive refactoring tool and consists of
the following steps:

 	
 Select a code fragment to refactor.

 	
 Select a refactoring to apply to it.

 	
 Optionally, provide extra parameter needed by the refactoring
(e.g., a new name in a renaming).

 The refactoring tool will now test whether the
preconditions for the refactoring are satisfied. Note that this
requires fact extraction from the source code. If this fails the user
is informed. The refactoring tool shows the effects of the refactoring
before effectuating them. This gives the user the opportunity to
disable the refactoring in specific cases.The refactoring tool applies
the refactoring for all enabled cases. Note that this implies a
transformation of the source code. Some refactorings can be applied to
any programming language (e.g., rename) and others are language
specific (e.g., Pull Up Method). At http://www.refactoring.com
an extensive list of refactorings can be found.

 There is hardly any general and pragmatic theory for refactoring,
since each refactoring requires different static analysis techniques
to be able to check the preconditions. Full blown semantic
specification of programming languages have turned out to be
infeasible, let alone easily adaptable to small changes in language
semantics. On the other hand, each refactoring is an instance of the
extract, analyze and transform paradigm. Software transformation
regards more general changes such as adding functionality and
improving non-functional properties like performance and reliability.
It also includes transformation from/to the same language
(source-to-source translation) and transformation between different
languages (conversion, translation). The underlying techniques for
refactoring and transformation are mostly the same. We base our source
code transformation techniques on the classical concept of term
rewriting, or aspects thereof. It offers simple but powerful pattern
matching and pattern construction features (list matching, AC
Matching), and type-safe heterogenous data-structure traversal methods
that are certainly applicable for source code transformation.

 Goals

 Our goal is to integrate the techniques from program transformation
completely with relational queries. Refactoring and transformation
form the Achilles Heel of any effort to change and improve software.
Our innovation is in the strict language-parametric approach that may
yield a library of generic analyses and transformations that can be
reused across a wide range of programming and application languages.
The challenge is to make this approach scale to large bodies of source
code and rapid response times for precondition checking.

 Section:
 Research Program

 The Rascal Meta-programming language

 The Rascal Domain-Specific Language for Source code analysis and
Transformation is developed by ATeams. It is a language
specifically designed for any kind of meta programming.

 Meta programming is a large and
diverse area both conceptually and technologically. There are
plentiful libraries, tools and languages available but integrated
facilities that combine both source code analysis and source code transformation are scarce.
Both domains depend on a wide range of concepts such as grammars and
parsing, abstract syntax trees, pattern matching, generalized tree
traversal, constraint solving, type inference, high fidelity
transformations, slicing, abstract interpretation, model checking, and
abstract state machines. Examples of tools that implement some of
these concepts are ANTLR,
ASF+SDF, CodeSurfer,
Crocopat, DMS, Grok,
Stratego, TOM and
TXL. These tools either specialize in analysis or in
transformation, but not in both. As a result, combinations of
analysis and transformation tools are used to get the job done. For
instance, ASF+SDF relies on
RScript for querying and TXL
interfaces with databases or query tools. In other approaches,
analysis and transformation are implemented from scratch, as done in
the Eclipse JDT. The TOM tool adds
transformation primitives to Java, such that libraries for analysis
can be used directly. In either approach, the job of integrating
analysis with transformation has to be done over and over again for
each application and this requires a significant investment.

 We propose a more radical solution by completely merging the set of
concepts for analysis and transformation of source code into a single
language called Rascal. This language covers the range of
applications from pure analyses to pure transformations and everything
in between. Our contribution does not consist of new concepts or
language features per se, but rather the careful
collaboration, integration and cross-fertilization of existing
concepts and language features.

 Goals

 The goals of Rascal are: (a) to remove the cognitive and
computational overhead of integrating analysis and transformation
tools, (b) to provide a safe and interactive environment for
constructing and experimenting with large and complicated source code
analyses and transformations such as, for instance, needed for
refactorings, and (c) to be easily understandable by a large group of
computer programming experts. Rascal is not limited to one
particular object programming language, but is generically applicable.
Reusable, language specific, functionality is realized as libraries.
As an end-result we envision Rascal to be a one-stop shop for source
code analysis, transformation, generation and visualization.

 Section:
 Research Program

 Domain-specific Languages

 Our final goal is centered around Domain-specific languages (DSLs),
which are software languages tailored to a specific problem domain.
DSLs can provide orders of magnitude improvement in terms of
software quality and productivity. However, the implementation of
DSLs is challenging and requires not only thorough knowledge of the
problem domain (e.g., finance, digital forensics, insurance,
auditing etc.), but also knowledge of language implementation (e.g.,
parsing, compilation, type checking etc.). Tools for language
implementation have been around since the archetypical parser
generator YACC. However, many of such tools are characterized by
high learning curves, lack of integration of language implementation
facets, and lead to implementations that are hard to maintain. This
line of research focuses on two topics: improve the practice and
experience of DSL implementation, and evaluate the success of DSLs
in industrial practice.

 Language workbenches [5] are integrated
environments to facilitate the development of all aspects of DSLs. This
includes IDE support (e.g., syntax coloring, outlining, reference
resolving etc.) for the defined languages. Rascal can be seen as a
language workbench that focuses on flexibility, programmability and
modularity. DSL implementation is, in essence, an instance of source
code analysis and transformation. As a result, Rascal's features for
fact extraction, analysis, tree traversal and synthesis are an
excellent fit for this area. An important aspect in this line of
research is bringing the IDE closer to the source code. This will
involve investigation of heterogeneous representations of source code,
by integrating graphical, tabular or forms-based user interface
elements. As a result, we propose Rascal as a feature-rich workbench
for model-driven software development.

 The second component of this research is concerned with evaluating
DSLs in industrial contexts. This means that DSLs constructed using
Rascal will be applied in real-life environments so that expected
improvements in quality, performance, or productivity can be observed.
We already have experience with this in the domain of digital forensics,
computational auditing and games.

 Goals

 The goal of this research topic is to improve the practice of
DSL-based software development through language design and tool
support. A primary focus is to extend the IDE support provided by
Rascal, and to facilitate incremental, and iterative design of DSLs.
The latter is supported by new (meta-)language constructs for
extending existing language implementations. This will require
research into extensible programming and composition of compilers,
interpreters and type checkers. Finally, a DSL is never an island: it
will have to integrate with (third-party) source code, such as host
language, libraries, runtime systems etc. This leads to the vision of
multi-lingual programming environments [15] .

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 Awards

 Prof.dr. Paul Klint won the IEEE TCSE Software Engineering Distinguished Service Award 2015. This award is presented “annually for outstanding and/or sustained contributions and service to the software engineering community”.

 New Software and Platforms

 	New Software and Platforms	MicroMachinations
	OSSMETER
	Rascal
	Meerkat
	Iguana
	Capsule

 Section:
 New Software and Platforms

 MicroMachinations

 Functional Description

 Objective: To create an integrated, live environment for modelling and evolving game economies. This will allow game designers to experiment with different strategies to realise game mechanics. The environment integrates with the SPIN model checker to prove properties (reachability, liveness). A runtime system for executing game economies allows MicroMachinations models to be embedded in actual games.

 Impact: One of the important problems in game software development is the distance between game design and implementation in software. MicroMachinations has the potential to bridge this gap by providing live design tools that directly modify or create the desired software behaviours.

 	
 Participants: Paul Klint and Riemer Van Rozen

 	
 Contact: Riemer Van Rozen

 	
 URL: https://github.com/vrozen/MM-Lib

 Section:
 New Software and Platforms

 OSSMETER

 Keywords: Software Quality, Metrics, Open-source
Scientific description: OSSMETER meets the challenge of software project quality assessment via fact-based business intelligence. The goal of the project was to design and evaluate a platform for incremental analysis of long lasting open-source projects to support decision making on the corporate level.
Functional description: OSSMETER is a platform which integrates metrics of open-source projects: their source code quality, the contents of their social interactions and their activity in issue tracking systems. It includes a fully programmable user-defined quality model utility and configurable dash-board user-interface. The basic metrics of the platform and their aggregation to the project level are carefully considered and rationalised.

 	
 Participants: Paul Klint, Jurgen Vinju, Tijs Van Der Storm, Ashim Shahi, Bas Basten.

 	
 Contact: Jurgen Vinju

 	
 URL: http://www.ossmeter.org/

 Section:
 New Software and Platforms

 Rascal

 Keywords: Metaprogramming - Language

 Scientific Description

 Rascal primitives include immutable data, context-free grammars and algebraic data-types, relations, relational calculus operators, advanced patterns matching, generic type-safe traversal, comprehensions, concrete syntax for objects, lexically scoped backtracking, and string templates for code generation. It has libraries for integrating language front-ends, for reusing analysis algorithms, for getting typed meta-data out of version management systems, for interactive visualization, etc.

 Functional Description

 Rascal is a programming language, such that meta programs can be created by, understood by, and debugged by programmers.

 You want to use the best tool for the job when analyzing, transforming or generating source code, so normally you will end up with many different tools, possibly even written in different languages. Now the problem is to integrate these tools again. Rascal solves this problem by integrating source code analysis, transformation, and generation primitives on the language level. Use it for any kind of metaprogramming task: to construct parsers for programming languages, to analyze and transform source code, or to define new DSLs with full IDE support.

 	
 Participants: Paul Klint, Jurgen Vinju, Tijs Van Der Storm, Davy Landman, Bert Lisser, Atze Van Der Ploeg, Vadim Zaytsev, Anastasia Izmaylova, Michael Steindorfer, Jouke Stoel, Ali Afroozeh and Ashim Shahi

 	
 Contact: Paul Klint

 	
 URL: http://www.rascal-mpl.org/

 Section:
 New Software and Platforms

 Meerkat

 Functional Description

 Objective: To enable fully context-free general parsing using a parser combinator library (including allowing left recursion and arbitrary context-sensitive disambiguation).

 Impact: Meerkat explores algorithmic advances in context-free general parsing (based on the GLL parsing algorithm and memoized continuations) in the context of a scala parsing combinator library. This library uniquely combines the worst-case execution time guarantees of GLL with the flexibility of parsing combinators. [47]

 	
 Participants: Anastasia Izmaylova, Ali Afroozeh and Tijs van der Storm.

 	
 Contact: Anastasia Izmaylova, Ali Afroozeh

 	
 URL: http://meerkat-parser.github.io/

 Section:
 New Software and Platforms

 Iguana

 Functional Description

 Objective: To provide a data-dependent context-free general parsing infra-structure for parsing programming languages and other formal data, program and modeling notations.

 Impact: Iguana is a fast implementation of data-dependent grammars based on the GLL context-free parsing algorithm with data-dependent non-terminals and constraints on top. It comes with a number of high-level disambiguation constructs which are translated to the intermediate layer of data-dependent (E)BNF before being loaded into an object-oriented implementation of GLL based on abstract transition network. Using Iguana parsers for languages which are considered to be hard to parse (such as Haskell and OCAML) are within reach of being generated from simple declarative specifications [25] .

 	
 Participants: Anastasia Izmaylova, Ali Afroozeh.

 	
 Contact: Anastasia Izmaylova, Ali Afroozeh

 	
 URL: http://iguana-parser.github.io/

 Section:
 New Software and Platforms

 Capsule

 Functional Description

 Objective: A generic and highly optimised product-family of immutable collection data-structures.

 Impact: Capsule is a library for immutable sets, maps and tables. The code is generated using high-level descriptions of the requirements and internal trade-offs of hash-trie map based implementations. We are using this code generator to experiment with the fastest and leanest representations of these persistent data-types to satisfy the requirements of Rascal meta-programming applications in static analysis, empirical research in software engineering and software analytics [37] .

 	
 Participants: Michael Steindorfer, Jurgen Vinju

 	
 Contact: Michael Steindorfer

 	
 URL: http://usethesource.io/projects/capsule/

 New Results

 	New Results	Faster Immutable Data Structures for the JVM
	Automated Measurement and Analysis of Open Source Software
	Modular Interpreters for the Masses
	One Parser to Rule Them All
	A Pattern-Based Game Mechanics Design Assistant

 Section:
 New Results

 Faster Immutable Data Structures for the JVM

 Immutable data structures involve copying when updating. Efficient implementations use persistent data-structures, so that most of the unchanged data is shared between the copies.
Existing libraries for such data structures in the context of the Java virtual machine (JVM), such as the data structures in Clojure and Scala, are based on Hash Array-Mapped Tries (HAMTs), which provide efficient insertion and concatenation operations for persistent maps and sets. In [37] Steindorfer and Vinju presented additional optimisation which allow such operations to be up to 28 times faster than in the Clojure and Scala libraries. Furthermore, the cost of equality checking of such data structures is lower as well. All this, without incurring additional memory.

 Section:
 New Results

 Automated Measurement and Analysis of Open Source Software

 Deciding whether an open source software (OSS) meets the required
standards for adoption in terms of quality, maturity, activity of development and
user support is not a straightforward process. It involves analysing various sources
of information, including the project’s source code repositories, communication
channels, and bug tracking systems. OSSMETER extends state-of-the-art techniques
in the field of automated analysis and measurement of open-source software
(OSS), and develops a platform that supports decision makers in the process
of discovering, comparing, assessing and monitoring the health, quality, impact
and activity of opensource software. To achieve this, OSSMETER computes
trustworthy quality indicators by performing advanced analysis and integration
of information from diverse sources including the project metadata, source code
repositories, communication channels and bug tracking systems of OSS projects [29] , [26]

 This result comes from intensive collaboration in the FP7 STREP project “OSSMETER”. The ATEAMS contribution is focused around source code metrics and activity analysis for Java and PHP.

 Section:
 New Results

 Modular Interpreters for the Masses

 Object Algebras [46] are new design pattern for increased modularity and extensibility of tree based, abstract data types. By modelling the abstract syntax of a language as a generic factory interface, implementations of this interface provide multiple semantics of the data. For instance, one can define evaluation, type checking and pretty printing of the abstract syntax fully modularly. Additionally, the pattern allows syntax extension: adding a new constructor to the datatype, and modularly extending any existing interpretations to deal with the construct. The same interpretation of different constructs, however, might involve different kinds of context information. For instance, evaluation of arithmetic expressions does not require any context information, but evaluation of variables and binders requires and environment. In [34] , Inostroza and Van der Storm introduce a simple, modular, and type safe technique to allow such interpretations to be composed anyway. It is based on lifting one interpreter to implicitly propagate the context information it does not require, so that the signatures of the interpreters become compatible. As a result, semantic definitions of language modules do not have to anticipate all kinds of context information that might be required by other modules with which it might be composed. The technique is simple, does not sacrifice separate compilation, is easy automate, and works in mainstream languages. It provides a first step towards a foundation for defining language by assembling modular building blocks.

 Section:
 New Results

 One Parser to Rule Them All

 Parsing realistic languages requires much more than just a parsing algorithm. Different kinds of language require advanced disambiguation, operator priorities, off-side rule checking, whitespace dependence or data dependence. In [25] , Afroozeh and Izmaylova showed how most of these concerns are actually instances of data dependent parsing: the parsing process depends on the value of previously parsed input. They provided an encoding of indentation sensitive parsing, operator precedence and parsing in the presence of preprocessor directives, to a simple, data dependent core language which is executed using the general parsing algorithm GLL. By exposing the data dependent machinery at the level of the grammar formalism , this opens up a range of possibilities for custom parsing aspects, and provides a clear semantics for existing concerns like disambiguation.

 Section:
 New Results

 A Pattern-Based Game Mechanics Design Assistant

 Video game designers iteratively improve player experience by play testing game software and adjusting its design. Deciding how to improve gameplay, however, is difficult and time-consuming: designers lack an effective means for exploring decision alternatives and modifying a game's mechanics.
In [35] , Van Rozen presented the Mechanics Pattern Language (MPL) for encoding common game economy structures and design intent, and a Mechanics Design Assistant (MeDeA) for analyzing, explaining, understanding existing mechanics, and generating, filtering, exploring and applying design alternatives for modifying mechanics.
As a result, game designers' productivity and game quality is increased by providing feedback and design alternatives early in the development cycle. Furthermore, the game economy modifications are applied at runtime using the MicroMachinations library, so that the effect of changes can be immediately experienced.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Grants with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Grants with Industry

 With the ING bank we a running a four-year project on advising and research in functional and non-functional properties of a part of the ING IT-infrastructure. The project involves modelling a large part of the product portfolio and using state-of-the-art MDE technology to simulate, verify and generate part of its IT infra-structure. The funding of this project is approximately 50% industry, 50% grants from CWI & NWO.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 General chair, scientific chair

 	
 Tijs van der Storm: co-organizer of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI'15).

 Member of the organizing committees

 	
 Tijs van der Storm: Publicity co-chair SPLASH and track organizer SPLASH-I

 	
 Jurgen Vinju: co-organizer Bits & Chips Software Event (Legacy Software Track), Eindhoven, The Netherlands

 Scientific events selection

 Member of the conference program committees

 	
 Paul Klint: International Conference on Software Language Engineering (SLE'15), 14th edition of the BElgian-NEtherlands software eVOLution seminar (BENEVOL 2015), 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER'15)

 	
 Tijs van der Storm: International Conference on Model Transformation (ICMT'15), International Conference on Software Language Engineering (SLE'15), Transformation Tool Context (TTC'15), Future Programming Workshop (FPW'15).

 	
 Jurgen Vinju: 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE'15), 3rd International Workshop on
The Globalization of Modeling Languages
Workshop (GEMOC'15), 5th Summer School on Grand Timely Topics in Software Engineering (GTTSE'15), IEEE International Conference on Software Comprehension (ICPC'15), 14th edition of the BElgian-NEtherlands software eVOLution seminar (BENEVOL 2015).

 Reviewer

 Journal

 	
 Member of the editorial boards:

 	
 Paul Klint: editor of Science of Computer Programming (Elsevier SCP)

 	
 Reviewer - Reviewing activities:

 	
 Paul Klint: Science of Computer Programming

 	
 Tijs van der Storm: Science of Computer Programming (SCP), Computer Languages and Systems (COMLAN)

 	
 Jurgen Vinju: Science of Computer Programming (SCP), Computer Languages and Systems (COMLAN), Journal on Empirical Software Engineering (ESE), Journal of Software Maintenance and Evolution (JSME)

 Invited talks

 	
 Textual and projectional language workbenches. Tijs van der Storm, Dagstuhl on “Domain-Specific Languages”.

 	
 “Software Engineering: The War Against Complexity”, Jurgen Vinju. CHA-Q Open Tool Demonstrations Event (keynote), February 24, Antwerpen, Belgium.

 	
 “Program Analysis and Transformation with Rascal” tutorial at the 36th annual ACM SIGPLAN conference on Programming Language Design and Implementation (PLDI) in Portland, USA. Mark Hills, Jurgen Vinju, Paul Klint.

 Leadership within the scientific community

 Member of steering committees

 	
 Jurgen Vinju: International Conference on Software Language Engineering (ACM SLE) (chair)

 	
 Jurgen Vinju: International Working Conference on Source Analysis and Manipulation (IEEE SCAM)

 Member of other groups

 	
 Jurgen Vinju: Member of IFIP WG 2.3 — Working Group on Software Implementation Technology

 	
 Tijs van der Storm: Member of IFIP WG 2.16 — Working Group on Language Design

 	
 Tijs van der Storm: Member of the board of European Association for Programming Languages and Systems (EAPLS)

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Tijs van der Storm, “Software Construction”, Masters, Universiteit van Amsterdam

 	
 Jurgen J. Vinju, “Software Evolution”, Masters, Universiteit van Amsterdam

 Supervision

 	
 PhD : Atze van der Ploeg, “ Efficient Abstractions for Visualization and Interaction”,
Universiteit van Amsterdam, April, 8th, 2015
[48] (advisors: Tijs van der Storm and Paul Klint)

 	
 PhD in progress : Ali Afroozeh, “Closing the Book on Parsing”, 2017 (advisors: Jurgen Vinju and Paul Klint)

 	
 PhD in progress : Pablo Inostroza Valdera, “Modular Language Implementation with Object Algebras”, 2018 (advisors: Tijs van der Storm and Paul Klint)

 	
 PhD in progress : Anastasia Izmaylova, “Parser Combinators Revisited”, 2017 (advisors: Jurgen Vinju and Paul Klint)

 	
 PhD in progress : Davy Landman, “Source Code Complexity in Context” , 2016 (advisros: Jurgen Vinju and Paul Klint)

 	
 PhD in progress : Riemer van Rozen, “Domain-Specific Languages for Game Developmenr”, 2017 (advisors: Paul Klint and Tijs van der Storm)

 	
 PhD in progress : Michael Steindorfer, “Fast and Lean Immutable Data Structures”, 2017 (advisors: Jurgen Vinju and Paul Klint)

 	
 PhD in progress : Jouke Stoel, “Solving the Bank”, 2019 (advisors: Jurgen Vinju and Tijs van der Storm)

 	
 Msc : Zisimopolous, P.: “A Grid Scheduling infrastructure for SmartConnect's performance monitoring calculations”, Universiteit van Amsterdam, The Netherlands

 	
 Msc : Zhelyazkov, A.T.: “Form controls in WebGL. A stepping stone to a WebGL library for developing commercial interactive 3D websites”, Universiteit van Amsterdam, The Netherlands

 	
 Msc : Valencia Vargas, S.: “Begelman vs. FolkRank. The Comparison of Two Algorithms in the Tag Recommendation Context: An Exploratory Study”, Universiteit van Amsterdam, The Netherlands

 	
 Msc : Heimensen, M.: “JavaScript language extension with language workbenches”, Universiteit van Amsterdam, The Netherlands

 	
 Msc : Harezlak, H.: “Geographically-aware scaling for real-time persistent WebSocket applications”, Universiteit van Amsterdam, The Netherlands

 	
 Msc: Chow, K.: “Performance of Face Recognition Algorithms on Mobile Devices”, Universiteit van Amsterdam, The Netherlands

 	
 Msc: Iwan Flameling: “An automatic CSRF protection tool”, Universiteit van Amsterdam, The Netherlands

 	
 Msc: Omar Pakker: “Graph-Based Querying On top of the Entity Framework”, Universiteit van Amsterdam, The Netherlands

 Juries

 	
 Jurgen Vinju:

 	
 Phd Reza Yazdanshenas, A. — Universitet i Oslo, Norway

 	
 Phd Hafeez Osman, M. — Universiteit Leiden, The Netherlands

 Section:
 Dissemination

 Popularization

 	
 Ali Afroozeh and Anastasia Izmaylova: “Meerkat parsers: a general parser combinator library for real programming languages”, Scala Days 2015, Amsterdam, The Netherlands.

 	
 Paul Klint: “Paul Klint in RTL Nieuws over het nieuwe betalingssysteem van het pgb” (radio interview).

 	
 Paul Klint: “De evolutie van codetaal”, media appearance, NRC Handelsblad

 	
 Paul Klint: “Première internetfilm over Nederlands informatica erfgoed”, media appearance, Automatisering Gids.

 	
 Paul Klint: “Remembering Arra: a pioneer in Dutch computing”, media appearance, http://www.engineersonline.nl/ .

 	
 Davy Landman: “Let's talk about complexity”, Devnology software development community talk, Amsterdam, The Netherlands.

 	
 Tijs van der Storm: “Opportunities and Risks of MDSE: experience with Derric, a DSL for Digital Forensics”, Bits&Chips industry conference.

 	
 Jouke Stoel and Tijs van der Storm: “Hack Your Language with Rascal”, workshop at Joy of Coding conference, Rotterdam, The Netherlands.

 	
 Tijs van der Storm, “Live Little Languages”, JBI Colloquium, Groningen, The Netherlands.

 	
 Jurgen Vinju: “Public/Private Collaboration {in,for,with} Software Engineering”, 21st Annual Conference of the European Association of Research Managers and Administrators , Leiden, The Netherlands

 	
 Jurgen Vinju: OSSMETER Pitch EU Concertation Meeting - Turning cloud research into innovative software & services, March 25th 2015, Brussels, Belgium.

 	
 Jurgen Vinju: Challenges and Opportunities of Big Software-based Innovation NWO Big Software Match Making Day, July 1st, 2015, Utrecht, The Netherlands.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	B. Basten.
Tracking Down the Origins of Ambiguity in Context-Free Grammars, in: Seventh International Colloquium on Theoretical Aspects of Computing (ICTAC 2010), A. Cavalcanti, D. Deharbe, M.-C. Gaudel, J. Woodcock (editors), Springer, September 2010, vol. 6255, pp. 76-90.

 	[2]

 	P. Charles, R. M. Fuhrer, S. M. Sutton Jr, E. Duesterwald, J. Vinju.
Accelerating the Creation of Customized, Language-Specific IDEs in Eclipse, in: Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, S. Arora, G. T. Leavens (editors), 2009.

 	[3]

 	B. C. Dos Santos Oliveira, T. Van Der Storm, A. Loh, W. R. Cook.
Feature-Oriented Programming With Object Algebras, in: Proceedings of the European Conference on Object-Oriented Programming (ECOOP), 2013.
http://hal.inria.fr/hal-00923387

 	[4]

 	J. V. Eijck, C. Unger.
Computational Semantics with Functional Programming, Cambridge University Press, September 2010.

 	[5]

 	S. Erdweg, T. v. d. Storm, M. Voelter, L. Tratt, R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E. Visser, K. B. v. d. Vlist, G. Wachsmuth, J. M. v. d. Woning.
Evaluating And Comparing Language Workbenches: Existing Results And Benchmarks For The Future, in: Computer Languages, Systems and Structures, 2015, vol. 44, no Part A, pp. 24 - 47.
https://hal.inria.fr/hal-01261481

 	[6]

 	M. Hills, P. Klint, J. Vinju.
Program Analysis Scenarios In Rascal, in: Proceedings of the International Workshop on Rewriting Logic and its Applications (WRLA, 2012), Talinn, Estonia, F. Durán (editor), Springer, 2012, vol. 7571, pp. 10 - 30, An invited paper for WRLA 2012, describing our work on program analysis and comparing our approach to approaches based on rewriting logic semantics.
http://hal.inria.fr/hal-00756880

 	[7]

 	M. Hills, P. Klint, J. Vinju.
Scripting A Refactoring With Rascal And Eclipse, in: Proceedings of the 5th Workshop on Refactoring Tools 2012, Rapperswil, Switzerland, P. Sommerlad (editor), ACM, 2012, pp. 40 - 49.
http://hal.inria.fr/hal-00756879

 	[8]

 	M. Hills, P. Klint, T. Van Der Storm, J. Vinju.
A One-Stop Shop For Software Evolution Tool Construction, in: ERCIM News, 2012, no 88, pp. 11 - 12.
http://hal.inria.fr/hal-00756876

 	[9]

 	A. Izmaylova, P. Klint, A. Shahi, J. Vinju.
M3: An Open Model For Measuring Code Artifacts, 2013, no arXiv-1312.1188, pp. 1-2.
https://hal.inria.fr/hal-00923379

 	[10]

 	P. Klint, T. v. d. Storm, J. Vinju.
RASCAL: A Domain Specific Language for Source Code Analysis and Manipulation, in: IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'09), Los Alamitos, CA, USA, 2009, pp. 168-177.
http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28

 	[11]

 	P. Klint, T. Van Der Storm, J. Vinju.
EASY Meta-programming with Rascal, in: Generative and Transformational Techniques in Software Engineering III, J. Fernandes, R. Lämmel, J. Visser, J. Saraiva (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2011, vol. 6491, pp. 222-289.
http://dx.doi.org/10.1007/978-3-642-18023-1_6

 	[12]

 	P. Klint, R. Van Rozen.
Micro-Machinations: A DSL For Game Economies, in: Proceedings of the International Conference on Software Language Engineering (SLE, 2013), Unknown, M. Erwig, R. F. Paige, E. van Wyk (editors), Lecture Notes in Computer Science, Springer, 2013, vol. 8225, pp. 36 - 55.
https://hal.inria.fr/hal-00923383

 	[13]

 	A. Loh, T. Van Der Storm, W. R. Cook.
Managed Data: Modular Strategies For Data Abstraction, in: Proceedings of the ACM international symposium on New ideas, new paradigms, and reflections on programming and software 2012, Tucson, United States, ACM, 2012, pp. 179 - 194.
http://hal.inria.fr/hal-00756886

 	[14]

 	M. J. Steindorfer, J. J. Vinju.
Optimizing Hash-array Mapped Tries for Fast and Lean Immutable JVM Collections, in: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, New York, NY, USA, OOPSLA 2015, ACM, 2015, pp. 783–800.
http://doi.acm.org/10.1145/2814270.2814312

 	[15]

 	T. Van Der Storm, J. Vinju.
Towards Multilingual Programming Environments, in: Science of Computer Programming, 2013.
https://hal.inria.fr/hal-00923385

 	[16]

 	T. Van Der Storm, W. R. Cook, A. Loh.
Object Grammars: Compositional & Bidirectional Mapping Between Text and Graphs, in: Software Language Engineering, Dresden, Germany, K. Czarnecki, G. Hedin (editors), September 2012.
http://hal.inria.fr/hal-00758627

 	[17]

 	J. Vinju, M. W. Godfrey.
What does control flow really look like? Eyeballing the Cyclomatic Complexity Metric, in: Ninth IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM'12), IEEE Computer Society, 2012.

 	[18]

 	J. van den Bos, T. Van Der Storm.
Bringing Domain-Specific Languages to Digital Forensics, in: Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, Honolulu, United States, ACM, 2011, pp. 671-680.
http://hal.inria.fr/hal-00644687/en

 	[19]

 	J. van den Bos, T. Van Der Storm.
Domain-Specific Languages For Better Forensic Software, in: ERCIM News, 2012, vol. 2012, no 90.
http://hal.inria.fr/hal-00756885

 	[20]

 	J. van den Bos, T. Van Der Storm.
Domain-Specific Optimization In Digital Forensics, in: Proceedings of the International Conference on Model Transformation (ICMT, 2012), Prague, Czech Republic, Z. Hu, J. de Lara (editors), Springer, 2012, vol. 7307, pp. 121 - 136.
http://hal.inria.fr/hal-00756891

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[21]

 	H. J. S. Basten, J. v. d. Bos, M. A. Hills, P. Klint, A. W. Lankamp, B. Lisser, A. J. v. d. Ploeg, T. v. d. Storm, J. J. Vinju.
Modular Language Implementation In Rascal ― Experience Report, in: Science of Computer Programming, December 2015, vol. 114, pp. 7 - 19.
https://hal.inria.fr/hal-01261480

 	[22]

 	J. V. Eijck, T. v. d. Storm.
Understanding Information Update In Questionnaires, in: Science of Computer Programming, January 2015, vol. 97, no Part 1.
https://hal.inria.fr/hal-01261475

 	[23]

 	S. Erdweg, T. v. d. Storm, M. Voelter, L. Tratt, R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E. Visser, K. B. v. d. Vlist, G. Wachsmuth, J. M. v. d. Woning.
Evaluating And Comparing Language Workbenches: Existing Results And Benchmarks For The Future, in: Computer Languages, Systems and Structures, 2015, vol. 44, no Part A, pp. 24 - 47.
https://hal.inria.fr/hal-01261481

 	[24]

 	T. v. d. Storm, J. J. Vinju.
Towards Multilingual Programming Environments, in: Science of Computer Programming, January 2015, vol. 97, no Part 1.
https://hal.inria.fr/hal-01261474

 International Conferences with Proceedings

 	[25]

 	A. Afroozeh, A. Izmaylova.
One Parser to Rule Them All, in: Proceedings of the 2015 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software, New York, NY, USA, Onward! 2015, ACM, 2015, pp. 151–170. [
DOI : 10.1145/2814228.2814242]
https://hal.inria.fr/hal-01261484

 	[26]

 	B. Almeida, S. Ananiadou, A. Bagnato, A. Berreteaga, J. Di Rocco, D. Di Ruscio, D. Kolovos, I. Korkontzelos, S. Hansen, P. Maló, N. Matragkas, R. F. Paige, J. J. Vinju.
OSSMETER: Automated Measurement And Analysis Of Open Source Software, in: Proceedings of International Conference on Software Technologies: Applications and Foundations 2015 (STAF 0), L'Aquila, Italy, Lecture Notes in Computational Science and Engineering, Springer, 2015.
https://hal.archives-ouvertes.fr/hal-01261966

 	[27]

 	H. J. S. Basten, M. A. Hills, P. Klint, D. Landman, A. Shahi, M. Steindorfer, J. J. Vinju.
M3: A General Model For Source Code Analytics In Rascal, in: Proceedings of International Workshop on Software Analytics 2015 (SWAN 2015), Montreal, Canada, IEEE, March 2015.
https://hal.inria.fr/hal-01261493

 	[28]

 	J. V. Benthem, J. V. Eijck, M. Gattinger, K. Su.
Symbolic Model Checking for Dynamic Epistemic Logic, in: Logic, Rationality, and Interaction; 5th International Workshop, LORI 2015, Taipei, Taiwan, W. v. d. Hoek, H. H. Wesley, W. Wen-fang (editors), LNCS, Springer, 2015, no 9394, pp. 366–378.
https://hal.inria.fr/hal-01261492

 	[29]

 	D. DiRuscio, D. Kolovos, N. Matragkas, I. Korkontzelos, J. J. Vinju.
OSSMETER: A Software Measurement Platform For Automatically Analysing Open Source Software Projects, in: Proceedings of Joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on Foundations of Software Engineering 2015 (ESEC/FSE), Bergame, Italy, ACM International Conference Proceeding Series, ACM, 2015.
https://hal.archives-ouvertes.fr/hal-01261967

 	[30]

 	J. V. Eijck, M. Gattinger.
Elements of Epistemic Crypto Logic (Extended Abstract), in: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015), Istanbul, Turkey, Bordini, Elkind, Weiss, Yolum (editors), 2015.
https://hal.inria.fr/hal-01261489

 	[31]

 	M. Gattinger, J. V. Eijck.
Towards Model Checking Cryptographic Protocols with Dynamic Epistemic Logic, in: Proceedings LAMAS (LAMAS 2015), Istanbul, Turkey, 2015, available from http://www.irit.fr/~Emiliano.Lorini/LAMAS2015/accepted.htm .
https://hal.inria.fr/hal-01261491

 	[32]

 	C. Hentz, J. J. Vinju, A. M. Moreira.
Reducing The Cost Of Grammar-Based Testing Using Pattern Coverage, in: Proceedings of IFIP International Conference on Testing Software and Systems 2015 (ICTSS), Dubai, United Arab Emirates, Springer, 2015.
https://hal.archives-ouvertes.fr/hal-01261968

 	[33]

 	F. Hermans, T. v. d. Storm.
Copy-Paste Tracking: Fixing Spreadsheets Without Breaking Them, in: Proceedings of the International Conference on Live Coding (ICLC, 2015), Leeds, UK, 2015.
https://hal.inria.fr/hal-01261473

 	[34]

 	P. A. Inostroza Valdera, T. v. d. Storm.
Modular Interpreters For The Masses: Implicit Context Propagation Using Object Algebras, in: Proceedings of ACM International Conference on Generative Programming and Component Engineering 2015 (GPCE 0), C. Kästner, A. Gokhālé (editors), ACM International Conference Proceeding Series, ACM, 2015, pp. 171 - 180.
https://hal.inria.fr/hal-01261476

 	[35]

 	R. v. Rozen.
A Pattern-Based Game Mechanics Design Assistant, in: Proceedings of Foundations of Digital Games 2015 (FDG 2015), Pacific Grove, United States, Society for the Advancement of the Science of Digital Games, 2015, at Asilomar Conference Grounds.
https://hal.archives-ouvertes.fr/hal-01261970

 	[36]

 	R. v. Rozen, T. v. d. Storm.
Origin Tracking + Text Differencing = Textual Model Differencing, in: Theory and Practice of Model Transformations, Springer International Publishing, 2015, pp. 18 - 33.
https://hal.inria.fr/hal-01261479

 	[37]

 	M. J. Steindorfer, J. J. Vinju.
Optimizing Hash-array Mapped Tries for Fast and Lean Immutable JVM Collections, in: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, New York, NY, USA, OOPSLA 2015, ACM, 2015, pp. 783–800. [
DOI : 10.1145/2814270.2814312]
https://hal.inria.fr/hal-01261487

 	[38]

 	J. H. Stoel.
A Case For Rebel, A DSL For Product Specifications, in: Proceedings of Domain-specific Language Design and Implementation 2015 (DSLDI 0), arXiv, 2015, pp. 9 - 11.
https://hal.archives-ouvertes.fr/hal-01261969

 	[39]

 	H. Zhang, Z. Chu, B. C. Dos Santos Oliveira, T. v. d. Storm.
Scrap Your Boilerplate With Object Algebras, in: Proceedings of the Object-oriented Programming, Systems, Languages, and Applications (OOPSLA, 2015), 2015.
https://hal.inria.fr/hal-01261477

 Scientific Books (or Scientific Book chapters)

 	[40]

 	T. v. d. Storm, S. Erdweg (editors)
Proceedings Of The 3rd Workshop On Domain-Specific Language Design And Implementation (DSLDI'15), August 2015.
https://hal.inria.fr/hal-01261478

 	[41]

 	A. Afroozeh, A. Izmaylova.
Faster, Practical GLL Parsing, in: Compiler Construction, B. Franke (editor), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2015, vol. 9031, pp. 89-108. [
DOI : 10.1007/978-3-662-46663-6_5]
https://hal.inria.fr/hal-01261483

 	[42]

 	J. V. Benthem, H. v. Ditmarsch, J. V. Eijck, J. Jaspars.
Logic in Action, Internet, 2015, electronic book, available from url below.
https://hal.inria.fr/hal-01261490

 	[43]

 	J. V. Eijck.
Implementing Semantic Theories, in: Handbook of Contemporary Semantics, Second Edition, S. Lappin, C. Fox (editors), Wiley, 2015, pp. 455–491.
https://hal.inria.fr/hal-01261485

 	[44]

 	J. V. Eijck.
Strategies in Social Software, in: Modeling Strategic Reasoning: Logics, Games and Communities, J. van Benthem, S. Ghosh, R. Verbrugge (editors), LNCS, Springer, 2015, no 8972.
https://hal.inria.fr/hal-01261486

 	[45]

 	J. V. Eijck.
Varieties of Belief and Probability, in: The Facts Matter ―- Essays on Logic and Cognition in Honour of Rineke Verbrugge, S. Ghosh, J. Szymanik (editors), Tributes, Volume 25, College Publications, 2015, pp. 67–87.
https://hal.inria.fr/hal-01261488

 References in notes

 	[46]

 	B. C. Dos Santos Oliveira, W. R. Cook.
Extensibility for the Masses, in: ECOOP 2012–Object-Oriented Programming, Springer, 2012, pp. 2–27.

 	[47]

 	A. Izmaylova, A. Afroozeh, T. v. d. Storm.
Practical, General Parser Combinators, in: Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, New York, NY, USA, PEPM 2016, ACM, 2016, pp. 1–12.
http://doi.acm.org/10.1145/2847538.2847539

 	[48]

 	A. J. v. d. Ploeg.
Efficient Abstractions For Visualization And Interaction, Universiteit van Amsterdam, April 2015, pp. 1 - 146.
http://oai.cwi.nl/oai/asset/23618/23618A.pdf

 OEBPS/uid54.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 Master Software Engineering

 ATEAMS is a core partner in the Master Software Engineering at
Universiteit van Amsterdam. This master is a collaboration between
SWAT/ATEAMS, Universiteit van Amsterdam, Vrije Universiteit and Hogeschool
van Amsterdam.

 Early Quality Assurance in Software Production

 The EQUA project is a collaboration among Hogeschool van Amsterdam (main
partner) Centrum Wiskunde & Informatica (CWI), Technisch Universiteit
Delft, Laboratory for Quality of Software (LaQuSo), Info Support, Software
Improvement Group (SIG), and Fontys Hogeschool Eindhoven.

 Next Generation Auditing: Data-assurance as a service

 This project is a collaboration between Centrum Wiskunde & Informatica (CWI)
PriceWaterhouseCoopers (PWC), Belastingdienst (National Tax Office), and
Computational Auditing, is to enable research in the field of computational
auditing.

 Domain-Specific Languages: A Big Future for Small Programs

 Software and programming have a brilliant past that has brought us the automation of many expected and unexpected human and societal activities ranging from banking and consumer electronics to mobile networking, search engines and social networks. The present of software is overwhelming: many software systems have sizes in the range of 10–100 million lines of source code and contain tens of thousands of errors that are yet to be discovered. We claim that software will only have a big future if software itself becomes smaller. Smaller software leads to higher software productivity (we have to write less) and higher software quality (quality guarantees become part of the language and not of the program).

 This project is funded by NWO (the Dutch national science foundation).

OEBPS/uid59.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 		
 FP7 STREP “OSSMETER — Automated Measurement and Analysis of Open Source Software” (ended in 2015)

 Collaborations with Major European Organizations

 		
 Centrum Wiskunde & Informatica (CWI): Software Analysis & Transformation (Netherlands)

 		
 CWI SWAT is the research team associated directly with ATEAMS.

OEBPS/international.html

OEBPS/domaine.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid65.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria International Partners

 Informal International Partners

 ATEAMS collaborates with the following research teams:

 		
 Eindhoven Technical University - SET (Eindhoven, The Netherlands)

 		
 Universiteit van Amsterdam - Systems and Network Engineering (Amsterdam, The Netherlands)

 		
 Royal Holloway University of London - Dept. of Computer Science

 		
 The University of Hong Kong (China) - Computer Science

 		
 Delft Technical University (The Netherlands)

 		
 University of Texas at Austin (USA)

 		
 TU Darmstadt (Germany)

 Research stays abroad

 		
 Michael Steindorfer stayed for 3 months at Oracle Labs in Austria to study efficient data-structures and data-structure optimisations on the JVM.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2015
Project-Team Ateams

Analysis and
Transformation based on
rEliAble tool
coMpositionS

