

[image: cover]

 COMPSYS

 Compilation and embedded computing systems

 2015 Project-Team Activity Report
	

 Research centre:
 Grenoble - Rhône-Alpes

 Field: Algorithmics, Programming, Software and Architecture
Theme: Architecture, Languages and Compilation

 Computer Science and Digital Science:

 	2.1.1. - Semantics of programming languages

 	2.1.10. - Domain-specific languages

 	2.1.6. - Concurrent programming

 	2.2.1. - Static analysis

 	2.2.5. - GPGPU, FPGA, etc.

 	2.4.1. - Analysis

 	6.2.6. - Optimization

 	6.2.7. - High performance computing

 	7.2. - Discrete mathematics, combinatorics

 Other Research Topics and Application Domains:

 	6.6. - Embedded systems

 	9.4.1. - Computer science

 Project-Team Compsys

 Members

 Overall Objectives	Introduction
	General Presentation
	Summary of Compsys I Achievements
	Quick View of Compsys II
Achievements and Directions for Compsys III

 Research Program	Architecture and Compilation Trends
	Code Analysis, Code Transformations, Code Optimizations
	Mathematical Tools

 Application Domains	Compilers for Embedded Computing Systems
	Users of HPC Platforms and Scientific Computing

 Highlights of the Year

 New Software and Platforms	Aspic
	DCC
	Lattifold
	OpenOrdo
	PoCo
	PolyOrdo
	PPCG-ParamTiling
	Termite
	Vaphor

 New Results	Studying Optimal Spilling in the Light of SSA
	Symbolic Range of Pointers in C programs
	Analyzing C Programs with Arrays
	Termination of C Programs
	Data-aware Process Networks
	Mono-parametric Tiling
	Exact and Approximated Data-Reuse Optimizations
for Tiling with Parametric Sizes
	Analysis of X10 Programs
	Revisiting Loop Transformations with X10 Clocks
	Static Analysis of OpenStream Programs
	Handling Polynomials for Program Analysis and
Transformation
	Liveness Analysis in Explicitly-Parallel
Programs
	Extended Lattice-Based Memory Allocation
	Stencil Accelerators
	PolyApps

 Bilateral Contracts and Grants with Industry	ManycoreLabs Project with Kalray
	Technological Transfer: XtremLogic Start-Up

 Partnerships and Cooperations	Regional Initiatives
	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2004 January 01, updated into Team: 2016 January 01

 Compsys is located at Ecole normale supérieure de Lyon.

Section: Members
Research Scientists
Alain Darte [Team leader, CNRS, Senior Researcher, HdR]
Christophe Alias [Inria, Researcher, until Sep. 2015]
Tomofumi Yuki [Inria, Researcher]
Faculty Members
Paul Feautrier [ENS Lyon, Emeritus Professor, HdR]
Laure Gonnord [Univ. Lyon I, Associate Professor, until
Sep. 2015]
PhD Students
Guillaume Iooss [PhD student, ENS-Lyon/Colorado State Univ.]
Alexandre Isoard [PhD student, ENS-Lyon]
Maroua Maalej [PhD student, Univ. Lyon, until Sep. 2015]
Visiting Scientists
Fernando Magno Quintao Pereira [ENS Lyon, Jan. 2015–Feb. 2015]
Tristan Dubois [Master 1 internship, Lyon 1, Jan. 2015–Feb. 2015]
Adilla Susungi [Master 2 internship, Inria, Mar. 2015–Jul. 2015]
Marc Vincenti [Master 1 internship, Lyon 1, Jan. 2015–Feb. 2015]
Administrative Assistant
Evelyne Blesle [Inria]

 Overall Objectives

 	Overall Objectives	Introduction
	General Presentation
	Summary of Compsys I Achievements
	Quick View of Compsys II
Achievements and Directions for Compsys III

 Section:
 Overall Objectives

 Introduction

 	Keywords:

 	
 Compilation, code analysis, code optimization, memory
optimization, combinatorial optimization, algorithmics, polyhedral
optimization, hardware accelerators, high-level synthesis, high-performance
computing.

 Compsys develops compilation techniques, more precisely code analysis and
code optimization techniques, to help programming or designing “embedded
computing systems” or platforms for “small” HPC (High-Performance
Computing). The team focuses on both low-level (back-end) optimizations and
high-level (front-end, mainly source-to-source) transformations, for
specialized processors, programmable hardware accelerators (GPU, multicores),
and FPGA platforms (high-level synthesis). Recent activities include a shift
towards the
analysis of parallel languages, and links with abstract interpretation and
program termination. The main characteristic of Compsys is its use of
algorithmic and formal methods (with graph algorithms, linear programming,
polyhedral optimizations) to address code analysis and optimization problems
(e.g., termination, register allocation, memory optimizations, scheduling,
automatic generation of interfaces) and the validation of these techniques
through the development of compilation tools.

 Compsys started as an Inria project in 2004, after 2 years of maturation.
This first period of Compsys, Compsys I, was positively evaluated in
Spring 2007 after its first 4 years period (2004-2007). It was again
evaluated by AERES in 2009, as part of the general evaluation of Lip, and got
the best possible mark, A+. The second period (2007-2012), Compsys II, was
again evaluated positively by Inria in Spring 2012 and formally prolonged
into Compsys III at the very end of 2012. In 2013, Fabrice Rastello moved to
Grenoble first to expand the activities of Compsys in the context of
Giant, a R&D technology center with several industrial and academic actors.
He left officially the team in 2014 to work on his own. The research
directions of Compsys III followed the lines presented in the synthesis
report provided for the 2012 evaluation (See
http://www.ens-lyon.fr/LIP/COMPSYS/wordpress/wp-content/uploads/2013/09/ficheSynthese.pdf),
including a shift towards the compilation of streaming programming, the
analysis and optimizations of parallel languages, and an even stronger focus
on polyhedral optimizations and their extensions. Christophe Alias was
mostly involved in the development of the Zettice/XtremLogic start-up. The hiring of
Laure Gonnord (in 2013) and Tomofumi Yuki (in 2014) added new forces on the code
analysis research aspects and on HPC polyhedral-related topics. However,
Christophe Alias and Laure Gonnord left the team in Sep. 2015. The project-team
itself ended officially in Dec. 2015, reaching the limit of 12 years.
Nevertheless, it will be evaluated again by Inria in Spring 2016. It has been
extended as an Inria team until Dec. 2016.

 Section
	2.2 defines the
general context of the team's activities.
Section
	2.3 presents the research
objectives and main achievements in Compsys I, i.e., until 2007, and how
its research directions were modified for Compsys II.
Section
	2.4 briefly presents the
main achievements of Compsys II and of the first years of Compsys III,
referring to the annual reports from 2008 to 2014 for details. As for the
highlights of the past year, i.e., 2015, they are given in
Section
	5.1 .

 Section:
 Overall Objectives

 General Presentation

 Classically, an embedded computer is a digital system that is part of a
larger system and that is not directly accessible to the user. Examples are
appliances like phones, TV sets, washing machines, game platforms, or even
larger systems like radars and sonars. In particular, this computer is not
programmable in the usual way. Its program, if it exists, is supplied as part
of the manufacturing process and is seldom (or ever) modified thereafter.
As the embedded systems market grows and evolves, this view of embedded
systems is becoming obsolete and tends to be too restrictive. Many aspects of
general-purpose computers apply to modern embedded platforms. Nevertheless,
embedded systems remain characterized by a set of specialized application
domains, rigid constraints (cost, power, efficiency,
heterogeneity), and its market structure. The term embedded system has
been used for naming a wide variety of objects. More precisely, there are two
categories of so-called embedded systems: a) control-oriented and hard
real-time embedded systems (automotive, plant control, airplanes, etc.); b)
compute-intensive embedded systems (signal processing, multi-media, stream
processing) processing large data sets with parallel and/or pipelined
execution. Compsys is primarily concerned with this second type of
embedded systems, now referred to as embedded computing systems.

 Today, the industry sells many more embedded processors than general-purpose
processors; the field of embedded systems is one of the few segments of the
computer market where the European industry still has a substantial share,
hence the importance of embedded system research in the European research
initiatives. Our priority towards embedded software is motivated by the
following observations: a) the embedded system market is expanding, among
many factors, one can quote pervasive digitalization, low-cost products,
appliances, etc.; b) research on software for embedded systems is poorly
developed in France, especially if one considers the importance of actors
like Alcatel, STMicroelectronics, Matra, Thales, etc.; c) since embedded systems
increase in complexity, new problems are emerging: computer-aided design,
shorter time-to-market, better reliability, modular design, and component
reuse.

 A specific aspect of embedded computing systems is the use of various kinds
of processors, with many particularities (instruction sets, registers, data
and instruction caches, now multiple cores) and constraints (code size,
performance, storage). The development of compilers is crucial for
this industry, as selling a platform without its programming environment and
compiler would not be acceptable. To cope with such a range of different
processors, the development of robust, generic (retargetable), though
efficient compilers is mandatory. Unlike standard compilers for
general-purpose processors, compilers for embedded processors and hardware
accelerators can be more aggressive (i.e., take more time to optimize) for
optimizing some important parts of applications. This opens a new range of
optimizations. Another interesting aspect is the introduction of
platform-independent intermediate languages, such as Java bytecode, that is
compiled dynamically at runtime (aka just-in-time). Extreme lightweight
compilation mechanisms that run faster and consume less memory have to be
developed. The introduction of intermediate languages such as OpenCL is also
a sign of the need for portability (as well as productivity) across diverse
(if not heterogeneous) platforms. One of the initial objectives of Compsys
was thus to revisit existing compilation techniques in the context of such
embedded computing systems, to deconstruct some of these techniques, to
improve them, and to develop new techniques taking constraints of embedded
processors and platforms into account.

 As for high-level synthesis (HLS), several compilers/systems have
appeared, after some first unsuccessful industrial attempts in the past.
These tools are mostly based on C or C++ as for example SystemC,
VCC, CatapultC, Altera C2H, Pico-Express, Vivado HLS.
Academic projects also exist (or existed) such as Flex
and Raw
at MIT, Piperench
at Carnegie-Mellon University, Compaan
at the University of Leiden, Ugh/Disydent at LIP6 (Paris), Gaut at Lester
(Bretagne), MMAlpha (Insa-Lyon), and others. In general, the support for
parallelism in HLS tools is minimal, especially in industrial tools. Also,
the basic problem that these projects have to face is that the definition of
performance is more complex than in classical systems. In fact, it is a
multi-criteria optimization problem and one has to take into account the
execution time, the size of the program, the size of the data structures, the
power consumption, the manufacturing cost, etc. The impact of the compiler
on these costs is difficult to assess and control. Success will be the
consequence of a detailed knowledge of all steps of the design process, from
a high-level specification to the chip layout. A strong cooperation of the
compilation and chip design communities is needed. The main expertise in
Compsys for this aspect is in the parallelization and optimization
of regular computations. Hence, we target applications with a
large potential parallelism, but we attempt to integrate our solutions
into the big picture of CAD environments.

 More generally, the aims of Compsys are to develop new compilation and
optimization techniques for the field of embedded computing system design.
This field is large, and Compsys does not intend to cover it in its
entirety. As previously mentioned, we are mostly interested in the automatic
design of accelerators, for example designing a VLSI or FPGA circuit
for a digital filter, and in the development of new back-end compilation strategies for
embedded processors. We study code transformations that optimize features
such as execution time, power consumption, code and die size, memory
constraints, and compiler reliability. These features are related to embedded
systems but some are not specific to them. The code transformations we
develop are both at source level and at assembly level. A specificity of
Compsys is to mix a solid theoretical basis for all code optimizations we
introduce with algorithmic/software developments. Within Inria, our
project is related to the “architecture and compilation” theme, more
precisely code optimization, as some of the research conducted in Parkas
(previously known as Alchemy), Alf (previously known as Caps),
Camus, and to high-level architectural synthesis, as some of the research
in Cairn.

 Most french researchers working on high-performance computing (automatic
parallelization, languages, operating systems, networks) moved to grid
computing at the end of the 90s. We thought that applications, industrial
needs, and research problems were more interesting in the design of embedded
platforms. Furthermore, we were convinced that our expertise on high-level
code transformations could be more useful in this field. This is the reason
why Tanguy Risset came to Lyon in 2002 to create the Compsys team with
Anne Mignotte and Alain Darte, before Paul Feautrier, Antoine Fraboulet,
Fabrice Rastello, and finally Christophe Alias joined the group. Then, Tanguy
Risset left Compsys to become a professor at INSA Lyon, and Antoine Fraboulet
and Anne Mignotte moved to other fields of research. As for Laure Gonnord,
after a post-doc in Compsys, she obtained an assistant professor position
in Lille but remained external collaborator of the team for the period
2009-2013 and finally obtained an assistant professor position in Lyon, and
integrated officially the team. About the same time, Fabrice Rastello left while
Tomofumi Yuki was hired as Inria researcher in 2014.

 All present and past members of Compsys have a background in automatic
parallelization and high-level program analyses and transformations. Paul
Feautrier was the initiator of the polyhedral model for program
transformations around 1990 and, before coming to Lyon, started to be more
interested in programming models and optimizations for embedded applications,
in particular through collaborations with Philips. Alain Darte worked on
mathematical tools and algorithmic issues for parallelism extraction in
programs. He became interested in the automatic generation of hardware
accelerators, thanks to his stay at HP Labs in the Pico project in 2001.
Antoine Fraboulet did a PhD with Anne Mignotte – who was working on
high-level synthesis (HLS) – on code and memory optimizations for embedded
applications. Fabrice Rastello did a PhD on tiling transformations for
parallel machines, then was hired by STMicroelectronics where he worked on assembly
code optimizations for embedded processors. Tanguy Risset worked for a long
time on the synthesis of systolic arrays, being the main architect of the HLS
tool MMAlpha. Christophe Alias did a PhD on algorithm recognition for
program optimizations and parallelization. He first spent a year in
Compsys working on array contraction, where he started to develop the tool
Bee, then a year at Ohio State University with Prof. P. Sadayappan on
memory optimizations. Laure Gonnord did a PhD on invariant generation and
program analysis and became interested on application on compilation and code
generation since her postdoc in the team. Finally, Tomofumi Yuki did a PhD on
polyhedral programming environments and optimizations (in Colorado State
University, with Prof. S. Rajopadhye) before a post-doc on polyhedral HLS in
the Cairn team (Rennes).

 To understand why we think automation in our field is highly important, it may be worth to quote
Bob Rau and his colleagues (IEEE Computer, Sep. 2002):

 "Engineering disciplines tend to go through fairly predictable phases:
ad hoc, formal and rigorous, and automation. When the discipline is in its
infancy and designers do not yet fully understand its potential problems
and solutions, a rich diversity of poorly understood design techniques
tends to flourish. As understanding grows, designers sacrifice the
flexibility of wild and woolly design for more stylized and restrictive
methodologies that have underpinnings in formalism and rigorous theory.
Once the formalism and theory mature, the designers can automate the design
process. This life cycle has played itself out in disciplines as diverse as
PC board and chip layout and routing, machine language parsing, and logic
synthesis.

 We believe that the computer architecture discipline is ready to enter the
automation phase. Although the gratification of inventing brave new
architectures will always tempt us, for the most part the focus will shift
to the automatic and speedy design of highly customized computer systems
using well-understood architecture and compiler technologies.”

 We share this view of the future of architecture and compilation. Without
targeting too ambitious objectives, we were convinced of two complementary
facts: a) the mathematical tools developed in the past for manipulating
programs in automatic parallelization were lacking in high-level synthesis
and embedded computing optimizations and, even more, they started to be
rediscovered frequently in less mature forms, b) before being able to really
use these techniques in HLS and embedded program optimizations, we needed to
learn a lot from the application side, from the electrical engineering side,
and from the embedded architecture side. Our primary goal was thus twofold:
to increase our knowledge of embedded computing systems and to adapt/extend
code optimization techniques, primarily designed for high performance
computing, to the special case of embedded computing systems. In the initial
Compsys proposal, we proposed four research directions, centered on
compilation methods for embedded applications, both for software and
accelerators design:

 	
 Code optimization for specific processors (mainly DSP and VLIW
processors);

 	
 Platform-independent loop transformations (including memory
optimization);

 	
 Silicon compilation and hardware/software codesign;

 	
 Development of polyhedral (but not only) optimization tools.

 These research activities were primarily supported by a marked investment in
polyhedra manipulation tools and, more generally, solid mathematical and
algorithmic studies, with the aim of constructing operational software tools,
not just theoretical results. Hence the fourth research theme was centered on
the development of these tools.

 Section:
 Overall Objectives

 Summary of Compsys I Achievements

 The Compsys team has been evaluated by Inria for the first time in April
2007. The evaluation, conducted by Erik Hagersted (Uppsala University), Vinod
Kathail (Synfora, inc), J. (Ram) Ramanujam (Baton Rouge University) was
positive. Compsys I thus continued into Compsys II for 4-5 years but in
a new configuration as Tanguy Risset and Antoine Fraboulet left the project to
follow research directions closer to their host laboratory at Insa-Lyon. The main
achievements of Compsys I, for this period, were the following:

 	
 The development of a strong collaboration with the compilation group at
STMicroelectronics, with important results in aggressive optimizations for
instruction cache and register allocation.

 	
 New results on the foundation of high-level program
transformations, including scheduling techniques for process networks
and a general technique for array contraction (memory reuse) based on the
theory of lattices.

 	
 Many original contributions with partners closer to hardware constraints,
including CEA, related to SoC simulation, hardware/software interfaces, power
models, and simulators.

 Due to Compsys size reduction (from 5 permanent researchers to 3 in 2008,
then 4 again in 2009), the team then focused, in Compsys II, on two research
directions only:

 	
 Code generation for embedded processors, on the two opposite, though
connected, aspects: aggressive compilation and just-in-time compilation.

 	
 High-level program analysis and transformations for high-level synthesis
tools.

 Section:
 Overall Objectives

 Quick View of Compsys II
Achievements and Directions for Compsys III

 The main achievements of Compsys II were:

 	
 the great success of the collaboration with STMicroelectronics with many deep
results on SSA (Static Single Assignment), register allocation, and
intermediate program representations;

 	
 the design of high-level program analysis, optimizations, and tools,
mainly related to high-level synthesis, some leading to the development of
the Zettice start-up.

 For more details on the past years of Compsys II, see the previous annual
reports from 2008 to 2012. Compsys II was positively evaluated in Spring
2012 by Inria. The evaluation committee members were Walid Najjar
(University of California Riverside), Paolo Faraboschi (HP Labs), Scott Mahlke
(University of Michigan), Pedro Diniz (University of Southern California),
Peter Marwedel (TU Dortmund), and Pierre Paulin (STMicroelectronics, Canada),
the last three assigned specifically to Compsys.

 For Compsys III, the changes in the permanent members (departure of
Fabrice Rastello and arrival of Laure Gonnord, while she was only external collaborator of
Compsys until Sep. 2013) reduced the forces on back-end code optimizations,
and in particular dynamic compilation, but increased the forces on program
analysis. In this context, Compsys III has continued to develop fundamental
concepts or techniques whose applicability should go beyond a particular
architectural or language trend, as well as stand-alone tools (either as proofs
of concepts or to be used as basic blocks in larger tools/compilers developed
by others) and our own experimental prototypes. One of the main objectives of
Compsys III has been to try to push the polyhedral model beyond its present
limits both in terms of analysis techniques (possibly integrating approximation
and runtime support) and of applicability (e.g., analysis of parallel or
streaming languages, program verification, compilation towards accelerators
such as GPU or multicores). The hiring of Tomofumi Yuki supported this new direction.
A summary of 2013 and 2014 activities are given in the corresponding annual
reports, while new results for 2015 are provided in this document, in
Section
	5.1 (highlights) and from
Section
	7.1
to
	7.15 (new results).

 Research Program

 	Research Program	Architecture and Compilation Trends
	Code Analysis, Code Transformations, Code Optimizations
	Mathematical Tools

 Section:
 Research Program

 Architecture and Compilation Trends

 The embedded system design community is facing two challenges:

 	
 The complexity of embedded applications is increasing at a rapid rate.

 	
 The needed increase in processing power is no longer obtained by
increases in the clock frequency, but by increased parallelism.

 While, in the past, each type of embedded application was implemented in a
separate appliance, the present tendency is toward a universal hand-held
object, which must serve as a cell-phone, as a personal digital assistant, as a
game console, as a camera, as a Web access point, and much more. One may say
that embedded applications are of the same level of complexity as those running
on a PC, but they must use a more constrained platform in terms of processing
power, memory size, and energy consumption. Furthermore, most of them depend
on international standards (e.g., in the field of radio digital communication),
which are evolving rapidly. Lastly, since ease of use is at a premium for
portable devices, these applications must be integrated seamlessly to a degree
that is unheard of in standard computers.

 All of this dictates that modern embedded systems retain some form of
programmability. For increased designer productivity and reduced
time-to-market, programming must be done in some high-level language, with
appropriate tools for compilation, run-time support, and debugging. This does
not mean however that all embedded systems (or all of an embedded system) must
be processor based. Another solution is the use of field programmable gate
arrays (FPGA), which may be programmed at a much finer grain than a processor,
although the process of FPGA “programming” is less well understood than
software generation. Processors are better than application-specific circuits
at handling complicated control and unexpected events. On the other hand,
FPGAs may be tailored to just meet the needs of their application, resulting in
better energy and silicon area usage. It is expected that most embedded
systems will use a combination of general-purpose processors, specific
processors like DSPs, and FPGA accelerators (or even low-power GPUs).
Such a combination DSP+FPGA is already present in recent versions of the Atom
Intel processor.

 As a consequence, parallel programming, which has long been confined to the
high-performance community, must become the common place rather than the
exception. In the same way that sequential programming moved from assembly code
to high-level languages at the price of a slight loss in performance, parallel
programming must move from low-level tools, like OpenMP or even MPI, to
higher-level programming environments. While fully-automatic parallelization
is a Holy Grail that will probably never be reached in our lifetimes, it will
remain as a component in a comprehensive environment, including general-purpose
parallel programming languages, domain-specific parallelizers, parallel
libraries and run-time systems, back-end compilation, dynamic parallelization.
The landscape of embedded systems is indeed very diverse and many design flows
and code optimization techniques must be considered. For example, embedded
processors (micro-controllers, DSP, VLIW) require powerful back-end
optimizations that can take into account hardware specificities, such as
special instructions and particular organizations of registers and memories.
FPGA and hardware accelerators, to be used as small components in a larger
embedded platform, require “hardware compilation”, i.e., design flows and
code generation mechanisms to generate non-programmable circuits. For the
design of a complete system-on-chip platform, architecture models, simulators,
debuggers are required. The same is true for multicores of any kind, GPGPU
(“general-purpose” graphical processing units), CGRA (coarse-grain
reconfigurable architectures), which require specific methodologies and
optimizations, although all these techniques converge or have connections. In
other words, embedded systems need all usual aspects of the process that
transforms some specification down to an executable, software or hardware. In
this wide range of topics, Compsys concentrates on the code optimizations
aspects (and the associated analysis) in this transformation chain, restricting
to compilation (transforming a program to a program) for embedded processors
and programmable accelerators, and to high-level synthesis (transforming a
program into a circuit description) for FPGAs.

 Actually, it is not a surprise to see compilation and high-level synthesis
getting closer (in the last 10 years now). Now that high-level synthesis has
grown up sufficiently to be able to rely on place-and-route tools, or even to
synthesize C-like languages, standard techniques for back-end code generation
(register allocation, instruction selection, instruction scheduling, software
pipelining) are used in HLS tools. At the higher level, programming languages
for programmable parallel platforms share many aspects with high-level
specification languages for HLS, for example, the description and manipulations
of nested loops, or the model of computation/communication (e.g., Kahn process
networks and its many “streaming” variants). In all aspects, the frontier
between software and hardware is vanishing. For example, in terms of
architecture, customized processors (with processor extension as first proposed
by Tensilica) share features with both general-purpose processors and hardware
accelerators. FPGAs are both hardware and software as they are fed with
“programs” representing their hardware configurations.

 In other words, this convergence in code optimizations explains why Compsys
studies both program compilation and high-level synthesis, and at both
front-end and back-end levels, the first one acting more at the granularity of
memories, transfers, and multiple cores, the second one more at the granularity
of registers, system calls, and single core. Both levels must be considered as
they interact with each other. Front-end optimizations must be aware of what
back-end optimizations will do, as single core performance remain the basis for
good parallel performances. Some front-end optimizations even act directly on
back-end features, for example register tiling considered as a source-level
transformation. Also, from a conceptual point of view, the polyhedral
techniques developed by Compsys are actually the symbolic front-end
counterpart, for structured loops, of back-end analysis and optimizations of
unstructured programs (through control-flow graphs), such as dependence
analysis, scheduling, lifetime analysis, register allocation, etc. A strength
of Compsys so far was to juggle with both aspects, one more on graph theory
with SSA-type optimizations, the other with polyhedra representing loops, and
to exploit the correspondence between both. This has still to be exploited, for
applying polyhedral techniques to more irregular programs.

 Besides, Compsys has a tradition of building free software tools for linear
programming and optimization in general, and will continue it, as needed for
our current research.

 Compilation and Languages Issues in the Context of Embedded
Processors, “Embedded Systems”, and Programmable Accelerators

 Compilation is an old activity, in particular back-end code optimizations. The development of embedded systems was one of the reasons for the revival of compilation activities as
a research topic.
Applications for embedded computing systems generate complex programs and need
more and more processing power. This evolution is driven, among others, by the
increasing impact of digital television, the first instances of UMTS
networks, and the increasing size of digital supports, like recordable DVD,
and even Internet applications. Furthermore, standards are evolving very
rapidly (see for instance the successive versions of MPEG). As a consequence,
the industry has focused on programmable structures, whose flexibility more
than compensates for their larger size and power consumption. The appliance
provider has a choice between hard-wired structures (Asic), special-purpose
processors (Asip), (quasi) general-purpose processors (DSP for multimedia
applications), and now hardware accelerators (dedicated platforms – such as
those developed by Thales or the CEA –, or more general-purpose accelerators
such as GPUs or even multicores, even if these are closer to small HPC
platforms than truly embedded systems). Our cooperation with STMicroelectronics, until
2012, focused on investigating the compilation for specialized processors, such
as the ST100 (DSP processor) and the ST200 (VLIW DSP processor)
family. Even for this restricted class of processors, the diversity is large,
and the potential for instruction level parallelism (SIMD, MMX), the limited
number of registers and the small size of the memory, the use of direct-mapped
instruction caches, of predication, generate many open problems. Our goal was
to contribute to their understanding and their solutions.

 An important concept to cope with the diversity of platforms is the concept of
virtualization, which is a key for more portability, more simplicity,
more reliability, and of course more security. This concept – implemented at
low level through binary translation and just-in-time (JIT)
compilation (Aggressive compilation consists in allowing more
time to implement more complete and costly solutions: the compiled program is
loaded in permanent memory (ROM, flash, etc.) and its compilation time is
less relevant than the execution time, size, and energy consumption of the
produced code, which can have a critical impact on the cost and quality of
the final product. Hence, the application is cross-compiled, i.e., compiled
on a powerful platform distinct from the target processor. Just-in-time
compilation, on the other hand, corresponds to compiling applets on demand
on the target processor. For compatibility and compactness, the source
languages are CIL or Java bytecode. The code can be uploaded or sold
separately on a flash memory. Compilation is performed at load time and even
dynamically during execution. The optimization heuristics, constrained by
time and limited resources, are far from being aggressive. They must be fast
but smart enough.) – consists in hiding the architecture-dependent features
as long as possible during the compilation process. It has been used for a
while for servers such as HotSpot, a bit more recently for workstations, and
now for embedded computing. The same needs drive the development of
intermediate languages such as OpenCL to, not necessarily hide, but at least
make more uniform, the different facets of the underlying architectures. The
challenge is then to design and compile high-productivity and high-performance
languages (For examples of such languages, see the keynotes event we
organized in 2013: http://labexcompilation.ens-lyon.fr/hpc-languages .)
(coping with parallelism and heterogeneity) that can be ported to such
intermediate languages, or to architecture-dependent runtime systems. The
offloading of computation kernels, through source-to-source compilation,
targeting back-end C dialects, has the same goals: to automate application
porting to the variety of accelerators.

 For JIT compilation, the compactness of the information representation, and
thus its pertinence, is an important criterion for such late compilation
phases. Indeed, the intermediate representation (IR) is evolving not only from
a target-independent description to a target-dependent one, but also from a
situation where the compilation time is almost unlimited (cross-compilation) to
one where any type of resource is limited. This is one of the reasons why
static single assignment (SSA), a sparse compact representation of liveness
information, became popular in embedded compilation.
If time constraints are
common to all JIT compilers (not only for embedded computing), the benefit of
using SSA is also in terms of its good ratio pertinence/storage of information.
It also enables to simplify algorithms, which is also important for increasing
the reliability of the compiler.
In this context, our aim has been, in particular, to develop exact or heuristic
solutions to combinatorial problems that arise in compilation for VLIW
and DSP processors, and to integrate these methods into industrial compilers
for DSP processors (mainly ST100, ST200, Strong ARM). Such combinatorial
problems can be found in register allocation, opcode selection, code placement,
when removing the SSA multiplexer functions (known as φ functions).
These optimizations are usually done
in the last phases of the compiler, using an assembly-level intermediate
representation.
As mentioned in Sections
	2.3
and
	2.4 , we made a lot of progress
in this area in our past collaborations with STMicroelectronics (see also previous
activity reports). Through the Sceptre and Mediacom projects, we first
revisited, in the light of SSA, some code optimizations in an aggressive
context, to develop better strategies, without eliminating too quickly
solutions that may have been considered as too expensive in the past. Then
we exploited the new concepts introduced in the aggressive context to
design better algorithms in a JIT context, focusing on the speed of
algorithms and their memory footprint, without compromising too much on the
quality of the generated code.

 Our research directions are currently more focused on programmable accelerators,
such as GPU and multicores, but still considering static compilation
and without forgetting the link between high-level (in general at source-code level) and
low-level (i.e., at assembly-code level) optimizations. They concern program
analysis (of both sequential and parallel specifications), program
optimizations (for memory hierarchies, parallelism, streaming, etc.), and
also the link with applications and between compilers and users
(programmers). Polyhedral techniques play an important role in these
directions, even if control-flow-based techniques remain in the background and
may come back at any time in the foreground. This is also the case for
high-level synthesis, as exposed in the next section.

 Context of High-Level Synthesis and FPGA Platforms

 High-level synthesis has become a necessity, mainly because the exponential
increase in the number of gates per chip far outstrips the productivity of
human designers. Besides, applications that need hardware accelerators usually
belong to domains, like telecommunications and game platforms, where fast
turn-around and time-to-market minimization are paramount. When Compsys
started, we were convinced that our expertise in compilation and automatic
parallelization could contribute to the development of the needed tools.

 Today, synthesis tools for FPGAs or ASICs come in many shapes. At the lowest
level, there are proprietary Boolean, layout, and place-and-route tools, whose
input is a VHDL or Verilog specification at the structural or register-transfer
level (RTL). Direct use of these tools is difficult, for several reasons:

 	
 A structural description is completely different from an usual
algorithmic language description, as it is written in term of interconnected
basic operators. One may say that it has a spatial orientation, in place of
the familiar temporal orientation of algorithmic languages.

 	
 The basic operators are extracted from a library, which poses problems of
selection, similar to the instruction selection problem in ordinary
compilation.

 	
 Since there is no accepted standard for VHDL synthesis, each tool has its
own idiosyncrasies and reports its results in a different format. This makes
it difficult to build portable HLS tools.

 	
 HLS tools have trouble handling loops. This is particularly true for
logic synthesis systems, where loops are systematically unrolled (or
considered as sequential) before synthesis. An efficient treatment of loops
needs the polyhedral model. This is where past results from the automatic
parallelization community are useful.

 	
 More generally, a VHDL specification is too low level to allow the
designer to perform, easily, higher-level code optimizations, especially on
multi-dimensional loops and arrays, which are of paramount importance to
exploit parallelism, pipelining, and perform communication and memory
optimizations.

 Some intermediate tools were proposed that generate VHDL from a specification in
restricted C, both in academia (such as SPARK,
Gaut,
UGH,
CloogVHDL),
and in industry (such as C2H,
CatapultC,
Pico-Express, Vivado HLS).
All these tools use only the most elementary form of parallelization,
equivalent to instruction-level parallelism in ordinary compilers, with some
limited form of block pipelining, and communication through FIFOs. Targeting
one of these tools for low-level code generation, while we concentrate on
exploiting loop parallelism, might be a more fruitful approach than directly
generating VHDL. However, it may be that the restrictions they impose
preclude efficient use of the underlying hardware.
Our first experiments with these HLS tools reveal two important issues.
First, they are, of course, limited to certain types of input programs so as
to make their design flows successful, even if, over the years, they become
more and more mature. But it remains a painful and tricky task for the user to
transform the program so that it fits these constraints and to tune it to get
good results. Automatic or semi-automatic program transformations can help
the user achieve this task. Second, users, even expert users, have only a very
limited understanding of what back-end compilers do and why they do not lead
to the expected results. An effort must be done to analyze the different
design flows of HLS tools, to explain what to expect from them, and how to use
them to get a good quality of results. Our first goal is thus to develop
high-level techniques that, used in front of existing HLS tools, improve their
utilization. This should also give us directions on how to modify them or to
design new tools from scratch.

 More generally, we want to consider HLS as a more global parallelization
process. So far, no HLS tools is capable of generating designs with
communicating parallel accelerators, even if, in theory, at least for
the scheduling part, a tool such as Pico-Express could have such
capabilities. The reason is that it is, for example, very hard to
automatically design parallel memories and to decide the distribution of array
elements in memory banks to get the desired performances with parallel
accesses. Also, how to express communicating processes at the language level?
How to express constraints, pipeline behavior, communication media, etc.? To
better exploit parallelism, a first solution is to extend the source language
with parallel constructs, as in all derivations of the Kahn process networks
model, including communicating regular processes (CRP, see later). The other
solution is a form of automatic parallelization. However, classical methods,
which are mostly based on scheduling, need to be revisited, to pay more
attention to locality, process streaming, and low-level pipelining, which are
of paramount importance in hardware. Besides, classical methods mostly rely
on the runtime system to tailor the parallelism degree to the available
resources. Obviously, there is no runtime system in hardware. The real
challenge is thus to invent new scheduling algorithms that take resource,
locality, and pipelining into account, and then to infer the necessary
hardware from the schedule. This is probably possible only for programs that
fit into the polyhedral model, or in an incrementally-extended model.

 Our research activities on polyhedral code analysis and optimizations directly
target these HLS challenges. But they are not limited to the automatic
generation of hardware as can be seen from our different contributions on X10,
OpenStream, parametric tiling, etc. The same underlying concepts also arise
when optimizing codes for GPUs and multicores. In this context of polyhedral
analysis and optimizations, we will focus on three aspects:

 	
 developing high-level transformations, especially for loops and
memory/communication optimizations, that can be used in front of HLS tools so
as to improve their use, as well as for hardware accelerators;

 	
 developing concepts and techniques in a more global view of high-level
synthesis and high-level parallel programming, starting from specification
languages down to hardware implementation;

 	
 developing more general code analysis so as to extract more information
from codes as well as to extend the programs that can be handled.

 Section:
 Research Program

 Code Analysis, Code Transformations, Code Optimizations

 Embedded systems generated new problems in code analysis and optimization
both for optimizing embedded software (compilation) and hardware (HLS). We
now give a bit more details on some general challenges for program analysis,
optimizations, and transformations, induced by this context, and on our
methodology, in particular our development and use of polyhedral
optimizations and its extensions.

 Processes, Scheduling, Mapping, Communications, etc.

 Before mapping an application to an architecture,
one has to decide which execution model is targeted and where to
intervene in the design flow. Then one has to solve scheduling,
placement, and memory management problems. These three aspects should
be handled as a whole, but present state of the art dictates that they
be treated separately. One of our aims will be to find more
comprehensive solutions. The last task is code generation, both for
the processing elements and the interfaces processors/accelerators.

 There are basically two execution models for embedded systems: one is the
classical accelerator model, in which data is deposited in the memory of the
accelerator, which then does its job, and returns the results. In the streaming
model, computations are done on the fly, as data items flow from an input
channel to the output. Here, the data are never stored in (addressable) memory.
Other models are special cases, or sometimes compositions of the basic models.
For instance, a systolic array follows the streaming model, and sometimes
extends it to higher dimensions. Software radio modems follow the streaming
model in the large, and the accelerator model in detail. The use of first-in
first-out queues (FIFO) in hardware design is an application of the streaming
model. Experience shows that designs based on the streaming model are more
efficient that those based on memory, for such applications. One of the point
to be investigated is whether it is general enough to handle arbitrary
(regular) programs. The answer is probably negative. One possible
implementation of the streaming model is as a network of communicating
processes either as Kahn process networks (FIFO based) or as our more recent
model of communicating regular processes (memory based, see for example CRP
below). It is an interesting fact that several researchers have investigated
translation from process networks [21] and to process
networks [32] , [33] . Streaming languages such as StreamIt and
OpenStream have also been developed.

 Kahn process networks (KPN) were introduced 30 years ago as a notation for
representing parallel programs. Such a network is built from processes that
communicate via perfect FIFO channels. Because the channel histories are
deterministic, one can define a semantics and talk meaningfully about the
equivalence of two implementations. As a bonus, the dataflow diagrams used by
signal processing specialists can be translated on-the-fly into process
networks. The problem with KPNs is that they rely on an asynchronous execution
model, while VLIW processors and FPGAs are synchronous or partially
synchronous. Thus, there is a need for a tool for synchronizing KPNs. This can
be done by computing a schedule that has to satisfy data dependences within
each process, a causality condition for each channel (a message cannot be
received before it is sent), and real-time constraints. However, there is a
difficulty in writing the channel constraints because one has to count messages
in order to establish the send/receive correspondence and, in multi-dimensional
loop nests, the counting functions may not be affine. Recent developments on
the theory of polynomials (see Section
	7.11)
may offer a solution to this problem. One can also define another model,
communicating regular processes (CRP), in which channels are represented
as write-once/read-many arrays. One can then dispense with counting functions
and prove that the determinacy property still holds.
As
an added benefit, a communication system in which the receive operation is not
destructive is closer to the expectations of system designers.

 The main difficulty with this approach is that ordinary programs are usually
not constructed as process networks. One needs automatic or semi-automatic
tools for converting sequential programs into process networks. One
possibility is to start from array dataflow analysis [23] or
variants.
Another approach attempts to construct threads, i.e., pieces of sequential code
with the smallest possible interactions. In favorable cases, one may even find
outermost parallelism, i.e., threads with no interactions whatsoever. Tiling
mechanisms can also be used to define atomic processes that can be pipelined as we proposed initially for FPGA [17] .

 Whatever the chosen solution (FIFO or addressable memory) for communicating
between two accelerators or between the host processor and an accelerator, the
problems of optimizing communication between processes and of optimizing
buffers have to be addressed. Many local memory optimization problems have
already been solved theoretically. Some examples are loop fusion and loop
alignment for array contraction,
techniques for data allocation in scratch-pad memory, or techniques for folding
multi-dimensional arrays [20] . Nevertheless, the problem is
still largely open. Some questions are: how to schedule a loop sequence (or
even a process network) for minimal scratch-pad memory size? How is the problem
modified when one introduces unlimited and/or bounded parallelism (same
questions for analyzing explicitly-parallel programs)? How does one take into
account latency or throughput constraints, bandwidth constraints for input and
output channels, memory hierarchies? All loop transformations are useful in
this context, in particular loop tiling, and may be applied either as
source-to-source transformations (when used in front of HLS or C-level
compilers) or to generate directly VHDL or lower-level C-dialects such as
OpenCL. One should keep in mind that theory will not be sufficient to solve
these problems. Experiments are required to check the relevance of the various
models (computation model, memory model, power consumption model) and to select
the most important factors according to the architecture. Besides,
optimizations do interact: for instance, reducing memory size and increasing
parallelism are often antagonistic. Experiments will be needed to find a global
compromise between local optimizations. In particular, the design of cost
models remain a fundamental challenge.

 Finally, there remains the problem of code generation for accelerators. It is a
well-known fact that modern methods for program optimization and
parallelization do not generate a new program, but just deliver blueprints for
program generation, in the form, e.g., of schedules, placement functions, or
new array subscripting functions. A separate code generation phase must be
crafted with care, as a too naive implementation may destroy the benefits
of high-level optimization. There are two possibilities here as suggested
before; one may target another high-level synthesis or compilation tool, or one
may target directly VHDL or low-level code. Each approach has its advantages
and drawbacks. However, both situations require that the input program
respects some strong constraints on the code shape, array accesses, memory
accesses, communication protocols, etc. Furthermore, to get the compilers do
what the user wants requires a lot of program tuning, i.e., of program
rewriting or of program annotations. What can be automated in this rewriting
process? Semi-automated?

 In other words, we still need to address scheduling, memory, communication, and
code generation issues, in the light of the developments of new languages and
architectures, pushing the limits of such an automation.

 Beyond Static Control Programs

 With the advent of parallelism in supercomputers, the bulk of research in code
transformation resulted in (semi-)automatic parallelization, with many
techniques (analysis, scheduling, code generation, etc.) based on the
description and manipulation of nested loops with polyhedra. Compsys has always
taken an active part in the development of these so-called “polyhedral
techniques”. Historically, these analysis were (wrongly) understood to be
limited to static control programs.

 Actually, the polyhedral model is neither a programming language nor an execution model
rather an intermediate representation.
As such, it can be generated from imperative sequential languages like
C or Fortran, streaming languages like CRP, or equational languages like Alpha.
While the structure of the model is the same in all three cases, it may enjoy
different properties, e.g., a schedule always exists in the
first case, not in the two others. The import of the
polyhedral model is that many questions relative to the analysis of a program
and the applicability of transformations can be answered precisely and
efficiently by applying well-known mathematical results to the model.

 For irregular programs, the basic idea is to construct a polyhedral
over-approximation, i.e., a program which has more operations, a larger memory
footprint, and more dependences than the original. One can then parallelize the
approximated program using polyhedral tools, and then return to the original,
either by introducing guards, or by insuring that approximations are harmless.
This technique is the standard way of dealing with approximated dependences. We
already started to study the impact of approximations in our kernel offloading
technique, for optimizing remote communications [3] . It
is clear however that this method will apply only to mildly non-polyhedral
programs. The restriction to arrays as the only data structure is still
present. Its advantage is that it will be able to subsume in a coherent
framework many disparate tricks: the extraction of SCoPs, induction variable
detection, the omission of non-affine subscripts, or the conversion of control
dependences into data dependences. The link with the techniques developed in
the PIPS compiler (based on array region analysis) is strong and will have to
be explored.

 Such over-approximations can be found by mean of abstract
interpretation, a general framework to develop static analysis on
real-life programs.
However, they were designed mainly for verification purposes, thus precision
was the main issue before scalability. Although many efforts were made in
designing specialized analyses (pointers, data structures, arrays), these
approaches still suffer from a lack of experimental evidence concerning their
applicability for code optimization. Following our experience and work on
termination analysis (that connects the work on back-end CFG-like and front-end
polyhedral-like optimizations), and our work on range analysis of numerical
variables and on the memory footprint on real-world C
programs [29] , our objective is to bridge the gap between
abstract interpretation and compilation, by designing cheaper analyses that
scale well, mainly based on compact representations derived from variants of
static single assignment (SSA). We will focus on complex control, and complex
data structures (pointers, lists) that still suffer from complexity issues in
the area of optimization.

 Another possibility is to rely on
application specific knowledge to guide compiler decisions,
as it is impossible for a compiler alone to fully exploit such pieces
of information. A possible approach to better utilize such knowledge
is to put the programmers “in the loop”.
Expert parallel programmers often have a good idea about coarse-grain
parallelism and locality that they want to use for an application. On the other
hand, fine-grain parallelism (e.g., ILP, SIMD) is tedious and specific to each
underlying architecture, and is best left to the compiler. Furthermore,
approximations will have opportunities to be refined using programmer
knowledge. The key challenge is to create a programming environment where
compiler techniques and programmer knowledge can be combined effectively. One
of the difficulties is to design a common language between the compiler and
the programmer.

 Section:
 Research Program

 Mathematical Tools

 All compilers have to deal with sets and relations. In classical
compilers, these sets are finite: the set of statements of a program, the set
of its variables, its abstract syntax tree (AST), its control-flow graph
(CFG), and many others. It is only in the first phase of compilation,
parsing, that one has to deal with infinite objects, regular and context-free
languages, and those are represented by finite grammars, and are processed by
a symbolic algorithm, yacc or one of its clones.

 When tackling parallel programs and parallel compilation, it was soon
realized that this position was no longer tenable. Since it makes no
sense to ask whether a statement can be executed in parallel with itself,
one has to consider sets of operations, which may be so large as to
forbid an extensive representation, or even be infinite. The same is true
for dependence sets, for memory cells, for communication sets, and for
many other objects a parallel compiler has to consider. The representation
is to be symbolic, and all necessary algorithms have to be promoted
to symbolic versions.

 Such symbolic representations have to be efficient – the formula representing
a set has to be much smaller than the set itself – and effective – the
operations one needs, union, intersection, emptiness tests and many others –
have to be feasible and fast. As an aside, note that progress in algorithm
design has blurred the distinction between polynomially-solvable and
NP-complete problems, and between decidable and undecidable questions. For
instance SAT, SMT, and ILP software tools solve efficiently many NP-complete
problems, and the Z3 tool is able to “solve” many instances of the
undecidable Hilbert's 10th problem.

 Since the times of Pip and of the Polylib, Compsys has been active in the
implementation of basic mathematical tools for program analysis and synthesis.
Pip is still developed by Paul Feautrier and Cédric Bastoul, while the
Polylib is now taken care of by the Inria Camus project, which introduced
Ehrhart polynomials. These tools are still in use world-wide and they also
have been reimplemented many times with (sometimes slight) improvements, e.g.,
as part of the Parma Polylib, of Sven Verdoolaege's Isl and Barvinok libraries,
or of the Jollylib of Reservoir Labs. Other groups also made a lot of efforts
towards the democratization of the use of polyhedral techniques, in particular
the Alchemy Inria project, with Cloog and the development of Graphite in GCC,
and Sadayappan's group in the USA, with the development of U. Bondhugula's
Pluto prototype compiler. The same effort is made through the PPCG prototype
compiler (for GPU) and Pencil (directives-based language on top of PPCG).

 After 2009, Compsys continued to focus on the introduction of concepts and
techniques to extend the polytope model, with a shift toward tools that may
prepare the future. For instance, PoCo and C2fsm are able to parse
general programs, not just SCoPs (static control programs), while the efficient
handling of Boolean affine formulas [22] is a prerequisite for
the construction of non-convex approximations. Euclidean lattices provide an
efficient abstraction for the representation of spatial phenomena, and the
construction of critical lattices as embedded in the tool Cl@k is a
first step towards memory optimization in stream languages and may be useful in
other situations. Our work on Chuba introduced a new element-wise array
reuse analysis and the possibility of handling approximations. Our work on the
analysis of while loops is both an extension of the polytope model itself
(i.e., beyond SCoPs) and of its applications, here links with program
termination and worst-case execution time (WCET) tools.

 A recent example of the same approach is the proposal by Paul Feautrier to use
polynomials for program analysis and
optimization [6] . The associated tools are based on
Handelman and Schweighofer theorems, the polynomial analogue of Farkas lemma.
While this is definitely work in progress, with many unsolved questions, it has
the potential of greatly enlarging the set of tractable programs.

 As a last remark, observe that a common motif of these development is the
transformation of finite algorithms into symbolic algorithms, able to
solve very large or even infinite instances. For instance, PIP is a symbolic
extension of the Simplex; our work on memory allocation is a symbolic
extension of the familiar register allocation problem; loop scheduling
extends DAG scheduling. Many other algorithms await their symbolic
transformation: a case in point is resource-constrained scheduling.

 Application Domains

 	Application Domains	Compilers for Embedded Computing Systems
	Users of HPC Platforms and Scientific Computing

 Section:
 Application Domains

 Compilers for Embedded Computing Systems

 The previous sections described our main activities in terms of research
directions, but also places Compsys within the embedded computing systems
domain, especially in Europe. We will therefore not come back here to the
importance, for industry, of compilation and embedded computing systems
design.

 In terms of application domain, the embedded computing systems we consider
are mostly used for multimedia: phones, TV sets, game platforms, etc. But,
more than the final applications developed as programs, our main application
is the computer itself: how the system is organized
(architecture) and designed, how it is programmed (software), how programs
are mapped to it (compilation and high-level synthesis).

 The industry that can be impacted by our research is thus all the companies
that develop embedded processors, hardware accelerators (programmable or
not), embedded systems, and those (the same plus other) that need software
tools to map applications to these platforms, i.e., that need to use or even
develop programming languages, program optimization techniques, compilers,
operating systems. Compsys do not focus on all these critical parts, but
our activities are connected to them.

 Section:
 Application Domains

 Users of HPC Platforms and Scientific Computing

 The convergence between embedded computing systems and high-performance
computing (HPC) technologies offers new computing platforms and tools for the
users of scientific computing (e.g., people working in numerical analysis, in
simulation, modeling, etc.). The proliferation of “cheap” hardware
accelerators and multicores makes the “small HPC” (as opposed to computing
centers with more powerful computers, grid computing, and exascale computing)
accessible to a larger number of users, even though it is still difficult to
exploit, due to the complexity of parallel programming, code tuning,
interaction with compilers, which result from the multiple levels of
parallelism and of memories in the recent architectures. The link between
compiler and code optimization research (as in Compsys) and such users are
still to be reinforced, both to guarantee the relevance of compiler research
efforts with respect to application needs, and to help users better interact
with compiler choices and understand performance issues.

 The support of Labex MILYON (through its thematic quarters, such as the
thematic quarter on compilation we organized in 2013 (Thematic
quarter on compilation: http://labexcompilation.ens-lyon.fr/), or
the upcoming 2016 thematic quarter on high-performance computing) and the
activities of the LyonCalcul initiative (Lyon Calcul federation:
http://lyoncalcul.univ-lyon1.fr) are means to get closer to users of
scientific computing, even if it is too early to know if Compsys will
indeed be directly helpful to them.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 Scientific Results

 2015 showed good successes, in terms of scientific results, with respect to
the objectives we fixed for Compsys III, i.e., pushing static compilation
beyond its present limits, both in terms of techniques and applications,
bridging the gap between polyhedral techniques and abstract interpretation,
sequential codes and parallel specifications, back-end and front-end
techniques. Important advances in 2015 are as follows:

 	
 Towards a polynomial model We developed new techniques to handle
polynomials (see Section
	7.11) and thereby
generalizing polyhedral (e.g., affine) techniques, with applications to the
analysis of the OpenStream parallel language (see
Section
	7.10).

 	
 Handling parallel specifications In complement to our current
studies of parallel languages such as X10 (see
Sections
	7.8
and
	7.9) and OpenStream (see
Section
	7.10), and kernel offloading
with pipelined specifications (see
Section
	7.7), we succeeded to
extend liveness analysis (see
Section
	7.12) and array contraction (see
Section
	7.13) to parallel
specifications.

 	
 Enhancing interactions between programmer and compiler This is an
important challenge for the expansion of the applicability of our techniques.
The work exposed in Sections
	7.9
and
	7.15 (effort for collecting and
analyzing real applications), as well as the interaction with users of HPC,
including the organization a joint spring school in 2016, are important steps in this direction.

 	
 Links with abstract interpretation and SMT solvers The extension of
our previous work on loop termination, with an iterative technique relying on
SMT solvers for exhibiting counter-examples (see
Section
	7.4), is an interesting
combination of polyhedral and abstract interpretation techniques. This is the
case also for the array analysis of
Section
	7.3 .

 	
 Back-end analysis Considering back-end optimizations remains
important, as complementary to front-end optimizations. See the results on
register spilling (Section
	7.1), pointer
analysis (Section
	7.2), liveness analysis
(Section
	7.12), the latter exploiting the
fact that a polyhedral representation of arrays and loops is a symbolic
unrolled view of registers and traces.

 Awards

 The CC'15 paper on parametric tiling [3] was nominated
as a best paper candidate for the group of conferences ETAPS'15 where,
unfortunately, CC papers never finally got an award.

 End of Compsys

 Compsys exists since 2012 as an Inria team. It has been created in 2004 as an
Inria project-team, and evaluated by Inria first in 2007, then in 2012. It
will again be evaluated in March 2016, which will be its final evaluation as
an Inria project-team is limited to 12 years. The construction of a new
project is thus necessary. The research directions of Compsys III were
already a shift towards this future project. A few tentative research
directions may be:

 	
 Shift the application domain from embedded systems to high performance
computing (HPC) but at small scale (desktop HPC: FPGA, GPU, multicores). In
fact, the two ecosystems are nowadays slowly converging.

 	
 A stronger attention to real HPC users and real HPC applications may lead
to better programming models (“putting the programmer in the loop”).

 	
 Design new models of programs. The polynomial model is but an example.

 	
 Explore the synergy between parallel programming and program verification
and certification; in particular, import approximation methods from one field
to the other. Abstract interpretation is a case in point.

 However, while its field of expertise, compilation for parallel and
heterogeneous systems, is still of crucial importance, the unexpected departure
in Sep. 2015 of two of its staff members makes it difficult to have a clear
view of the future.

 New Software and Platforms

 	New Software and Platforms	Aspic
	DCC
	Lattifold
	OpenOrdo
	PoCo
	PolyOrdo
	PPCG-ParamTiling
	Termite
	Vaphor

 Section:
 New Software and Platforms

 Aspic

 Accelerated Symbolic Polyhedral Invariant Generation

 Keywords: Abstract Interpretation - Invariant Generation

 Functional Description

 Aspic is an invariant generator for general counter automata. Combined with
C2fsm (a tool developed by P. Feautrier in Compsys), it can be used to
derive invariants for numerical C programs, and also to prove safety. It is
also part of the WTC toolsuite (see
http://compsys-tools.ens-lyon.fr/wtc/index.html), a tool chain to
compute worse-case time complexity of a given sequential program.

 Aspic implements the theoretical results of Laure Gonnord's PhD
thesis on acceleration techniques and has been maintained since 2007.

 	
 Participant: Laure Gonnord

 	
 Contact: Laure Gonnord

 	
 URL: http://laure.gonnord.org/pro/aspic/aspic.html

 Section:
 New Software and Platforms

 DCC

 DPN C Compiler

 Keywords: Polyhedral compilation - Automatic parallelization - High-level synthesis

 Functional Description

 Dcc (Data-aware process network C compiler) analyzes a sequential regular
program written in C and generates an equivalent architecture of parallel
computer as a communicating process network (Data-aware Process Network, DPN).
Internal communications (channels) and external communications (external
memory) are automatically handled while fitting optimally the characteristics
of the global memory (latency and throughput). The parallelism can be tuned.
Dcc has been registered at the APP (“Agence de protection des programmes”)
and transferred to the XtremLogic start-up under an Inria license.

 	
 Participants: Christophe Alias and Alexandru Plesco

 	
 Contact: Christophe Alias

 Section:
 New Software and Platforms

 Lattifold

 Lattice-based Memory Folding

 Keywords: Polyhedral compilation - Euclidean Lattices

 Functional Description

 Implements advanced lattice-based memory folding techniques. The idea is to
reduce memory footprint of multidimensional arrays by reducing the size of
each dimension. Given a relation denoting conflicting array cells, it produces
a new mapping based on affine functions bounded by moduli. The moduli induces
memory reuse and bound memory accesses to a tighter area, allowing to reduce
the array size without loss of correctness.

 	
 Partner: ENS Lyon

 	
 Contact: Alexandre Isoard

 Section:
 New Software and Platforms

 OpenOrdo

 OpenStream scheduler

 Functional Description

 Finding polynomial schedules for the streaming language OpenStream. Main use:
detecting deadlocks.

 	
 Contact: Paul Feautrier

 Section:
 New Software and Platforms

 PoCo

 Polyhedral Compilation library

 Keywords: Polyhedral compilation - Automatic parallelization

 Functional Description

 PoCo (Polyhedral Compilation library) is a compilation framework allowing to
develop parallelizing compilers for regular programs. PoCo features many
state-of-the-art polyhedral program analysis (dependences, affine scheduling,
code generation) and a symbolic calculator on execution traces (represented as
convex polyhedra). PoCo has been registered at the APP (“agence de
protection des programmes”) and transferred to the XtremLogic start-up under
an Inria license.

 	
 Participant: Christophe Alias

 	
 Contact: Christophe Alias

 Section:
 New Software and Platforms

 PolyOrdo

 Polynomial Scheduler

 Functional Description

 Computes a polynomial schedule for a sequential
polyhedral program having no affine
schedule. Uses algorithms for finding
positive polynomials in semi-algebraic sets. Status: proof of concept
software.

 	
 Contact: Paul Feautrier

 Section:
 New Software and Platforms

 PPCG-ParamTiling

 Parametric Tiling Extension for PPCG

 Keywords: Source-to-source compiler - Polyhedral compilation

 Functional Description

 PPCG is a source-to-source compiler, based on polyhedral techniques, targeting
GPU architectures. It involves automatic parallelization and tiling using
polyhedral techniques. This version replaces the static tiling of PPCG by a
fully parametric tiling and code generator. It allows to choose tile sizes at
run time when the memory size is known. It also provides a symbolic expression
of memory usage depending on the problem size and the tile sizes.

 	
 Partner: ENS Lyon

 	
 Contact: Alexandre Isoard

 Section:
 New Software and Platforms

 Termite

 Termination of C programs

 Keywords: Abstract Interpretation - Termination

 Functional Description

 Termite is the implementation of our
new algorithm “Counter-example based generation of ranking
functions” (see Section
	7.4).
Based on LLVM and Pagai (a tool that generates invariants), the tool
automatically generates a ranking function for each head of
loop.

 Termite represents 3000 lines of OCaml and is now available via
the opam installer.

 	
 Participants: Laure Gonnord, Gabriel Radanne (PPS, Univ
Paris 7), David
Monniaux (CNRS/Verimag).

 	
 Contact: Laure Gonnord

 	
 URL: https://termite-analyser.github.io/

 Section:
 New Software and Platforms

 Vaphor

 Validation of C programs with arrays with Horn Clauses

 Keywords: Abstract Interpretation - Safety - Array Programs

 Functional Description

 Vaphor (Validation of Programs with Horn Clauses) is the implementation
of our new algorithm “An encoding of array verification problems into
array-free Horn clauses” (see
Section
	7.3). The tool implements a
translation from a C-like imperative language into Horn clauses in the
SMT-lib Format.

 Vaphor represents 2000 lines of OCaml and its development is
under consolidation.

 	
 Participants: Laure Gonnord, David
Monniaux (CNRS/Verimag).

 	
 Contact: Laure Gonnord

 	
 URL: not yet published, under consolidation.

 New Results

 	New Results	Studying Optimal Spilling in the Light of SSA
	Symbolic Range of Pointers in C programs
	Analyzing C Programs with Arrays
	Termination of C Programs
	Data-aware Process Networks
	Mono-parametric Tiling
	Exact and Approximated Data-Reuse Optimizations
for Tiling with Parametric Sizes
	Analysis of X10 Programs
	Revisiting Loop Transformations with X10 Clocks
	Static Analysis of OpenStream Programs
	Handling Polynomials for Program Analysis and
Transformation
	Liveness Analysis in Explicitly-Parallel
Programs
	Extended Lattice-Based Memory Allocation
	Stencil Accelerators
	PolyApps

 Section:
 New Results

 Studying Optimal Spilling in the Light of SSA

 Participants :
	Florian Brandner [ENSTA ParisTech, previously Compsys] , Quentin Colombet [Apple, previously Compsys] , Alain Darte.

 Recent developments in register allocation, mostly linked to static
single assignment (SSA) form, have shown the benefits of decoupling
the problem in two phases: a first spilling phase places load and
store instructions so that the register pressure at all program points
is small enough, and a second assignment and coalescing phase maps the
variables to physical registers and reduces the number of move
instructions among registers. We focused on the first phase, for which
many open questions remain: in particular, we studied the notion of
optimal spilling (what can be expressed?) and the impact of SSA form
(does it help?).

 To identify the important features for optimal spilling on load-store
architectures, we developed a new integer linear programming
formulation, more accurate and expressive than previous
approaches. Among other features, we can express SSA φ-functions,
memory-to-memory copies, and the fact that a value can be stored
simultaneously in a register and in memory. Based on this formulation,
we presented a thorough analysis of the results obtained for the
SPECINT 2000 and EEMBC 1.1 benchmarks, from which we have drawn, among
others, the following conclusions: (1) rematerialization is extremely
important; (2) SSA complicates the formulation of optimal spilling,
especially because of memory coalescing when the code is not in
conventional SSA (CSSA); (3) micro-architectural features are
significant and thus have to be accounted for; and (4) significant
savings can be obtained in terms of static spill costs, cache miss
rates, and dynamic instruction counts.

 Parts of this work were published at CASES 2011 [18] . The
journal publication [1] contains more detailed
discussions, more examples illustrating new concepts and existing
approaches, and additional experiments covering the observed
worst-case behavior, a new post-latency heuristic, and empiric evidence
showing why static spill costs are a poor metric. Three configurations
were added: Appel and George under SSA, Koes and Goldstein, and the
heuristic of Braun and Hack.

 Section:
 New Results

 Symbolic Range of Pointers in C programs

 Participants :
	Vitor Paisante [Univ. Mineas Gerais, Brazil] , Maroua Maalej, Leonardo Barbosa [Univ. Mineas Gerais, Brazil] , Laure Gonnord, Fernando Pereira [Univ. Mineas Gerais, Brazil] .

 Alias analysis is one of the most fundamental techniques that compilers use
to optimize languages with pointers. However, in spite of all the attention
that this topic has received, the current state-of-the-art approaches inside
compilers still face challenges regarding precision and speed. In
particular, pointer arithmetic, a key feature in C and C++, is yet to be
handled satisfactorily. We designed a new alias analysis algorithm to solve
this problem. The key insight of our approach is to combine alias analysis
with symbolic range analysis. This combination lets us disambiguate fields
within arrays and structs, effectively achieving more precision than
traditional algorithms. To validate our technique, we have implemented it on
top of the LLVM compiler. Tests on a vast suite of benchmarks show that we
can disambiguate several kinds of C idioms that current state-of-the-art
analyses cannot deal with. In particular, we can disambiguate 1.35x more
queries than the alias analysis currently available in LLVM. Furthermore,
our analysis is very fast: we can go over one million assembly instructions
in 10 seconds.

 This work has been accepted at CGO'16 [30] . An
extended version of the related work is available as an Inria research
report [27] and will be the basis of a journal
submission.

 Section:
 New Results

 Analyzing C Programs with Arrays

 Participants :
	Laure Gonnord, David Monniaux [CNRS/VERIMAG] .

 Automatically verifying safety properties of programs is hard, and it is even
harder if the program acts upon arrays or other forms of maps. Many
approaches exist for verifying programs operating upon Boolean and integer
values (e.g., abstract interpretation, counter-examples guided abstraction
refinement using interpolants), but transposing them to array properties has
been fraught with difficulties.

 In contrast to most preceding approaches, we do not introduce a new abstract
domain or a new interpolation procedure for arrays. Instead, we generate an
abstraction as a scalar problem and feed it to a preexisting solver. The
intuition is that if there is a proof of safety of the program, it is likely
that it can be expressed by elementary steps between properties involving
only a small (tunable) number N of cells from the array.

 Our transformed problem is expressed using Horn clauses over scalar
variables, a common format with clear and unambiguous logical semantics, for
which there exist several solvers. In contrast, solvers directly operating
over Horn clauses with arrays are still very immature.

 An important characteristic of our encoding is that it creates a non-linear
Horn problem, with tree unfoldings, contrary to the linear problems obtained
by flatly encoding the control-graph structure. Our encoding thus cannot be
expressed by encoding into another control-flow graph problem, and truly
leverages the Horn clause format.

 Experiments with our prototype VAPHOR (see
Section
	6.9) show that this approach can
prove automatically the functional correctness of several classical examples
of the literature, including selection sort, bubble sort,
insertion sort, as well as examples from previous articles on array
analysis.

 This work is presented in a research report [28]
and is currently under submission.

 Section:
 New Results

 Termination of C Programs

 Participants :
	Laure Gonnord, David Monniaux [CNRS/VERIMAG] , Gabriel Radanne [Univ Paris 7/ PPS] .

 The work of Compsys on the generation of multi-dimensional ranking
functions [15] , through a mix of polyhedral and abstract
interpretation techniques, and its implementation in the tool
RanK [16] , was continued by Laure Gonnord in collaboration
with D. Monniaux. A complete method for synthesizing lexicographic linear
ranking functions (and thus proving termination), supported by inductive
invariants, was designed in the case where the transition relation of the
program includes disjunctions and existentials (large block encoding of
control flow).

 Previous work would either synthesize a ranking function at every
basic block head, not just loop headers, which reduces the scope of
programs that may be proved to be terminating, or expand large block
transitions including tests into (exponentially many) elementary
transitions, prior to computing the ranking function, resulting in a
very large global constraint system. In contrast, the new algorithm
incrementally refines a global linear constraint system according to
extremal counterexamples: only constraints that exclude spurious
solutions are included.

 Experiments with our tool Termite
	6.8 show marked
performance and scalability improvements compared to other systems.

 This work has been published at the PLDI'15 conference [7] .

 Section:
 New Results

 Data-aware Process Networks

 Participants :
	Christophe Alias, Alexandru Plesco [XtremLogic SAS] .

 High-level circuit synthesis (HLS, high-level synthesis) consists in
compiling a program described in a high-level programming language (as C) to
a circuit. The circuit must be as efficient as possible while using properly
the resources (power consumption, silicon area, FPGA elementary units,
memory accesses, etc). Although a lot of progress was achieved on the back-end
(low-level) aspects (pipeline generation, place/route), the front-end
aspects (parallelism, I/O) are still rudimentary compared to the techniques
developed by the HPC community, notably the analysis stemming from the polyhedral model.

 We introduced data-aware process networks (DPN), a parallel execution model
adapted to the hardware constraints of high-level synthesis, where the data
transfers are made explicit. We have shown that the DPN model is consistent
in the sense that any translation of a sequential program produces an
equivalent DPN without deadlocks. Finally, we show how to compile a
sequential program to a DPN and how to optimize the input/output and the
parallelism.

 This work has been published as an Inria research
report [9] and will be submitted to a journal.

 Section:
 New Results

 Mono-parametric Tiling

 Participants :
	Guillaume Iooss, Sanjay Rajopadhye [Colorado State University] , Christophe Alias, Yun Zou [Colorado State University] .

 Tiling is a crucial program transformation with many benefits. It improves
locality, exposes parallelism, allows for adjusting the ops-to-bytes balance
of codes, and can be applied at multiple levels. Allowing tile sizes to be
symbolic parameters at compile time has many benefits, including efficient
auto-tuning, and run-time adaptability to system variations. For polyhedral
programs, parametric tiling in its full generality is known to be non-linear,
breaking the mathematical closure properties of the polyhedral model. Most
compilation tools therefore either avoid it by only performing fixed size
tiling, or apply it only in the final, code generation step. Both strategies
have limitations.

 We first introduced mono-parametric partitioning, a restricted parametric,
tiling-like transformation that can be used to express a tiling. We showed
that, despite being parametric, it is a polyhedral transformation. We first
proved that applying mono-parametric partitioning (i) to a polyhedron yields
a union of polyhedra, and (ii) to an affine function produces a
piecewise-affine function. We then used these properties to show how to
partition an entire polyhedral program, including one with reductions. Next,
we generalized this transformation to tiles with arbitrary tile shapes that
can tessellate the iteration space (e.g., hexagonal, trapezoidal, etc). We
showed how mono-parametric tiling can be applied at multiple levels, and how it
enables a wide range of polyhedral analyses and transformations to be
applied.

 This work has been published as an Inria research
report [14] and will be submitted to a journal. It is
the extended version of the work published at
IMPACT'14 [26] .

 Section:
 New Results

 Exact and Approximated Data-Reuse Optimizations
for Tiling with Parametric Sizes

 Participants :
	Alain Darte, Alexandre Isoard.

 As mentioned in Section
	7.6 , loop
tiling is a loop transformation widely used to improve spatial and temporal
data locality, to increase computation granularity, and to enable blocking
algorithms, which are particularly useful when offloading kernels on computing
units with smaller memories. When caches are not available or used, data
transfers and local storage must be software-managed, and some useless remote
communications can be avoided by exploiting data reuse between tiles. An
important parameter of tiling is the sizes of the tiles, which impact the size
of the required local memory. However, for most analyses involving several
tiles, which is the case for inter-tile data reuse, the tile sizes induce
non-linear constraints, unless they are numerical constants. This complicates
or prevents a parametric analysis with polyhedral optimization techniques.

 We showed that, when tiles are executed in sequence along tile axes, the
parametric (with respect to tile sizes) analysis for inter-tile data reuse is
nevertheless possible, i.e., one can determine, at compile-time and in a
parametric fashion, the copy-in and copy-out data sets for all tiles, with
inter-tile reuse, as well as sizes for the induced local memories (this is also
connected to the liveness analysis described in
Section
	7.12). When approximations of
transfers are performed, the situation is much more complex, and involves a
careful analysis to guarantee correctness when data are both read and written.
We provide the mathematical foundations to make such approximations possible,
thanks to the introduction of the concept of pointwise functions.
Combined with hierarchical tiling, this result opens perspectives for the
automatic generation of blocking algorithms, guided by parametric cost models,
where blocks can be pipelined and/or can contain parallelism. Previous work on
FPGAs and GPUs already showed the interest and feasibility of such automation
with tiling, but in a non-parametric fashion.

 Our method is currently implemented with the iscc calculator of
ISL , a library for the manipulation of integer sets defined with
Presburger arithmetic, a complete implementation within the PPCG compiler is in
progress (see also Section
	6.7).

 We believe that our approximation technique can be used for other applications
linked to the extension of the polyhedral model as it turns out to be fairly
powerful. Our future work will be to derive efficient approximation
techniques, either because the program cannot be fully analyzable, or because
approximations can speed-up or simplify the results of the analysis without
losing much in terms of memory transfers and/or memory sizes.

 A preliminary version of this work has been presented at the IMPACT'14
workshop [19] . A revised version was published at the
International Conference on Compiler Construction
(CC'15) [3] .

 Section:
 New Results

 Analysis of X10 Programs

 Participants :
	Paul Feautrier, Alain Ketterlin [Inria/CAMUS] , Sanjay Rajopadhye [Colorado State University] , Vijay Saraswat [IBM Research] , Eric Violard [Inria/CAMUS] , Tomofumi Yuki.

 While, historically, Compsys has applied polyhedral analysis to sequential
programs, it was recently realized that it also applies to parallel programs or
specifications, with the aim of checking their correctness or improving their
performance. The prospect of having to program exascale architectures, with
their millions of cores, has led to the development of new programming
languages, whose objective is to increase the programmer productivity. Compsys
has first applied polyhedral techniques to synchronous
languages [24] , [25] and pipelined specifications
(see Section
	7.7), before concentrating on
IBM's high-productivity language X10 (see this section as well as
Section
	7.9) and on the OpenStream language
(see Section
	7.10).

 X10 is based on the creation of independent activities (light-weight
threads), which can synchronize either by a generalization of the fork/join
scheme, or with clocks, an improved version of the familiar barriers.
X10 is deadlock-free by construction but it is the programmer responsibility to
insure determinism by a proper use of synchronizations. Non-determinism bugs
may have a very low occurrence probability thus be very difficult to detect by
testing, hence the interest for detecting races at compile time. In
collaboration with CSU (S. Rajopadhye, T. Yuki) and IBM (V. Saraswat), we first
extended array dataflow analysis to polyhedral clock-free X10
programs [34] . We have been working on clocked programs
too. Race detection becomes undecidable [35] , but
realistic problems may still be solved by heuristics.

 In cooperation with Eric Violard and Alain Ketterlin (Inria Team Camus,
Strasbourg), and in order to obtain a more secure and precise analysis, we are
currently attempting to formalize the “happens before” analysis used in these
two previous papers [34] , [35] , using the
proof assistant Coq.

 Section:
 New Results

 Revisiting Loop Transformations with X10 Clocks

 Participant :
	Tomofumi Yuki.

 Loop transformations are known to be important for performance of
compute-intensive programs, and are often used to expose parallelism. However,
many transformations involving loops often obfuscate the code, and are
cumbersome to apply by hand. In this work, we explored alternative methods for
expressing parallelism that are more friendly to the programmer. In particular,
we seek to expose parallelism without significantly changing the original loop
structure. We illustrated how clocks in X10 can be used to express some of the
traditional loop transformations, in the presence of parallelism, in a manner
that we believe to be less invasive. Specifically, expressing parallelism
corresponding to one-dimensional affine schedules can be achieved without
modifying the original loop structure and/or statements.

 This work was published at the international workshop on X10 [8] .

 Section:
 New Results

 Static Analysis of OpenStream Programs

 Participants :
	Albert Cohen [Inria Parkas team] , Alain Darte, Paul Feautrier.

 In the context of the ManycoreLabs project (see
Section
	8.1), we also studied the
applicability of polyhedral techniques to the parallel language
OpenStream [31] . When applicable, polyhedral techniques are indeed
invaluable for compile-time debugging and for generating efficient code well
suited to a target architecture. OpenStream is a two-level language in which a
control program directs the initialization of parallel task instances that
communicate through streams, with possibly multiple writers and readers.
It has a fairly complex semantics in its most general setting, but we
restricted ourselves to the case where the control program is sequential, which
is representative of the majority of the OpenStream applications.

 In contrast to X10, this restriction offers deterministic concurrency by
construction, but deadlocks are still possible. We showed that, if the control
program is polyhedral, one may statically compute, for each task instance, the
read and write indices to each of its streams, and thus reason statically about
the dependences among task instances (the only scheduling constraints in this
polyhedral subset). If the control program has nested loops, communications use
one-dimensional channels in a form of linearization, and these indices may be
polynomials of arbitrary degree, thus requiring to extend to polynomials the
standard polyhedral techniques for dependence analysis, scheduling, and
deadlock detection. Modern SMT allow to solve polynomial problems, albeit with
no guarantee of success; the approach previously developed by
P. Feautrier [6] may offer an alternative solution.

 The usual way of disproving deadlocks is by exhibiting a schedule for the
program operations, a well-known problem for polyhedral programs where
dependences can be described by affine constraints. In the case of OpenStream,
we established two important results related to deadlocks: 1) a
characterization of deadlocks in terms of dependence paths, which implies that
streams can be safely bounded as soon as a schedule exists with such sizes,
2) the proof that deadlock detection is undecidable, even for polyhedral
OpenStream.

 Details of this work are available in a research
report [10] . It will be presented at the international
workshop IMPACT'16 [2] . Some further developments are in
progress for scheduling OpenStream programs using polynomial techniques, see
Section
	6.4 .

 Section:
 New Results

 Handling Polynomials for Program Analysis and
Transformation

 Participant :
	Paul Feautrier.

 As shown in Section
	7.10 , many problems
in parallel programs analysis and verification can be reduced to proving or
disproving properties of polynomials in the variables of the program. For
instance, the so-called “linearizations” (replacing a multi-dimensional
object by a one-dimensional one) generate polynomial access functions. These
polynomials then reappear in dependence testing, scheduling, and invariant
construction. It may also happen that polynomials are absent from the source
program, but are created either by an enabling analysis, as for OpenStream, or
are imposed by complexity consideration. The usual solution is to construct a
multi-dimensional function (e.g., a schedule for parallelization or a ranking
function for termination [15]), which can then be converted
into polynomials by counting. However, a direct approach is preferable,
especially when the resulting schedule is to be used for further analysis,
e.g., in real-time situations or WCET evaluation.

 What is needed here is a replacement for the familiar emptiness tests and for
Farkas lemma (deciding whether an affine form is positive inside a polyhedron).
Recent mathematical results by Handelman and Schweighofer on the
Positivstellensatz allow one to devise algorithms that are able to solve
these problems. The difference is that one gets only sufficient conditions, and
that complexity is much higher than in the affine cases. A paper presenting
applications of these ideas to three use cases – dependence testing,
scheduling, and transitive closure approximation – was presented at the 5th
International Workshop on Polyhedral Compilation Techniques
(IMPACT'15) [6] in Amsterdam in January 2015. A tool
implementing polyhedral schedules complements this work, see
Section
	6.6 .

 Section:
 New Results

 Liveness Analysis in Explicitly-Parallel
Programs

 Participants :
	Alain Darte, Alexandre Isoard, Tomofumi Yuki.

 In the light of the parallel specifications encountered in our other works
(from Section
	7.7 to
Section
	7.11), we revisited scalar and array
element-wise liveness analysis for programs with parallel specifications. In
earlier work on memory allocation/contraction (register allocation or intra-
and inter-array reuse in the polyhedral model), a notion of “time” or a total
order among the iteration points was used to compute the liveness of values. In
general, the execution of parallel programs is not a total order, and hence the
notion of time is not applicable.

 We first revised how conflicts are computed by using ideas from liveness
analysis for register allocation, studying the structure of the corresponding
conflict/interference graphs. Instead of considering the conflict between two
pairs of live ranges, we only consider the conflict between a live range and a
write. This simplifies the formulation from having four instances involved in
the test down to three, and also improves the precision of the analysis in the
general case.

 Then we extended the liveness analysis to work with partial orders so that it
can be applied to many different parallel languages/specifications with
different forms of parallelism. An important result is that the complement of
the conflict graph with partial orders is directly connected to memory reuse,
even in presence of races. However, programs with conditionals do not even
have a partial order, and our next step will be to handle such cases with more
accuracy.

 Details of this work are available in a research
report [13] . It will be presented at the international
workshop IMPACT'16 [4] .

 Section:
 New Results

 Extended Lattice-Based Memory Allocation

 Participants :
	Alain Darte, Alexandre Isoard, Tomofumi Yuki.

 We extended lattice-based memory allocation [20] , an earlier
work on memory (array) reuse analysis. The main motivation is to handle in a
better way the more general forms of specifications we see today, e.g., with
loop tiling, pipelining, and other forms of parallelism available in explicitly
parallel languages. Our extension has two complementary aspects. We showed how
to handle more general specifications where conflicting constraints (those that
describe the array indices that cannot share the same location) are specified
as a (non-convex) union of polyhedra. Unlike convex specifications, this also
requires to be able to choose suitable directions (or basis) of array reuse.
For that, we extended two dual approaches, previously proposed for a fixed basis,
into optimization schemes to select suitable basis. Our final approach relies
on a combination of the two, also revealing their links with, on one hand, the
construction of multi-dimensional schedules for parallelism and tiling (but
with a fundamental difference that we identify) and, on the other hand, the
construction of universal reuse vectors (UOV), which was only used so far in a
specific context, for schedule-independent mapping.

 This algorithmic work, connected to the parametric tiling of
Section
	7.7 and the liveness analysis results
of Section
	7.12 , is complemented by a set
of prototype scripting tools, see
Section
	6.3 .

 Details of this work are available in a research
report.
It has also been submitted to a conference.

 Section:
 New Results

 Stencil Accelerators

 Participants :
	Steven Derrien [University of Rennes 1, Inria/CAIRN] , Xinyu Niu [Imperial College London] , Sanjay Rajopadhye [Colorado State University] , Tomofumi Yuki.

 Stencil computations have been known to be an important class of programs for
scientific calculations. Recently, various architectures (mostly targeting
FPGAs) for stencils are being proposed as hardware accelerators with high
throughput and/or high energy efficiency. There are many different challenges
for such design: How to maximize compute-I/O ratio? How to partition the
problem so that the data fits on the on-chip memory? How to efficiently
pipeline? How to control the area usage? We seek to address these challenges by
combining techniques from compilers and high-level synthesis tools.

 One project in collaboration with the CAIRN team and Colorado State University
targets stencils with regular dependence patterns. Although many architectures
have been proposed for this type of stencils, most of them use a large number
of small processing elements (PE) to achieve high throughput. We are exploring
an alternative design that aims for a single, large, deeply-pipelined PE. The
hypothesis is that the pipelined parallelism is more area-efficient compared to
replicating small PEs. We have published a work-in-progress paper on this topic
at IMPACT'16 [5] .

 Another type of stencil accelerators that we are working on, in collaboration
with Xinyu Niu, targets stencil programs with dynamic dependences (i.e., sparse
computations). The collaboration is in the context of the EURECA
project (http://www.doc.ic.ac.uk/~nx210/2015/09/01/eureca.html)
where the dynamic reconfigurability of modern FPGAs are used to efficiently
handle dynamic access patterns.

 Section:
 New Results

 PolyApps

 Participant :
	Tomofumi Yuki.

 Loop transformation frameworks using the polyhedral model have gained increased
attention since the rise of the multi-core era. We now have several research
tools that have demonstrated their power on important kernels found in
scientific computations. However, there remains a large gap between the typical
kernels used to evaluate these tools and the actual applications used by the
scientists.

 PolyApps is an effort to collect applications from other domains of science to
better establish the link between the compiler tools and “real” applications.
The applications are modified to bypass some of the front-end issues of
research tools, while keeping the ability to produce the original output. The
goal is to assess how the state-of-the-art automatic parallelizers perform on
full applications, and to identify new opportunities that only arise in larger
pieces of code.

 We showed that, with a few enhancements, the current tools will
be able to reach and/or exceed the performance of existing parallelizations of
the applications. One of the most critical element missing in current tools is
the ability to modify the memory mappings.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	ManycoreLabs Project with Kalray
	Technological Transfer: XtremLogic Start-Up

 Section:
 Bilateral Contracts and Grants with Industry

 ManycoreLabs Project with Kalray

 Compsys was part of 3-years a bilateral contract with Kalray
called ManycoreLabs, funded by “Investissements d'avenir pour le
développement de l'économie numérique”. The goal of this project
was to allow the company Kalray, based on a collaboration with
several partners, to become the European leader of the market of
many-core chips for embedded systems. Industrial partners of this
project included Bull, CAPS Entreprise, Digigram, Thales, Renault.
Academic partners are CEA, Inria (Parkas, Compsys, and Corse),
VERIMAG.

 Compsys role was to explore analysis and compilation techniques
linked to streaming languages, with the Kalray MPPA platform as
long-term target. The research on OpenStream described in
Section
	7.8 corresponds to
extensions of the work package WP 2.5.3. This study showed the need
for extending polyhedral techniques to polynomials, which is one of
the motivation of the work described in
Section
	7.11 . The work on
parametric tiling (Section
	7.7),
first in the context of FPGA, then of GPUs, was also a first step towards
the automatic generation of blocking algorithms for multicores such
as the Kalray MPPA.

 This project ended in June 2015.

 Section:
 Bilateral Contracts and Grants with Industry

 Technological Transfer: XtremLogic Start-Up

 The XtremLogic start-up (http://xtremlogic.com/) was
initiated, initially with the name Zettice, at the end of 2010 by
Alexandru Plesco and Christophe Alias, after the PhD thesis of Alexandru Plesco under the
guidance of Christophe Alias, Alain Darte and Tanguy Risset. The goal of
XtremLogic is to build on the disruptive technologies emerging
from the polyhedral compilation community, and particularly the
results obtained in Compsys, to provide the HPC market with efficient
and communication-optimal circuit blocks (IP) for FPGA.

 The compiler technology transferred to XtremLogic (see
Sections
	6.2
and
	7.5) is the result of a tight
collaboration between Christophe Alias and Alexandru Plesco. XtremLogic is
one way to spread the polyhedral technology to industry. In 2015,
XtremLogic was supported by the Rhône Développement
Initiative 2015 (loan).

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events Organization

 General Chair, Scientific Chair

 Laure Gonnord is co-chair of the “french compilation community”, with Florian
Brandner (ENSTA, then Telecom ParisTech) and Fabrice Rastello (Inria Corse).

 Alain Darte is general chair of the steering committee of CPC (International
Workshop on Compilers for Parallel Computing), which regroups in Europe,
every 18 months, a large community of researchers interested in compilers
for HPC. Also, Alain Darte and Alexandre Isoard participated to CPC'15 in London
(Jan. 15).

 Member of Organizing Committees

 Alain Darte was co-organizer of IMPACT'15 (International Workshop on
Polyhedral Compilation Techniques) and Tomofumi Yuki is co-organizer of
IMPACT'16.

 Tomofumi Yuki was publicity co-chair of GPCE 2015 (15th International
Conference on Generative Programming: Concepts & Experience).

 Alain Darte and Tomofumi Yuki are currently organizing a second polyhedral
spring school in 2016, with connections with HPC users from numerical analysis.

 Scientific Events Selection

 Chair of Conference Program Committees

 Alain Darte was program co-chair of IMPACT'15, with Alexandra Jimborean
(Uppsala University). Tomofumi Yuki is program co-chair of IMPACT'16, with
Michelle Strout (University of Arizona).

 Alain Darte was program chair of the topic E2 “Compilers for Embedded
Systems” of DATE'15 (International Conference on Design, Automation, and
Test in Europe), with Rodric Rabbah (IBM).

 Member of Conference Program Committees

 Tomofumi Yuki was a program committee member for the RST Track (Reliable
Software Technologies and Communication Middleware) of SAC'16 (31st ACM
Symposium on Applied Computing).

 Paul Feautrier was a member of the program committees of IMPACT'15, IMPACT'16, and
PECCS'15 (5th International Conference on Pervasive and
Embedded Computing and Communication Systems).

 Christophe Alias was a member of the program committee of IMPACT'16.

 Alain Darte was a member of the program committees of PACT'15 (International
Conference on Parallel Architectures and Compilation Techniques) and X10'15
(international workshop on X10, part of PLDI'15).

 Reviewer

 Paul Feautrier was a reviewer for IMPACT'15, IMPACT'16, PARCO'15, and PACT'15.

 Tomofumi Yuki was a reviewer for PACT'15 and X10'15.

 Christophe Alias was a reviewer for DATE'15.

 Laure Gonnord was a reviewer for VMCAI'15, CGO'15, and PARCO'15.

 Alain Darte was a reviewer for DATE'15, IMPACT'15, X10'15, and PACT'15.

 Journal

 Member of Editorial Boards

 Paul Feautrier is a member of the editorial
board of IJPP, the “International Journal of Parallel Programming”.

 Reviewer - Reviewing Activities

 Paul Feautrier was reviewer for “Information and Computation”, ACM TODAES, ACM
TOPLAS, and IJPP.

 Tomofumi Yuki was reviewer for the PARCO journal.

 Alain Darte was reviewer for the ACM TACO journal and the “Software Practice
and Experience” journal.

 Christophe Alias was reviewer for Parallel Computing and IEEE TVLSI.

 Invited Talks

 Paul Feautrier was invited to give a talk on “The Numerical Solution of the
Transfer Equation”, at a workshop in honor of Roger Cayrel, Paris
Observatory, Dec. 2015.

 In June 2015, Laure Gonnord was invited at Google, Mountain View and SRI, to
give talks about her research about static analyses for compilers.

 Scientific Expertise

 Alain Darte was invited to be part of the scientific committee of the CPU
(“cerfication numérique et fiabilité”) cluster of excellence (from Bordeaux
Idex), and its internal evaluation in Sep. 2015.

 In 2015, Maroua Maleej has produced 7 Research Tax Credit documents for Accenture
group France as a scientific consultant. The goal is to expertise research done
by Accenture project-teams and suggest further ideas by evaluating the state of
the art.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence:

 	
 Laure Gonnord: Architecture des ordinateurs (TD+TP=40h), L2,
Université Lyon 1 Claude Bernard: Spring 2015.

 	
 Maroua Maleej: Algorithmique et Programmation Fonctionnelle et
Récursive (TP=28h), L1, Université Lyon 1 Claude Bernard: Fall
2015.

 	
 Christophe Alias: Introduction à la compilation (CM+TD=24h),
L3, INSA Centre-Val-de-Loire: Spring 2015.

 	
 Christophe Alias: Concours E3A—épreuve informatique MPSI
(correcteur): Spring 2015.

 	
 Master:

 	
 Laure Gonnord, Program Analysis and Verification (CM 24h), M1,
Ecole Normale Supérieure de Lyon. With David Monniaux.

 	
 Laure Gonnord, Compilation (TP 28h), M1, Ecole Normale
Supérieure de Lyon.

 	
 Laure Gonnord, Introduction aux systèmes et réseaux (CM/TP 52h),
M2 Pro, Université Lyon 1.

 	
 Laure Gonnord, Compilation (TD/TP 24h), M1, Université Lyon 1
Claude Bernard.

 	
 Laure Gonnord, Complexité (TD 15h), M1, Université Lyon 1 Claude
Bernard.

 	
 Laure Gonnord, Temps Réel (TP 24h), M1, Université Lyon 1 Claude
Bernard.

 	
 Christophe Alias, Optimisation d'applications embarquées (CM+TD=18h), M1, INSA
Centre-Val-de-Loire.

 	
 Christophe Alias, Advanced Compilers: Loop Transformations and
High-Level Synthesis (CM 8h), M2, Ecole Normale Supérieure de Lyon.

 	
 Christophe Alias, Compilation (CM 16h), M1, Ecole Normale
Supérieure de Lyon.

 	
 Tomofumi Yuki and Christophe Alias, Advanced Compilers: Loop
Transformations and High-Level Synthesis, 24h, M2, ENS Lyon.

 	
 Master school:

 	
 Laure Gonnord organized in Jan. 2015 a research school entitled
“Static analyses in the state-of-the-art compilers” (invited
speaker: Fernando
Pereira). See http://laure.gonnord.org/pro/research/compil_research_school.html

 	
 EJCP:

 	
 Tomofumi Yuki has given a one-day lecture at the École Jeunes
Chercheurs en Programmation 2015. See
http://ejcp2015.inria.fr/ .

 Supervision

 	
 PhD in progress: Guillaume Iooss, “Semantic tiling”, started in
September 2011, joint PhD ENS-Lyon/Colorado State University, advisors:
Christophe Alias and Alain Darte (ENS-Lyon) / Sanjay Rajopadhye (Colorado State
University).

 	
 PhD in progress: Alexandre Isoard, “Streaming-related code
optimizations”, started in September 2012, advisor: Alain Darte.

 	
 PhD in progress: Maroua Maleej, “Low cost static analyses for
compilers”, started in October 2014, advisors : Laure Gonnord and
Alain Darte, then Laure Gonnord and Frédéric Vivien (Roma team).

 Juries

 Paul Feautrier was a member of the defense committee of the PhD of Alexis Foulhié
(Grenoble, Oct. 2015), entitled “Revisiting the abstract domain of polyhedra:
constraints-only representation and formal proof”, and was a reviewer for the
HDR thesis of Corinne Ancourt (UPMC, May 2015), entitled “Sûreté: de l'analyse
à l'instrumentation et à la synthese de code”.

 Laure Gonnord was a member of the doctoral committee for the evaluation of the first
year of the PhD of F. Maurica, Université de la Réunion, in Dec. 2015.

 Alain Darte was the reviewer of the PhD of Gergö Barany (Technische Universität
Wien, Austria, March 2015), entitled “Integrated Code Motion and Register
Allocation”.

 Section:
 Dissemination

 Popularization

 Compsys was involved in the proposal of the inter-disciplinary
project EMI, with the maison des mathématiques et de l'informatique
(MMI), and the Grame laboratory (computer music). See
Section
	9.1.3 .

 Tomofumi Yuki has given a one-day lecture at the École Jeunes
Chercheurs en Programmation 2015 (http://ejcp2015.inria.fr/),
entitled “Research in Compilers and How it Relates to Software
Engineering”.

 Bibliography

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[1]

 	Q. Colombet, F. Brandner, A. Darte.
Studying Optimal Spilling in the Light of SSA, in: ACM Transactions on Architecture and Code Optimization, January 2015, vol. 11-4, no 47, 26 p. [
DOI : 10.1145/2685392]
https://hal.inria.fr/hal-01099016

 International Conferences with Proceedings

 	[2]

 	A. Cohen, A. Darte, P. Feautrier.
Static Analysis of OpenStream Programs, in: 6th International Workshop on Polyhedral Compilation Techniques (IMPACT'16), held with HIPEAC'16, Prague, Czech Republic, Proceedings of the IMPACT series, http://impact.gforge.inria.fr/, Michelle Strout and Tomofumi Yuki, January 2016.
https://hal.inria.fr/hal-01251845

 	[3]

 	A. Darte, A. Isoard.
Exact and Approximated Data-Reuse Optimizations for Tiling with Parametric Sizes, in: 24th International Conference on Compiler Construction (CC'15), part of ETAPS'15, London, United Kingdom, April 2015.
https://hal.inria.fr/hal-01099017

 	[4]

 	A. Darte, A. Isoard, T. Yuki.
Liveness Analysis in Explicitly-Parallel Programs, in: 6th International Workshop on Polyhedral Compilation Techniques (IMPACT'16), held with HIPEAC'16, Prague, Czech Republic, Proceedings of the IMPACT series, Michelle Strout and Tomofumi Yuki, January 2016, http://impact.gforge.inria.fr/ .
https://hal.inria.fr/hal-01251843

 	[5]

 	G. Deest, N. Estibals, T. Yuki, S. Derrien, S. Rajopadhye.
Towards Scalable and Efficient FPGA Stencil Accelerators, in: 6th International Workshop on Polyhedral Compilation Techniques (IMPACT'16), held with HIPEAC'16, Prague, Czech Republic, Proceedings of the IMPACT series, January 2016, http://impact.gforge.inria.fr/ .
https://hal.inria.fr/hal-01254778

 	[6]

 	P. Feautrier.
The Power of Polynomials, in: 5th International Workshop on Polyhedral Compilation Techniques (IMPACT'15), Amsterdam, Netherlands, A. Jimborean, A. Darte (editors), January 2015.
https://hal.inria.fr/hal-01094787

 	[7]

 	L. Gonnord, D. Monniaux, G. Radanne.
Synthesis of ranking functions using extremal counterexamples, in: Programming Languages, Design and Implementation, Portland, Oregon, United States, June 2015. [
DOI : 10.1145/2737924.2737976]
https://hal.archives-ouvertes.fr/hal-01144622

 	[8]

 	T. Yuki.
Revisiting Loop Transformations with X10 Clocks, in: Proceedings of the ACM SIGPLAN Workshop on X10, Portland, OR, United States, June 2015. [
DOI : 10.1145/2771774.2771778]
https://hal.inria.fr/hal-01253630

 Internal Reports

 	[9]

 	C. Alias, A. Plesco.
Data-aware Process Networks, Inria - Research Centre Grenoble – Rhône-Alpes ; Inria, June 2015, no RR-8735, 32 p.
https://hal.inria.fr/hal-01158726

 	[10]

 	A. Cohen, A. Darte, P. Feautrier.
Static Analysis of OpenStream Programs, CNRS ; Inria ; ENS Lyon, January 2016, no RR-8764, 26 p, Corresponding publication at IMPACT'16 (http://impact.gforge.inria.fr/impact2016).
https://hal.inria.fr/hal-01184408

 	[11]

 	A. Darte, A. Isoard.
Exact and Approximated Data-Reuse Optimizations for Tiling with Parametric Sizes, LIP - ENS Lyon ; CNRS ; Inria ; UCBL, January 2015, no RR-8671, 28 p.
https://hal.inria.fr/hal-01103460

 	[12]

 	A. Darte, A. Isoard, T. Yuki.
Extended Lattice-Based Memory Allocation, CNRS ; ENS Lyon ; Inria, November 2015, no RR-8840, 31 p.
https://hal.inria.fr/hal-01251868

 	[13]

 	A. Darte, A. Isoard, T. Yuki.
Liveness Analysis in Explicitly-Parallel Programs, CNRS ; Inria ; ENS Lyon, January 2016, no RR-8839, 25 p, Corresponding publication at IMPACT'16 (http://impact.gforge.inria.fr/impact2016).
https://hal.inria.fr/hal-01251579

 	[14]

 	G. Iooss, S. Rajopadhye, C. Alias, Y. Zou.
Mono-parametric Tiling is a Polyhedral Transformation, Inria Grenoble - Rhône-Alpes ; CNRS, October 2015, no RR-8802, 40 p.
https://hal.inria.fr/hal-01219452

 References in notes

 	[15]

 	C. Alias, A. Darte, P. Feautrier, L. Gonnord.
Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs, in: 17th International Static Analysis Symposium (SAS'10), Perpignan, France, ACM press, September 2010, pp. 117-133.

 	[16]

 	C. Alias, A. Darte, P. Feautrier, L. Gonnord.
Rank: A Tool to Check Program Termination and Computational Complexity, in: International Workshop on Constraints in Software Testing Verification and Analysis (CSTVA'13), Luxembourg, March 2013, 238 p.
http://hal.inria.fr/hal-00801571

 	[17]

 	C. Alias, A. Darte, A. Plesco.
Optimizing Remote Accesses for Offloaded Kernels: Application to High-Level Synthesis for FPGA, in: International Conference on Design, Automation and Test in Europe (DATE'13), Grenoble, France, March 2013, pp. 575-580.

 	[18]

 	Q. Colombet, F. Brandner, A. Darte.
Studying Optimal Spilling in the Light of SSA, in: International Conference on Compilers, Architectures, and Synthesis of Embedded Systems (CASES'11), Taipei, Taiwan, ACM, October 2011, pp. 25–34.

 	[19]

 	A. Darte, A. Isoard.
Parametric Tiling with Inter-Tile Data Reuse, in: 4th International Workshop on Polyhedral Compilation Techniques (IMPACT'14), Vienna, Austria, S. Rajopadhye, S. Verdoolaege (editors), January 2014.
https://hal.archives-ouvertes.fr/hal-00915831

 	[20]

 	A. Darte, R. Schreiber, G. Villard.
Lattice-Based Memory Allocation, in: IEEE Transactions on Computers, October 2005, vol. 54, no 10, pp. 1242-1257, Special Issue: Tribute to B. Ramakrishna (Bob) Rau.

 	[21]

 	P. Feautrier.
Scalable and Structured Scheduling, in: International Journal of Parallel Programming, October 2006, vol. 34, no 5, pp. 459–487.

 	[22]

 	P. Feautrier.
Simplification of Boolean Affine Formulas, Inria, July 2011, no RR-7689.
http://hal.inria.fr/inria-00609519/PDF/RR-7689.pdf

 	[23]

 	P. Feautrier.
Dataflow Analysis of Scalar and Array References, in: International Journal of Parallel Programming, February 1991, vol. 20, no 1, pp. 23–53.

 	[24]

 	P. Feautrier, A. Gamatié, L. Gonnord.
Enhancing the Compilation of Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction, in: CSI Journal of Computing, 2012, vol. 1, no 4, 8:86 p.

 	[25]

 	A. Gamatié, L. Gonnord.
Static Analysis of Synchronous Programs in Signal for Efficient Design of Multi-Clocked Embedded Systems, in: International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES'11), Chicago, USA, April 2011.

 	[26]

 	G. Iooss, S. Rajopadhye, C. Alias, Y. Zou.
CART: Constant Aspect Ratio Tiling, in: 4th International Workshop on Polyhedral Compilation Techniques (IMPACT’14), Vienna, Austria, S. Rajopadhye, S. Verdoolaege (editors), January 2014.
https://hal.archives-ouvertes.fr/hal-00915827

 	[27]

 	M. Maalej, L. Gonnord.
Do we still need new Alias Analyses?, Université Lyon Claude Bernard / Laboratoire d'Informatique du Parallélisme, November 2015, no RR-8812.
https://hal.inria.fr/hal-01228581

 	[28]

 	D. Monniaux, L. Gonnord.
An Encoding of Array Verification Problems into Array-Free Horn Clauses, July 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01206882

 	[29]

 	H. Nazaré, I. Maffra, W. Santos, L. Oliveira, F. M. Q. Pereira, L. Gonnord.
Validation of Memory Accesses Through Symbolic Analyses, in: ACM International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA'14), Portland, Oregon, United States, October 2014, pp. 791-809.
https://hal.inria.fr/hal-01006209

 	[30]

 	V. Paisante, M. Maalej, L. Barbosa, L. Gonnord, F. M. Q. Pereira.
Symbolic Range Analysis of Pointers, in: International Symposium of Code Generation and Optmization (CGO'16), Barcelone, Spain, March 2016, pp. 791-809. [
DOI : 10.1145/2660193.2660205]
https://hal.inria.fr/hal-01228928

 	[31]

 	A. Pop, A. Cohen.
OpenStream: Expressiveness and data-flow compilation of OpenMP streaming programs, in: ACM Transactions on Architecture and Code Optimization (TACO), 2013, vol. 9, no 4, pp. 1-25.

 	[32]

 	A. Turjan, B. Kienhuis, E. Deprettere.
Translating Affine Nested-Loop Programs to Process Networks, in: International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES'04), New York, NY, USA, ACM, 2004, pp. 220–229.

 	[33]

 	S. Verdoolaege, H. Nikolov, N. Todor, P. Stefanov.
Improved Derivation of Process Networks, in: International Workshop on Optimization for DSP and Embedded Systems (ODES'06), 2006.

 	[34]

 	T. Yuki, P. Feautrier, S. Rajopadhye, V. Saraswat.
Array Dataflow Analysis for Polyhedral X10 Programs, in: 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'13), Shenzhen, China, ACM, 2013.
http://hal.inria.fr/hal-00761537

 	[35]

 	T. Yuki, P. Feautrier, S. Rajopadhye, V. Saraswat.
Checking Race Freedom of Clocked X10 Programs, arXiv, 2013, no arXiv.1311.4305.
http://hal.inria.fr/hal-00907723

 OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid106.html

 Section:
 Partnerships and Cooperations

 Regional Initiatives

 In Relation with the LYONCALCUL Initiative

 Compsys follows or participates to the activities of LyonCalcul
(http://lyoncalcul.univ-lyon1.fr/), a network to federate
activities on high-performance computing in Lyon.

 In this context, and with the support of the Labex MILYON
(http://milyon.universite-lyon.fr/), Compsys organized in 2013 a
thematic quarter on compilation
(http://labexcompilation.ens-lyon.fr). A new thematic quarter
on high performance computing (HPC) is in preparation for 2016,
initiated by Violaine Louvet (Institute Camille Jordan), with the
participation of the LIP teams Aric, Avalon, Compsys, and Roma. It
will include, in particular, an inter-disciplinary spring school,
following the polyhedral school organized in 2013, connecting
mathematics (HPC numerical analysis) and computer science (polyhedral
optimizations for HPC).

 Alain Darte, Alexandre Isoard, and Tomofumi Yuki have also regular exchanges with
Violaine Louvet and Thierry Dumont on tiling code optimizations,
advising (in an informal way) some of their students during their
internships, for implementations on multicore machines and GPUs.

 Collaboration with the Verimag lab

 Laure Gonnord, who did her PhD in abstract interpretation at Verimag, re-activated
her connection with this group, in particular with N. Halbwachs and
D. Monniaux. This led to several joint results, exposed in
Sections
	7.3
and
	7.4 . The theme of termination through
affine ranking functions was first brought to the attention of Compsys when
studying loop transformations for HLS, in the context of the S2S4HLS project
with STMicroelectronics. The techniques of Compsys [15]
were then extended by Laure Gonnord with D. Monniaux. Conversely, the idea of using
Handelman and Schweighofer's theorems to deal with polynomial constraints, as
exploited in Section
	7.11), was first suggested by
D. Monniaux through discussions with Paul Feautrier and some visits at ENS-Lyon.

 “PEPS local” with the MMI

 Alain Darte and Laure Gonnord participated to the creation of EMI (Education,
Musique et Informatique), an educative inter-disciplinary project
(”PEPS de site”, coordinated by Natacha Portier, from the MC2 team
at LIP, and Yann Orlarey from the Grame laboratory) concerning an
experience of musical programming with Faust (a functional audio
stream language, with its compiler), in the context of the MMI (Maison
des mathématiques et de l'informatique), a place for dissemination.

OEBPS/uid118.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria Associate Teams not Involved in an Inria International Labs

 Laure Gonnord and Maroua Maleej are involved in the PROSPIEL Associate Team
(Inria/Brazil, https://team.inria.fr/alf/prospiel/), led by Sylvain
Collange (Inria Alf), in a collaboration with Fernando Pereira's group in UFMG
(Brazil). The PROSPIEL project aims at optimizing parallel applications for
high performance on new throughput-oriented architectures: GPUs and many-core
processors. Specifically, Laure Gonnord and Maroua Maalej are in charge of
designing static analyses for GPUs. Maroua Maleej visited the group of Fernando
Pereira in Aug. 2015.

 Inria International Partners

 Declared Inria International Partners

 		
 Christophe Alias is co-adviser, with Sanjay Rajopadhye from
Colorado State University (USA), of the PhD thesis of
Guillaume Iooss. The results described in
Section
	7.6 are part
of this collaboration.

 		
 Tomofumi Yuki, who did his PhD with Sanjay Rajopadhye, then a post-doc in
the Cairn team in Rennes, continues his collaboration with these two
groups, as the results described in
Section
	7.14 illustrate. He
participates regularly, over the net, to the reading group “Melange” of
S. Rajodapdhye's group, with CSU students.

 		
 Laure Gonnord and Maroua Maleej have a regular collaboration with
Fernando Magno Quintao Pereira from the University of Mineas
Gerais (Brazil). The results described in
Section
	7.2 are part of this
collaboration. In Jan.-Feb. 2015, Compsys hosted Fernando
Pereira, as a visiting professor.

 Polyhedral Community

 In 2011, as part of the organization of the workshops at CGO’11, Christophe Alias
(with C. Bastoul) organized IMPACT’11 (international workshop on polyhedral
compilation techniques, http://impact2011.inrialpes.fr/). This workshop
in Chamonix was the very first international event on this topic, although it
was introduced by Paul Feautrier in the late 80s. Alain Darte gave the introductory
keynote talk. After this successful edition (more than 60 people), IMPACT
continued as a satellite workshop of the HIPEAC conference, in Paris (2012),
Berlin (2013), Vienna (2014). Alain Darte was program co-chair and co-organizer
for the past edition, in Amsterdam (2015), while Tomofumi Yuki is program
co-chair and co-organizer of the next one, in Prague (2016).

 The creation of IMPACT, now the annual event of the polyhedral community,
helped to identify this community and to make it more visible. This effort was
complemented by the organization of the first (and for the moment unique)
school on polyhedral code analysis and optimizations
(http://labexcompilation.ens-lyon.fr/polyhedral-school/). A second
polyhedral school, more open, because involving themes and researchers from
numerical analysis (users of HPC), will be organized in 2016.

 Alain Darte also manages two new mailing lists for news
(polyhedral-news@listes.ens-lyon.fr) and discussions
(polyhedral-discuss@listes.ens-lyon.fr) on polyhedral code analysis and
optimizations. Tomofumi Yuki is involved in the development of PolyBench
(http://sourceforge.net/projects/polybench), a suite of kernels used for
illustrating polyhedral optimizations. He is also developing PolyApps, a set of
larger applications to evaluate the gap between kernels and “real”
applications, see more details in
Section
	7.15 .

OEBPS/uid115.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 Compsys participated to a H2020 proposal (project Verde) on the convergence
of compiler tools for hardware accelerators on one side (HLS tools) and
programmable accelerators (multicores, GPUs) on the other side. But the project
was not selected.

 Collaborations with Major European Organizations

 Compsys members participate to the European Network of Excellence on High
Performance and Embedded Architecture and Compilation (HiPEAC,
http://www.hipeac.net/), either as members or affiliate members. The
International Workshop on Polyhedral Compilation Techniques (IMPACT, see
Section
	9.4.2.2), co-created by Christophe Alias in 2011, is
now an annual event of the HIPEAC conference, as an official workshop. The 5th
edition, IMPACT'15, was co-chaired by Alain Darte (see
http://impact.gforge.inria.fr/impact2015/), while the 6h edition,
IMPACT'16, was co-chaired by Tomofumi Yuki (see
http://impact.gforge.inria.fr/impact2016/).

OEBPS/uid110.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 French Compiler Community

 In 2010, Laure Gonnord and Fabrice Rastello created the french community of
compilation, which had no organized venue in the past. All groups with
activities related to compilation were contacted and the first
“compilation day” was organized in
Lyon.This effort has been quickly a success: the community
(http://compilfr.ens-lyon.fr/) is now well identified and 3-days workshops
now occur at least once a year (the 10th event has been organized in Sep. 2015). The community is animated by Laure Gonnord and Fabrice Rastello since 2010, and now
also by Florian Brandner (ex-Compsys too). Alain Darte, Alexandre Isoard, and Tomofumi Yuki
participated to the 10th edition, with talks on “Static Analysis of OpenStream
Programs”, “Liveness Analysis in the Polyhedral Model”, and “PolyApps: Case
Study of Polyhedral Compilers using Real Applications” respectively.

 Recognized as a sub-group of the CNRS GDR GPL (Software
Engineering and Programming), the community is also in charge, since
2014, of organizing one day of the research school “Ecole des jeunes
chercheurs en Algorithmique et Programmation” (EJCP). Tomofumi Yuki, in
this context, gave a one-day lecture at the 2015 edition.

 Collaboration with Parkas group, in Paris

 Alain Darte and Paul Feautrier have regular meetings with Albert Cohen, from the Parkas
team at ENS Paris. The current discussions are mostly related to the analysis
and compilation of the OpenStream language developed by Parkas, a research
topic that started though the ManycoreLabs project (see
Section
	8.1). The results of
Sections
	7.10
and
	7.11 are related to this collaboration.

 Collaboration with Cairn group, in Rennes

 Tomofumi Yuki continues to work with the Cairn group through regular meetings and
occasional visits. The topic of the collaboration is in applying compiler
techniques for hardware design using high-level synthesis.
Section
	7.14 presents the results through
this collaboration.

 Collaboration with Camus group, in Strasbourg

 Paul Feautrier and Tomofumi Yuki have an ongoing cooperation with Alain Ketterlin and
Eric Violard (Camus group, Strasbourg) on several subjects connected to the
analysis and transformations of X10 programs (see
Section
	7.8).

OEBPS/IMG/iTunesArtwork.png
Activity Report 2015
Project-Team Compsys

Compilation and
embedded computing
systems

IN COLLABORATION WITH: Laboratoire de lnformatique du Parallélisme (LIP)

OEBPS/uid126.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Invited Professors

 		
 Fernando M. Pereira was invited in Jan. 2015 to work with
Maroua Maleej and Laure Gonnord on static analyses for pointers.

 Internships

 		
 Tristan Dubois, M1 student from Lyon 1 University, worked for
6 weeks in January-February 2015, on pointer arithmetic in LLVM,
supervised by Laure Gonnord.

 		
 Marc Vincenti, M1 student from Lyon 1 University, worked for 6
weeks in January-February 2015, on comparison of termination
benchmarks, in the context of the Artefact Evaluation of the
PLDI'15 publication [7] , whose results are
described in Section
	7.4 .

 		
 Adilla Susungi, a M2 student from Strasbourg University,
worked, from March 2015 to July 2015, on the compilation of
streaming applications on multi-GPUs, supervised by
Christophe Alias. Her internship was funded by Inria.

 Visits to International Teams

 Paul Feautrier has been invited by the University of Passau (Bavaria) in the team of
Prof. Christian Lengauer, where he has given a seminar “Toward a Polynomial
Model” (September 2015) and held scientific discussions with Armin
Groesslinger and other members of the team.

