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2. Overall Objectives

2.1. Presentation
The focus of this project is cryptanalysis, which is traditionally defined as the art of code-breaking: cryptanal-
ysis studies the best attacks on cryptographic schemes, from a theoretical point of view (algorithm design)
but also from a practical of view (implementation weaknesses, side-channel attacks). Cryptanalysis has a sig-
nificant impact in the real world, because cryptographic algorithms and protocols, as well as keysizes, are
selected based on the state-of-the-art in cryptanalysis. While provable security has made great advances in the
past thirty years, it is alone insufficient to select cryptographic parameters: in general, choosing parameters
based purely on security proofs leads to rather inefficient schemes. Cryptanalysis is therefore complementary
of provable security, and both are essential to our understanding of security.

We consider cryptanalysis in the two worlds of cryptography: public-key cryptography (also called asymmetric
cryptography) and secret-key cryptography (also called symmetric cryptography). Secret-key cryptography is
much more efficient (and therefore more widespread) than public-key cryptography, but also less powerful
because it requires to share secret keys: it encompasses symmetric encryption (stream ciphers, block ciphers),
message authentication codes, and hash functions. Public-key cryptography provides more functionalities such
as digital signatures, identity-based encryption and more generally functional encryption. Current public-key
cryptographic techniques are based on advanced mathematics such as number theory (e.g. elliptic curves and
lattices).

Inside public-key cryptanalysis, we focus on lattice techniques in particular, because lattice-based cryptogra-
phy has been attracting considerable interest in the past few years, due to unique features such as potential
resistance to quantum computers and new functionalities such as fully-homomorphic encryption [26] (which
allows to compute on encrypted data without requiring secret keys), noisy multi-linear maps [24] and even
(indistinguishability) obfuscation [25]. These new functionalities have dramatically increased the popularity
of lattice-based cryptography.

Inside secret-key cryptanalysis, we are especially interested in standard hash functions and the five SHA-
3 finalists, due to the importance of the SHA-3 competition for a new hash function standard. We are
also interested in the security of widespread symmetric ciphers, such as the AES block cipher standard
(implemented in Intel processors) and the RC4 stream cipher (widely deployed in wireless protocols).

This project deals with both public-key cryptanalysis and secret-key cryptanalysis. Most of the researchers
working in cryptanalysis only study one of the two, but there seems to be more and more interaction between
the two fields, despite their apparent independence:

• For instance, coding theory techniques are now used in both secret-key cryptanalysis and public-key
cryptanalysis: as an example, several standard hash functions implicitly use a linear code, and the
properties of this code are related to the security of the hash function; and public-key cryptosystems
based on coding theory problems have been studied for more than thirty years.

• Similarly, Groëbner bases and related techniques are now used in both secret-key cryptanalysis
and public-key cryptanalysis: algebraic attacks on stream ciphers and block ciphers are now well-
established, and there are still a few multivariate public-key cryptosystems, more than twenty
years after the Matsumoto-Imai cryptosystem. Recently, techniques to solve systems of polynomial
equations have been used in breakthrough results for solving the discrete logarithm problem over
special finite fields and elliptic curves.

• As another example, time/memory tradeoffs are routinely used in both secret-key cryptanalysis and
public-key cryptanalysis.

As a side objective, this project also aims at developing European-Chinese collaboration in cryptologic
research.
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2.2. State of the Art
Cryptanalysis has a long history, dating back to secret writing. Until the seventies, most of the work on
cryptanalysis was kept secret, but it is has now evolved from art to science, thanks to the liberalization
of cryptologic research. In general, cryptanalysis tries to answer the following question: what is the best
attack against a given cryptosystem, and how much does it cost? There is generally no definite answer to
this question, and the state-of-the-art regularly evolves over time. Cryptanalysis is a field mixing theory and
practice: while more and more advanced techniques are used, one is also concerned with very applied issues
such as hardware/software efficiency.

In the past fifteen years, a new kind of attacks have appeared in the research literature: side-channel attacks.
Such attacks arguably existed long before 1996, but were not advertised in public research. In a side-
channel attack, the attacker exploits physical information which can sometimes be obtained in a concrete
implementation, such as the power consumption of the cryptographic device, or the running time of the
cryptographic process, etc. The attack could be either passive or active: for instance, in a so-called fault attack,
the attacker physically perturbates the cryptographic device, and depending on the type of perturbations,
the faulty outputs may disclose valuable information which may leak the whole secret key. Side-channel
attacks have had a huge impact in industry: many cryptographic certifications now require more or less strong
resistance to side-channel attacks, and there is an annual international conference dedicated to side-channel
attacks, namely the CHES conference organized by IACR.

Cryptanalysis is particularly important in secret-key cryptography, due to the lack of provable security
techniques. In public-key cryptanalysis, studying the best attack often consists in answering the following
two questions:

• What is the best algorithm to solve the computational problem (integer factoring, discrete logarithm,
etc.) related to the security of the public-key cryptosystem? In particular, industry is very interested
in a practical version of this question: which keysizes are recommended? How much computational
effort would be required exactly to break a given keysize? This question is arguably well-understood
for integer factoring and discrete logarithm: there is more or less a consensus on what is the security
level provided by a given RSA modulus or ECC elliptic curve. But it is more difficult to answer
for alternative (post-quantum) problems such as lattice reduction, solving systems of polynomial
equations over finite fields, and coding theory problems. Traditionally, there are more parameters for
these problems. This issue has become more important with the NSA announcement in August 2015
of the transition of Suite B to post-quantum algorithms.

• Is there a short-cut to attack the public-key cryptosystem, rather than trying to solve the underlying
computational problem stated by the designer(s)? This is especially relevant when the public-key
cryptosystem does not have provable security guarantees. And this question is also related to side-
channel attacks.

3. Research Program

3.1. Public-Key Cryptanalysis
This project is interested in any public-key cryptanalysis, in the broad sense.

3.1.1. Mathematical Foundations
Historically, one useful side-effect of public-key cryptanalysis has been the introduction of advanced mathe-
matical objects in cryptology, which were later used for cryptographic design. The most famous examples are
elliptic curves (first introduced in cryptology to factor integer numbers), lattices (first introduced in cryptology
to attack knapsack cryptosystems) and pairings over elliptic curves (first introduced in cryptology to attack the
discrete logarithm problem over special elliptic curves). It is therefore interesting to develop the mathematics
of public-key cryptanalysis. In particular, we would like to deepen our understanding of lattices by studying
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well-known mathematical aspects such as packing problems, transference theorems or random lattices. As an
example, the team recently determined in [19] the natural density of co-cyclic lattices: these are integer lattices
whose factor group is cyclic.

3.1.2. Lattice Algorithms
Due to the strong interest surrounding lattice-based cryptography at the moment, our main focus is to attack
lattice-based cryptosystems, particularly the most efficient ones (such as NTRU), and the ones providing
new functionalities such as fully-homomorphic encryption or noisy multi-linear maps: recent cryptanalysis
examples include [4], [5] for the latter, and [6] for the former. We want to assess the concrete security level
of lattice-based cryptosystems, as has been done for cryptosystems based on integer factoring or discrete
logarithms: this has been explored in [22], but needs to be developed. This requires to analyze and design the
best algorithms for solving lattice problems, either exactly or approximately. In this area, much progress has
been obtained the past few years (such as [23]), but we believe there is still more to come. We are working on
new lattice computational records. In [14], the team developed a new enumeration algorithm based on genetic
strategies.

We are also interested in lattice-based cryptanalysis of non-lattice cryptosystems, by designing new attacks
or improving old attacks. A well-known example is RSA for which the best attacks in certain settings are
based on lattice techniques, following a seminal work by Coppersmith in 1996: recently [3], we improved the
efficiency of some of these attacks on RSA, and we would like to extend this kind of results.

3.1.3. New Assumptions
In the past few years, new cryptographic functionalities (such as fully-homomorphic encryption, noisy
multilinear maps, indistinguishability obfuscation, etc.) have appeared, many of which being based on lattices.
They usually introduce new algorithmic problems whose hardness is not well-understood. It is extremely
important to study the hardness of these new assumptions, in order to evaluate the feasibility of these new
functionalities. Sometimes, the problem itself is not new, but the (aggressive) choices of parameters are: for
instance, several implementations of fully-homomorphic encryption used well-known lattice problems like
LWE or BDD but with very large parameters which have not been studied much.

Currently, there are very few articles studying the concrete hardness of these new assumptions, especially
compared to the articles using these new assumptions.

3.2. Secret-Key Cryptanalysis
Though secret-key cryptanalysis is the oldest form of cryptanalysis, there is regular progress in this area.

3.2.1. Hash Functions
In the past few years, the most important event has been the SHA-3 competition for a new hash function
standard. This competition ended in 2012, with Keccak selected as the winner. We intend to study Keccak,
together with the four other SHA-3 finalists, such as in [12]. New cryptanalytical techniques designed to
attack SHA-3 candidates are likely to be useful to attack other schemes. For instance, this was the case for the
so-called rebound attack.

However, it is also interesting not to forget widespread hash functions: while it is now extremely easy to
generate new MD5 collisions, a collision for SHA-1 has yet to be found, despite the existence of theoretical
collision attacks faster than birthday attacks. Besides, there are still very few results on the SHA-2 standards
family.

We may also be interested in related topics such as message authentication codes, especially those based on
hash functions, which we explored in the past.

3.2.2. Symmetric Ciphers
Symmetric ciphers are widely deployed because of their high performances: a typical case is disk encryption
and wireless communications.
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We intend to study widespread block ciphers, such as the AES (now implemented in Intel processors) and
Kasumi (used in UMTS) standards, as illustrated in recent publications [7], [9], [10], [9] and [15], [16] of the
team. Surprisingly, new attacks [21], [20] on the AES have appeared in the past few years, such as related-key
attacks and single-key attacks. It is very important to find out if these attacks can be improved, even if they are
very far from being practical. An interesting trend in block cipher cryptanalysis is to adapt recent attacks on
hash functions: this is the reciprocal of the phenomenon of ten years ago, when Wang’s MD5 collision attack
was based on differential cryptanalysis.

Similarly to block ciphers, we intend to study widespread stream ciphers, such as RC4. The case of RC4
is particularly interesting due to the extreme simplicity of this cipher, and its deployment in numerous
applications such as wireless Internet protocols. In the past few years, new attacks on RC4 based on various
biases (such as [27]) have appeared, and several attacks on RC4 are used in WEP-attack tools.

4. Highlights of the Year

4.1. Highlights of the Year
In [16], the team introduced a new method to construct truncated differential characteristics of block ciphers:
truncated differential cryptanalysis is a popular generalization of differential cryptanalysis. Using this method,
the team has found improved attacks on the block ciphers CLEFIA and Camellia, which are both standardized
by ISO.

5. Partnerships and Cooperations

5.1. National Initiatives
5.1.1. MOST’s 973 Grant

Grant 2013CB834205

PIs Phong Nguyen and Xiaoyun Wang

Duration 2013-17

MOST is China’s Ministry of Science and Technology.

5.1.2. NSFC Grant
Grant NSFC Key Project 61133013

PIs Phong Nguyen and Xiaoyun Wang

Duration 2013-16

NSFC is the National Natural Science Foundation of China.

5.2. European Initiatives
5.2.1. Collaborations with Major European Organizations

CWI: Cryptography team of Ronald Cramer (Netherlands). This team is officially a partner of
LIAMA’s CRYPT international project.

5.3. International Initiatives
5.3.1. Inria International Labs
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• CRYPT is an international project from LIAMA in China, hosted by Tsinghua University in Beijing.
It is a joint project between Inria, Tsinghua University, CAS Academy of Mathematics and System
Sciences, and CWI (Netherlands).

• Phong Nguyen was the European director of LIAMA until October 2015.

5.3.2. Inria International Partners
5.3.2.1. Informal International Partners

• Univ. Oklahoma, USA

• Univ. Wisconsin, USA

5.4. International Research Visitors
5.4.1. Visits of International Scientists

Cheng Qi (Univ. Oklahoma, USA)

Guangwu Xu (Univ. Wisconsin, USA)

5.4.2. Visits to International Teams
5.4.2.1. Research stays abroad

Yang Yu visited CWI for 3 months in Fall 2015.

6. Dissemination

6.1. Promoting Scientific Activities
6.1.1. Scientific events selection
6.1.1.1. Reviewer

The members of the team reviewed numerous papers for numerous international conferences.

6.1.2. Journal
6.1.2.1. Member of the editorial boards

• Advances in Mathematics of Communications: Xiaoyun Wang

• Journal of Cryptology: Phong Nguyen and Xiaoyun Wang

• Journal of Mathematical Cryptology: Phong Nguyen

• Natural Science Review: Xiaoyun Wang

6.1.2.2. Reviewer - Reviewing activities

The members of the team reviewed numerous papers for numerous journals.

6.1.3. Invited talks
Phong Nguyen gave several invited talks:

• [13] at the Workshop on the Mathematics of Lattices and Cybersecurity, at ICERM in the USA.

• at the Workshop on cryptography based on elliptic curves and lattices, organized by Beijing
University in China.

6.1.4. Research administration
Phong Nguyen was the European director of LIAMA until Oct. 2015, and is now the French director of JFLI
(Japanese-French Laboratory for Informatics).
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6.2. Teaching - Supervision - Juries
6.2.1. Teaching

PhD: Phong Nguyen, Advanced Lattice Algorithms, 12h, CAS, China.

6.2.2. Supervision
PhD: Jiangwei Li, Several Computational Problems in Lattice Theory, Tsinghua, June 2015, Xiaoyun
Wang
PhD: Dan Ding, y-Sparse Representations of Short Lattice Vectors and Algorithms for the Shortest
Vector Problem (SVP) in Lattices, Tsinghua, June 2015, Xiaoyun Wang
PhD: Gengran Hu, On Lattice Theory and Complexity of SVP, CAS, Summer 2015, Yanbin Pan
PhD: Chang Lv, Primality tests, ring class fields andiophantine equations, CAS, Summer 2015,
Yingpu Deng
PhD: Dandan Huang, primality tests for numbers and ideals, CAS, Summer 2015, Yingpu Deng

6.2.3. Juries
PhD: Rina Zeitoun, Algebraic Methods for the Security Analysis of Cryptographic Algorithms
Implementations, University Paris 6 (UPMC), July 2015, Phong Nguyen (Jury member)
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