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2. Overall Objectives
2.1. Overall Objectives

Team Ecuador studies Algorithmic Differentiation (AD) of computer programs, blending :
• AD theory: We study software engineering techniques, to analyze and transform programs mechan-

ically. Algorithmic Differentiation (AD) transforms a program P that computes a function F , into a
program P’ that computes analytical derivatives of F . We put emphasis on the adjoint mode of AD,
a sophisticated transformation that yields gradients for optimization at a remarkably low cost.

• AD application to Scientific Computing: We adapt the strategies of Scientific Computing to take
full advantage of AD. We validate our work on real-size applications.

We want to produce AD code that can compete with hand-written sensitivity and adjoint programs used in the
industry. We implement our algorithms into the tool Tapenade, one of the most popular AD tools now.

Our research directions :
• Efficient adjoint AD of frequent dialects e.g. Fixed-Point loops.
• Development of the adjoint AD model towards Dynamic Memory Management.
• Development of the adjoint AD model towards Parallel Languages.
• Optimal shape design and optimal control for steady and unsteady simulations. Higher-order

derivatives for uncertainty quantification.
• Adjoint-driven mesh adaptation.

3. Research Program
3.1. Algorithmic Differentiation

Participants: Laurent Hascoët, Valérie Pascual, Ala Taftaf.

algorithmic differentiation (AD, aka Automatic Differentiation) Transformation of a program, that
returns a new program that computes derivatives of the initial program, i.e. some combination of
the partial derivatives of the program’s outputs with respect to its inputs.

adjoint Mathematical manipulation of the Partial Differential Equations that define a problem,
obtaining new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in adjoint AD, that trades duplicate execution of a
part of the program to save some memory space that was used to save intermediate results.

Algorithmic Differentiation (AD) differentiates programs. The input of AD is a source program P that, given
some X ∈ Rn, returns some Y = F (X) ∈ Rm, for a differentiable F . AD generates a new source program
P ′ that, given X , computes some derivatives of F [6].

Any execution of P amounts to a sequence of instructions, which is identified with a composition of vector
functions. Thus, if

P runs {I1; I2; · · · Ip; },
F then is fp ◦ fp−1 ◦ · · · ◦ f1,

(1)

where each fk is the elementary function implemented by instruction Ik. AD applies the chain rule to obtain
derivatives of F . Calling Xk the values of all variables after instruction Ik, i.e. X0 = X and Xk = fk(Xk−1),
the Jacobian of F is

F ′(X) = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) (2)
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which can be mechanically written as a sequence of instructions I ′k. This can be generalized to higher
level derivatives, Taylor series, etc. Combining the I ′k with the control of P yields P ′, and therefore this
differentiation is piecewise.

In practice, many applications only need cheaper projections of F ′(X) such as:

• Sensitivities, defined for a given direction Ẋ in the input space as:

F ′(X).Ẋ = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) . Ẋ . (3)

This expression is easily computed from right to left, interleaved with the original program instruc-
tions. This is the tangent mode of AD.

• Adjoints, defined after transposition (F ′∗), for a given weighting Y of the outputs as:

F ′∗(X).Y = f ′∗1 (X0).f
′∗
2 (X1). · · · .f ′∗p−1(Xp−2).f

′∗
p (Xp−1).Y . (4)

This expression is most efficiently computed from right to left, because matrix×vector products
are cheaper than matrix×matrix products. This is the adjoint mode of AD, most effective for
optimization, data assimilation [32], adjoint problems [27], or inverse problems.

Adjoint AD builds a very efficient program [29]. This adjoint program will compute the gradient in a time
independent from the number of parameters n, and which is only a small multiple of the run-time of P . In
contrast, computing the same gradient with the tangent mode would require running the tangent differentiated
program n times.

However, the Xk are required in the inverse of their computation order. If the original program overwrites a
part of Xk, the differentiated program must restore Xk before it is used by f ′∗k+1(Xk). Therefore, the central
research problem of adjoint AD is to make the Xk available in reverse order at the cheapest cost, using
strategies that combine storage, repeated forward computation from available previous values, or even inverted
computation from available later values.

Another research issue is to make the AD model cope with the constant evolution of modern language
constructs. From the old days of Fortran77, novelties include pointers and dynamic allocation, modularity,
structured data types, objects, vectorial notation and parallel programming. We keep developing our models
and tools to handle these new constructs.

3.2. Static Analysis and Transformation of programs
Participants: Laurent Hascoët, Valérie Pascual, Ala Taftaf.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known as
basic blocks, each contain a sequence of instructions and whose arrows represent all possible
control jumps that can occur at run-time.

abstract interpretation Model that describes program static analysis as a special sort of execution,
in which all branches of control switches are taken concurrently, and where computed values are
replaced by abstract values from a given semantic domain. Each particular analysis gives birth
to a specific semantic domain.
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data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analysis is static, therefore studying all possible run-time
behaviors and making conservative approximations. A typical data-flow analysis is to detect, at
any location in the source program, whether a variable is initialized or not.

data dependence analysis Program analysis that studies the itinerary of values during program
execution, from the place where a value is defined to the places where it is used, and finally
to the place where it is overwritten. The collection of all these itineraries is stored as Def-Use
and Use-Def chains or as a data dependence graph, and data flow analysis most often rely on
this graph.

data dependence graph Directed graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and from the read
accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.

The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analysis
[20]. These tools share their technological basis. More importantly, there are common mathematical models
to specify and analyze them.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. The optimization and code generation phases must be independent from the particular input
programming language. This is generally achieved using language-specific front-ends, language-independent
middle-ends, and target-specific back-ends. In the middle-end, analysis can concentrate on the semantics of
only a small set of constructs. This analysis operates on an abstract representation of programs made of one
call graph, whose nodes are themselves flow graphs whose nodes (basic blocks) contain abstract syntax trees
for the individual atomic instructions. To each level are attached symbol tables, nested to capture scoping.

Static program analysis can be defined on this internal representation, which is largely language independent.
The simplest analyses on trees can be specified with inference rules [23], [30], [21]. But many data-flow
analyses are more complex, and better defined on graphs than on trees. Since both call graphs and flow graphs
may be cyclic, these global analyses will be solved iteratively. Abstract Interpretation [24] is a theoretical
framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. At the call graph
level, they can run bottom-up or top-down, and they yield more accurate results when they take into account
the different call sites of each procedure, which is called context sensitivity. At the flow graph level, they can
run forwards or backwards, and yield more accurate results when they take into account only the possible
execution flows resulting from possible control, which is called flow sensitivity.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of
actual run-time values. Far before reaching the very theoretical limit of undecidability, one reaches practical
limitations to how much information one can infer from programs that use arrays [36], [25] or pointers.
Therefore, conservative over-approximations must be made, leading to derivative code less efficient than ideal.

3.3. Algorithmic Differentiation and Scientific Computing
Participants: Alain Dervieux, Laurent Hascoët, Bruno Koobus.

linearization In Scientific Computing, the mathematical model often consists of Partial Differential
Equations, that are discretized and then solved by a computer program. Linearization of these
equations, or alternatively linearization of the computer program, predict the behavior of the
model when small perturbations are applied. This is useful when the perturbations are effectively
small, as in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, as in optimization.
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adjoint state Consider a system of Partial Differential Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Scientific Computing provides reliable simulations of complex systems. For example it is possible to simulate
the steady or unsteady 3D air flow around a plane that captures the physical phenomena of shocks and
turbulence. Next comes optimization, one degree higher in complexity because it repeatedly simulates and
applies gradient-based optimization steps until an optimum is reached. The next sophistication is robustness
i.e. to detect and to lower preference to a solution which, although maybe optimal, is very sensitive to
uncertainty on design parameters or on manufacturing tolerances. This makes second derivative come into
play. Similarly Uncertainty Quantification can use second derivatives to evaluate how uncertainty on the
simulation inputs imply uncertainty on its outputs.

We investigate several approaches to obtain the gradient, between two extremes:
• One can write an adjoint system of mathematical equations, then discretize it and program it by hand.

This is time consuming. Although this looks mathematically sound [27], this does not provide the
gradient of the discretized function itself, thus degrading the final convergence of gradient-descent
optimization.

• One can apply adjoint AD (cf 3.1) on the program that discretizes and solves the direct system. This
gives exactly the adjoint of the discrete function computed by the program. Theoretical results [26]
guarantee convergence of these derivatives when the direct program converges. This approach is
highly mechanizable, but leads to massive use of storage and may require code transformation by
hand [31], [34] to reduce memory usage.

If for instance the model is steady, or when the computation uses a Fixed-Point iteration, tradeoffs exist
between these two extremes [28], [22] that combine low storage consumption with possible automated adjoint
generation. We advocate incorporating them into the AD model and into the AD tools.

4. Application Domains

4.1. Algorithmic Differentiation
Algorithmic Differentiation of programs gives sensitivities or gradients, useful for instance for :
• optimum shape design under constraints, multidisciplinary optimization, and more generally any

algorithm based on local linearization,
• inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate

sciences (meteorology, oceanography),
• first-order linearization of complex systems, or higher-order simulations, yielding reduced models

for simulation of complex systems around a given state,
• mesh adaptation and mesh optimization with gradients or adjoints,
• equation solving with the Newton method,
• sensitivity analysis, propagation of truncation errors.

4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape
and other parameters. On this flow one can define optimization criteria e.g. the lift of an aircraft. To optimize
a criterion by a gradient descent, one needs the gradient of the output criterion with respect to all the inputs,
and possibly additional gradients when there are constraints. Adjoint AD is the most efficient way to compute
these gradients.
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4.3. Inverse problems and Data Assimilation
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values of the altitude and velocities of the surface.

One particular case of inverse problems is data assimilation [32] in weather forecasting or in oceanography.
The quality of the initial state of the simulation conditions the quality of the prediction. But this initial state
is not well known. Only some measurements at arbitrary places and times are available. A good initial state
is found by solving a least squares problem between the measurements and a guessed initial state which itself
must verify the equations of meteorology. This boils down to solving an adjoint problem, which can be done
though AD [35]. Figure 1 shows an example of a data assimilation exercise using the oceanography code
OPA [33] and its AD-adjoint produced by Tapenade.

Figure 1. Twin experiment using the adjoint of OPA. Random noise, added to a simulation of the sea surface
temperature around the Antarctic, is removed by minimizing the discrepancy with the physical model

The special case of 4Dvar data assimilation is particularly challenging. The 4th dimension in “4D” is
time, as available measurements are distributed over a given assimilation period. Therefore the least squares
mechanism must be applied to a simulation over time that follows the time evolution model. This process gives
a much better estimation of the initial state, because both position and time of measurements are taken into
account. On the other hand, the adjoint problem involved is more complex, because it must run (backwards)
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over many time steps. This demanding application of AD justifies our efforts in reducing the runtime and
memory costs of AD adjoint codes.

4.4. Linearization
Simulating a complex system often requires solving a system of Partial Differential Equations. This can be too
expensive, in particular in the context of real time. When one wants to simulate the reaction of this complex
system to small perturbations around a fixed set of parameters, there is an efficient approximation: just suppose
that the system is linear in a small neighborhood of the current set of parameters. The reaction of the system
is thus approximated by a simple product of the variation of the parameters with the Jacobian matrix of the
system. This Jacobian matrix can be obtained by AD. This is especially cheap when the Jacobian matrix
is sparse. The simulation can be improved further by introducing higher-order derivatives, such as Taylor
expansions, which can also be computed through AD. The result is often called a reduced model.

4.5. Mesh adaptation
Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this. The
classical optimization step can give an optimization direction not only for the control parameters, but also for
the approximation parameters, and in particular the mesh geometry. The ultimate goal is to obtain optimal
control parameters up to a precision prescribed in advance.

5. New Software and Platforms

5.1. AIRONUM
SCIENTIFIC DESCRIPTION
Aironum is an experimental software that solves the unsteady compressible Navier-Stokes equations with k-,
LES-VMS and hybrid turbulence modelling on parallel platforms, using MPI. The mesh model is unstructured
tetrahedrization, with possible mesh motion.
FUNCTIONAL DESCRIPTION
Aironum was developed by Inria and University of Montpellier. It is used by Inria, University of Montpellier
and University of Pisa (I). Aironum is used as an experimental platform for:

• Numerical approximation of compressible flows, such as upwind mixed element volume approxi-
mation with superconvergence on regular meshes.

• Numerical solution algorithms for the implicit time advancing of the compressible Navier-Stokes
equations, such as parallel scalable deflated additive Schwarz algorithms.

• Turbulence modelling such as the Variational Multiscale Large eddy Simulation and its hybridization
with RANS statistical models.

• Participant: Alain Dervieux

• Contact: Alain Dervieux

• URL: http://www-sop.inria.fr/tropics/aironum

5.2. TAPENADE
KEYWORDS: Static analysis - Optimization - Compilation - Gradients
SCIENTIFIC DESCRIPTION

http://www-sop.inria.fr/tropics/aironum
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Tapenade implements the results of our research about models and static analyses for AD. For a full
specification and description, see [10]. AD produces analytical derivatives, that are exact up to machine
precision. Adjoint AD computes gradients at a cost which is independent from the number of input variables.
Tapenade performs sophisticated flow- and context-sensitive data-flow analysis on the complete source
program to produce an efficient differentiated code. Analyses include Type-Checking, Read-Write analysis,
Pointer analysis. AD-specific analyses include:

• Activity analysis: Detects variables whose derivative is either null or useless, to reduce the number
of derivative instructions.

• Adjoint Liveness analysis: Detects the source statements that are dead code for the computation of
derivatives.

• TBR analysis: In Adjoint AD, reduces the set of source variables that need to be recovered.

FUNCTIONAL DESCRIPTION
Tapenade transforms an original program into a new program that computes derivatives of the original
program. Tapenade accepts source programs written in Fortran77, Fortran90, or C. Tapenade can differentiate
in tangent, vector tangent, adjoint, and vector adjoint modes. Tapenade can be downloaded and installed on
most architectures. Alternatively, it can be used as a web server. Higher-order derivatives can be obtained
through repeated application.

• Participants: Laurent Hascoët, Valérie Pascual, Ala Taftaf

• Contact: Laurent Hascoët

• URL: http://www-sop.inria.fr/tropics/tapenade.html

6. New Results

6.1. AD-adjoints and C dynamic memory management
Participants: Laurent Hascoët, Raphaël Couronné, Sri Hari Krishna Narayanan [Argonne National Lab.
(Illinois, USA)], Mathieu Morlighem [University of California at Irvine (USA)].

One of the current frontiers of AD research is the definition of an adjoint AD model that can cope with
dynamic memory management. This research is central in our ongoing effort towards adjoint AD of C, and
more remotely towards AD of C++. This research is conducted in collaboration with the MCS department of
Argonne National Lab. Our partnership is formalized by joint participation in the Inria joint lab JLESC, and
partly funded by the Partner University Fund (PUF) of the French embassy in the USA.

Adjoint AD must reproduce in reversed order the control decisions of the original code. In languages such as
C, allocation of dynamic memory and pointer management form a significant part of these control decisions.
Reproducing memory (de)allocation in reverse means reallocating memory, possibly receiving a different
memory chunk. Reproducing pointer addresses in reverse thus require to convert addresses in the former
memory chunks into equivalent addresses in the new reallocated chunks. Together with Krishna Narayanan
from Argonne, we experiment on real applications to find the most efficient solution to this address conversion
problem. We jointly develop a library (called ADMM, ADjoint Memory Management) whose primitives can
be used in AD adjoint code to handle this address conversion. Using this library together with Tapenade, we
could obtain a correct AD adjoint code of a medium-size industrial code (“Multibody", structural mechanics)
that exhibits a typical usage of C pointer arithmetic. This year, the same effort was conducted with the OpenAD
AD tool, leading us to an ADMM library less dependent on the particular target AD tool. A joint publication
with our colleagues from Argonne is in preparation.

In parallel, we investigate alternative implementation strategies for ADMM, one of which could be to build
our own memory (de)allocation mechanism, This should ultimately rely on the standard C library. As a result,
management of adjoint memory addresses could be done deeper in the system and therefore with a smaller
overhead, at the cost of some additional portability issues.

http://www-sop.inria.fr/tropics/tapenade.html


Project-Team ECUADOR 9

We pursue our objective of improving reliability of the AD adjoint model for C codes to a similar level as
achieved for Fortran. To this end we apply Tapenade to increasingly larger and complex C codes. In addition to
the already mentioned “Multibody" application, we initiated differentiation of two new complex applications:
• “BLN" is a code developed by the Inria team ABS, that computes the potential energy of possible

conformations of a macromolecule. Its gradient is used to explore the local minima in the energy
landscape of these conformations. The AD adjoint of a Fortran implementation of BLN has been
built by Tapenade and successfully validated. The adjoint of the C implementation is a challenge
that helps us clarify the adjoint AD model that we use in Tapenade. The C version of BLN that we
are considering is actually a (partly mechanical) translation of the actual C++ source. This makes
this code an even more appealing and challenging test case. This work was mostly conducted by
Raphaël Couronné as a part of his summer internship with us.

• “SEISM" is a code developed by Mathieu Morlighem from UC Irvine, jointly with Eric Larour from
JPL. This is a glaciology code closely related to the larger “ISSM" code, in C++. One objective,
addressed mostly by Mathieu Morlighem, is to clarify recommendations on the C programming
style (again very much inspired here from the C++ style) that allows AD to perform better. The other
objective, adressed mostly by our team, it to experiment with quite intricate data structures, where
Tapenade’s static pointer destination analysis is used intensively.

6.2. AD-adjoints of MPI-parallel codes
Participants: Laurent Hascoët, Ala Taftaf, Sri Hari Krishna Narayanan [Argonne National Lab. (Illinois,
USA)].

We have a long-standing collaboration with Argonne National Lab on the question of adjoint AD of message-
passing parallel codes. We continued joint development of the Adjoinable-MPI library (AMPI) that provides
efficient tangent and adjoint AD for MPI-parallel codes, independently of the AD tool used (now AdolC, dco,
OpenAD, Tapenade).

During her PhD work, Ala Taftaf is considering the question of checkpointing applied to the AD-adjoint of
an MPI-parallel code. Checkpointing is a memory/runtime tradeoff which is essential for adjoint AD of large
codes, in particular parallel codes. However, for MPI codes this question has always been addressed by ad-
hoc hand manipulations of the differentiated code, and with no formal assurance of correctness. Ala Taftaf
is investigating the assumptions implicitly made during past experiments, to clarify and generalize them. On
one hand we propose an extension of the adjoint of MPI point-to-point communication primitives, so that
the semantics of an adjoint program is preserved for any placement of checkpoints. On the other hand, we
propose an alternative extension of these adjoint communications, more efficient but that requires a number of
restrictions on the placement of checkpoints. We shall try to provide proof of correctness of these strategies,
and in particular demonstrate that they cannot introduce deadlocks. Tradeoffs between the two extensions
should be investigated. Ala Taftaf presented her research on “‘Adjoint-Checkpointing on MPI-parallel codes”
at the EuroAD workshop in Paderborn, Germany, december 1-2. A conference article has been submitted to
Eccomas 2016 in Crete.

6.3. AD-adjoints of Iterative Processes
Participants: Laurent Hascoët, Ala Taftaf, Sri Hari Krishna Narayanan [Argonne National Lab. (Illinois,
USA)], Daniel Goldberg [University of Edinburgh, UK].

Adjoint codes naturally propagate partial gradients backwards from the result of the simulation. However, this
uses the data flow of the simulation in reverse order, at a cost that increases with the length of the simulation.
In the special case of iterative Fixed-Point loops, only the final converged result should be used: the “initial
guess” and the intermediate non-converged states should not be considered by the adjoint calculation, and this
remark brings enormous gain in memory use. We selected the strategy proposed by Bruce Christianson [22]
and this year we continued its application to medium-size testcases provided by Queen Mary University for the
AboutFlow project. We also simplified the user interface provided to trigger this special strategy extension in
Tapenade. Ala Taftaf presented her results at the ECCOMAS Eurogen conference in Glasgow [15], september
14-16.
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In parallel, we collaborated with Krishna Narayanan from ANL and Dan Goldberg from University of
Edinburgh (UK) to implement the same strategy into the OpenAD tool, in view of applying it to a glaciology
configuration of the MIT GCM code. A joint article describing the results has been submitted for publication.

6.4. AD-adjoints of large real codes
Participants: Laurent Hascoët, Valérie Pascual, Raphaël Couronné, Fabrice Zaoui [EDF R&D, LNHE].

In collaboration with EDF, Valérie Pascual is applying Tapenade to the hydrographic code “Mascaret". Both
tangent and adjoint diferentiated codes have been built and validated. Application of the tangent differentiated
Mascaret for data assimilation on two real cases is described in a joint publication [14].

During his summer internship, Raphaël Couronné has applied Tapenade to the MIT “GCM", a reference code
in the Earth Sciences community. We have obtained a valid adjoint for a recommended configuration of this
very large Fortran code. This test showed some maturity of the Tapenade tool for Fortran, as it turned out
that no modification nor debug of the tool was needed. We are now discussing with the MIT team to schedule
further collaboration.

In cooperation with the partners of the FP7 project UMRIDA, the team has assisted Alenia-Aermacchi
(Filomena Cariglino and Nicola Ceresola) in the efficient differentiation of their Euler/Navier Stokes code
“UNS3D" in tangent mode, dealing in particular with its use of MPI.

The team has assisted Marcin Wyrozebski from Warsaw University of Technology, to apply Tapenade to a
CFD software from WUT.

6.5. Resolution of linearised systems and efficiency
Participants: Olivier Allain [Lemma], Gautier Brèthes, Alain Dervieux, Bruno Koobus [Université Montpel-
lier 2], Emmanuelle Itam [Université Montpellier 2], Vincent Levasseur [Lemma], Stephen Wornom [Lemma].

For Fluid Mechanics as well as for Structural Mechanics, an implicit time-advancing is mandatory. It can
be applied efficiently if the large systems involved are solved with a good parallel algorithm. In the 90’s,
a generation of solution algorithms was devised on the basis of Domain Decomposition Methods (DDM).
For complex models (compressible flows...), Schwarz DDM were combined with quasi-Newton algorithms
such as GMRES. These are for example Restrictive Additive Schwarz (RAS), which is used in our platform
AIRONUM. RAS was developed by Cai, Farhat and others. RAS is an ancestor of the widely used class
of Newton-Krylov-Schwarz (NKS) algorithms. For hundreds of processors many versions of NKS, and
in particular RAS, are almost scalable (convergence rate independant of the number of processors). But
scalability vanishes for a medium-large number of processors (thousands). In the ANR ECINADS, coordinated
by Ecuador, a Coarse-Grid Deflated RAS was developped: iteration-wise scalability holds for all parts, except
for the coarse grid direct solver, which concerns a much smaller problem. Effective Convergence Scalability
(ECS) was confirmed up to 2048 processors. Beyond this level the asymptotic complexity of the coarse-grid
direct solver becomes predominant and ECS is lost. In other words, with a Coarse-Grid Deflated RAS, the
size of the coarse grid problem which is solved by a direct algebraic solver must be limited in order to enjoy
ECS. For finer meshes, the coarse system cannot be finer, and the efficiency is lower. It is then natural to
consider intermediate meshes on which iterative solvers will be applied. In the ANR MAIDESC, Gautier
Brèthes has defined a multi-mesh Full MultiGrid (FMG) algorithm adapted to anisotropic mesh adaptation. In
2015, the method has been extended to MPI-based massive parallelism, in cooperation with the Lemma team
for the computation of incompressible flows. As a perspective, our parallel MG can be complemented with the
previous version of the solver (deflated RAS) for a higher degree of scalability.

A second issue which we addressed is the use of explicit time advancing. Many unsteady flows have to be
computed with explicit time advancing. A single explicit time step is of a low cost and can be highly accurate.
Explicit time advancing is mandatory for wave propagation: blast shocks of vortices in wakes. However
the meshes used may involve small regions in which the explicit time step should be very small and large
regions in which such a small time step is a waste. The family of time-advancing methods in which unsteady
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phenomena are computed using different time steps in different regions is called the multirate methods. In
our cooperation with University of Montpellier, a novel multirate method using cell-agglomeration has been
designed and developed in our AIRONUM platform. An article is in preparation. This work takes place in the
ANR MAIDESC programme.

6.6. Control of approximation errors
Participants: Gautier Brèthes, Eléonore Gauci, Alain Dervieux, Adrien Loseille [GAMMA team, Inria-
Rocquencourt], Frédéric Alauzet [GAMMA team, Inria-Rocquencourt], Stephen Wornom [Lemma], Anca
Belme [university of Paris 6].

The study of combination of full multigrid (FMG) with anisotropic mesh adaption (AA), started with the thesis
of Gautier Brèthes, has been published [13].

Further studies of mesh adaptation for viscous flows are currently performed and a journal paper, joint with
Inria team Gamma3 and University of Paris 6 (Anca Belme) is in preparation.

An important novelty in mesh adaption is the norm-oriented AA method. The method relies on the definition
of ad hoc correctors. It has been developed in the academic platform “FMG" for elliptic problems. Gautier
Brèthes gave several presentations in conferences, a journal article has been submitted. The introduction of
the norm-oriented idea considerably amplifies the impact of adjoint-based AA. The applied mathematician and
the engineer now have methods when faced to mesh adaptation for the simulation of a complex PDE system,
since they can specify which error norm level they wish, and for which norm [12], [16]. Another version is
developed jointly with Inria team Gamma3 for the compressible Euler model [19].

A cooperation has started between Gautier Brèthes et Thierry Coupez (Ecole Centrale de Nantes) concerning
discrete metrics. This takes place in the ANR MAIDESC program. An article is in preparation.

Éléonore Gauci started last year a thesis (co-advised by Frédéric Alauzet) on the study of norm-oriented criteria
for CFD and coupled CSM-CFD systems. She gave a presentation at the “Coupled Problems" symposium.

Post-doc Guilherme Cunha did a study (in cooperation with Lemma) on the combination of mesh adaptation
and coefficient identification for unsteady phenomena.

The theoretical studies are supported by an ANR project MAIDESC coordinated by ECUADOR and Gamma3,
which deals with meshes for interfaces, third-order accuracy, meshes for boundary layers, and curved meshes.

CFD application are supported by the European FP7 project UMRIDA which deals with the application of AA
to approximation error modelling and control.

6.7. Turbulence models
Participants: Alain Dervieux, Bruno Koobus [University of Montpellier 2], Emmanuelle Itam [University of
Montpellier 2], Marianna Braza [CNRS-IMFT at Toulouse], Stephen Wornom [Lemma], Bruno Sainte-Rose
[Lemma].

The purpose of our work in hybrid RANS/LES is to develop new approaches for industrial applications of
LES-based analyses. In the applications targetted (aeronautics, hydraulics), the Reynolds number can be as
high as several tenth millions, far too high for pure LES models. However, certain regions in the flow can
be better predicted with LES than with usual statistical RANS (Reynolds averaged Navier-Stokes) models.
These are mainly vortical separated regions as assumed in one of the most popular hybrid model, the hybrid
Detached Eddy Simulation model. Here, “hybrid” means that a blending is applied between LES and RANS.
An important difference between a real life flow and a wind tunnel or basin is that the turbulence of the flow
upstream of each body is not well known.

This year, we have continued the evaluation of a dynamic formulation of Piomelli-Germano type for the
Variational-multiscale model. We have also modified the integration of the boundary layer by adding the so-
called Menter correction imposing the Bradshaw law. We have studied these improvements on multiple-body
flows. An emblematic case is the interaction between two parallel cylinders, one being in the wake of the other.
A flow around a space probe at high Reynolds number is also studied [18], [17].
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7. Bilateral Contracts and Grants with Industry
7.1. Bilateral Contracts with Industry

• Ecuador and Lemma share the results of Gautier Brèthes’ thesis, which is partly supported by
Lemma, the other part being supported by a PACA region fellowship.

• Ecuador and Lemma have a bilateral contract to share the results of Stephen Wornom, Lemma
engineer provided to Inria and hosted by Inria under a Inria-Lemma contract.

• Ecuador and EDF have a bilateral contract on AD of the hydrology code “Mascaret”. The correspon-
dent on the Ecuador side is Valérie Pascual.

8. Partnerships and Cooperations
8.1. National Initiatives
8.1.1. ANR
8.1.1.1. MAIDESC

Ecuador is coordinator of the ANR project MAIDESC, with Inria team Gamma3, University of Montpellier
II, CEMEF-Ecole des Mines, Inria-Bordeaux, Lemma and Transvalor. MAIDESC concentrates on mesh
adaptation and in particular meshes for interfaces, third-order accuracy, meshes for boundary layers, and
curved meshes.

8.2. European Initiatives
8.2.1. FP7 & H2020 Projects
8.2.1.1. AboutFlow

Type: PEOPLE
Instrument: Initial Training Network
Duration: 2012-2016
Coordinator: Jens-Dominik Mueller
Partner: Queen Mary University of London (UK)
Inria contact: Laurent Hascoët
Abstract: The aim of AboutFlow is to develop robust gradient-based optimisation methods using
adjoint sensitivities for numerical optimisation of flows. http://aboutflow.sems.qmul.ac.uk/

8.2.1.2. UMRIDA
Type:AAT
Instrument:Aeronautics and Air Transport
Duration: 2013-2016
Coordinator: Charles Hirsch
Partner: Numeca S.A. (Belgium)
Inria contact: Alain Dervieux
Abstract: UMRIDA addresses major research challenges in Uncertainty Quantification and Robust
Design: develop new methods that handle large numbers of simultaneous uncertainties and general-
ized geometrical uncertainties. Apply these methods to representative industrial configurations.

8.3. International Initiatives
8.3.1. Inria International Labs

Ecuador participates in the Joint Laboratory for Exascale Computing (JLESC) together with colleagues at
Argonne National Laboratory. Laurent Hascoët attended the JLESC meeting in Bonn, Germany, december
2-5.

http://aboutflow.sems.qmul.ac.uk/
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8.4. International Research Visitors
8.4.1. Visits of International Scientists

• Krishna Narayanan from Argonne National Laboratory, september 21-25.

8.4.2. Internships
• Marcin Wyrozebski from Warsaw University of Technology, september 1-30.

8.4.3. Visits to International Teams
• Laurent Hascoët visited Argonne National Laboratory, april 13-23.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. Member of the organizing committees

• Laurent Hascoët is on the organizing commitee of the EuroAD Workshops on Algorithmic Differ-
entiation.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Master : Laurent Hascoët, Optimisation avancée, 15 h, M2, University of Nice

9.2.2. Supervision
PhD : Gautier Brèthes, “Multigrilles anisotropes adaptatives”, defended december 10, advisor A.
Dervieux

PhD in progress : Ala Taftaf, “Adjoint Automatic Differentiation on High-performance codes”,
started july 2013, advisor L. Hascoët.

PhD in progress : Éléonore Gauci, “Norm-oriented criteria for CFD and coupled CSM-CFD
systems”, started october 2014, advisor A. Dervieux

9.2.3. Juries
• Alain Dervieux, jury, PhD defense of Nicolas Barral, University Paris VI, november 27.

• Alain Dervieux, jury, PhD defense of Vilas Schinde, X-IMSIA, december 17.

9.3. Popularization
Alain Dervieux and Ala Taftaf participated to the event “la fête de la science” in Antibes, october 10-11.
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