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2. Overall Objectives

2.1. GALEN@Centrale-Paris
Computational vision is one of the most challenging research domains in engineering sciences. The aim is
to reproduce human visual perception through intelligent processing of visual data. The application domains
span from computer aided diagnosis to industrial automation & robotics. The most common mathematical
formulation to address such a challenge is through mathematical modeling. In such a context, first the solution
of the desired vision task is expressed in the form of a parameterized mathematical model. Given such a
model, the next task consists of associating the model parameters with the available observations, which is
often called the model-to-data association. The aim of this task is to determine the impact of a parameter
choice to the observations and eventually maximize/minimize the adequacy of these parameters with the visual
observations. In simple words, the better the solution is, the better it will be able to express and fit the data. This
is often achieved through the definition of an objective function on the parametric space of the model. Last, but
not least given the definition of the objective function, visual perception is addressed through its optimization
with respect to the model parameters. To summarize, computation visual perception involves three aspects,
a task-specific definition of a parametric model, a data-specific association of this model with the available
observations and last the optimization of the model parameters given the objective and the observations.

Such a chain processing inherits important shortcomings. The curse of dimensionality is often used to express
the importance of the model complexity. In simple words, the higher the complexity of the model is, the better
its expressive power will be with counter effect the increase of the difficulty of the inference process. Non-
linearity is another issue to be addressed which simply states that the association between the model and the
data is a (highly) non-linear function and therefore direct inference is almost infeasible. The impact of this
aspect is enforced from the curse of non-convexity that characterizes the objective function. Often it lives in
high-dimensional spaces and is ill posed making exact inference problematic (in many cases not possible)
and computationally expensive. Last, but not least modularity and scalability is another important concern
to be addressed in the context of computational vision. The use of task-specific modeling and algorithmic
solutions make their portability infeasible and therefore transfer of knowledge from one task to another is not
straightforward while the methods do not always scale well with respect either to the dimensionality of the
representation or the data.

GALEN aims at proposing innovative techniques towards automatic structuring, interpretation and longitu-
dinal modeling of visual data. In order to address these fundamental problems of computational perception,
GALEN investigates the use of discrete models of varying complexity. These methods exhibit an important
number of strengths such as their ability to be modular with respect to the input measurements (clinical data),
the nature of the model (certain constraints are imposed from computational perspective in terms of the level
of interactions), and the model-to-data association while being computational efficient.

3. Research Program

3.1. Shape, Grouping and Recognition
A general framework for the fundamental problems of image segmentation, object recognition and scene
analysis is the interpretation of an image in terms of a set of symbols and relations among them. Abstractly
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stated, image interpretation amounts to mapping an observed image, X to a set of symbols Y . Of particular
interest are the symbols Y ∗ that optimally explain the underlying image, as measured by a scoring function s
that aims at distinguishing correct (consistent with human labellings) from incorrect interpretations:

Y ∗ = argmaxY s(X,Y ) (1)

Applying this framework requires (a) identifying which symbols and relations to use (b) learning a scoring
function s from training data and (c) optimizing over Y in Eq.1.

One of the main themes of our work is the development of methods that jointly address (a,b,c) in a shape-
grouping framework in order to reliably extract, describe, model and detect shape information from natural
and medical images. A principal motivation for using a shape-based framework is the understanding that
shape- and more generally, grouping- based representations can go all the way from image features to objects.
Regarding aspect (a), image representation, we cater for the extraction of image features that respect the shape
properties of image structures. Such features are typically constructed to be purely geometric (e.g. boundaries,
symmetry axes, image segments), or appearance-based, such as image descriptors. The use of machine
learning has been shown to facilitate the robust and efficient extraction of such features, while the grouping
of local evidence is known to be necessary to disambiguate the potentially noisy local measurements. In our
research we have worked on improving feature extraction, proposing novel blends of invariant geometric- and
appearance- based features, as well as grouping algorithms that allow for the efficient construction of optimal
assemblies of local features.

Regarding aspect (b) we have worked on learning scoring functions for detection with deformable models
that can exploit the developed low-level representations, while also being amenable to efficient optimization.
Our works in this direction build on the graph-based framework to construct models that reflect the shape
properties of the structure being modeled. We have used discriminative learning to exploit boundary- and
symmetry-based representations for the construction of hierarchical models for shape detection, while for
medical images we have developed methods for the end-to-end discriminative training of deformable contour
models that combine low-level descriptors with contour-based organ boundary representations.

Regarding aspect (c) we have developed algorithms which implement top-down/bottom-up computation both
in deterministic and stochastic optimization. The main idea is that ‘bottom-up’, image-based guidance is nec-
essary for efficient detection, while ‘top-down’, object-based knowledge can disambiguate and help reliably
interpret a given image; a combination of both modes of operation is necessary to combine accuracy with
efficiency. In particular we have developed novel techniques for object detection that employ combinatorial
optimization tools (A* and Branch-and-Bound) to tame the combinatorial complexity, achieving a best-case
performance that is logarithmic in the number of pixels.

In the long run we aim at scaling up shape-based methods to 3D detection and pose estimation and large-
scale object detection. One aspect which seems central to this is the development of appropriate mid-level
representations. This is a problem that has received increased interest lately in the 2D case and is relatively
mature, but in 3D it has been pursued primarily through ad-hoc schemes. We anticipate that questions
pertaining to part sharing in 3D will be addressed most successfully by relying on explicit 3D representations.
On the one hand depth sensors, such as Microsoft’s Kinect, are now cheap enough to bring surface modeling
and matching into the mainstream of computer vision - so these advances may be directly exploitable at
test time for detection. On the other hand, even if we do not use depth information at test time, having
3D information can simplify the modeling task during training. In on-going work with collaborators we
have started exploring combinations of such aspects, namely (i) the use of surface analysis tools to match
surfaces from depth sensors (ii) using branch-and-bound for efficient inference in 3D space and (iii) groupwise-
registration to build statistical 3D surface models. In the coming years we intend to pursue a tighter integration
of these different directions for scalable 3D object recognition.
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3.2. Machine Learning & Structured Prediction
The foundation of statistical inference is to learn a function that minimizes the expected loss of a prediction
with respect to some unknown distribution

R(f) =

∫
`(f, x, y)dP (x, y), (2)

where `(f, x, y) is a problem specific loss function that encodes a penalty for predicting f(x) when the correct
prediction is y. In our case, we consider x to be a medical image, and y to be some prediction, e.g. the
segmentation of a tumor, or a kinematic model of the skeleton. The loss function, `, is informed by the costs
associated with making a specific misprediction. As a concrete example, if the true spatial extent of a tumor
is encoded in y, f(x) may make mistakes in classifying healthy tissue as a tumor, and mistakes in classifying
diseased tissue as healthy. The loss function should encode the potential physiological damage resulting from
erroneously targeting healthy tissue for irradiation, as well as the risk from missing a portion of the tumor.

A key problem is that the distribution P is unknown, and any algorithm that is to estimate f from labeled
training examples must additionally make an implicit estimate of P . A central technology of empirical
inference is to approximate R(f) with the empirical risk,

R(f) ≈ R̂(f) =
1

n

n∑
i=1

`(f, xi, yi), (3)

which makes an implicit assumption that the training samples (xi, yi) are drawn i.i.d. from P . Direct
minimization of R̂(f) leads to overfitting when the function class f ∈ F is too rich, and regularization is
required:

min
f∈F

λΩ(‖f‖) + R̂(f), (4)

where Ω is a monotonically increasing function that penalizes complex functions.

Equation Eq. 4 is very well studied in classical statistics for the case that the output, y ∈ Y, is a binary
or scalar prediction, but this is not the case in most medical imaging prediction tasks of interest. Instead,
complex interdependencies in the output space leads to difficulties in modeling inference as a binary prediction
problem. One may attempt to model e.g. tumor segmentation as a series of binary predictions at each voxel in
a medical image, but this violates the i.i.d. sampling assumption implicit in Equation Eq. 3. Furthermore, we
typically gain performance by appropriately modeling the inter-relationships between voxel predictions, e.g.
by incorporating pairwise and higher order potentials that encode prior knowledge about the problem domain.
It is in this context that we develop statistical methods appropriate to structured prediction in the medical
imaging setting.

3.3. Self-Paced Learning with Missing Information
Many tasks in artificial intelligence are solved by building a model whose parameters encode the prior domain
knowledge and the likelihood of the observed data. In order to use such models in practice, we need to estimate
its parameters automatically using training data. The most prevalent paradigm of parameter estimation is
supervised learning, which requires the collection of the inputs xi and the desired outputs yi. However, such an
approach has two main disadvantages. First, obtaining the ground-truth annotation of high-level applications,
such as a tight bounding box around all the objects present in an image, is often expensive. This prohibits the
use of a large training dataset, which is essential for learning the existing complex models. Second, in many
applications, particularly in the field of medical image analysis, obtaining the ground-truth annotation may not
be feasible. For example, even the experts may disagree on the correct segmentation of a microscopical image
due to the similarities between the appearance of the foreground and background.
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In order to address the deficiencies of supervised learning, researchers have started to focus on the problem
of parameter estimation with data that contains hidden variables. The hidden variables model the missing
information in the annotations. Obtaining such data is practically more feasible: image-level labels (‘contains
car’,‘does not contain person’) instead of tight bounding boxes; partial segmentation of medical images.
Formally, the parameters w of the model are learned by minimizing the following objective:

min
w∈W

R(w) +

n∑
i=1

∆(yi, yi(w), hi(w)). (5)

Here, W represents the space of all parameters, n is the number of training samples, R(·) is a regularization
function, and ∆(·) is a measure of the difference between the ground-truth output yi and the predicted output
and hidden variable pair (yi(w), hi(w)).

Previous attempts at minimizing the above objective function treat all the training samples equally. This is in
stark contrast to how a child learns: first focus on easy samples (‘learn to add two natural numbers’) before
moving on to more complex samples (‘learn to add two complex numbers’). In our work, we capture this
intuition using a novel, iterative algorithm called self-paced learning (SPL). At an iteration t, SPL minimizes
the following objective function:

min
w∈W,v∈{0,1}n

R(w) +

n∑
i=1

vi∆(yi, yi(w), hi(w))− µt
n∑
i=1

vi. (6)

Here, samples with vi = 0 are discarded during the iteration t, since the corresponding loss is multiplied by
0. The term µt is a threshold that governs how many samples are discarded. It is annealed at each iteration,
allowing the learner to estimate the parameters using more and more samples, until all samples are used. Our
results already demonstrate that SPL estimates accurate parameters for various applications such as image
classification, discriminative motif finding, handwritten digit recognition and semantic segmentation. We will
investigate the use of SPL to estimate the parameters of the models of medical imaging applications, such as
segmentation and registration, that are being developed in the GALEN team. The ability to handle missing
information is extremely important in this domain due to the similarities between foreground and background
appearances (which results in ambiguities in annotations). We will also develop methods that are capable of
minimizing more general loss functions that depend on the (unknown) value of the hidden variables, that is,

min
w∈W,θ∈Θ

R(w) +

n∑
i=1

∑
hi∈H

Pr (hi|xi, yi; θ)∆(yi, hi, yi(w), hi(w)). (7)

Here, θ is the parameter vector of the distribution of the hidden variables hi given the input xi and output yi,
and needs to be estimated together with the model parameters w. The use of a more general loss function will
allow us to better exploit the freely available data with missing information. For example, consider the case
where yi is a binary indicator for the presence of a type of cell in a microscopical image, and hi is a tight
bounding box around the cell. While the loss function ∆(yi, yi(w), hi(w)) can be used to learn to classify
an image as containing a particular cell or not, the more general loss function ∆(yi, hi, yi(w), hi(w)) can be
used to learn to detect the cell as well (since hi models its location)

3.4. Discrete Biomedical Image Perception
A wide variety of tasks in medical image analysis can be formulated as discrete labeling problems. In very
simple terms, a discrete optimization problem can be stated as follows: we are given a discrete set of variables
V, all of which are vertices in a graph G. The edges of this graph (denoted by E) encode the variables’
relationships. We are also given as input a discrete set of labels L. We must then assign one label from L

to each variable in V. However, each time we choose to assign a label, say, xp1 to a variable p1, we are forced
to pay a price according to the so-called singleton potential function gp(xp), while each time we choose to
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assign a pair of labels, say, xp1 and xp2 to two interrelated variables p1 and p2 (two nodes that are connected
by an edge in the graph G), we are also forced to pay another price, which is now determined by the so called
pairwise potential function fp1p2(xp1 , xp2). Both the singleton and pairwise potential functions are problem
specific and are thus assumed to be provided as input.

Our goal is then to choose a labeling which will allow us to pay the smallest total price. In other words, based
on what we have mentioned above, we want to choose a labeling that minimizes the sum of all the MRF
potentials, or equivalently the MRF energy. This amounts to solving the following optimization problem:

arg min
{xp}

P(g, f) =
∑
p∈V

gp(xp) +
∑

(p1,p2)∈E

fp1p2(xp1 , xp2). (8)

The use of such a model can describe a number of challenging problems in medical image analysis.
However these simplistic models can only account for simple interactions between variables, a rather
constrained scenario for high-level medical imaging perception tasks. One can augment the expres-
sion power of this model through higher order interactions between variables, or a number of cliques
{Ci, i ∈ [1, n] = {{pi1 , · · · , pi|Ci|}} of order |Ci| that will augment the definition of V and will introduce
hyper-vertices:

arg min
{xp}

P(g, f) =
∑
p∈V

gp(xp) +
∑

(p1,p2)∈E

fp1p2(xp1 , xp2) +
∑
Ci∈E

fp1···pn(xpi1 , · · · , pxi|Ci|
). (9)

where fp1···pn is the price to pay for associating the labels (xpi1 , · · · , pxi|Ci|
) to the nodes (p1 · · · pi|Ci|).

Parameter inference, addressed by minimizing the problem above, is the most critical aspect in computational
medicine and efficient optimization algorithms are to be evaluated both in terms of computational complexity
as well as of inference performance. State of the art methods include deterministic and non-deterministic
annealing, genetic algorithms, max-flow/min-cut techniques and relaxation. These methods offer certain
strengths while exhibiting certain limitations, mostly related to the amount of interactions which can be
tolerated among neighborhood nodes. In the area of medical imaging where domain knowledge is quite strong,
one would expect that such interactions should be enforced at the largest scale possible.

4. Application Domains
4.1. Lung Tumor Detection and Characterization

The use of Diffusion Weighted MR Imaging (DWI) is investigated as an alternative tool to radiologists for
tumor detection, tumor characterization, distinguishing tumor tissue from non-tumor tissue, and monitoring
and predicting treatment response. In collaboration with Hôpitaux Universitaires Henri-Mondor in Paris,
France and Chang Gung Memorial Hospital – Linkou in Taipei, Taiwan we investigate the use of model-
based methods of 3D image registration, clustering and segmentation towards the development of a framework
for automatic interpretation of images, and in particular extraction of meaningful biomarkers in aggressive
lymphomas.

4.2. Co-segmentation and Co-registration of Subcortical Brain Structures
New algorithms to perform co-segmentation and co-registration of subcortical brain structures on MRI images
are investigated in collaboration with Ecole Polytechnique de Montreal and the Sainte-Justine Hospital
Research Center from Montreal. Brain subcortical structures are involved in different neurodegenerative
and neuropsychiatric disorders, including schizophrenia, Alzheimers disease, attention deficit, and subtypes
of epilepsy. Segmenting these parts of the brain enables a physician to extract indicators, facilitating their
quantitative analysis and characterization. We are investigating how estimated maps of semantic labels
(obtained using machine learning techniques) can be used as a surrogate for unlabelled data. We are
exploring how to combine them with multi-population deformable registration to improve both alignment
and segmentation of these challenging brain structures.
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5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

• Pr. Iasonas Kokkinos was appointed associate editor for the Computer Vision and Image Under-
standin Journal.

• Pr. Pawan Kumar was appointed associate editor for the Computer Vision and Image Understandin
Journal.

• Pr. Nikos Paragios was admitted as a senior fellow at the Insitut Universitaire de France in the section
of Mathematics.

6. New Software and Platforms

6.1. DISD
Dense Image and Surface Descriptors
FUNCTIONAL DESCRIPTION

Scale-Invariant Descriptor, Scale-Invariant Heat Kernel Signatures DISD implements the SID, SI-HKS and
ISC descriptors. SID (Scale-Invariant Descriptor) is a densely computable, scale- and rotation- invariant
descriptor. We use a log-polar grid around every point to turn rotation/scalings into translation, and then use the
Fourier Transform Modulus (FTM) to achieve invariance. SI-HKS (Scale-Invariant Heat Kernel Signatures)
extract scale-invariant shape signatures by exploiting the fact that surface scaling amounts to multiplication
and scaling of a properly sampled HKS descriptor. We apply the FTM trick on HKS to achieve invariance to
scale changes. ISC (Intrinsic Shape Context) constructs a net-like grid around every surface point by shooting
outwards and tracking geodesics. This allows us to build a meta-descriptor on top of HKS/SI-HKS that takes
neighborhood into account, while being invariant to surface isometries.

• Participants: Iasonas Kokkinos and Eduard Trulls

• Contact: Iasonas Kokkinos

• URL: http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html

6.2. DPMS
FUNCTIONAL DESCRIPTION

Dpms implements branch-and-bound object detection, cutting down the complexity of detection from linear
in the number of pixels to logarithmic.

• Participant: Iasonas Kokkinos

• Contact: Iasonas Kokkinos

• URL: http://cvn.ecp.fr/personnel/iasonas/dpms.html

6.3. DROP
KEYWORDS: Health - Merging - Registration of 2D and 3D multimodal images - Medical imaging
FUNCTIONAL DESCRIPTION

http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html
http://cvn.ecp.fr/personnel/iasonas/dpms.html
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Drop is a software programme that registers images originating from one or more modes by quickly and
efficiently calculating a non-rigid / deformable field of deformation. Drop is a new, quick and effective
registration tool based on new algorithms that do not require a cost function derivative.

• Partner: Centrale Paris

• Contact: Nikolaos Paragyios

• URL: http://campar.in.tum.de/Main/Drop

6.4. FastPD
KEYWORD: Medical imaging
FUNCTIONAL DESCRIPTION

FastPD is an optimization platform in C++ for the computer vision and medical imaging community.

• Contact: Nikolaos Paragyios

• URL: http://www.csd.uoc.gr/~komod/FastPD/

6.5. GraPeS
Grammar Parser for Shapes
FUNCTIONAL DESCRIPTION It is a software for parsing facade images using shape grammars. Grapes
implement a parsing methods based on Reinforcement Learning principles. It optimizes simultaneously the
topology of the parse tree as well as the associated parameters. GraPeS comes along with predefined shape
grammars as XML files and defines three kinds of rewards. However, it also offers the possibility to create new
grammars and to provide custom rewards in text files, widening the scope of potential applications. The name
of the software comes from the aspect of the parse tree of the binary split grammars involved in the process.

• Participant: Iasonas Kokkinos

• Contact: Iasonas Kokkinos

• URL: http://vision.mas.ecp.fr/Personnel/teboul/grapesPage/index.php

6.6. HOAP-SVM
High-Order Average Precision SVM
SCIENTIFIC DESCRIPTION

We consider the problem of using high-order information (for example, persons in the same image tend to
perform the same action) to improve the accuracy of ranking (specifically, average precision). We develop
two learning frameworks. The high-order binary SVM (HOB-SVM) optimizes a convex upper bound of the
surrogate 0-1 loss function. The high-order average precision SVM (HOAP-SVM) optimizes a difference-of-
convex upper bound on the average precision loss function.

Authors of the research paper: Puneet K. Dokania, A. Behl, C. V. Jawahar and M. Pawan Kumar
FUNCTIONAL DESCRIPTION

The software provides a convenient API for learning to rank with high-order information. The samples are
ranked according to a score that is proportional to the difference of max-marginals of the positive and the
negative class. The parameters of the score function are computed by minimizing an upper bound on the
average precision loss. The software also provides an instantiation of the API for ranking samples according
to their relevance to an action, using the poselet features. The following learning algorithms are included in
the API:

(1) Multiclass-SVM (2) AP-SVM (3) High Order Binary SVM (HOB-SVM) (4) High Order AP-SVM (HOAP-
SVM) (5) M4 Learning (unpublished work)

http://campar.in.tum.de/Main/Drop
http://www.csd.uoc.gr/~komod/FastPD/
http://vision.mas.ecp.fr/Personnel/teboul/grapesPage/index.php
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The API is developed in C/C++ by Puneet K. Dokania.

• Participants: Puneet Dokania and Pawan Kumar

• Contact: Puneet Dokania

• URL: http://puneetkdokania.github.io/projects/ranking-highorder/ranking-highorder.html

6.7. LBSD
Learning-Based Symmetry Detection
FUNCTIONAL DESCRIPTION

LBSD implements the learning-based approach to symmetry detection. It includes the code for running a
detector, alongside with the ground-truth symmetry annotations that we have introduced for the Berkeley
Segmentation Dataset (BSD) benchmark.

• Participant: Stavros Tsogkas

• Contact: Stavros Tsogkas

• URL: https://github.com/tsogkas/oid_1.0

6.8. TeXMeG
FUNCTIONAL DESCRIPTION

Texture, modulation, generative models, segmentation, TeXMeG is a front-end for texture analysis and edge
detection platform in Matlab that relies on Gabor filtering and image demodulation. Includes frequency- and
time- based definition of Gabor- and other Quadrature-pair filterbanks, demodulation with the Regularized
Energy Separation Algorithm and Texture/Edge/Smooth classification based on MDL criterion.

• Participant: Iasonas Kokkinos

• Contact: Iasonas Kokkinos

• URL: http://cvsp.cs.ntua.gr/software/texture/

6.9. mrf-registration
KEYWORDS: Health - Medical imaging
FUNCTIONAL DESCRIPTION

Deformable image and volume registration, is a deformable registration platform in C++ for the medical
imaging community. This is the first publicly available platform which contains most of the existing metrics
to perform registration under the same concept. The platform is used for clinical research from approximately
3,000 users worldwide.

• Participant: Nikolaos Paragyios

• Contact: Nikolaos Paragyios

• URL: http://www.mrf-registration.net/

7. New Results

7.1. Optimizing Average Precision
Paticipants: Pawan Kumar

http://puneetkdokania.github.io/projects/ranking-highorder/ranking-highorder.html
https://github.com/tsogkas/oid_1.0
http://cvsp.cs.ntua.gr/software/texture/
http://www.mrf-registration.net/
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Average precision (AP) is one of the most commonly used measures for ranking. However, due to the
inefficiency of optimizing it during learning, a common approach is to use surrogate loss functions such as 0-1
loss. We have developped a novel latent AP-SVM classifier [1], that minimizes a carefully designed upper
bound on the AP-based loss function over weakly supervised samples. Using publicly available datasets, we
demonstrate the advantage of our approach over standard loss-based learning frameworks on three challenging
problems: action classification, character recognition and object detection.

7.2. Region-based Semantic Segmentation
Paticipants: Pawan Kumar

In [9] we consider the problem of parameter estimation and energy minimization for a region-based semantic
segmentation model. The main problem we face in the context of energy minimization, is the large number of
putative pixel-to-region assignments. We address this problem by designing an accurate linear programming
based approach for selecting the best set of regions from a large dictionary, which is constructed by merging
and intersecting segments obtained from multiple bottom-up over-segmentations. The lack of fully supervised
data is tackled by using a latent structural SVM formulation, where the latent variables model any missing
information in the human annotation. Using large, publicly available datasets we show that our methods are
able to significantly improve the accuracy of the region-based model.

7.3. Parsimonious Labeling
Paticipants: Puneet Dokania, Pawan Kumar

In [22], we propose a new family of discrete energy minimization problems, which we call parsimonious
labeling, that is to use as few labels as possible. This allows us to capture useful cues for important computer
vision applications such as stereo correspondence and image denoising. Furthermore, we propose an efficient
graph-cuts based algorithm for the parsimonious labeling problem that provides strong theoretical guarantees
on the quality of the solution. Using both synthetic and standard real datasets, we show that our algorithm
significantly outperforms other graph-cuts based approaches.

7.4. Structured Learning and Inference
Paticipants: Jiaqian Yu, Matthew Blaschko

We have developed computationally efficient structured output prediction methods for learning with non-
modular losses [19], [29], [40]. We both demonstrate the feasibility of learning with submodular losses, as
well as show that learning with multiple correct outputs can lead to NP-hard optimization problems even
when learning with a single correct output is feasible.

7.5. Novel graph kernels
Paticipants: Katerina Gkirtzou, Matthew Blaschko

We have developed a novel family of graph kernels that are capable of incorporating local curvature properties
of 3D meshes [6]. We have additionally demonstrated their application to the modelling of interdependencies
between different brain regions in an fMRI based classification task for predicting cocaine addiction.

7.6. Structured Sparsity Regularization & Statistical Hypothesis Testing
Paticipants: Eugene Belilovsky, Wacha Bounliphone, Katerina Gkirtzou, Andreas Argyriou, Matthew
Blaschko
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We have developed novel methods for structured sparsity regularization & hypothesis testing. We have applied
these methods to fMRI [3], [2], [36] and the analysis of large medical databases [10]. We have also developed
novel statistical hypothesis tests for relative dependency [21], [37] and similarity [14]. We have applied these
methods to the problem of identifying relative dependencies between languages using a multi-lingual corpus,
and for discovering the relative relationships between gliomas and genetic information. Additionally, we have
shown the application of relative tests to the problem of model selection in deep generative models, and
currently an important question in machine learning.

7.7. High-Order MRF models
Paticipants: Nikos Komodakis, Nikos Paragios

We developped a very general algorithm for structured prediction learning [7] that is able to efficiently
handle discrete MRFs/CRFs (including both pairwise and higher-order models) so long as they can admit
a decomposition into tractable subproblems. By properly combining dual decomposition with a max-margin
learning method, the framework manages to reduce the training of a complex high-order MRF to the parallel
training of a series of simple slave MRFs that are much easier to handle.

7.8. Graph-based registration and segmentation
Paticipants: Enzo Ferrante, Vivien Fecamp, Aimilia Gastounioti, Bharat Singh, Stavros Alchatzidis, Nikos
Paragios

Deformable image registration plays a fundamental role in many clinical applications. We investigated the
use of graphical models in the context of a particular type of image registration problem, known as slice-
to-volume registration. We introduced a scalable, modular and flexible formulation that can accommodate
low-rank [5] and high order [16] terms, that simultaneously selects the plane and estimates the in-plane
deformation through a single shot optimization approach. We applied our models on simulated and real-data
in the context of ultrasound and magnetic resonance registration, demonstrating the potential of our methods.

We also developped a novel methodology for graph-based motion-driven segmentation [24] and applied it
for carotid plaque segmentation in ultrasound images. We identified the plaque region by exploiting kinematic
dependencies between the atherosclerotic and the normal arterial wall. The methodology exploits group-wise
image registration towards recovering the deformation field, on which information theory criteria are used to
determine dominant motion classes and a map reflecting kinematic dependencies, which is then segmented
using Markov random fields.

Moreover, in order to address the problem of general purpose multi-modal deformable registration/fusion we
developped a novel and robust method using a metric defined in an appropriate sub-space which is adaptive to
the image-content/image-modality [18]. We adopted a graph-based formulation that assumes that intensities
of corresponding pixels in the two image domains are related through an unknown piece-wise constant linear
function. This relation is propagated to an appropriate sub-space (wavelets coefficients) where a criterion
that couples the estimation of the deformation field with optimal transport function on the subspace and the
smoothness of the deformation is considered.

7.9. Object Detection from RGB-Depth images
Paticipant: Siddhartha Chandra, Iasonas Kokkinos

In [11] we explore RGB-Depth representations for the training of Deformable Models. and describe strategies
to improve an object detection pipeline by introducing viewpoint based mixture components. Our contributions
are threefold. First, we use surface-based object representations (3D mesh models) from available 3D object
model repositories to learn strongly supervised viewpoint classifiers. Second, we develop a geometric dataset
augmentation scheme that uses scene geometry to ‘take another look’ at the training data, simulating the effect
of camera viewpoint changes. Third, to better exploit depth information, we develop a novel depth-based
dense feature extraction method that provides a robust statistical description of scene geometry. We evaluate
our learned detectors on the common NYU dataset, and demonstrate that each of our advances results in
systematic performance improvements over the traditional detection pipeline.
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7.10. Deep CNN for Modelling Deformations and Semantic Segmentation
Paticipant: Iasonas Kokkinos

Invariance to deformations in Deep Convolutional Neural Networks (DCNN) is commonly achieved by using
multiple ‘max-pooling’ (MP) layers. In [26] we show that alternative methods of modeling deformations
can improve the accuracy and efficiency of DCNNs. For this, (i) we introduce epitomic convolution as an
alternative to the common convolution-MP cascade of DCNNs, (ii)we introduce a Multiple Instance Learning
algorithm to accommodate global translation and scaling in image classification and (iii) we develop a DCNN
sliding window detector that explicitly, but efficiently, searches over the object’s position, scale, and aspect
ratio. We provide competitive image classification and localization results on the ImageNet dataset and object
detection results on Pascal VOC2007.

In [25] we bring together methods from DCNNs and probabilistic graphical models for addressing the task
of pixel-level classification (”semantic image segmentation”). We overcome the poor localization property
of deep networks by combining the responses at the final DCNN layer with a fully connected Conditional
Random Field (CRF). Qualitatively, our “DeepLab” system is able to localize segment boundaries at a level
of accuracy which is beyond previous methods.

7.11. Learning Low-level Image Representations with Deep CNN
Paticipant: Iasonas Kokkinos

In [27] we propose a novel framework for learning local image descriptors in a discriminative manner. For
this purpose we explore a siamese architecture of DCNNs, with a Hinge embedding loss on the L2 distance
between descriptors. Since a siamese architecture uses pairs rather than single image patches to train, there
exist a large number of positive samples and an exponential number of negative samples. We propose to
explore this space with a stochastic sampling of the training set, in combination with an aggressive mining
strategy over both the positive and negative samples which we denote as "fracking". We perform a thorough
evaluation of the architecture hyper-parameters, and demonstrate large performance gains compared to both
standard CNN learning strategies, hand-crafted image descriptors like SIFT, and the state-of-the-art on learned
descriptors: up to 2.5x vs SIFT and 1.5x vs the state-of-the-art in terms of the area under the curve (AUC) of
the Precision-Recall curve.

In [4] we explote connections between DCNNs and texture understanding. First, instead of focusing on texture
instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes
to describe common texture patterns, complemented by a new describable texture dataset for benchmarking.
Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions,
including when textures appear in clutter, developing corresponding benchmarks on top of the recently
proposed OpenSurfaces dataset. Third, we revisit classic texture representations, including bag-of-visual-
words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency
and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain
in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to
apply deep features to image regions, as well as benefit in transferring features from one domain to another.

In [35] we propose a new DCNN architecture that learns pixel embeddings, such that pairwise distances
between the embeddings can be used to infer whether or not the pixels lie on the same region. That is,
for any two pixels on the same object, the embeddings are trained to be similar; for any pair that straddles
an object boundary, the embeddings are trained to be dissimilar. Experimental results show that when this
embedding network is used in conjunction with a DCNN trained on semantic segmentation, there is a
systematic improvement in per-pixel classification accuracy. Our contributions are integrated in the popular
Caffe deep learning framework, and consist in straightforward modifications to convolution routines. As such,
they can be exploited for any task involving convolution layers.

7.12. Human-Limb Segmentation for Intelligent Mobility Assistance Robots
Paticipants: Siddhartha Chandra, Stavros Tsogkas, Iasonas Kokkinos
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We developed a computer vision component [12] to be used as part of an intelligent robotic assistant. This
component exploits RGB and depth information extracted from Kinect sensors mounted on the robot, to
accurately segment human limbs, using fully convolutional neural networks (FCNNs). We trained our network
using an in-house Human-Limb dataset composed of video frames, and described a scheme for dynamically
exploiting RGB and depth data in a single framework for training and testing. Our method demonstrated
promising performance, being very efficient at the same time, with a run-time of 8 frames per second on a
single GPU.

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. Excellence Clusters

• Program: DIGITEO (Chair)
Project acronym: SubSample
Project title: Identification and prediction of Salient brain States through probabilistic
structure learning towards fusion of imaging and genomic date
Duration: 01/2012-12/2015
Coordinator: ECP - FR

• Program: DIGITEO
– Project acronym: SOPRANO
– Project title: Structured Output Prediction on Large Scale Neuroscience Data
– Duration: 3/2013-3/2016
– Coordinator: Ecole Centrale Paris - FR

• Program: MEDICEN
Project acronym: ADOC
Project title: ADOC – Diagnostic peropératoire numérique en chirurgie du cancer
Duration: 11/2011-09/2015
Coordinator: LLTECH - FR

8.2. National Initiatives
8.2.1. ANR

• Program: ANR Blanc International
Project acronym: ADAMANTIUS
Project title: Automatic Detection And characterization of residual Masses in pAtients
with lymphomas through fusioN of whole-body diffusion-weighTed mrI on 3T and 18F-
flUorodeoxyglucoSe pet/ct
Duration: 9/2012-8/2015
Coordinator: CHU Henri Mondor - FR

• Program: ANR JCJC
Project acronym: HICORE
Project title: HIerarchical COmpositional REpresentations for Computer Vision
Duration: 10/2010-9/2014
Coordinator: ECP - FR
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• Program: ANR JCJC

Project acronym: LearnCost

Project title: Learning Model Constraints for Structured Prediction

Duration: 2014-2018

Coordinator: Inria Saclay - FR

• Program: ITMOs Cancer & Technologies pour la santé d’Aviesan / INCa

Project acronym: CURATOR

Project title: Slice-to-Image Deformable Registration towards Image-based Surgery Navi-
gation & Guidance

Duration: 12/2013-11/2015

Coordinator: ECP - FR

8.3. European Initiatives
8.3.1. FP7 & H2020 Projects
8.3.1.1. DIOCLES

Title: Discrete bIOimaging perCeption for Longitudinal Organ modElling and computEr-aided
diagnosiS

Type: FP7

Instrument: European Research Council

Duration: September 2011 - August 2016

Coordinator: Nikos Paragios

Partner: Ecole Centrale de Paris (FR)

Inria contact: Nikos Paragios

Recent hardware developments from the medical device manufacturers have made possible non-
invasive/in-vivo acquisition of anatomical and physiological measurements. Despite enormous
progress made on the field of biomedical image analysis still a huge gap exists between clinical
research and clinical use. The aim of this proposal is three-fold. First we would like to introduce a
novel biomedical image perception framework for clinical use towards disease screening and drug
evaluation. Such a framework is expected to be modular (can be used in various clinical settings),
computationally efficient (would not require specialized hardware), and can provide a quantitative
and qualitative anatomo-pathological indices. Second, leverage progress made on the field of ma-
chine learning along with novel, efficient, compact representation of clinical bio-markers toward
computer aided diagnosis. Last, using these emerging multi-dimensional signals, we would like to
perform longitudinal modelling and understanding the effects of aging to a number of organs and
diseases that do not present pre-disease indicators such as brain neurological diseases, muscular
diseases, certain forms of cancer, etc.

8.3.1.2. I-SUPPORT

Title: ICT-Supported Bath Robots

Programm: FP7

Duration: March 2015 - March 2018

Coordinator: Robotnik Automation S.L.L.

Partners:

Bethanien Krankenhaus - Geriatrisches Zentrum - Gemeinnutzige GMBH (Germany)

Fondazione Santa Lucia (Italy)
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Institute of Communication and Computer Systems (Greece)

Karlsruher Institut für Technologie (Germany)

Theofanis Alexandridis Kai Sia Ee (OMEGATECH) (Greece)

Robotnik Automation Sll (Spain)

Scuola Superiore di Studi Universitari E di Perfezionamento Sant’Anna (Italy)

Frankfurt University of Applied Sciences (Germany)

Inria contact: Iasonas Kokkinos

The I-SUPPORT project envisions the development and integration of an innovative, modular, ICT-
supported service robotics system that supports and enhances older adults’ motion and force abilities
and assists them in successfully, safely and independently completing the entire sequence of bathing
tasks, such as properly washing their back, their upper parts, their lower limbs, their buttocks and
groin, and to effectively use the towel for drying purposes. Advanced modules of cognition, sensing,
context awareness and actuation will be developed and seamlessly integrated into the service robotics
system to enable the robotic bathing system to adapt to the frail elderly population’ capabilities
and the frail elderly to interact in a master-slave mode, thus, performing bathing activities in an
intuitive and safe way. Adaptation and integration of state-of-the-art, cost-effective, soft-robotic
manipulators will provide the hardware constituents, which, together with advanced human-robot
force/compliance control that will be developed within the proposed project, will form the basis
for a safe physical human-robot interaction that complies with the most up-to-date safety standards.
Human behavioural, sociological, safety, ethical and acceptability aspects, as well as financial factors
related to the proposed service robotic infrastructure will be thoroughly investigated and evaluated so
that the I-SUPPORT end result is a close-to-market prototype, applicable to realistic living settings.

8.3.1.3. MOBOT

Title: Intelligent Active MObility Aid RoBOT integrating Multimodal Communication

Programm: FP7

Duration: February 2013 - January 2016

Coordinator: Technische Universität München

Partners:

Bartlomiej Marcin Stanczyk (Poland)

Athena Research and Innovation Center in Information Communication & Knowledge
Technologies (Greece)

Bethanien Krankenhaus - Geriatrisches Zentrum - Gemeinnutzige (Germany)

Diaplasis Rehabilitation Center (Greece)

Ecole Centrale des Arts et Manufactures (France)

Technische Universitaet Muenchen (Germany)

Ruprecht-Karls-Universitaet Heidelberg (Germany)

Inria contact: Iasonas Kokkinos

Mobility disabilities are prevalent in our ageing society and impede activities important for the
independent living of elderly people and their quality of life. The MOBOT project aims at supporting
mobility and thus enforcing fitness and vitality by developing intelligent active mobility assistance
robots for indoor environments that provide user-centred, context-adaptive and natural support.
Our driving concept envisions cognitive robotic assistants that act (a) proactively by realizing an
autonomous and context-specific monitoring of human activities and by subsequently reasoning
on meaningful user behavioural patterns, as well as (b) adaptively and interactively, by analysing
multi-sensory and physiological signals related to gait and postural stability, and by performing
adaptive compliance control for optimal physical support and active fall prevention. Towards these
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targets, a multimodal action recognition system will be developed to monitor, analyse and predict
user actions with a high level of accuracy and detail. The main thrust of our approach will be the
enhancement of computer vision techniques with modalities such as range sensor images, haptic
information as well as command-level speech and gesture recognition. Data-driven multimodal
human behaviour analysis will be conducted and behavioural patterns will be extracted. Findings
will be imported into a multimodal human-robot communication system, involving both verbal
and nonverbal communication and will be conceptually and systemically synthesised into mobility
assistance models taking into consideration safety critical requirements. All these modules will be
incorporated in a behaviour-based and context-aware robot control framework. Direct involvement
of end-user groups will ensure that actual user needs are addressed. Finally, user trials will be
conducted to evaluate and benchmark the overall system and to demonstrate the vital role of MOBOT
technologies for Europe’s service robotics.

8.3.1.4. RECONFIG
Type: FP7
Defi: Cognitive Systems and Robotics
Instrument: Specific Targeted Research Project
Objectif: Cognitive Systems and Robotics
Duration: February 2013 - January 2016
Coordinator: Dimos Dimarogonas
Partner: KTH (SE)
Inria contact: Iasonas Kokkinos
The RECONFIG project aims at exploiting recent developments in vision, robotics, and control to
tackle coordination in heterogeneous multi-robot systems. Such systems hold promise for achiev-
ing robustness by leveraging upon the complementary capabilities of different agents and efficiency
by allowing sub-tasks to be completed by the most suitable agent. A key challenge is that agent
composition in current multi-robot systems needs to be constant and pre-defined. Moreover, the co-
ordination of heterogeneous multi-agent systems has not been considered in manipulative scenarios.
We propose a reconfigurable and adaptive decentralized coordination framework for heterogeneous
multiple & multi-DOF robot systems. Agent coordination is held via two types of information ex-
change: (i) at an implicit level, e.g., when robots are in contact with each other and can sense the
contact, and (ii) at an explicit level, using symbols grounded to each embodiment, e.g, when one
robot notifies one other about the existence of an object of interest in its vicinity.

8.3.1.5. Strategie
Title: Statistically Efficient Structured Prediction for Computer Vision and Medical Imaging
Programm: FP7
Duration: January 2014 - December 2017
Coordinator: Inria
Inria contact: Matthew Blaschko
’Inference in medical imaging is an important step for disease diagnosis, tissue segmentation,
alignment with an anatomical atlas, and a wide range of other applications. However, imperfections
in imaging sensors, physical limitations of imaging technologies, and variation in the human
population mean that statistical methods are essential for high performance. Statistical learning
makes use of human provided ground truth to enable computers to automatically make predictions
on future examples without human intervention. At the heart of statistical learning methods is risk
minimization - the minimization of the expected loss on a previously unseen image. Textbook
methods in statistical learning are not generally designed to minimize the expected loss for loss
functions appropriate to medical imaging, which may be asymmetric and non-modular. Furthermore,
these methods often do not have the capacity to model interdependencies in the prediction space,
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such as those arising from spatial priors, and constraints arising from the volumetric layout of
human anatomy. We aim to develop new statistical learning methods that have these capabilities,
to develop efficient learning algorithms, to apply them to a key task in medical imaging (tumor
segmentation), and to prove their convergence to optimal predictors. To achieve this, we will leverage
the structured prediction framework, which has shown impressive empirical results on a wide range
of learning tasks. While theoretical results giving learning rates are available for some algorithms,
necessary and sufficient conditions for consistency are not known for structured prediction. We will
consequently address this issue, which is of key importance for algorithms that will be applied
to life critical applications, e.g. segmentation of brain tumors that will subsequently be targeted
by radiation therapy or removed by surgery. Project components will address both theoretical and
practical issues.’

8.4. International Initiatives
8.4.1. Inria International Partners
8.4.1.1. Informal International Partners

• University of Oxford – Collaborative research with Andrea Vedaldi. Collaboration Topic: Deep
Learning for Texture Recognition.

• Google Research – Collaborative research with George Papandreou. Collaboration Topic: Deep
Learning for Semantic Segmentation.

• Universitad Polytecnical de Catalunia – Collaborative research with Francesc Moreno. Collaboration
Topic: Deep Learning for Image Descriptors.

• Ecole Polytechnique Federale de Lausanne (EPFL) – Collaborative research with Eduard Trulls.
Collaboration Topic: Deep Learning for Image Descriptors.

• University of California at Los Angeles – Collaborative research with Alan Yuille. Collaboration
Topic: Deep Learning for Semantic Segmentation.

• University of Massachusetts at Amherst – Collaborative research with Subhransu Maji. Collabora-
tion Topic: Deep Learning for Texture Recognition.

• Ryerson University – Collaborative research with Kostas Derpanis. Collaboration Topic: Deep
Learning for Learning Segmentation.

• Ecole Polytechnique de Montreal - Collaborative research with Samuel Kadoury. Collaboration
Topic: Multi-atlas co-segmentation, co-registration.

• University of Pennsylvania - Collaborative research with Aristeidis Sotiras. Collaboration Topic:
Higher Order Graphs in biomedical image analysis.

8.5. International Research Visitors
8.5.1. Visits of International Scientists

• Angst, Roland. Max Planck Center for Visual Computing and Communication, GE (April 2015)

• Professor Maragos, Petros: Technical University of Athens, GR (13-20 November 2015)

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. General chair, scientific chair
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• Kokkinos, Iasonas: (i) Co-Organizer of From Image Statistics to Probabilistic Deep Learning in
conjunction with ICCV 2015, (ii) Co-Organizer of Search and Planning for Inference and Learning
(SPIL), in conjunction with CVPR 2015

• Paragios, Nikos: (i) Organizer of 3rd Biomedical Image Analysis Summer School : Modalities,
Methodologies & Clinical Research

9.1.2. Scientific events selection
9.1.2.1. Chair of conference program committees

• Blaschko, Matthew: British Machine Vision Conference (BMVC)

• Kokkinos, Iasonas: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

• Paragios, Nikos: Medical Image Computing and Computer Assisted Intervention (MICCAI)

9.1.2.2. Member of the conference program committees

• Blaschko, Matthew: International Conference on Computer Vision (ICCV), Annual Conference on
Neural Information Processing Systems (NIPS)

• Kokkinos, Iasonas: International Conference on Computer Vision (ICCV), Neural Information
Processing Systems (NIPS), International Conference on Learning Representations (ICLR)

9.1.2.3. Reviewer

The members of the team reviewed numerous papers for several international conferences, such as for the
annual conferences on Computer Vision and Pattern Recognition (CVPR), and Medical Image Computing and
Computer Assisted Intervention (MICCAI)

9.1.3. Journal
9.1.3.1. Member of the editorial boards

• Paragios, Nikos: Medical Image Analysis Journal (MedIA), SIAM Journal on Imaging Sciences

• Kokkinos, Iasonas: Image and Vision Computing Journal (IVC), Computer Vision and Image
Understanding Journal (CVIU).

• Kumar, Pawan: Computer Vision and Image Understanding Journal (CVIU).

9.1.3.2. Reviewer - Reviewing activities

• Blaschko, Matthew: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),
Journal of Machine Learning Research (JMLR)

• Kokkinos, Iasonas: International Journal of Computer Vision, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Computer Vision and Image Understanding (CVIU)

• Ferrante, Enzo: IEEE Transactions on Medical Imaging (T-MI), Medical Image Analysis (MedIA),
Computarized Medical Imaging and Graphics (CMIG)

• Zacharaki, Evangelia: IEEE Transactions on Medical Imaging (T-MI), Transactions on Biomedical
Engineering

• Dokania, Puneet: Computer Vision and Image Understanding (CVIU)

9.1.4. Invited talks
• Paragios, Nikos: Hong Kong University of State and Technology, Chinese University of Hong

Kong, Swiss Federal Institute of Technology in Zurich (ETHZ), Queen Mary University of London,
Bayesian and Graphical Models in Biomedical Imaging (in conjunction with MICCAI), National
Technical University of Athens

9.1.5. Scientific expertise
• Paragios, Nikos: (i) member of the Scientific Council of the SAFRAN Conglomerate, (ii) Member

of the advisory board of the Data HealthCare Institute



Project-Team GALEN 19

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Masters
Blaschko, Matthew:

• Master: Neural Information Processing, Spring, Ecole CentraleSupelec Paris, FR

Kokkinos, Iasonas

• Master: Machine Learning for Computer Vision, 24, M2, Ecole Normale
Superieure-Cachan, FR

• Master: Introduction to Deep Learning, 24, M2, CentraleSupélec , FR

• Master: Introduction to Signal Processing, 36, M1, CentraleSupélec , FR

9.2.2. Supervision
PhD in progress : Eugene Belilovsky, Structured Output Prediction on Large Scale Neuroscience
Data, Universite Paris-Saclay & KU Leuven, 2014-2017, M. Blaschko

PhD in progress : Jiaqian Yu, Structured Prediction Methods for Computer Vision and Medical
Imaging, Universite Paris-Saclay, 2014-2017, M. Blaschko

PhD in progress : Wacha Bounliphone, Statistical tools for Imaging-Genetics data integration, 2013-
2016, Universite Paris-Saclay & KU Leuven, M. Blaschko & A. Tenenhaus

PhD in progress : Amal Rannen, Deep Neural Networks for OCT image analysis, Yonsei University
& KU Leuven, M. Blaschko & Y.M. Jung

PhD in progress : Jose Ignacio Orlando, Computer assisted fundus image analysis for eye disease
detection, Universidad Nacional del Centro de la Provincia de Buenos Aires, M. Blaschko & M. del
Fresno

PhD in progress : Puneet Kumar Dokania, Learning to Rank with Missing and High-Order Informa-
tion, 2012-2015, M. Pawan Kumar

PhD in progress : Diane Bouchacourt, Large Scale Diverse Learning for Structured Output Predic-
tion, 2014-2017, M. Pawan Kumar

PhD in progress: Haithem Boussaid, Efficient Inference and Learning in Graphical Models for Multi-
organ Shape Segmentation, 2011-2015, I. Kokkinos

PhD in progress: Stavros Tsogkas, Learning structured mid-level representations for object recogni-
tion, 2011-2015, I. Kokkinos

PhD in progress: Siddhartha Chandra, Efficient Learning and Optimization for 3D Visual Data, 2013-
2016, I. Kokkinos, Pawan Kumar

PhD in progress: Stefan Kinauer, Surface-based representations for high-level vision tasks, 2013-
2016, I. Kokkinos.

PhD in progress: Alp Guler, Learning 3D representations for high-level vision, 2016-2018, I.
Kokkinos.

PhD in progress : Stavros Alchatzidis, Message Passing Methods, Parallel Architectures & Visual
Processing, 2011-2014, Nikos Paragios

PhD in progress : Enzo Ferrante, 2D-to-3D Multi-Modal Deformable Image Fusion, 2012-2015, N.
Paragios

PhD in progress : Vivien Fecamp, Linear-Deformable Multi-Modal Deformable Image Fusion, 2012-
2015, N. Paragios

PhD in progress : Evgenios Kornaropoulos, Diffusion Coefficient: a novel computer aided bio-
marker, 2013-2016, N. Paragios
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PhD in progress : Maxim Berman, Learning Higher Order Graphical Models, 2014-2017, N.
Paragios, I. Kokkinos

PhD in progress : Hariprasad Kannan, Efficient Inference on Higher Order Graphs, 2014-2017, N.
Paragios

PhD in progress : Huu Dien Khue Le, Graph-based Visual Perception : Theories and Applications,
2014-2017, N. Paragios

9.2.3. Juries
• Matthew Blaschko

– Grant Reviewing Services: European Research Council (ERC), The French National
Research Agency (ANR).

• Iasonas Kokkinos
– PhD Thesis Participation: Matteusz Kozinski, Ecole des Ponts ParisTech (PhD).

• Paragios, Nikos
– PhD Thesis Participation
– Grant Reviewing Services

9.3. Popularization
• Blaschko, Matthew

– Presentations: V Argentina Applied Maths Conference (MACI 2015)

• Kokkinos, Iasonas
– Presentations: University of California at Los Angeles, Imperial College, Boston Univer-

sity, Xerox Research Center Europe
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