

[image: cover]

 GALLIUM

 Programming languages, types, compilation and proofs

 2015 Project-Team Activity Report
	

 Research centre:
 Paris - Rocquencourt

 Field: Algorithmics, Programming, Software and Architecture
Theme: Proofs and Verification

 Computer Science and Digital Science:

 	1.1.3. - Memory models

 	2.1.1. - Semantics of programming languages

 	2.1.11. - Proof languages

 	2.1.3. - Functional programming

 	2.1.6. - Concurrent programming

 	2.2.1. - Static analysis

 	2.2.2. - Memory models

 	2.2.3. - Run-time systems

 	2.2.4. - Parallel architectures

 	2.4.1. - Analysis

 	2.4.2. - Verification

 	2.4.3. - Proofs

 	7.1. - Parallel and distributed algorithms

 	7.4. - Logic in Computer Science

 Other Research Topics and Application Domains:

 	5.2.3. - Aviation

 	6.1. - Software industry

 	9.4.1. - Computer science

 Project-Team Gallium

 Members

 Overall Objectives

 Research Program	Programming languages: design, formalization, implementation
	Type systems
	Compilation
	Interface with formal methods

 Application Domains	High-assurance software
	Software security
	Processing of complex structured data
	Rapid development
	Teaching programming

 Highlights of the Year

 New Software and Platforms	CompCert
	Diy
	Menhir
	OCaml
	PASL
	Zenon

 New Results	Formal verification of compilers and static analyzers
	Language design and type systems
	Shared-memory parallelism
	The OCaml language and system
	Software specification and verification

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2006 May 01
Section: Members
Research Scientists
Xavier Leroy [Team leader, Inria, Senior Researcher]
Umut Acar [Carnegie Mellon University, Advanced Research position]
Damien Doligez [Inria, Researcher]
Fabrice Le Fessant [Inria, Researcher]
Luc Maranget [Inria, Researcher]
François Pottier [Inria, Senior Researcher, HdR]
Mike Rainey [Inria, Starting Research position]
Didier Rémy [Inria, Senior Researcher, HdR]
Faculty Member
Pierre Courtieu [CNAM, Associate Professor on délégation]
PhD Students
Vitalii Aksenov [Inria, from Sep 2015]
Arthur Guillon [ENS Cachan, until Jan 2015]
Jacques-Henri Jourdan [Inria, granted by ANR VERASCO project]
Gabriel Scherer [ENS Paris and Inria]
Thomas Williams [ENS Paris]
Post-Doctoral Fellows
Maxime Dénès [Inria, until Sep 2015]
Pietro Abate [Inria]
Filip Sieczkowski [Inria]
Administrative Assistant
Cindy Crossouard [Inria]
Others
Keryan Didier [Inria, Student Intern, from Apr 2015 to Aug 2015]
Benjamin Farinier [Inria, Student Intern, until Aug 2015]
Armaël Guéneau [ENS Lyon, Student Intern, until Jul 2015]

 Overall Objectives

 	
 Overall Objectives

 Section:
 Overall Objectives

 Overall Objectives

 The research conducted in the Gallium group aims at improving the
safety, reliability and security of software through advances in
programming languages and formal verification of programs. Our work
is centered on the design, formalization and implementation of
functional programming languages, with particular emphasis on type
systems and type inference, formal verification of compilers, and
interactions between programming and program proof. The OCaml language
and the CompCert verified C compiler embody many of our research
results. Our work spans the whole spectrum from theoretical
foundations and formal semantics to applications to real-world
problems.

 Research Program

 	Research Program	Programming languages: design, formalization, implementation
	Type systems
	Compilation
	Interface with formal methods

 Section:
 Research Program

 Programming languages: design, formalization, implementation

 Like all languages, programming languages are the media by which
thoughts (software designs) are communicated (development),
acted upon (program execution), and reasoned upon (validation).
The choice of adequate programming languages has a tremendous impact
on software quality. By “adequate”, we mean in particular the
following four aspects of programming languages:

 	
 Safety. The programming language must not expose
error-prone low-level operations (explicit memory deallocation,
unchecked array access, etc) to programmers. Further, it should
provide constructs for describing data structures, inserting
assertions, and expressing invariants within programs. The consistency
of these declarations and assertions should be verified through
compile-time verification (e.g. static type-checking) and run-time
checks.

 	
 Expressiveness. A programming language should manipulate
as directly as possible the concepts and entities of the application
domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A
typical example of a language feature that increases expressiveness is
pattern matching for examination of structured data (as in symbolic
programming) and of semi-structured data (as in XML processing).
Carried to the extreme, the search for expressiveness leads to
domain-specific languages, customized for a specific application area.

 	
 Modularity and compositionality. The complexity of large
software systems makes it impossible to design and develop them as
one, monolithic program. Software decomposition (into semi-independent
components) and software composition (of existing or
independently-developed components) are therefore crucial. Again,
this modular approach can be applied to any programming language,
given sufficient fortitude by the programmers, but is much facilitated
by adequate linguistic support. In particular, reflecting notions of
modularity and software components in the programming language enables
compile-time checking of correctness conditions such as type
correctness at component boundaries.

 	
 Formal semantics. A programming language should fully and
formally specify the behaviours of programs using mathematical
semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods
(program proof, model checking) to programs.

 Our research work in language design and implementation centers on
the statically-typed functional programming paradigm,
which scores high on safety, expressiveness and formal semantics,
complemented with full imperative features and objects for additional
expressiveness, and modules and classes for compositionality. The
OCaml language and system embodies many of our earlier
results in this area [44] .
Through collaborations, we also gained experience with several
domain-specific languages based on a functional core, including
distributed programming (JoCaml), XML processing (XDuce, CDuce),
reactive functional programming, and hardware modeling.

 Section:
 Research Program

 Type systems

 Type systems [47] are a very effective way to improve
programming language reliability. By grouping the data manipulated by
the program into classes called types, and ensuring that operations
are never applied to types over which they are not defined
(e.g. accessing an integer as if it were an array, or calling a string
as if it were a function), a tremendous number of programming errors
can be detected and avoided, ranging from the trivial (misspelled
identifier) to the fairly subtle (violation of data structure
invariants). These restrictions are also very effective at thwarting
basic attacks on security vulnerabilities such as buffer overflows.

 The enforcement of such typing restrictions is called type-checking,
and can be performed either dynamically (through run-time type tests)
or statically (at compile-time, through static program analysis). We
favor static type-checking, as it catches bugs earlier and even in
rarely-executed parts of the program, but note that not all type
constraints can be checked statically if static type-checking is to
remain decidable (i.e. not degenerate into full program proof).
Therefore, all typed languages combine static and dynamic
type-checking in various proportions.

 Static type-checking amounts to an automatic proof of
partial correctness of the programs that pass the compiler. The two
key words here are partial, since only type safety guarantees are
established, not full correctness; and automatic, since the
proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source).
Static type-checking can therefore be viewed as the poor man's formal
methods: the guarantees it gives are much weaker than full formal
verification, but it is much more acceptable to the general population
of programmers.

 Type systems and language design.

 Unlike most other uses of static program analysis, static
type-checking rejects programs that it cannot prove safe.
Consequently, the type system is an integral part of the language
design, as it determines which programs are acceptable and which are
not. Modern typed languages go one step further: most of the language
design is determined by the type structure (type algebra and
typing rules) of the language and intended application area. This is
apparent, for instance, in the XDuce and CDuce domain-specific
languages for XML transformations [42] , [39] ,
whose design is driven by the idea of regular expression types that
enforce DTDs at compile-time. For this reason, research on type
systems – their design, their proof of semantic correctness (type
safety), the development and proof of associated type-checking and
inference algorithms – plays a large and central role in the field of
programming language research, as evidenced by the huge number of type
systems papers in conferences such as Principles of Programming
Languages.

 Polymorphism in type systems.

 There exists a fundamental tension in the field of type systems that
drives much of the research in this area. On the one hand, the desire
to catch as many programming errors as possible leads to type systems
that reject more programs, by enforcing fine distinctions between
related data structures (say, sorted arrays and general arrays). The
downside is that code reuse becomes harder: conceptually identical
operations must be implemented several times (say, copying a general array
and a sorted array). On the other hand, the desire to support code
reuse and to increase expressiveness leads to type
systems that accept more programs, by assigning a common type to
broadly similar objects (for instance, the Object type of all class
instances in Java). The downside is a loss of precision in static
typing, requiring more dynamic type checks (downcasts in Java) and
catching fewer bugs at compile-time.

 Polymorphic type systems offer a way out of this dilemma by
combining precise, descriptive types (to catch more errors statically)
with the ability to abstract over their differences in pieces of
reusable, generic code that is concerned only with their commonalities.
The paradigmatic example is parametric polymorphism, which is
at the heart of all typed functional programming
languages. Many forms of polymorphic typing have been studied since
then. Taking examples from our group, the work of Rémy, Vouillon and
Garrigue on row polymorphism [50] , integrated
in OCaml, extended the benefits of this approach (reusable
code with no loss of typing precision) to object-oriented programming,
extensible records and extensible variants. Another example is the
work by Pottier on subtype polymorphism, using a constraint-based
formulation of the type system [48] .
Finally, the notion of “coercion polymorphism” proposed by Cretin and
Rémy[3] combines and generalizes both parametric
and subtyping polymorphism.

 Type inference.

 Another crucial issue in type systems research is the issue of type
inference: how many type annotations must be provided by the
programmer, and how many can be inferred (reconstructed) automatically
by the type-checker? Too many annotations make the language more
verbose and bother the programmer with unnecessary details. Too few
annotations make type-checking undecidable, possibly requiring
heuristics, which is unsatisfactory.
OCaml requires explicit type information at data type
declarations and at component interfaces, but infers all
other types.

 In order to be predictable, a type inference algorithm must be complete. That
is, it must not find one, but all ways of filling in the missing
type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances
of a single, principal solution.

 Maybe surprisingly, the strong requirements – such as the existence of
principal types – that are imposed on type systems by the desire to perform
type inference sometimes lead to better designs. An illustration of this is
row variables. The development of row variables was prompted by type inference
for operations on records. Indeed, previous approaches were based on subtyping
and did not easily support type inference. Row variables have proved simpler
than structural subtyping and more adequate for type-checking record update,
record extension, and objects.

 Type inference encourages abstraction and code reuse. A programmer's
understanding of his own program is often initially limited to a particular
context, where types are more specific than strictly required. Type inference
can reveal the additional generality, which allows making the code more
abstract and thus more reuseable.

 Section:
 Research Program

 Compilation

 Compilation is the automatic translation of high-level programming
languages, understandable by humans, to lower-level languages, often
executable directly by hardware. It is an essential step in the
efficient execution, and therefore in the adoption, of high-level
languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has
had considerable influence on the design of both. Compilers have
also attracted considerable research interest as the oldest instance
of symbolic processing on computers.

 Compilation has been the topic of much research work in the last 40
years, focusing mostly on high-performance execution
(“optimization”) of low-level languages such as Fortran and C. Two
major results came out of these efforts: one is a superb body of
performance optimization algorithms, techniques and methodologies; the
other is the whole field of static program analysis, which now serves
not only to increase performance but also to increase reliability,
through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group
focuses on a less investigated topic: compiler certification.

 Formal verification of compiler correctness.

 While the algorithmic aspects of compilation (termination and
complexity) have been well studied, its semantic correctness – the
fact that the compiler preserves the meaning of programs – is
generally taken for granted. In other terms, the correctness of
compilers is generally established only through testing. This is
adequate for compiling low-assurance software, themselves validated
only by testing: what is tested is the executable code produced by the
compiler, therefore compiler bugs are detected along with application
bugs. This is not adequate for high-assurance, critical software
which must be validated using formal methods: what is formally
verified is the source code of the application; bugs in the compiler
used to turn the source into the final executable can invalidate the
guarantees so painfully obtained by formal verification of the source.

 To establish strong guarantees that the compiler can be trusted not
to change the behavior of the program, it is necessary to apply formal
methods to the compiler itself. Several approaches in this direction
have been investigated, including translation validation,
proof-carrying code, and type-preserving compilation. The approach
that we currently investigate, called compiler verification,
applies program proof techniques to the compiler itself, seen as a
program in particular, and use a theorem prover (the Coq system) to
prove that the generated code is observationally equivalent to the
source code. Besides its potential impact on the critical software
industry, this line of work is also scientifically fertile: it
improves our semantic understanding of compiler intermediate
languages, static analyses and code transformations.

 Section:
 Research Program

 Interface with formal methods

 Formal methods collectively refer to the mathematical specification of
software or hardware systems and to the verification of these systems
against these specifications using computer assistance: model
checkers, theorem provers, program analyzers, etc. Despite their
costs, formal methods are gaining acceptance in the critical software
industry, as they are the only way to reach the required levels of
software assurance.

 In contrast with several other Inria projects, our research objectives
are not fully centered around formal methods. However, our research
intersects formal methods in the following two areas, mostly related
to program proofs using proof assistants and theorem provers.

 Software-proof codesign

 The current industrial practice is to write programs first, then
formally verify them later, often at huge costs. In contrast, we
advocate a codesign approach where the program and its proof of
correctness are developed in interaction, and we are interested in
developing ways and means to facilitate this approach. One
possibility that we currently investigate is to extend functional
programming languages such as OCaml with the ability to state
logical invariants over data structures and pre- and post-conditions
over functions, and interface with automatic or interactive provers to
verify that these specifications are satisfied. Another approach that
we practice is to start with a proof assistant such as Coq and improve
its capabilities for programming directly within Coq.

 Mechanized specifications and proofs for
programming languages components

 We emphasize mathematical specifications and proofs of correctness for
key language components such as semantics, type systems, type
inference algorithms, compilers and static analyzers. These
components are getting so large that machine assistance becomes
necessary to conduct these mathematical investigations. We have
already mentioned using proof assistants to verify compiler
correctness. We are also interested in using them to specify and
reason about semantics and type systems. These efforts are part of a
more general research topic that is gaining importance: the formal
verification of the tools that participate in the construction and
certification of high-assurance software.

 Application Domains

 	Application Domains	High-assurance software
	Software security
	Processing of complex structured data
	Rapid development
	Teaching programming

 Section:
 Application Domains

 High-assurance software

 A large part of our work on programming languages and tools focuses on
improving the reliability of software. Functional programming,
program proof, and static type-checking contribute significantly to
this goal.

 Because of its proximity with mathematical specifications,
pure functional programming is well suited to program proof.
Moreover, functional programming languages such as OCaml are eminently
suitable to develop the code generators and verification tools that
participate in the construction and qualification of high-assurance
software. Examples include Esterel Technologies's KCG 6 code
generator, the Astrée static analyzer, the
Caduceus/Jessie program prover, and the Frama-C platform. Our own
work on compiler verification combines these two aspects of functional
programming: writing a compiler in a pure functional language and
mechanically proving its correctness.

 Static typing detects programming errors early, prevents a number
of common sources of program crashes (null dereferences, out-of bound
array accesses, etc), and helps tremendously to enforce the integrity
of data structures. Judicious uses of generalized abstract data types
(GADTs), phantom types, type abstraction and other encapsulation
mechanisms also allow static type checking to enforce program
invariants.

 Section:
 Application Domains

 Software security

 Static typing is also highly effective at preventing a number of
common security attacks, such as buffer overflows, stack smashing, and
executing network data as if it were code. Applications developed in
a language such as OCaml are therefore inherently more secure than
those developed in unsafe languages such as C.

 The methods used in designing type systems and establishing their
soundness can also deliver static analyses that automatically verify
some security policies. Two examples from our past work include Java
bytecode verification [45] and enforcement of
data confidentiality through type-based inference of information flow
and noninterference properties [49] .

 Section:
 Application Domains

 Processing of complex structured data

 Like most functional languages, OCaml is very well suited to expressing
processing and transformations of complex, structured data. It
provides concise, high-level declarations for data structures; a very
expressive pattern-matching mechanism to destructure data; and
compile-time exhaustiveness tests.
Therefore, OCaml is an excellent match for applications involving significant
amounts of symbolic processing: compilers, program analyzers and
theorem provers, but also (and less obviously) distributed
collaborative applications, advanced Web applications, financial
modeling tools, etc.

 Section:
 Application Domains

 Rapid development

 Static typing is often criticized as being verbose (due to the additional
type declarations required) and inflexible (due to, for instance, class
hierarchies that must be fixed in advance). Its combination with type
inference, as in the OCaml language, substantially diminishes the
importance of these problems: type inference allows programs to be
initially written with few or no type declarations; moreover, the
OCaml approach to object-oriented programming completely separates the
class inheritance hierarchy from the type compatibility relation.
Therefore, the OCaml language is highly suitable for fast
prototyping and the gradual evolution of software prototypes into
final applications, as advocated by the popular “extreme
programming” methodology.

 Section:
 Application Domains

 Teaching programming

 Our work on the Caml language family has an impact on the teaching of
programming. Caml Light is one of the programming
languages selected by the French Ministry of Education
for teaching Computer Science in classes
préparatoires scientifiques. OCaml is also widely used for
teaching advanced programming in engineering schools, colleges and
universities in France, the USA, and Japan.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 In 2015, Xavier Leroy was appointed Fellow of the ACM “for contributions to
safe, high-performance functional programming languages and compilers, and to
compiler verification”.

 Xavier Leroy will receive the
2016 Royal Society Milner Award .

 New Software and Platforms

 	New Software and Platforms	CompCert
	Diy
	Menhir
	OCaml
	PASL
	Zenon

 Section:
 New Software and Platforms

 CompCert

 Participants :
	Xavier Leroy [
 contact
] , Sandrine Blazy [team Celtique] , Jacques-Henri Jourdan, Bernhard Schommer [AbsInt GmbH] .

 The CompCert project investigates the formal verification of realistic compilers usable for critical embedded software. Such verified compilers come with a mathematical, machine-checked proof that the generated executable code behaves exactly as prescribed by the semantics of the source program. By ruling out the possibility of compiler-introduced bugs, verified compilers strengthen the guarantees that can be obtained by applying formal methods to source programs. AbsInt Angewandte Informatik GmbH sells a commercial version of CompCert with long-term maintenance.

 	
 URL: http://compcert.inria.fr/ (academic),
http://www.absint.com/compcert/ (commercial).

 Section:
 New Software and Platforms

 Diy

 Participants :
	Luc Maranget [
 contact
] , Jade Alglave [Microsoft Research, Cambridge] , Keryan Didier.

 The diy suite (for “Do It Yourself”) provides a set of tools for testing shared memory
models: the litmus tool for running tests on hardware, various
generators for producing tests from concise specifications, and
herd, a memory model simulator. Tests are small programs written
in x86, Power, ARM or generic (LISA) assembler that can thus be generated
from concise specification, run on hardware, or simulated on top of memory
models. Test results can be handled and compared using additional
tools. Recent versions also take a subset of the C language as input,
so as to test and simulate the C11 model.

 	
 URL: http://diy.inria.fr/

 Section:
 New Software and Platforms

 Menhir

 Participants :
	François Pottier [
 contact
] , Yann Régis-Gianas [Université Paris Diderot] .

 Menhir is a LR(1) parser generator for the OCaml programming language. That is, Menhir compiles LR(1) grammar specifications down to OCaml code.

 	
 URL: http://gallium.inria.fr/~fpottier/menhir/

 Section:
 New Software and Platforms

 OCaml

 Participants :
	Damien Doligez [
 contact
] , Alain Frisch [LexiFi] , Jacques Garrigue [Nagoya University] , Fabrice Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane Street] , Leo White [Jane Street] , Jeremy Yallop [OCaml Labs, Cambridge University] .

 The OCaml language is a functional programming language that combines safety with expressiveness through the use of a precise and flexible type system with automatic type inference. The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine code for x86, ARM, PowerPC and SPARC), a debugger, a documentation generator, a compilation manager, a package manager, and many libraries contributed by the user community.

 	
 URL: http://ocaml.org/

 Section:
 New Software and Platforms

 PASL

 Participants :
	Mike Rainey [
 contact
] , Arthur Charguéraud, Umut Acar.

 PASL is a C++ library for writing parallel programs targeting the broadly available multicore computers. The library provides a high level interface and can still guarantee very good efficiency and performance, primarily due to its scheduling and automatic granularity control mechanisms.

 	
 URL: http://deepsea.inria.fr/pasl/

 Section:
 New Software and Platforms

 Zenon

 Participants :
	Damien Doligez [
 contact
] , Guillaume Bury [CNAM] , David Delahaye [CNAM] , Pierre Halmagrand [team DEDUCTEAM] , Olivier Hermant [MINES ParisTech] .

 Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input, it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying results on standard automatic-proving benchmarks.

 Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof assistant), and also to be easily retargeted to output scripts for different frameworks (for example, Isabelle and Dedukti).

 	
 URL: http://opam.ocaml.org/packages/zenon/zenon.0.8.0/

 New Results

 	New Results	Formal verification of compilers and static analyzers
	Language design and type systems
	Shared-memory parallelism
	The OCaml language and system
	Software specification and verification

 Section:
 New Results

 Formal verification of compilers and static analyzers

 The CompCert formally-verified compiler

 Participants :
	Xavier Leroy, Jacques-Henri Jourdan, François Pottier, Bernhard Schommer [AbsInt GmbH] .

 In the context of our work on compiler verification (see
section
	3.3.1), since 2005 we have been developing and
formally verifying a moderately-optimizing compiler for a large subset
of the C programming language, generating assembly code for the
PowerPC, ARM, and x86 architectures [6] .
This compiler comprises a back-end, which translates the Cminor
intermediate language to PowerPC assembly and is reusable for source
languages other than C [5] , and a
front-end, which translates the CompCert C subset of C to Cminor.
The compiler is mostly written within the specification language of
the Coq proof assistant, from which Coq's extraction facility
generates executable OCaml code. The compiler comes with a 50000-line,
machine-checked Coq proof of semantic preservation establishing that
the generated assembly code executes exactly as prescribed by the
semantics of the source C program.

 This year, we improved the CompCert C compiler in several directions:

 	
 The generation of debugging information in DWARF format was
implemented by Bernhard Schommer at AbsInt. Consequently,
CompCert-compiled programs can now be debugged using standard
debuggers. Xavier Leroy extended the back-end compilation passes
and their proofs to propagate debugging information throughout the
compilation pipeline.

 	
 The CompCert formal semantics was made more precise in order to
increase confidence. We tightened the semantics of pointer
comparisons against the null pointer. We formalized the distinction
between public and private (static) global definitions, and used
it to prove the correctness of the “Unusedglob” pass that removes
unreferenced private definitions.

 	
 The calling conventions used to pass function arguments and
results of struct and union types were revised
in order to comply with the Application Binary Interfaces of the
target platforms.

 	
 We added partial support for extended inline assembly, an
extension of the C language popularized by the GCC compiler and
often used in low-level code.

 	
 Detailed explanations of syntax errors are now produced.
This usability feature builds on François Pottier's work
on error reporting in LR parsers (see section
	7.4.4).

 	
 The PowerPC back-end was extended to support the PowerPC 64-bit
extensions and the Freescale E5500 variant.

 We released two versions of CompCert, integrating these enhancements:
version 2.5 in June and version 2.6 in December. This is the public
version of CompCert, available for evaluation and research purposes.
In parallel, our industrial partner,
AbsInt Angewandte Informatik GmbH ,
sells a commercial version of CompCert with long-term maintenance.

 Formal verification of static analyzers based on abstract interpretation

 Participants :
	Jacques-Henri Jourdan, Xavier Leroy, Sandrine Blazy [team Celtique] , Vincent Laporte [team Celtique] , David Pichardie [team Celtique] , Sylvain Boulmé [Grenoble INP, VERIMAG] , Alexis Fouilhé [Université Joseph Fourier de Grenoble, VERIMAG] , Michaël Périn [Université Joseph Fourier de Grenoble, VERIMAG] .

 In the context of the ANR Verasco project, we are investigating the
formal specification and verification in Coq of a realistic static
analyzer based on abstract interpretation. This static analyzer
handles a large subset of the C language (the same subset as the
CompCert compiler, minus recursion and dynamic allocation); supports a
combination of abstract domains, including relational domains; and
should produce usable alarms. The long-term goal is to obtain a static
analyzer that can be used to prove safety properties of real-world
embedded C code.
The overall architecture and specification of Verasco is described in
a paper that was presented at POPL 2015 [19] .

 This year, Jacques-Henri Jourdan continued the development of this static
analyzer, with two goals. First, Jacques-Henri Jourdan improved the precision
and analysis time of the existing abstract domains. The existing communication
system between domains was instantiated to the cooperation between the
abstract domain of intervals and the abstract domain of congruences. Second,
Jacques-Henri Jourdan implemented and formalized in our static analyzer the
Octagon abstract domain of Miné [46] . This led to new
results in the theory behind this abstract domain, allowing Jourdan to use
sparse data structures for representing octagons.

 A SPARK Front-end for CompCert

 Participants :
	Pierre Courtieu, Zhi Zang [Kansas University] .

 SPARK is a language, and a platform, dedicated to developing and verifying
critical software. It is a subset of the Ada language. It shares with
Ada a strict typing discipline and gives strict guarantees in terms of
safety. SPARK goes one step further by disallowing certain
“dangerous” features, that is, those that are too
difficult to statically analyze (aliasing, references, etc). Given its
dedication to safety critical software, we think that the SPARK
platform can benefit from a certified compiler. We are working on
adding a SPARK front-end to the CompCert verified compiler.

 Defining a semantics for SPARK in Coq is previous joint work with Zhi
Zang from Kansas University. The current front-end is based on this
semantics. The compiler has been written and tested, and the proofs of
correctness are currently under way.

 Verified JIT compilation of Coq

 Participants :
	Maxime Dénès, Xavier Leroy.

 Last year, we started the Coqonut project, whose objective is to develop and
formally verify an efficient, compiled implementation of Coq's reduction.
This year, we made progress on this verification effort:

 	
 We ported our OCaml prototype to Coq and started its verification, notably
of the first phase of the compiler which involves uncurrying, using untyped
step-indexed logical relations.

 	
 We adapted (part of) the Coq x86 macro assembler by Andrew Kennedy, Nick
Benton, Jonas B. Jensen and Pierre-Evariste Dagand to x86-64. This macro
assembler framework is used in Coqonut's backend to generate assembly or
machine code.

 Section:
 New Results

 Language design and type systems

 Full reduction in the presence of inconsistent assumptions

 Participants :
	Didier Rémy, Gabriel Scherer.

 Gabriel Scherer and Didier Rémy continued their work on assumption hiding
and presented it at ESOP 2015 [22] . This work aims
at restoring confluence when mixing full and weak
reduction and providing a continuum between consistent and inconsistent
abstraction. Assumption hiding supports fine-grained control of dependencies
between computations and the logical hypotheses they depend on. Although
studied for a language of coercions, the solution is more general and should
be applicable to any language with abstraction over propositions that are
left implicit, either for the user's convenience in a surface language or
because they have been erased prior to computation in an internal language.

 Equivalence and normalization of lambda-terms with sums

 Participants :
	Gabriel Scherer, Guillaume Munch-Maccagnoni [Université Paris-Diderot, laboratoire PPS] .

 Gabriel Scherer presented at TLCA 2015 his work on understanding equivalence
of sum types using the proof-theoretical technique of focusing
[24] . Independently, his collaboration with Guillaume
Munch-Maccagnoni resulted in a presentation of sum equivalence using an
abstract machine calculus [33] . This approach
allows for a more concise and cleaner definition of the equivalence relation,
and a finer-grained understanding of the role of purity assumptions in the
program equivalence relation.

 Types with unique inhabitants for code inference

 Participants :
	Gabriel Scherer, Didier Rémy.

 Gabriel Scherer and Didier Rémy
presented at ICFP 2015 [23] an algorithm to decide
whether a type has a unique inhabitant in the simply-typed
lambda-calculus with sum types. This algorithm comes along with a prototype
implementation. This minimal setting is not representative of the
expressiveness of realistic programming languages, but already covers
a first few interesting code inference scenarios for polymorphic
libraries in functional languages with prenex polymorphism: for instance,
we can infer the “bind” function of the exception monad.

 Refactoring with ornaments in ML

 Participants :
	Thomas Williams, Didier Rémy.

 Thomas Williams and Didier Rémy
continued working on ornaments for program refactoring and program
transformation in ML. Ornaments have been introduced as a way to describe
some changes in data type definitions that preserve their recursive
structure, reorganizing, adding, or dropping some pieces of data. After a
new data structure has been described as an ornament of an older one, some
functions operating on the bare structure can be partially or sometimes
totally lifted into functions operating on the ornamented structure.

 We have previously described an algorithm to perform this lifting in ML.
This description was
informal. This year, we improved this algorithm by decomposing it in
several steps and we formalized it. Using ornament inference, we first
elaborate an ML program into a generic program, which can be seen as a
template for all possible liftings of the original program. The generic
program is defined in a superset of ML. It can then be instantiated with
specific ornaments, and simplified back into an ML program.
We also studied the properties of lifting, particularly the preservation of
complexity and effects, with the aim of characterizing more precisely the
syntactic liftings that can be produced by our algorithm.

 On the practical side, our prototype ornamentation tool has been improved
with an implementation of ornament inference. The generalized program gives
a description of all possible extension points that must be filled by
providing patches. In practice, a few heuristics are enough to automate most
of the patching work. The rest can be filled interactively by the
programmer. In the case of refactoring (the representation of a data type is
modified without adding any data), the transformation is fully automatic.

 The Mezzo programming language

 Participants :
	Thibaut Balabonski [Université Paris Sud] , François Pottier, Jonathan Protzenko.

 Mezzo is a programming language proposal whose untyped foundation is very much
like OCaml (i.e., it is equipped with higher-order functions, algebraic data
structures, mutable state, and shared-memory concurrency) and whose type
system offers flexible means of describing ownership policies and controlling
side effects.

 A comprehensive paper, which contains both a tutorial introduction to Mezzo
and a description of its formal definition and proof, was submitted to TOPLAS
in 2014. This year, after a round of reviewing, it was revised and accepted
for publication [11] . A reflection on the design
of Mezzo was presented at SNAPL 2015 [21] .

 Section:
 New Results

 Shared-memory parallelism

 Weak memory models

 Participants :
	Luc Maranget, Jade Alglave [Microsoft Research, Cambridge] , Patrick Cousot [New York University] , Keryan Didier.

 Modern multi-core and multi-processor computers do not follow the intuitive
“Sequential Consistency” model that would define a concurrent execution
as the interleaving of the executions of its constituent threads and that
would command instantaneous writes to the shared memory.
This situation is due both to in-core optimisations such as speculative
and out-of-order execution of instructions, and to the presence of
sophisticated (and cooperating) caching devices between processors and
memory.
Luc Maranget took part in an international research effort
to define the semantics of the computers of the
multi-core era, and more generally of shared-memory
parallel devices or languages, with a clear focus on devices.

 More precisely, in 2015, Luc Maranget collaborated
with Jade Alglave and Patrick Cousot
to extend “Cats”, a domain-specific language
for defining and executing weak memory models.
A precise semantics for “Cats” is the core of a submitted journal
article that also includes a study and formalisation of the HSA memory model —
the Heterogeneous System Architecture foundation is an industry standards
body targeting heterogeneous computing devices (see
http://www.hsafoundation.com/).
The new extensions of the Cats language have been integrated in the
released version of the diy tool suite (see section
	6.2).

 Luc Maranget also co-authored a paper
that will be presented
at POPL 2016 [18] .
This work describes an operational semantics for the new generation
ARM processors. It is joint work with many researchers, including
S. Flur and other members of P. Sewell's team (University
of Cambridge) and W. Deacon (ARM Ltd).

 During his M2 internship,
supervised by Luc Maranget,
Keryan Didier significantly improved the diy tool suite,
in particular
by writing front-ends for ARMv8
and for a subset of the C language.
Keryan Didier also wrote a
new (as yet unreleased) tool to translate between various input languages,
in particular
from machine assemblers to generic assembler and back.

 Algorithms and data structures for parallel computing

 Participants :
	Umut Acar, Vitalii Aksenov, Arthur Charguéraud, Mike Rainey, Filip Sieczkowski.

 The ERC Deepsea project, with principal investigator Umut Acar,
started in June 2013 and is hosted by the Gallium team. This project
aims at developing techniques for parallel and self-adjusting
computation in the context of shared-memory multiprocessors (i.e.,
multicore platforms). The project is continuing work that began at Max
Planck Institute for Software Systems between 2010 and 2013. As part
of this project, we are developing a C++ library, called PASL, for
programming parallel computations at a high level of abstraction. We
use this library to evaluate new algorithms and data structures. We
obtained three major results this year.

 Our result on the development of fast and robust parallel graph
traversal algorithms based on depth-first-search has been presented at
the ACM/IEEE Conference on High Performance Computing [15] .
This algorithm leverages a new
sequence data structure for representing the set of edges remaining to
be visited. In particular, it uses a balanced split operation for
partitioning the edges of a graph among the processors
involved in the computation. Compared with prior work, the new
algorithm is designed to be efficient not just for particular classes
of graphs, but for all input graphs.

 Our second result is a calculus for parallel computing on hardware
shared memory computers such as modern multicores. Many languages for
writing parallel programs have been developed. These languages offer
several distinct abstractions for parallelism, such as fork-join,
async-finish, futures, etc. While they may seem similar, these
abstractions lead to different semantics, language design and
implementation decisions. In this project, we consider the question of
whether it would be possible to unify these approaches to
parallelism. To this end, we propose a calculus, called the
DAG-calculus, which can encode existing approaches to parallelism
based on fork-join, async-finish, and futures, and possibly
others. We have shown that the approach is realistic by presenting an
implementation in C++ and by performing an empirical evaluation.
This work has been submitted for publication.

 Our third result concerns the development of parallel dynamic
algorithms. This year, we started developing a parallel dynamic
algorithm for tree computations. The algorithm is dynamic in the
sense that it admits changes to the underlying tree in the form of
insertions and deletions of edges and vertices and updates the
computation by doing total work that is linear in the size of the
changes, but only logarithmic in the size of the tree. The algorithm is
parallel in the sense that the updates take place in parallel.
Parallel algorithms have been studied extensively in the past, but few
of these are dynamic. Similarly, dynamic algorithms have also been
studied extensively in the past, but few of these are parallel. Our
work thus explores what in retrospect seems like an obvious gap in
the literature. A paper describing this work is in preparation.

 Section:
 New Results

 The OCaml language and system

 The OCaml system

 Participants :
	Damien Doligez, Alain Frisch [Lexifi SAS] , Jacques Garrigue [University of Nagoya] , Fabrice Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane Street] , Leo White [Jane Street] , Jeremy Yallop [OCaml Labs, Cambridge University] .

 This year, we released versions 4.02.2 and 4.02.3 of the OCaml system.
These are minor releases that fix about 100 bugs and implement 12
minor new features, including support for nonrecursive type
definitions and a higher-level interface with documentation generation
tools.

 Most of our activity was devoted to preparing the next major release
of OCaml, version 4.03.0, which is expected in the first quarter of
2016. The novelties we worked on include:

 	
 Inline record types as arguments to constructors of sum types,
combining the clarity and extensibility brought by named record
fields with the compact in-memory representation of unnamed
constructor arguments.

 	
 Improved redudancy and exhaustiveness checks for
pattern-matching over generalized algebraic data types (GADTs) [41] .

 	
 Improved unboxing optimizations for numbers, including the
ability to mark arguments and results of external C functions as
unboxed.

 	
 The garbage collector was made more incremental, so as to reduce
the worst-case GC pause times.

 	
 The native-code compiler was ported to two new architectures:
PowerPC 64 bits (including IBM's new little-endian variant) and
IBM zSystems.

 On the organization side, we switched to Github as the central
repository for the OCaml development sources. Github facilitates
collaborative work among the growing community of contributors to the
OCaml code base.
In 2015, more than 100 contributors proposed small or large improvements
to the OCaml compiler distribution.

 Memory profiling OCaml applications

 Participants :
	Fabrice Le Fessant, Çagdas Bozman [OCamlPro] , Albin Coquereau [OCamlPro] .

 Most modern languages make use of automatic memory management to
discharge the programmer from the burden of explicitly allocating and releasing
chunks of memory. As a consequence, when an
application exhibits an unexpected usage of memory, programmers need
new tools to understand what is happening and how to solve such an
issue. In OCaml, the compact representation of values, with almost no
runtime type information, makes the design of such tools more complex.

 In the past, we have experimented with different tools to profile the
memory usage of real OCaml applications, in particular one that saves
snapshots of the heap after every garbage collection. Snapshots can
then be analysed to display the evolution of memory usage, with
detailed information on the types of values, where they were allocated
and from where they are still reachable.

 This year, we experimented in three new directions, mostly driven
by the size of the snapshots to be analysed:

 	
 We studied several ways of displaying snapshots. Because of the large amount of
information contained in a snapshot, it is hard for a typical user to find what
he or she is looking for. We tried multiple filtering methods, based
on graph algorithms, to remove the least significant
information from the reports given to the user.

 	
 We experimented with new algorithms to compress and analyse
huge memory snapshots, i.e., snapshots that are too big to fit
in the computer's memory. Indeed, standard analyses on snapshots
bigger than the available memory are too long to run in practice
because of random disk accesses. Thus, we tried several compression
methods for snapshots and graph-reduced them to
fit in memory, without losing any information, reaching a 50x
speedup in complete analysis time.

 	
 We implemented a new graph algorithm to merge sets of
blocks in memory by the sets of roots they are reachable from. Such
a computation was heretofore supposed to be untractable in practice, but
could actually be computed in our case on huge compressed snapshots
in reasonable time.

 Advanced development tools for OCaml

 Participants :
	Fabrice Le Fessant, Pierre Chambart [OCamlPro] , Michael Laporte [OCamlPro] .

 In order to promote the use of OCaml in industrial contexts, we have
worked on improving the tools that accompany OCaml:

 	
 We developed the first prototype of a native debugger for
OCaml, based on the LLDB debugging framework on top of LLVM. For
that, we first generated a full OCaml binding for the LLDB library,
by parsing the C++ headers of the libraries and automatically
generating OCaml and C++ stubs. We were then able to use the
OCaml binding to develop several tools, ranging from a simple tool
that displays the internal GC information of a finished OCaml
application, to an almost complete debugger, which displays OCaml
values using runtime type information added for memory profiling.

 	
 We also developed a new profiling framework for OCaml,
called operf. The framework is composed of two tools: operf-micro can be used to run micro-benchmarks directly from
inside modified OCaml compiler sources, while the operf-macro
tool can be used to evaluate the impact of a new compiler optimization
on a large set of OPAM packages.

 	
 Finally, we came up with new ideas for ocp-build, a
generic building tool with OCaml-specific support, to improve the
expressiveness of its package description language and to easily
describe cross-compilation of OCaml packages.

 Error diagnosis in Menhir parsers

 Participant :
	François Pottier.

 LR parsers are powerful and efficient, but traditionally have done a poor job
of explaining syntax errors. Although it is easy to report where an error was
detected, it seems difficult to explain what has been understood so far and
what is expected next. The OCaml and CompCert compilers, until now, have
offered little information to the user beyond the traditional “syntax error”
message.

 In 2003, Jeffery proposed associating a fixed diagnostic message with every
state of the LR automaton (therefore ignoring the automaton's stack). This
simple approach may seem tempting. However, a typical automaton has hundreds
or thousands of states. Not all of them can trigger an error, but it is
difficult to tell which can, and which cannot. Furthermore, for certain
states, it is difficult (or even impossible) to write an accurate diagnostic
message, because some vital contextual information resides in the stack, which
Jeffery's method cannot access.

 In 2015, François Pottier proposed a reachability algorithm for LR automata,
which he implemented in the Menhir parser generator (see section
	6.3).
This algorithm allows
finding out which states can trigger an error and (therefore) require writing
a diagnostic message. Furthermore, Pottier proposed two mechanisms for
influencing where errors are detected. If used appropriately, these mechanisms
make it easier (or possible) to write an accurate diagnostic message.

 Pottier applied this approach to the C grammar in the front-end of the
CompCert compiler, therefore allowing CompCert to produce better diagnostic
messages when a C program is syntactically incorrect.

 A short paper describing this work will be presented at JFLA
2016 [29] . A longer paper is in submission.

 Improvements to Menhir

 Participants :
	Frédéric Bour [independent consultant] , Jacques-Henri Jourdan, François Pottier, Yann Régis-Gianas [team πr2] , Gabriel Scherer.

 In 2015, The Menhir parser generator (see section
	6.3) was extended
with many new features, several of which originated in the
Merlin IDE for OCaml
and were ported back into Menhir.

 	
 The parsers generated by Menhir are now incremental: they can be stopped
and resumed at any point, at essentially no cost. This is exploited in Merlin,
where the text is re-parsed after every keystroke.

 	
 The state of the parser can be inspected by the user. This allows
building custom libraries, outside Menhir, for error diagnosis, error
recovery, etc. This is exploited in Merlin, where a valid abstract syntax
tree is built (and passed to the OCaml type-checker) even if the text
contains syntax errors.

 	
 A reachability algorithm has been implemented (see section
	7.4.4).
It allows finding out
which states can trigger an error and (therefore) require a diagnostic
message to be written. It is accompanied with several tools that help
maintain the database of diagnostic messages as the grammar evolves.

 	
 Compatibility with ocamlyacc has been improved, in particular
insofar as the computation of locations is concerned. This should help port
the OCaml parser from ocamlyacc to Menhir, a transition that we
envision making in the near future. This should help improve the
quality of OCaml's syntax error messages.

 Section:
 New Results

 Software specification and verification

 Machine-checked proofs of programs, including time complexity

 Participants :
	Arthur Charguéraud, Armaël Guéneau, François Pottier.

 In a security-critical setting, it is important to prove that a program is
correct, and to do so formally, that is, via a machine-checked proof. It is
also important, one may argue, to prove that the program does not require more
resources than expected (where a “resource” may be time, memory space, disk
space, network bandwidth, etc.). Otherwise, even though the program is
“correct” in theory, it may turn out to be unusable in practice.

 Separation Logic, extended with the notion of a “time credit”, a permission
to perform one step of computation, allows reasoning about the correctness and
the (amortized) time complexity of a program. Using this approach, which
Charguéraud implemented in the CFML tool, Charguéraud and Pottier
produced a machine-checked proof of the correctness and time complexity of a
Union-Find data structure, implemented as an OCaml module. This demonstrates
that this approach scales up to difficult complexity analyses and down to the
level of actual executable code (as opposed to pseudo-code). This work
was presented at ITP 2015 [17] .

 During his M2 internship, Armaël Guéneau extended this approach so as to
allow working conveniently with the big-O notation. He extended the CFML
library and verified the time complexity of a binary random access list data
structure due to Okasaki. This work has not been published yet.

 Verified property-based random testing

 Participants :
	Zoe Paraskevopoulou [ENS Cachan, team Prosecco] , Cătălin Hriţcu [team Prosecco] , Maxime Dénès, Leonidas Lampropoulos [U. of Pennsylvania] , Benjamin C. Pierce [U. of Pennsylvania] .

 Property-based random testing has been popularized in the functional programming
community by tools like QuickCheck. Its integration with a proof assistant
creates an interesting opportunity: reusable or tricky testing code can be
formally verified using the proof assistant itself.

 We introduced a novel methodology for formally verified property-based testing
and implemented it as a foundational verification framework for QuickChick, a
port of QuickCheck to Coq. Our framework enables one to verify that the
executable testing code is testing the right Coq property. To make verification
tractable, we provided a systematic way for reasoning about the set of outcomes
a random data generator can produce with non-zero probability, while abstracting
away from the actual probabilities.

 We also applied this methodology to a complex case study on testing an
information-flow control abstract machine, demonstrating that our verification
methodology is modular and scalable and that it requires minimal changes to
existing code.

 Maxime Dénès more specifically contributed to the development of the QuickChick
Coq plug-in, to the development of Coq libraries for reasoning on the set of
outcomes of random generators and to the verification of QuickChick's
combinator library.

 This work was presented at ITP 2015 [20] .

 Tools for TLA+

 Participants :
	Damien Doligez, Leslie Lamport [Microsoft Research] , Martin Riener [team VeriDis] , Stephan Merz [team VeriDis] .

 Damien Doligez is head of the “Tools for Proofs” team in the
Microsoft-Inria Joint Centre. The aim of this project is to
extend the TLA+ language with a formal language for hierarchical
proofs, formalizing Lamport's ideas [43] , and to
build tools for writing TLA+ specifications and mechanically
checking the proofs.

 This year, we released version 1.4.3 of the TLA+ Proof System
(TLAPS) [40] ,
the part of the TLA+ tools that handles mechanical checking
of TLA+ proofs.

 This was the last year of the ADN4SE project, which develops tools for
rapid development of real-time software based on the PharOS real-time
kernel developed by CEA. Within this project we built, in
collaboration with CEA, a formal proof of determinacy of the
message-passing subsystem of PharOS. We used this experience to
improve our TLA+ tools and libraries.

 We have started a rewrite of TLAPS from scratch, which will make it
possible to handle all aspects of the TLA+ language, including
temporal formulas and their proofs.

 Certified distributed algorithms for autonomous mobile robots

 Participants :
	Pierre Courtieu, Xavier Urbain [ENSIIE] , Sébastien Tixeuil [U. Pierre et Marie Curie] , Lionel Rieg [Collège de France] .

 The variety and complexity of the tasks that can be performed by autonomous robots
are increasing. Many applications envision groups of mobile robots that
self-organise and cooperate toward the resolution of common
objectives, in the absence of any central coordinating authority.

 We are developing a Coq-based verification platform for
distributed algorithms for autonomous robots. This year, we mechanically proved and
slightly generalized a non-trivial proof of impossibility of such an
algorithm under certain hypotheses [14] . We
also proved several algorithms in the literature, demonstrating the
viability of the platform [13] .

 Contributions to ProofGeneral, an IDE for Coq

 Participant :
	Pierre Courtieu.

 User interface is a crucial issue for theorem provers like Coq.
ProofGeneral [38] ,
an emacs-based prover interface, is widely used among Coq
users. In addition to synchronizing with the evolutions of Coq itself,
we contributed many improvements to ProofGeneral during the past
year, among which: a better debugging mode and message printing, user
assistance for naming hypotheses and indenting proof scripts, and more.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 The Caml Consortium

 Participants :
	Xavier Leroy [
 contact
] , Damien Doligez, Didier Rémy.

 The Caml Consortium is a formal structure where industrial and
academic users of OCaml can support the development of the language and
associated tools, express their specific needs, and contribute to the
long-term stability of Caml. Membership fees are used to fund
specific developments targeted towards industrial users. Members of
the Consortium automatically benefit from very liberal licensing
conditions on the OCaml system, allowing for instance the OCaml
compiler to be embedded within proprietary applications.

 The Consortium currently has 12 member companies:

 	
 Aesthetic Integration

 	
 Bloomberg

 	
 CEA

 	
 Citrix

 	
 Dassault Aviation

 	
 Dassault Systèmes

 	
 Esterel Technologies

 	
 Jane Street

 	
 LexiFi

 	
 Microsoft

 	
 OCamlPro

 	
 SimCorp

 For a complete description of this
structure, refer to http://caml.inria.fr/consortium/ .
Xavier Leroy chairs the scientific committee of the Consortium.

 Scientific Advisory for OCamlPro

 Participant :
	Fabrice Le Fessant.

 OCamlPro is a startup company founded in 2011 by Fabrice Le Fessant to
promote the use of OCaml in the industry, by providing support,
services and tools for OCaml to software companies. OCamlPro performs
a lot of research and development, in close partnership with academic
institutions such as IRILL, Inria and Univ. Paris Sud, and is involved
in several collaborative projects with Gallium, such as the Bware ANR,
the Vocal ANR and the Secur-OCaml FUI.

 Since 2011, Fabrice Le Fessant is a scientific advisor at OCamlPro, as
part of a collaboration contract for Inria, to transfer his knowledge
on the internals of the OCaml runtime and the OCaml compilers.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 Member of organizing committees

 Didier Rémy is a member of the steering committees of the OCaml workshop
and the ML Family workshop.

 Scientific events selection

 Chair of conference program committees

 Arthur Charguéraud served as program committee chair for for the second
International Workshop on Coq for Programming Languages (CoqPL 2016).

 Damien Doligez served as program committee chair for the OCaml
Users and Developers workshop (OUD 2015).

 Member of conference program committees

 Umut Acar was a member of the program committees of the
30th IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2016) and of the
workshop on
Algorithms and Systems for MapReduce and Beyond (BeyondMR 2016).
He was also a member of the External Review Committee of the 43rd ACM
Symposium on Principles of Programming Languages (POPL 2016).

 Xavier Leroy was a member of the program committees of the 1st Summit on
Advances in Programming Languages (SNAPL 2015) and of the Compiler
Construction conference (CC 2016).

 Xavier Leroy was a member of the award committee for the 2015 ACM SIGPLAN
Software System award.

 Mike Rainey was a member of the program committee of the International
Conference on Functional Programming (ICFP 2015).

 Arthur Charguéraud and Didier Rémy were members of the program committee of
the European Symposium on Programming Languages (ESOP 2016).

 Reviewer

 In 2015, the members of Gallium reviewed at least 80 conference submissions.

 Journal

 Member of editorial boards

 Xavier Leroy is area editor (programming languages) for the Journal of the
ACM. He is on the editorial board for the Research Highlights column of
Communications of the ACM. He is a member of the editorial board of the
Journal of Automated Reasoning.

 François Pottier is a member of the editorial board of the Journal of
Functional Programming.

 Reviewer

 In 2015, the members of Gallium reviewed at least 4 journal submissions and 10
grant proposals.

 Leadership within the scientific community

 Pierre Courtieu and Xavier Leroy are members of the Coq steering commitee.

 Research administration

 Xavier Leroy is délégué scientifique adjoint of Inria
Paris-Rocquencourt and an appointed member of Inria's Commission
d'Évaluation. In 2015, he participated in the following Inria hiring and
promotion committees: jury d'admissibilité CR2
Paris-Rocquencourt (vice-chair); jury d'admissibilité CR2
Nancy; and promotions CR1. He was a member of the hiring
committee for a professor position at ENS Rennes.

 Luc Maranget is an elected member of the Comité Technique Inria.

 Luc Maranget chairs the Commission des utilisateurs des moyens
informatiques – Recherche of Inria Paris-Rocquencourt.

 François Pottier is a member of the Commission de Développement
Technologique and (as of January 2016) chairs the Comité de Suivi
Doctoral of Inria Paris.

 Didier Rémy represents Inria in the commission des études of the
MPRI master, co-organized by U. Paris Diderot, ENS Cachan, ENS Paris,
and École Polytechnique.

 Didier Rémy is Inria's Deputy Scientific Director (ADS) in charge of
Algorithmics, Programming, Software and Architecture.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Master:
Xavier Leroy and Didier Rémy,
“Functional programming languages”,
45h,
M2 (MPRI),
Université Paris Diderot,
France.

 	
 Master:
Luc Maranget,
“Semantics, languages and algorithms for multi-core programming”,
13.5h,
M2 (MPRI),
Université Paris Diderot,
France.

 	
 Licence:
François Pottier,
“Programmation avancée” (INF441),
20h, L3,
École Polytechnique,
France.

 	
 Master:
François Pottier,
“Compilation” (INF564),
20h,
M1,
École Polytechnique,
France.

 	
 Master:
François Pottier,
“Programming with permissions in Mezzo”,
4.5h,
M2,
15th SFM summer school,
Bertinoro, Italy.

 	
 Licence:
Mike Rainey and Umut Acar,
“Theory and practice of parallel computing”
(part of a longer course entitled 15-210, “Parallel and Sequential Data Structures and Algorithms”),
9h, L3, Carnegie Mellon University,
USA.

 Supervision

 	
 M2 (Master Pro):
Keryan Didier,
Université Denis Diderot,
supervised by Luc Maranget.

 	
 M2 (MPRI):
Benjamin Farinier,
Université Paris Diderot,
supervised by François Pottier.

 	
 M2 (MPRI):
Armaël Guéneau,
ENS Lyon,
supervised by Arthur Charguéraud and François Pottier.

 	
 PhD in progress:
Vitalii Aksenov,
“Parallel Dynamic Algorithms”,
Université Paris Diderot,
since September 2015,
supervised by Umut Acar
(co-advised with Anatoly Shalyto, ITMO University of Saint Petersburg, Russia).

 	
 PhD in progress:
Jacques-Henri Jourdan,
“Verasco: a formally verified C static analyzer”,
Université Paris Diderot,
since September 2012,
supervised by Xavier Leroy.

 	
 PhD in progress:
Gabriel Scherer,
“Which types have a unique inhabitant?”,
Université Paris Diderot,
since October 2011,
supervised by Didier Rémy.

 	
 PhD in progress:
Thomas Williams,
“Putting Ornaments into practice”,
Université Paris Diderot,
since September 2014,
supervised by Didier Rémy.

 Juries

 Pierre Courtieu was a member of the Ph.D. jury of
Sylvain Dailler,
Université d'Orléans,
December 2015.

 Xavier Leroy was a member of the PhD juries of
Tie Cheng,
ENS Paris,
September 2015;
Vincent Laporte,
Université Rennes 1,
November 2015;
and
Robbert Krebbers,
Radboud University,
December 2015.

 François Pottier was president of the Ph.D. jury of
Bruno Bernardo,
École Polytechnique,
September 2015.

 Section:
 Dissemination

 Popularization

 Jacques-Henri Jourdan is involved in the organization of the Junior Seminar of Inria Paris-Rocquencourt.

 Jacques-Henri Jourdan and Fabrice Le Fessant manned a stand at “Salon
Culture & Jeux Mathématiques” in Paris.

 Fabrice Le Fessant is one of the main organizers of the OCaml Meetup in Paris.

 Xavier Leroy gave a popularization talk on critical software and
its formal verification at the computer science colloquium of
University Pierre et Marie Curie.

 Since 2012, the Gallium team has published a research blog at
http://gallium.inria.fr/blog/ , edited by Gabriel Scherer. This blog
continued its activity in 2015, with 10 posts from 8 different
authors.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	J. Alglave, L. Maranget, M. Tautschnig.
Herding cats: modelling, simulation, testing, and data-mining for weak memory, in: ACM Transactions on Programming Languages and Systems, 2014, vol. 36, no 2, article no 7 p.
http://dx.doi.org/10.1145/2627752

 	[2]

 	K. Chaudhuri, D. Doligez, L. Lamport, S. Merz.
Verifying Safety Properties With the TLA+ Proof System, in: Automated Reasoning, 5th International Joint Conference, IJCAR 2010, Lecture Notes in Computer Science, Springer, 2010, vol. 6173, pp. 142–148.
http://dx.doi.org/10.1007/978-3-642-14203-1_12

 	[3]

 	J. Cretin, D. Rémy.
System F with Coercion Constraints, in: CSL-LICS 2014: Computer Science Logic / Logic In Computer Science, ACM, 2014, article no 34.
http://dx.doi.org/10.1145/2603088.2603128

 	[4]

 	D. Le Botlan, D. Rémy.
Recasting MLF, in: Information and Computation, 2009, vol. 207, no 6, pp. 726–785.
http://dx.doi.org/10.1016/j.ic.2008.12.006

 	[5]

 	X. Leroy.
A formally verified compiler back-end, in: Journal of Automated Reasoning, 2009, vol. 43, no 4, pp. 363–446.
http://dx.doi.org/10.1007/s10817-009-9155-4

 	[6]

 	X. Leroy.
Formal verification of a realistic compiler, in: Communications of the ACM, 2009, vol. 52, no 7, pp. 107–115.
http://doi.acm.org/10.1145/1538788.1538814

 	[7]

 	F. Pottier.
Hiding local state in direct style: a higher-order anti-frame rule, in: Proceedings of the 23rd Annual IEEE Symposium on Logic In Computer Science (LICS'08), IEEE Computer Society Press, June 2008, pp. 331-340.
http://dx.doi.org/10.1109/LICS.2008.16

 	[8]

 	F. Pottier, J. Protzenko.
Programming with permissions in Mezzo, in: Proceedings of the 18th International Conference on Functional Programming (ICFP 2013), ACM Press, 2013, pp. 173–184.
http://dx.doi.org/10.1145/2500365.2500598

 	[9]

 	N. Pouillard, F. Pottier.
A unified treatment of syntax with binders, in: Journal of Functional Programming, 2012, vol. 22, no 4–5, pp. 614–704.
http://dx.doi.org/10.1017/S0956796812000251

 	[10]

 	J.-B. Tristan, X. Leroy.
A simple, verified validator for software pipelining, in: Proceedings of the 37th ACM Symposium on Principles of Programming Languages (POPL'10), ACM Press, 2010, pp. 83–92.
http://doi.acm.org/10.1145/1706299.1706311

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[11]

 	T. Balabonski, F. Pottier, J. Protzenko.
The Design and Formalization of Mezzo, a Permission-Based Programming Language, in: ACM Transactions on Programming Languages and Systems (TOPLAS), 2016. [
DOI : 10.1145/2837022]
https://hal.inria.fr/hal-01246534

 	[12]

 	S. Boldo, J.-H. Jourdan, X. Leroy, G. Melquiond.
Verified Compilation of Floating-Point Computations, in: Journal of Automated Reasoning, February 2015, vol. 54, no 2, pp. 135-163. [
DOI : 10.1007/s10817-014-9317-x]
https://hal.inria.fr/hal-00862689

 	[13]

 	B. Bérard, P. Courtieu, L. Millet, M. Potop-Butucaru, L. Rieg, N. Sznajder, S. Tixeuil, X. Urbain.
[Invited Paper] Formal Methods for Mobile Robots: Current Results and Open Problems, in: International Journal of Informatics Society, 2015, vol. 7, no 3, pp. 101-114.
http://hal.upmc.fr/hal-01238784

 	[14]

 	P. Courtieu, L. Rieg, S. Tixeuil, X. Urbain.
Impossibility of gathering, a certification, in: Information Processing Letters, March 2015, vol. 115, no 3, pp. 447-452. [
DOI : 10.1016/j.ipl.2014.11.001]
http://hal.upmc.fr/hal-01122869

 International Conferences with Proceedings

 	[15]

 	U. A. Acar, A. Charguéraud, M. Rainey.
A Work-Efficient Algorithm for Parallel Unordered Depth-First Search, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, Texas, United States, November 2015. [
DOI : 10.1145/2807591.2807651]
https://hal.inria.fr/hal-01245837

 	[16]

 	P. Bhatotia, P. Fonseca, U. A. Acar, B. Björn, R. Rodrigues.
iThreads: A Threading Library for Parallel Incremental Computation, in: Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, Istanbul, Turkey, ACM, March 2015, pp. 645–659. [
DOI : 10.1145/2694344.2694371]
https://hal.inria.fr/hal-01245884

 	[17]

 	A. Charguéraud, F. Pottier.
Machine-Checked Verification of the Correctness and Amortized Complexity of an Efficient Union-Find Implementation, in: 6th International Conference on Interactive Theorem Proving (ITP), Nanjing, China, August 2015. [
DOI : 10.1007/978-3-319-22102-1_9]
https://hal.inria.fr/hal-01245872

 	[18]

 	S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, P. Sewell.
Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA, in: Principles of Programming Languages 2016 (POPL 2016), Saint Petersburg, United States, January 2016.
https://hal.inria.fr/hal-01244776

 	[19]

 	J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie.
A formally-verified C static analyzer, in: POPL 2015: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Mumbai, India, ACM, January 2015, pp. 247-259. [
DOI : 10.1145/2676726.2676966]
https://hal.inria.fr/hal-01078386

 	[20]

 	Z. Paraskevopoulou, C. Hriţcu, M. Dénès, L. Lampropoulos, B. C. Pierce.
Foundational Property-Based Testing, in: ITP 2015 - 6th conference on Interactive Theorem Proving, Nanjing, China, Lecture Notes in Computer Science, Springer, August 2015, vol. 9236. [
DOI : 10.1007/978-3-319-22102-1_22]
https://hal.inria.fr/hal-01162898

 	[21]

 	F. Pottier, J. Protzenko.
A few lessons from the Mezzo project, in: Summit oN Advances in Programming Languages (SNAPL), Asilomar, United States, Leibniz International Proceedings in Informatics, May 2015, vol. 32. [
DOI : 10.4230/LIPIcs.SNAPL.2015.221]
https://hal.inria.fr/hal-01246360

 	[22]

 	G. Scherer, D. Rémy.
Full reduction in the face of absurdity, in: ESOP'2015: European Conference on Programming Languages and Systems, London, United Kingdom, April 2015.
https://hal.inria.fr/hal-01095390

 	[23]

 	G. Scherer, D. Rémy.
Which simple types have a unique inhabitant?, in: The 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015), Vancouver, Canada, August 2015.
https://hal.inria.fr/hal-01235596

 	[24]

 	G. Scherer.
Multi-focusing on extensional rewriting with sums, in: Typed Lambda Calculi and Applications, Warsaw, Poland, June 2015.
https://hal.inria.fr/hal-01235372

 	[25]

 	E. Çiçek, D. Garg, U. Acar.
Refinement Types for Incremental Computational Complexity, in: 24th European Symposium on Programming (ESOP), London, United Kingdom, April 2015, vol. 9032, pp. 406-431. [
DOI : 10.1007/978-3-662-46669-8_17]
https://hal.inria.fr/hal-01245888

 National Conferences with Proceedings

 	[26]

 	Ç. Bozman, G. Henry, M. Iguernelala, F. Le Fessant, M. Mauny.
ocp-memprof: un profileur mémoire pour OCaml, in: Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA 2015), Le Val d'Ajol, France, D. Baelde, J. Alglave (editors), January 2015.
https://hal.inria.fr/hal-01099134

 	[27]

 	P.-É. Dagand, G. Scherer.
Normalization by realizability also evaluates, in: Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA 2015), Le Val d'Ajol, France, D. Baelde, J. Alglave (editors), January 2015.
https://hal.inria.fr/hal-01099138

 	[28]

 	F. Pottier.
Depth-First Search and Strong Connectivity in Coq, in: Vingt-sixièmes journées francophones des langages applicatifs (JFLA 2015), Le Val d'Ajol, France, D. Baelde, J. Alglave (editors), January 2015.
https://hal.inria.fr/hal-01096354

 	[29]

 	F. Pottier.
Reachability and error diagnosis in LR(1) automata, in: Journées Francophones des Langages Applicatifs, Saint-Malo, France, January 2016.
https://hal.inria.fr/hal-01248101

 Conferences without Proceedings

 	[30]

 	G. Bury, D. Delahaye, D. Doligez, P. Halmagrand, O. Hermant.
Automated Deduction in the B Set Theory using Typed Proof Search and Deduction Modulo, in: LPAR 20 : 20th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Suva, Fiji, November 2015.
https://hal-mines-paristech.archives-ouvertes.fr/hal-01204701

 	[31]

 	P. Chambart, M. Laporte, V. Bernardoff, F. Le Fessant.
Operf: Benchmarking the OCaml Compiler, in: OCaml Users and Developers Workshop, Vancouver, Canada, September 2015.
https://hal.inria.fr/hal-01245844

 	[32]

 	X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, C. Ferdinand.
CompCert - A Formally Verified Optimizing Compiler, in: ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress, Toulouse, France, SEE, January 2016.
https://hal.inria.fr/hal-01238879

 	[33]

 	G. Munch-Maccagnoni, G. Scherer.
Polarised Intermediate Representation of Lambda Calculus with Sums, in: Thirtieth Annual ACM/IEEE Symposium on Logic In Computer Science (LICS 2015), Kyoto, Japan, July 2015, Dec. 2015: see the added footnote on page 7. [
DOI : 10.1109/LICS.2015.22]
https://hal.inria.fr/hal-01160579

 Scientific Books (or Scientific Book chapters)

 	[34]

 	CPP '15: Proceedings of the 2015 Conference on Certified Programs and Proofs, ACM, Mumbai, India, January 2015, 184 p.
https://hal.inria.fr/hal-01101937

 Internal Reports

 	[35]

 	U. A. Acar, A. Charguéraud, M. Rainey.
Fast Parallel Graph-Search with Splittable and Catenable Frontiers, Inria, January 2015.
https://hal.inria.fr/hal-01089125

 	[36]

 	P. Courtieu, L. Rieg, S. Tixeuil, X. Urbain.
A Certified Universal Gathering Algorithm for Oblivious Mobile Robots, UPMC, Sorbonne Universites CNRS ; CNAM, Paris ; College de France ; Université Paris Sud, June 2015.
http://hal.upmc.fr/hal-01159890

 	[37]

 	X. Leroy.
The CompCert C verified compiler: Documentation and user’s manual, Inria, December 2015.
https://hal.inria.fr/hal-01091802

 References in notes

 	[38]

 	D. Aspinall.
Proof General: A Generic Tool for Proof Development, in: Tools and Algorithms for the Construction and Analysis of Systems, S. Graf, M. Schwartzbach (editors), Lecture Notes in Computer Science, Springer, 2000, vol. 1785, pp. 38–43.
http://dx.doi.org/10.1007/3-540-46419-0_3

 	[39]

 	V. Benzaken, G. Castagna, A. Frisch.
CDuce: an XML-centric general-purpose language, in: Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming, C. Runciman, O. Shivers (editors), ACM, 2003, pp. 51–63.
https://www.lri.fr/~benzaken/papers/icfp03.ps

 	[40]

 	D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, H. Vanzetto.
TLA + Proofs, in: FM 2012: Formal Methods - 18th International Symposium, D. Giannakopoulou, D. Méry (editors), Lecture Notes in Computer Science, Springer, 2012, vol. 7436, pp. 147-154.
http://dx.doi.org/10.1007/978-3-642-32759-9_14

 	[41]

 	J. Garrigue, J. Le Normand.
GADTs and exhaustiveness: looking for the impossible, in: ACM SIGPLAN ML Family Workshop, ACM, 2015.
http://www.math.nagoya-u.ac.jp/~garrigue/papers/gadtspm.pdf

 	[42]

 	H. Hosoya, B. C. Pierce.
XDuce: A Statically Typed XML Processing Language, in: ACM Transactions on Internet Technology, 2003, vol. 3, no 2, pp. 117–148.
http://doi.acm.org/10.1145/767193.767195

 	[43]

 	L. Lamport.
How to write a 21st century proof, in: Journal of Fixed Point Theory and Applications, 2012, vol. 11, pp. 43–63.
http://dx.doi.org/10.1007/s11784-012-0071-6

 	[44]

 	X. Leroy, D. Doligez, J. Garrigue, D. Rémy, J. Vouillon.
The Objective Caml system, documentation and user's manual – release 4.02, Inria, August 2014.
http://caml.inria.fr/pub/docs/manual-ocaml-4.02/

 	[45]

 	X. Leroy.
Java bytecode verification: algorithms and formalizations, in: Journal of Automated Reasoning, 2003, vol. 30, no 3–4, pp. 235–269.
http://dx.doi.org/10.1023/A:1025055424017

 	[46]

 	A. Miné.
Weakly relational numerical abstract domains, École Polytechnique, December 2004.
https://www-apr.lip6.fr/~mine/these/these-color.pdf

 	[47]

 	B. C. Pierce.
Types and Programming Languages, MIT Press, 2002.

 	[48]

 	F. Pottier.
Simplifying subtyping constraints: a theory, in: Information and Computation, 2001, vol. 170, no 2, pp. 153–183.
http://gallium.inria.fr/~fpottier/publis/fpottier-ic01.ps.gz

 	[49]

 	F. Pottier, V. Simonet.
Information Flow Inference for ML, in: ACM Transactions on Programming Languages and Systems, January 2003, vol. 25, no 1, pp. 117–158.
http://dx.doi.org/10.1145/596980.596983

 	[50]

 	D. Rémy, J. Vouillon.
Objective ML: A simple object-oriented extension to ML, in: 24th ACM Conference on Principles of Programming Languages, ACM Press, 1997, pp. 40–53.
http://gallium.inria.fr/~remy/ftp/objective-ml!popl97.pdf

 OEBPS/uid117.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 Deepsea

 Participants :
	Umut Acar, Vitalii Aksenov, Arthur Charguéraud, Mike Rainey, Filip Sieczkowski.

 The Deepsea project (2013–2018) is coordinated by Umut Acar and funded by FP7
as an ERC Starting Grant.
Its objective is to develop abstractions, algorithms and languages for
parallelism and dynamic parallelism, with applications to problems on large
data sets.

 ITEA3 Projects

 Assume

 Participants :
	Xavier Leroy, Luc Maranget.

 ASSUME (2015–2018) is an ITEA3 project involving France, Germany,
Netherlands, Turkey and Sweden. The French participants are
coordinated by Jean Souyris (Airbus) and include Airbus, Kalray,
Sagem, ENS Paris, and Inria Paris. The goal of the project is to
investigate the usability of multicore and manycore processors for
critical embedded systems. Our involvement in this project focuses on
the formalisation and verification of memory models and of automatic
code generators from reactive languages.

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid107.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR projects

 BWare

 Participants :
	Damien Doligez, Fabrice Le Fessant.

 The “BWare” project (2012–2016) is coordinated by David Delahaye at
Conservatoire National des Arts et Métiers and funded by the Ingénierie Numérique et Sécurité programme of Agence Nationale de
la Recherche. BWare is an industrial research project that aims to
provide a mechanized framework to support the automated verification
of proof obligations coming from the development of industrial
applications using the B method and requiring high guarantees of
confidence.

 Verasco

 Participants :
	Jacques-Henri Jourdan, Xavier Leroy.

 The “Verasco” project (2012–2016) is coordinated by Xavier Leroy and
funded by the Ingéniérie Numérique et Sécurité programme of Agence Nationale de la Recherche. The objective of this 4.5-year
project is to develop and formally verify a static analyzer based on
abstract interpretation, and interface it with the CompCert C verified
compiler.

 Vocal

 Participants :
	Xavier Leroy, François Pottier.

 The “Vocal” project (2015–2020) aims at developing the first mechanically
verified library of efficient general-purpose data structures and algorithms.
It is funded by Agence Nationale de la Recherche under its “appel à
projets générique 2015”.

 The library will be made available to all OCaml programmers and will
be of particular interest to implementors of safety-critical OCaml programs,
such as Coq, Astrée, Frama-C, CompCert, Alt-Ergo, as well as new projects. By
offering verified program components, our work will provide the essential
building blocks that are needed to significantly decrease the cost of
developing new formally verified programs.

 FSN projects

 ADN4SE

 Participants :
	Damien Doligez, Martin Riener.

 The “ADN4SE” project (2012–2016) is coordinated by the Sherpa
Engineering company and funded by the Briques Génériques du
Logiciel Embarqué programme of Fonds national pour la
Société Numérique. The aim of this project is to develop a process and a
set of tools to support the rapid development of embedded software
with strong safety constraints.
Gallium is involved in this project to provide tools and help for the
formal verification in TLA+ of some important aspects of the PharOS
real-time kernel, on which the whole project is based.

 CEEC

 Participants :
	Maxime Dénès, Xavier Leroy.

 The “CEEC” project (2011–2015) is coordinated by the Prove & Run
company and also involves Esterel Technologies and Trusted Labs. It
is funded by the Briques Génériques du
Logiciel Embarqué programme of Fonds national pour la
Société Numérique. The CEEC project develops an environment for the
development and certification of high-security software, centered on a
new domain-specific language designed by Prove & Run. Our involvement
in this project focuses on the formal verification of a C code
generator for this domain-specific language, and its interface with
the CompCert C verified compiler.

 FUI Projects

 Secur-OCaml

 Participants :
	Damien Doligez, Fabrice Le Fessant.

 The “Secur-OCaml” project (2015–2018) is coordinated by the
OCamlPro company, with a consortium focusing on the use of OCaml in
security-critical contexts, while OCaml is currently mostly used in
safety-critical contexts. Gallium is invoved in this project to
integrate security features in the OCaml language, to build a new
independant interpreter for the language, and to update the
recommendations for developers issued by the former LaFoSec project of
ANSSI.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2015
Project-Team Gallium

Programming languages,
types, compilation and
proofs

OEBPS/uid127.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Research stays abroad

 From November 2014 to June 2015, Damien Doligez was on a sabbatical at Jane
Street (New York, USA), a financial company (a member of the Caml
Consortium) that invests considerable R&D in the OCaml language and
system.

OEBPS/uid122.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria International Partners

 Informal International Partners

 		
 Princeton University: interactions between
the CompCert verified C compiler and the Verified Software Toolchain
developed at Princeton.

 		
 Cambridge University and Microsoft Research Cambridge:
formal modeling and testing of weak memory models.

