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2. Overall Objectives
2.1. Overall Objectives

The research conducted in the Gallium group aims at improving the safety, reliability and security of software
through advances in programming languages and formal verification of programs. Our work is centered on the
design, formalization and implementation of functional programming languages, with particular emphasis on
type systems and type inference, formal verification of compilers, and interactions between programming and
program proof. The OCaml language and the CompCert verified C compiler embody many of our research
results. Our work spans the whole spectrum from theoretical foundations and formal semantics to applications
to real-world problems.

3. Research Program
3.1. Programming languages: design, formalization, implementation

Like all languages, programming languages are the media by which thoughts (software designs) are communi-
cated (development), acted upon (program execution), and reasoned upon (validation). The choice of adequate
programming languages has a tremendous impact on software quality. By “adequate”, we mean in particular
the following four aspects of programming languages:

• Safety. The programming language must not expose error-prone low-level operations (explicit
memory deallocation, unchecked array access, etc) to programmers. Further, it should provide
constructs for describing data structures, inserting assertions, and expressing invariants within
programs. The consistency of these declarations and assertions should be verified through compile-
time verification (e.g. static type-checking) and run-time checks.

• Expressiveness. A programming language should manipulate as directly as possible the concepts
and entities of the application domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A typical example of a language
feature that increases expressiveness is pattern matching for examination of structured data (as
in symbolic programming) and of semi-structured data (as in XML processing). Carried to the
extreme, the search for expressiveness leads to domain-specific languages, customized for a specific
application area.

• Modularity and compositionality. The complexity of large software systems makes it impossi-
ble to design and develop them as one, monolithic program. Software decomposition (into semi-
independent components) and software composition (of existing or independently-developed com-
ponents) are therefore crucial. Again, this modular approach can be applied to any programming
language, given sufficient fortitude by the programmers, but is much facilitated by adequate linguis-
tic support. In particular, reflecting notions of modularity and software components in the program-
ming language enables compile-time checking of correctness conditions such as type correctness at
component boundaries.



Project-Team GALLIUM 3

• Formal semantics. A programming language should fully and formally specify the behaviours of
programs using mathematical semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods (program proof, model
checking) to programs.

Our research work in language design and implementation centers on the statically-typed functional program-
ming paradigm, which scores high on safety, expressiveness and formal semantics, complemented with full
imperative features and objects for additional expressiveness, and modules and classes for compositionality.
The OCaml language and system embodies many of our earlier results in this area [44]. Through collabora-
tions, we also gained experience with several domain-specific languages based on a functional core, including
distributed programming (JoCaml), XML processing (XDuce, CDuce), reactive functional programming, and
hardware modeling.

3.2. Type systems
Type systems [47] are a very effective way to improve programming language reliability. By grouping the data
manipulated by the program into classes called types, and ensuring that operations are never applied to types
over which they are not defined (e.g. accessing an integer as if it were an array, or calling a string as if it were
a function), a tremendous number of programming errors can be detected and avoided, ranging from the trivial
(misspelled identifier) to the fairly subtle (violation of data structure invariants). These restrictions are also
very effective at thwarting basic attacks on security vulnerabilities such as buffer overflows.

The enforcement of such typing restrictions is called type-checking, and can be performed either dynamically
(through run-time type tests) or statically (at compile-time, through static program analysis). We favor static
type-checking, as it catches bugs earlier and even in rarely-executed parts of the program, but note that not
all type constraints can be checked statically if static type-checking is to remain decidable (i.e. not degenerate
into full program proof). Therefore, all typed languages combine static and dynamic type-checking in various
proportions.

Static type-checking amounts to an automatic proof of partial correctness of the programs that pass the
compiler. The two key words here are partial, since only type safety guarantees are established, not full
correctness; and automatic, since the proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source). Static type-checking can therefore be
viewed as the poor man’s formal methods: the guarantees it gives are much weaker than full formal verification,
but it is much more acceptable to the general population of programmers.

3.2.1. Type systems and language design.
Unlike most other uses of static program analysis, static type-checking rejects programs that it cannot prove
safe. Consequently, the type system is an integral part of the language design, as it determines which programs
are acceptable and which are not. Modern typed languages go one step further: most of the language design is
determined by the type structure (type algebra and typing rules) of the language and intended application area.
This is apparent, for instance, in the XDuce and CDuce domain-specific languages for XML transformations
[42], [39], whose design is driven by the idea of regular expression types that enforce DTDs at compile-time.
For this reason, research on type systems – their design, their proof of semantic correctness (type safety), the
development and proof of associated type-checking and inference algorithms – plays a large and central role
in the field of programming language research, as evidenced by the huge number of type systems papers in
conferences such as Principles of Programming Languages.

3.2.2. Polymorphism in type systems.
There exists a fundamental tension in the field of type systems that drives much of the research in this area.
On the one hand, the desire to catch as many programming errors as possible leads to type systems that
reject more programs, by enforcing fine distinctions between related data structures (say, sorted arrays and
general arrays). The downside is that code reuse becomes harder: conceptually identical operations must be
implemented several times (say, copying a general array and a sorted array). On the other hand, the desire
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to support code reuse and to increase expressiveness leads to type systems that accept more programs, by
assigning a common type to broadly similar objects (for instance, the Object type of all class instances in
Java). The downside is a loss of precision in static typing, requiring more dynamic type checks (downcasts in
Java) and catching fewer bugs at compile-time.

Polymorphic type systems offer a way out of this dilemma by combining precise, descriptive types (to catch
more errors statically) with the ability to abstract over their differences in pieces of reusable, generic code
that is concerned only with their commonalities. The paradigmatic example is parametric polymorphism,
which is at the heart of all typed functional programming languages. Many forms of polymorphic typing
have been studied since then. Taking examples from our group, the work of Rémy, Vouillon and Garrigue on
row polymorphism [50], integrated in OCaml, extended the benefits of this approach (reusable code with no
loss of typing precision) to object-oriented programming, extensible records and extensible variants. Another
example is the work by Pottier on subtype polymorphism, using a constraint-based formulation of the type
system [48]. Finally, the notion of “coercion polymorphism” proposed by Cretin and Rémy[3] combines and
generalizes both parametric and subtyping polymorphism.

3.2.3. Type inference.
Another crucial issue in type systems research is the issue of type inference: how many type annotations
must be provided by the programmer, and how many can be inferred (reconstructed) automatically by the
type-checker? Too many annotations make the language more verbose and bother the programmer with
unnecessary details. Too few annotations make type-checking undecidable, possibly requiring heuristics,
which is unsatisfactory. OCaml requires explicit type information at data type declarations and at component
interfaces, but infers all other types.

In order to be predictable, a type inference algorithm must be complete. That is, it must not find one, but all
ways of filling in the missing type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances of a single, principal solution.

Maybe surprisingly, the strong requirements – such as the existence of principal types – that are imposed
on type systems by the desire to perform type inference sometimes lead to better designs. An illustration of
this is row variables. The development of row variables was prompted by type inference for operations on
records. Indeed, previous approaches were based on subtyping and did not easily support type inference. Row
variables have proved simpler than structural subtyping and more adequate for type-checking record update,
record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer’s understanding of his own program
is often initially limited to a particular context, where types are more specific than strictly required. Type
inference can reveal the additional generality, which allows making the code more abstract and thus more
reuseable.

3.3. Compilation
Compilation is the automatic translation of high-level programming languages, understandable by humans, to
lower-level languages, often executable directly by hardware. It is an essential step in the efficient execution,
and therefore in the adoption, of high-level languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has had considerable influence on the
design of both. Compilers have also attracted considerable research interest as the oldest instance of symbolic
processing on computers.

Compilation has been the topic of much research work in the last 40 years, focusing mostly on high-
performance execution (“optimization”) of low-level languages such as Fortran and C. Two major results
came out of these efforts: one is a superb body of performance optimization algorithms, techniques and
methodologies; the other is the whole field of static program analysis, which now serves not only to increase
performance but also to increase reliability, through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group focuses on a less investigated topic:
compiler certification.
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3.3.1. Formal verification of compiler correctness.
While the algorithmic aspects of compilation (termination and complexity) have been well studied, its semantic
correctness – the fact that the compiler preserves the meaning of programs – is generally taken for granted.
In other terms, the correctness of compilers is generally established only through testing. This is adequate
for compiling low-assurance software, themselves validated only by testing: what is tested is the executable
code produced by the compiler, therefore compiler bugs are detected along with application bugs. This is
not adequate for high-assurance, critical software which must be validated using formal methods: what is
formally verified is the source code of the application; bugs in the compiler used to turn the source into the
final executable can invalidate the guarantees so painfully obtained by formal verification of the source.

To establish strong guarantees that the compiler can be trusted not to change the behavior of the program,
it is necessary to apply formal methods to the compiler itself. Several approaches in this direction have
been investigated, including translation validation, proof-carrying code, and type-preserving compilation. The
approach that we currently investigate, called compiler verification, applies program proof techniques to the
compiler itself, seen as a program in particular, and use a theorem prover (the Coq system) to prove that the
generated code is observationally equivalent to the source code. Besides its potential impact on the critical
software industry, this line of work is also scientifically fertile: it improves our semantic understanding of
compiler intermediate languages, static analyses and code transformations.

3.4. Interface with formal methods
Formal methods collectively refer to the mathematical specification of software or hardware systems and to the
verification of these systems against these specifications using computer assistance: model checkers, theorem
provers, program analyzers, etc. Despite their costs, formal methods are gaining acceptance in the critical
software industry, as they are the only way to reach the required levels of software assurance.

In contrast with several other Inria projects, our research objectives are not fully centered around formal
methods. However, our research intersects formal methods in the following two areas, mostly related to
program proofs using proof assistants and theorem provers.

3.4.1. Software-proof codesign
The current industrial practice is to write programs first, then formally verify them later, often at huge costs.
In contrast, we advocate a codesign approach where the program and its proof of correctness are developed
in interaction, and we are interested in developing ways and means to facilitate this approach. One possibility
that we currently investigate is to extend functional programming languages such as OCaml with the ability
to state logical invariants over data structures and pre- and post-conditions over functions, and interface with
automatic or interactive provers to verify that these specifications are satisfied. Another approach that we
practice is to start with a proof assistant such as Coq and improve its capabilities for programming directly
within Coq.

3.4.2. Mechanized specifications and proofs for programming languages components
We emphasize mathematical specifications and proofs of correctness for key language components such as
semantics, type systems, type inference algorithms, compilers and static analyzers. These components are
getting so large that machine assistance becomes necessary to conduct these mathematical investigations.
We have already mentioned using proof assistants to verify compiler correctness. We are also interested in
using them to specify and reason about semantics and type systems. These efforts are part of a more general
research topic that is gaining importance: the formal verification of the tools that participate in the construction
and certification of high-assurance software.

4. Application Domains
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4.1. High-assurance software
A large part of our work on programming languages and tools focuses on improving the reliability of software.
Functional programming, program proof, and static type-checking contribute significantly to this goal.

Because of its proximity with mathematical specifications, pure functional programming is well suited to
program proof. Moreover, functional programming languages such as OCaml are eminently suitable to
develop the code generators and verification tools that participate in the construction and qualification of high-
assurance software. Examples include Esterel Technologies’s KCG 6 code generator, the Astrée static analyzer,
the Caduceus/Jessie program prover, and the Frama-C platform. Our own work on compiler verification
combines these two aspects of functional programming: writing a compiler in a pure functional language
and mechanically proving its correctness.

Static typing detects programming errors early, prevents a number of common sources of program crashes
(null dereferences, out-of bound array accesses, etc), and helps tremendously to enforce the integrity of data
structures. Judicious uses of generalized abstract data types (GADTs), phantom types, type abstraction and
other encapsulation mechanisms also allow static type checking to enforce program invariants.

4.2. Software security
Static typing is also highly effective at preventing a number of common security attacks, such as buffer
overflows, stack smashing, and executing network data as if it were code. Applications developed in a language
such as OCaml are therefore inherently more secure than those developed in unsafe languages such as C.

The methods used in designing type systems and establishing their soundness can also deliver static analyses
that automatically verify some security policies. Two examples from our past work include Java bytecode
verification [45] and enforcement of data confidentiality through type-based inference of information flow and
noninterference properties [49].

4.3. Processing of complex structured data
Like most functional languages, OCaml is very well suited to expressing processing and transformations of
complex, structured data. It provides concise, high-level declarations for data structures; a very expressive
pattern-matching mechanism to destructure data; and compile-time exhaustiveness tests. Therefore, OCaml is
an excellent match for applications involving significant amounts of symbolic processing: compilers, program
analyzers and theorem provers, but also (and less obviously) distributed collaborative applications, advanced
Web applications, financial modeling tools, etc.

4.4. Rapid development
Static typing is often criticized as being verbose (due to the additional type declarations required) and
inflexible (due to, for instance, class hierarchies that must be fixed in advance). Its combination with type
inference, as in the OCaml language, substantially diminishes the importance of these problems: type inference
allows programs to be initially written with few or no type declarations; moreover, the OCaml approach to
object-oriented programming completely separates the class inheritance hierarchy from the type compatibility
relation. Therefore, the OCaml language is highly suitable for fast prototyping and the gradual evolution of
software prototypes into final applications, as advocated by the popular “extreme programming” methodology.

4.5. Teaching programming
Our work on the Caml language family has an impact on the teaching of programming. Caml Light is one of
the programming languages selected by the French Ministry of Education for teaching Computer Science
in classes préparatoires scientifiques. OCaml is also widely used for teaching advanced programming in
engineering schools, colleges and universities in France, the USA, and Japan.
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5. Highlights of the Year

5.1. Highlights of the Year
In 2015, Xavier Leroy was appointed Fellow of the ACM “for contributions to safe, high-performance
functional programming languages and compilers, and to compiler verification”.

Xavier Leroy will receive the 2016 Royal Society Milner Award.

6. New Software and Platforms

6.1. CompCert
Participants: Xavier Leroy [ contact ], Sandrine Blazy [team Celtique], Jacques-Henri Jourdan, Bernhard
Schommer [AbsInt GmbH].

The CompCert project investigates the formal verification of realistic compilers usable for critical embedded
software. Such verified compilers come with a mathematical, machine-checked proof that the generated
executable code behaves exactly as prescribed by the semantics of the source program. By ruling out the
possibility of compiler-introduced bugs, verified compilers strengthen the guarantees that can be obtained
by applying formal methods to source programs. AbsInt Angewandte Informatik GmbH sells a commercial
version of CompCert with long-term maintenance.

• URL: http://compcert.inria.fr/ (academic), http://www.absint.com/compcert/ (commercial).

6.2. Diy
Participants: Luc Maranget [ contact ], Jade Alglave [Microsoft Research, Cambridge], Keryan Didier.

The diy suite (for “Do It Yourself”) provides a set of tools for testing shared memory models: the litmus
tool for running tests on hardware, various generators for producing tests from concise specifications, and
herd, a memory model simulator. Tests are small programs written in x86, Power, ARM or generic (LISA)
assembler that can thus be generated from concise specification, run on hardware, or simulated on top of
memory models. Test results can be handled and compared using additional tools. Recent versions also take a
subset of the C language as input, so as to test and simulate the C11 model.

• URL: http://diy.inria.fr/

6.3. Menhir
Participants: François Pottier [ contact ], Yann Régis-Gianas [Université Paris Diderot].

Menhir is a LR(1) parser generator for the OCaml programming language. That is, Menhir compiles LR(1)
grammar specifications down to OCaml code.

• URL: http://gallium.inria.fr/~fpottier/menhir/

6.4. OCaml
Participants: Damien Doligez [ contact ], Alain Frisch [LexiFi], Jacques Garrigue [Nagoya University],
Fabrice Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane Street], Leo White
[Jane Street], Jeremy Yallop [OCaml Labs, Cambridge University].

https://royalsociety.org/grants-schemes-awards/awards/milner-award/
http://www.absint.com
http://compcert.inria.fr/
http://www.absint.com/compcert/
http://diy.inria.fr/
http://gallium.inria.fr/~fpottier/menhir/
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The OCaml language is a functional programming language that combines safety with expressiveness through
the use of a precise and flexible type system with automatic type inference. The OCaml system is a
comprehensive implementation of this language, featuring two compilers (a bytecode compiler, for fast
prototyping and interactive use, and a native-code compiler producing efficient machine code for x86, ARM,
PowerPC and SPARC), a debugger, a documentation generator, a compilation manager, a package manager,
and many libraries contributed by the user community.

• URL: http://ocaml.org/

6.5. PASL
Participants: Mike Rainey [ contact ], Arthur Charguéraud, Umut Acar.

PASL is a C++ library for writing parallel programs targeting the broadly available multicore computers. The
library provides a high level interface and can still guarantee very good efficiency and performance, primarily
due to its scheduling and automatic granularity control mechanisms.

• URL: http://deepsea.inria.fr/pasl/

6.6. Zenon
Participants: Damien Doligez [ contact ], Guillaume Bury [CNAM], David Delahaye [CNAM], Pierre
Halmagrand [team DEDUCTEAM], Olivier Hermant [MINES ParisTech].

Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input,
it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling
of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying
results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof
assistant), and also to be easily retargeted to output scripts for different frameworks (for example, Isabelle and
Dedukti).

• URL: http://opam.ocaml.org/packages/zenon/zenon.0.8.0/

7. New Results

7.1. Formal verification of compilers and static analyzers
7.1.1. The CompCert formally-verified compiler

Participants: Xavier Leroy, Jacques-Henri Jourdan, François Pottier, Bernhard Schommer [AbsInt GmbH].

In the context of our work on compiler verification (see section 3.3.1), since 2005 we have been developing
and formally verifying a moderately-optimizing compiler for a large subset of the C programming language,
generating assembly code for the PowerPC, ARM, and x86 architectures [6]. This compiler comprises a back-
end, which translates the Cminor intermediate language to PowerPC assembly and is reusable for source
languages other than C [5], and a front-end, which translates the CompCert C subset of C to Cminor.
The compiler is mostly written within the specification language of the Coq proof assistant, from which
Coq’s extraction facility generates executable OCaml code. The compiler comes with a 50000-line, machine-
checked Coq proof of semantic preservation establishing that the generated assembly code executes exactly as
prescribed by the semantics of the source C program.

http://ocaml.org/
http://deepsea.inria.fr/pasl/
http://opam.ocaml.org/packages/zenon/zenon.0.8.0/
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This year, we improved the CompCert C compiler in several directions:
• The generation of debugging information in DWARF format was implemented by Bernhard Schom-

mer at AbsInt. Consequently, CompCert-compiled programs can now be debugged using standard
debuggers. Xavier Leroy extended the back-end compilation passes and their proofs to propagate
debugging information throughout the compilation pipeline.

• The CompCert formal semantics was made more precise in order to increase confidence. We
tightened the semantics of pointer comparisons against the null pointer. We formalized the distinction
between public and private (static) global definitions, and used it to prove the correctness of the
“Unusedglob” pass that removes unreferenced private definitions.

• The calling conventions used to pass function arguments and results of struct and union types
were revised in order to comply with the Application Binary Interfaces of the target platforms.

• We added partial support for extended inline assembly, an extension of the C language popularized
by the GCC compiler and often used in low-level code.

• Detailed explanations of syntax errors are now produced. This usability feature builds on François
Pottier’s work on error reporting in LR parsers (see section 7.4.4).

• The PowerPC back-end was extended to support the PowerPC 64-bit extensions and the Freescale
E5500 variant.

We released two versions of CompCert, integrating these enhancements: version 2.5 in June and version 2.6 in
December. This is the public version of CompCert, available for evaluation and research purposes. In parallel,
our industrial partner, AbsInt Angewandte Informatik GmbH, sells a commercial version of CompCert with
long-term maintenance.

7.1.2. Formal verification of static analyzers based on abstract interpretation
Participants: Jacques-Henri Jourdan, Xavier Leroy, Sandrine Blazy [team Celtique], Vincent Laporte
[team Celtique], David Pichardie [team Celtique], Sylvain Boulmé [Grenoble INP, VERIMAG], Alexis
Fouilhé [Université Joseph Fourier de Grenoble, VERIMAG], Michaël Périn [Université Joseph Fourier de
Grenoble, VERIMAG].

In the context of the ANR Verasco project, we are investigating the formal specification and verification in Coq
of a realistic static analyzer based on abstract interpretation. This static analyzer handles a large subset of the
C language (the same subset as the CompCert compiler, minus recursion and dynamic allocation); supports a
combination of abstract domains, including relational domains; and should produce usable alarms. The long-
term goal is to obtain a static analyzer that can be used to prove safety properties of real-world embedded C
code. The overall architecture and specification of Verasco is described in a paper that was presented at POPL
2015 [19].

This year, Jacques-Henri Jourdan continued the development of this static analyzer, with two goals. First,
Jacques-Henri Jourdan improved the precision and analysis time of the existing abstract domains. The existing
communication system between domains was instantiated to the cooperation between the abstract domain of
intervals and the abstract domain of congruences. Second, Jacques-Henri Jourdan implemented and formalized
in our static analyzer the Octagon abstract domain of Miné [46]. This led to new results in the theory behind
this abstract domain, allowing Jourdan to use sparse data structures for representing octagons.

7.1.3. A SPARK Front-end for CompCert
Participants: Pierre Courtieu, Zhi Zang [Kansas University].

SPARK is a language, and a platform, dedicated to developing and verifying critical software. It is a subset of
the Ada language. It shares with Ada a strict typing discipline and gives strict guarantees in terms of safety.
SPARK goes one step further by disallowing certain “dangerous” features, that is, those that are too difficult
to statically analyze (aliasing, references, etc). Given its dedication to safety critical software, we think that
the SPARK platform can benefit from a certified compiler. We are working on adding a SPARK front-end to
the CompCert verified compiler.

http://www.absint.com
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Defining a semantics for SPARK in Coq is previous joint work with Zhi Zang from Kansas University. The
current front-end is based on this semantics. The compiler has been written and tested, and the proofs of
correctness are currently under way.

7.1.4. Verified JIT compilation of Coq
Participants: Maxime Dénès, Xavier Leroy.

Last year, we started the Coqonut project, whose objective is to develop and formally verify an efficient,
compiled implementation of Coq’s reduction. This year, we made progress on this verification effort:

• We ported our OCaml prototype to Coq and started its verification, notably of the first phase of the
compiler which involves uncurrying, using untyped step-indexed logical relations.

• We adapted (part of) the Coq x86 macro assembler by Andrew Kennedy, Nick Benton, Jonas B.
Jensen and Pierre-Evariste Dagand to x86-64. This macro assembler framework is used in Coqonut’s
backend to generate assembly or machine code.

7.2. Language design and type systems
7.2.1. Full reduction in the presence of inconsistent assumptions

Participants: Didier Rémy, Gabriel Scherer.

Gabriel Scherer and Didier Rémy continued their work on assumption hiding and presented it at ESOP
2015 [22]. This work aims at restoring confluence when mixing full and weak reduction and providing a
continuum between consistent and inconsistent abstraction. Assumption hiding supports fine-grained control
of dependencies between computations and the logical hypotheses they depend on. Although studied for a
language of coercions, the solution is more general and should be applicable to any language with abstraction
over propositions that are left implicit, either for the user’s convenience in a surface language or because they
have been erased prior to computation in an internal language.

7.2.2. Equivalence and normalization of lambda-terms with sums
Participants: Gabriel Scherer, Guillaume Munch-Maccagnoni [Université Paris-Diderot, laboratoire PPS].

Gabriel Scherer presented at TLCA 2015 his work on understanding equivalence of sum types using the proof-
theoretical technique of focusing [24]. Independently, his collaboration with Guillaume Munch-Maccagnoni
resulted in a presentation of sum equivalence using an abstract machine calculus [33]. This approach allows
for a more concise and cleaner definition of the equivalence relation, and a finer-grained understanding of the
role of purity assumptions in the program equivalence relation.

7.2.3. Types with unique inhabitants for code inference
Participants: Gabriel Scherer, Didier Rémy.

Gabriel Scherer and Didier Rémy presented at ICFP 2015 [23] an algorithm to decide whether a type has
a unique inhabitant in the simply-typed lambda-calculus with sum types. This algorithm comes along with
a prototype implementation. This minimal setting is not representative of the expressiveness of realistic
programming languages, but already covers a first few interesting code inference scenarios for polymorphic
libraries in functional languages with prenex polymorphism: for instance, we can infer the “bind” function of
the exception monad.

7.2.4. Refactoring with ornaments in ML
Participants: Thomas Williams, Didier Rémy.

Thomas Williams and Didier Rémy continued working on ornaments for program refactoring and program
transformation in ML. Ornaments have been introduced as a way to describe some changes in data type
definitions that preserve their recursive structure, reorganizing, adding, or dropping some pieces of data. After
a new data structure has been described as an ornament of an older one, some functions operating on the bare
structure can be partially or sometimes totally lifted into functions operating on the ornamented structure.
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We have previously described an algorithm to perform this lifting in ML. This description was informal. This
year, we improved this algorithm by decomposing it in several steps and we formalized it. Using ornament
inference, we first elaborate an ML program into a generic program, which can be seen as a template for all
possible liftings of the original program. The generic program is defined in a superset of ML. It can then be
instantiated with specific ornaments, and simplified back into an ML program. We also studied the properties
of lifting, particularly the preservation of complexity and effects, with the aim of characterizing more precisely
the syntactic liftings that can be produced by our algorithm.

On the practical side, our prototype ornamentation tool has been improved with an implementation of ornament
inference. The generalized program gives a description of all possible extension points that must be filled by
providing patches. In practice, a few heuristics are enough to automate most of the patching work. The rest
can be filled interactively by the programmer. In the case of refactoring (the representation of a data type is
modified without adding any data), the transformation is fully automatic.

7.2.5. The Mezzo programming language
Participants: Thibaut Balabonski [Université Paris Sud], François Pottier, Jonathan Protzenko.

Mezzo is a programming language proposal whose untyped foundation is very much like OCaml (i.e.,
it is equipped with higher-order functions, algebraic data structures, mutable state, and shared-memory
concurrency) and whose type system offers flexible means of describing ownership policies and controlling
side effects.

A comprehensive paper, which contains both a tutorial introduction to Mezzo and a description of its formal
definition and proof, was submitted to TOPLAS in 2014. This year, after a round of reviewing, it was revised
and accepted for publication [11]. A reflection on the design of Mezzo was presented at SNAPL 2015 [21].

7.3. Shared-memory parallelism
7.3.1. Weak memory models

Participants: Luc Maranget, Jade Alglave [Microsoft Research, Cambridge], Patrick Cousot [New York
University], Keryan Didier.

Modern multi-core and multi-processor computers do not follow the intuitive “Sequential Consistency” model
that would define a concurrent execution as the interleaving of the executions of its constituent threads and that
would command instantaneous writes to the shared memory. This situation is due both to in-core optimisations
such as speculative and out-of-order execution of instructions, and to the presence of sophisticated (and
cooperating) caching devices between processors and memory. Luc Maranget took part in an international
research effort to define the semantics of the computers of the multi-core era, and more generally of shared-
memory parallel devices or languages, with a clear focus on devices.

More precisely, in 2015, Luc Maranget collaborated with Jade Alglave and Patrick Cousot to extend “Cats”, a
domain-specific language for defining and executing weak memory models. A precise semantics for “Cats” is
the core of a submitted journal article that also includes a study and formalisation of the HSA memory model
— the Heterogeneous System Architecture foundation is an industry standards body targeting heterogeneous
computing devices (see http://www.hsafoundation.com/). The new extensions of the Cats language have been
integrated in the released version of the diy tool suite (see section 6.2).

Luc Maranget also co-authored a paper that will be presented at POPL 2016 [18]. This work describes
an operational semantics for the new generation ARM processors. It is joint work with many researchers,
including S. Flur and other members of P. Sewell’s team (University of Cambridge) and W. Deacon (ARM
Ltd).

During his M2 internship, supervised by Luc Maranget, Keryan Didier significantly improved the diy tool
suite, in particular by writing front-ends for ARMv8 and for a subset of the C language. Keryan Didier also
wrote a new (as yet unreleased) tool to translate between various input languages, in particular from machine
assemblers to generic assembler and back.

http://www.hsafoundation.com/
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7.3.2. Algorithms and data structures for parallel computing
Participants: Umut Acar, Vitalii Aksenov, Arthur Charguéraud, Mike Rainey, Filip Sieczkowski.

The ERC Deepsea project, with principal investigator Umut Acar, started in June 2013 and is hosted by the
Gallium team. This project aims at developing techniques for parallel and self-adjusting computation in the
context of shared-memory multiprocessors (i.e., multicore platforms). The project is continuing work that
began at Max Planck Institute for Software Systems between 2010 and 2013. As part of this project, we are
developing a C++ library, called PASL, for programming parallel computations at a high level of abstraction.
We use this library to evaluate new algorithms and data structures. We obtained three major results this year.

Our result on the development of fast and robust parallel graph traversal algorithms based on depth-first-
search has been presented at the ACM/IEEE Conference on High Performance Computing [15]. This algorithm
leverages a new sequence data structure for representing the set of edges remaining to be visited. In particular,
it uses a balanced split operation for partitioning the edges of a graph among the processors involved in the
computation. Compared with prior work, the new algorithm is designed to be efficient not just for particular
classes of graphs, but for all input graphs.

Our second result is a calculus for parallel computing on hardware shared memory computers such as modern
multicores. Many languages for writing parallel programs have been developed. These languages offer several
distinct abstractions for parallelism, such as fork-join, async-finish, futures, etc. While they may seem similar,
these abstractions lead to different semantics, language design and implementation decisions. In this project,
we consider the question of whether it would be possible to unify these approaches to parallelism. To this
end, we propose a calculus, called the DAG-calculus, which can encode existing approaches to parallelism
based on fork-join, async-finish, and futures, and possibly others. We have shown that the approach is realistic
by presenting an implementation in C++ and by performing an empirical evaluation. This work has been
submitted for publication.

Our third result concerns the development of parallel dynamic algorithms. This year, we started developing a
parallel dynamic algorithm for tree computations. The algorithm is dynamic in the sense that it admits changes
to the underlying tree in the form of insertions and deletions of edges and vertices and updates the computation
by doing total work that is linear in the size of the changes, but only logarithmic in the size of the tree. The
algorithm is parallel in the sense that the updates take place in parallel. Parallel algorithms have been studied
extensively in the past, but few of these are dynamic. Similarly, dynamic algorithms have also been studied
extensively in the past, but few of these are parallel. Our work thus explores what in retrospect seems like an
obvious gap in the literature. A paper describing this work is in preparation.

7.4. The OCaml language and system
7.4.1. The OCaml system

Participants: Damien Doligez, Alain Frisch [Lexifi SAS], Jacques Garrigue [University of Nagoya], Fabrice
Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane Street], Leo White [Jane
Street], Jeremy Yallop [OCaml Labs, Cambridge University].

This year, we released versions 4.02.2 and 4.02.3 of the OCaml system. These are minor releases that fix
about 100 bugs and implement 12 minor new features, including support for nonrecursive type definitions and
a higher-level interface with documentation generation tools.

Most of our activity was devoted to preparing the next major release of OCaml, version 4.03.0, which is
expected in the first quarter of 2016. The novelties we worked on include:

• Inline record types as arguments to constructors of sum types, combining the clarity and extensibility
brought by named record fields with the compact in-memory representation of unnamed constructor
arguments.

• Improved redudancy and exhaustiveness checks for pattern-matching over generalized algebraic data
types (GADTs) [41].
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• Improved unboxing optimizations for numbers, including the ability to mark arguments and results
of external C functions as unboxed.

• The garbage collector was made more incremental, so as to reduce the worst-case GC pause times.
• The native-code compiler was ported to two new architectures: PowerPC 64 bits (including IBM’s

new little-endian variant) and IBM zSystems.

On the organization side, we switched to Github as the central repository for the OCaml development sources.
Github facilitates collaborative work among the growing community of contributors to the OCaml code base.
In 2015, more than 100 contributors proposed small or large improvements to the OCaml compiler distribution.

7.4.2. Memory profiling OCaml applications
Participants: Fabrice Le Fessant, Çagdas Bozman [OCamlPro], Albin Coquereau [OCamlPro].

Most modern languages make use of automatic memory management to discharge the programmer from
the burden of explicitly allocating and releasing chunks of memory. As a consequence, when an application
exhibits an unexpected usage of memory, programmers need new tools to understand what is happening and
how to solve such an issue. In OCaml, the compact representation of values, with almost no runtime type
information, makes the design of such tools more complex.

In the past, we have experimented with different tools to profile the memory usage of real OCaml applications,
in particular one that saves snapshots of the heap after every garbage collection. Snapshots can then be analysed
to display the evolution of memory usage, with detailed information on the types of values, where they were
allocated and from where they are still reachable.

This year, we experimented in three new directions, mostly driven by the size of the snapshots to be analysed:
• We studied several ways of displaying snapshots. Because of the large amount of information

contained in a snapshot, it is hard for a typical user to find what he or she is looking for. We tried
multiple filtering methods, based on graph algorithms, to remove the least significant information
from the reports given to the user.

• We experimented with new algorithms to compress and analyse huge memory snapshots, i.e.,
snapshots that are too big to fit in the computer’s memory. Indeed, standard analyses on snapshots
bigger than the available memory are too long to run in practice because of random disk accesses.
Thus, we tried several compression methods for snapshots and graph-reduced them to fit in memory,
without losing any information, reaching a 50x speedup in complete analysis time.

• We implemented a new graph algorithm to merge sets of blocks in memory by the sets of roots they
are reachable from. Such a computation was heretofore supposed to be untractable in practice, but
could actually be computed in our case on huge compressed snapshots in reasonable time.

7.4.3. Advanced development tools for OCaml
Participants: Fabrice Le Fessant, Pierre Chambart [OCamlPro], Michael Laporte [OCamlPro].

In order to promote the use of OCaml in industrial contexts, we have worked on improving the tools that
accompany OCaml:

• We developed the first prototype of a native debugger for OCaml, based on the LLDB debugging
framework on top of LLVM. For that, we first generated a full OCaml binding for the LLDB library,
by parsing the C++ headers of the libraries and automatically generating OCaml and C++ stubs.
We were then able to use the OCaml binding to develop several tools, ranging from a simple tool
that displays the internal GC information of a finished OCaml application, to an almost complete
debugger, which displays OCaml values using runtime type information added for memory profiling.

• We also developed a new profiling framework for OCaml, called operf. The framework is composed
of two tools: operf-micro can be used to run micro-benchmarks directly from inside modified OCaml
compiler sources, while the operf-macro tool can be used to evaluate the impact of a new compiler
optimization on a large set of OPAM packages.

• Finally, we came up with new ideas for ocp-build, a generic building tool with OCaml-specific
support, to improve the expressiveness of its package description language and to easily describe
cross-compilation of OCaml packages.
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7.4.4. Error diagnosis in Menhir parsers
Participant: François Pottier.

LR parsers are powerful and efficient, but traditionally have done a poor job of explaining syntax errors.
Although it is easy to report where an error was detected, it seems difficult to explain what has been
understood so far and what is expected next. The OCaml and CompCert compilers, until now, have offered
little information to the user beyond the traditional “syntax error” message.

In 2003, Jeffery proposed associating a fixed diagnostic message with every state of the LR automaton
(therefore ignoring the automaton’s stack). This simple approach may seem tempting. However, a typical
automaton has hundreds or thousands of states. Not all of them can trigger an error, but it is difficult to tell
which can, and which cannot. Furthermore, for certain states, it is difficult (or even impossible) to write an
accurate diagnostic message, because some vital contextual information resides in the stack, which Jeffery’s
method cannot access.

In 2015, François Pottier proposed a reachability algorithm for LR automata, which he implemented in the
Menhir parser generator (see section 6.3). This algorithm allows finding out which states can trigger an error
and (therefore) require writing a diagnostic message. Furthermore, Pottier proposed two mechanisms for
influencing where errors are detected. If used appropriately, these mechanisms make it easier (or possible)
to write an accurate diagnostic message.

Pottier applied this approach to the C grammar in the front-end of the CompCert compiler, therefore allowing
CompCert to produce better diagnostic messages when a C program is syntactically incorrect.

A short paper describing this work will be presented at JFLA 2016 [29]. A longer paper is in submission.

7.4.5. Improvements to Menhir
Participants: Frédéric Bour [independent consultant], Jacques-Henri Jourdan, François Pottier, Yann Régis-
Gianas [team πr2], Gabriel Scherer.

In 2015, The Menhir parser generator (see section 6.3) was extended with many new features, several of which
originated in the Merlin IDE for OCaml and were ported back into Menhir.

• The parsers generated by Menhir are now incremental: they can be stopped and resumed at any point,
at essentially no cost. This is exploited in Merlin, where the text is re-parsed after every keystroke.

• The state of the parser can be inspected by the user. This allows building custom libraries, outside
Menhir, for error diagnosis, error recovery, etc. This is exploited in Merlin, where a valid abstract
syntax tree is built (and passed to the OCaml type-checker) even if the text contains syntax errors.

• A reachability algorithm has been implemented (see section 7.4.4). It allows finding out which states
can trigger an error and (therefore) require a diagnostic message to be written. It is accompanied with
several tools that help maintain the database of diagnostic messages as the grammar evolves.

• Compatibility with ocamlyacc has been improved, in particular insofar as the computation of
locations is concerned. This should help port the OCaml parser from ocamlyacc to Menhir, a
transition that we envision making in the near future. This should help improve the quality of
OCaml’s syntax error messages.

7.5. Software specification and verification
7.5.1. Machine-checked proofs of programs, including time complexity

Participants: Arthur Charguéraud, Armaël Guéneau, François Pottier.

In a security-critical setting, it is important to prove that a program is correct, and to do so formally, that is, via
a machine-checked proof. It is also important, one may argue, to prove that the program does not require more
resources than expected (where a “resource” may be time, memory space, disk space, network bandwidth,
etc.). Otherwise, even though the program is “correct” in theory, it may turn out to be unusable in practice.

https://github.com/the-lambda-church/merlin/
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Separation Logic, extended with the notion of a “time credit”, a permission to perform one step of computation,
allows reasoning about the correctness and the (amortized) time complexity of a program. Using this approach,
which Charguéraud implemented in the CFML tool, Charguéraud and Pottier produced a machine-checked
proof of the correctness and time complexity of a Union-Find data structure, implemented as an OCaml
module. This demonstrates that this approach scales up to difficult complexity analyses and down to the level
of actual executable code (as opposed to pseudo-code). This work was presented at ITP 2015 [17].

During his M2 internship, Armaël Guéneau extended this approach so as to allow working conveniently with
the big-O notation. He extended the CFML library and verified the time complexity of a binary random access
list data structure due to Okasaki. This work has not been published yet.

7.5.2. Verified property-based random testing
Participants: Zoe Paraskevopoulou [ENS Cachan, team Prosecco], Cătălin Hriţcu [team Prosecco], Maxime
Dénès, Leonidas Lampropoulos [U. of Pennsylvania], Benjamin C. Pierce [U. of Pennsylvania].

Property-based random testing has been popularized in the functional programming community by tools like
QuickCheck. Its integration with a proof assistant creates an interesting opportunity: reusable or tricky testing
code can be formally verified using the proof assistant itself.

We introduced a novel methodology for formally verified property-based testing and implemented it as a
foundational verification framework for QuickChick, a port of QuickCheck to Coq. Our framework enables
one to verify that the executable testing code is testing the right Coq property. To make verification tractable,
we provided a systematic way for reasoning about the set of outcomes a random data generator can produce
with non-zero probability, while abstracting away from the actual probabilities.

We also applied this methodology to a complex case study on testing an information-flow control abstract
machine, demonstrating that our verification methodology is modular and scalable and that it requires minimal
changes to existing code.

Maxime Dénès more specifically contributed to the development of the QuickChick Coq plug-in, to the
development of Coq libraries for reasoning on the set of outcomes of random generators and to the verification
of QuickChick’s combinator library.

This work was presented at ITP 2015 [20].

7.5.3. Tools for TLA+
Participants: Damien Doligez, Leslie Lamport [Microsoft Research], Martin Riener [team VeriDis], Stephan
Merz [team VeriDis].

Damien Doligez is head of the “Tools for Proofs” team in the Microsoft-Inria Joint Centre. The aim of this
project is to extend the TLA+ language with a formal language for hierarchical proofs, formalizing Lamport’s
ideas [43], and to build tools for writing TLA+ specifications and mechanically checking the proofs.

This year, we released version 1.4.3 of the TLA+ Proof System (TLAPS) [40], the part of the TLA+ tools that
handles mechanical checking of TLA+ proofs.

This was the last year of the ADN4SE project, which develops tools for rapid development of real-time
software based on the PharOS real-time kernel developed by CEA. Within this project we built, in collaboration
with CEA, a formal proof of determinacy of the message-passing subsystem of PharOS. We used this
experience to improve our TLA+ tools and libraries.

We have started a rewrite of TLAPS from scratch, which will make it possible to handle all aspects of the
TLA+ language, including temporal formulas and their proofs.

7.5.4. Certified distributed algorithms for autonomous mobile robots
Participants: Pierre Courtieu, Xavier Urbain [ENSIIE], Sébastien Tixeuil [U. Pierre et Marie Curie], Lionel
Rieg [Collège de France].
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The variety and complexity of the tasks that can be performed by autonomous robots are increasing. Many
applications envision groups of mobile robots that self-organise and cooperate toward the resolution of
common objectives, in the absence of any central coordinating authority.

We are developing a Coq-based verification platform for distributed algorithms for autonomous robots. This
year, we mechanically proved and slightly generalized a non-trivial proof of impossibility of such an algorithm
under certain hypotheses [14]. We also proved several algorithms in the literature, demonstrating the viability
of the platform [13].

7.5.5. Contributions to ProofGeneral, an IDE for Coq
Participant: Pierre Courtieu.

User interface is a crucial issue for theorem provers like Coq. ProofGeneral [38], an emacs-based prover
interface, is widely used among Coq users. In addition to synchronizing with the evolutions of Coq itself, we
contributed many improvements to ProofGeneral during the past year, among which: a better debugging mode
and message printing, user assistance for naming hypotheses and indenting proof scripts, and more.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. The Caml Consortium

Participants: Xavier Leroy [ contact ], Damien Doligez, Didier Rémy.

The Caml Consortium is a formal structure where industrial and academic users of OCaml can support the
development of the language and associated tools, express their specific needs, and contribute to the long-term
stability of Caml. Membership fees are used to fund specific developments targeted towards industrial users.
Members of the Consortium automatically benefit from very liberal licensing conditions on the OCaml system,
allowing for instance the OCaml compiler to be embedded within proprietary applications.

The Consortium currently has 12 member companies:

• Aesthetic Integration

• Bloomberg

• CEA

• Citrix

• Dassault Aviation

• Dassault Systèmes

• Esterel Technologies

• Jane Street

• LexiFi

• Microsoft

• OCamlPro

• SimCorp

For a complete description of this structure, refer to http://caml.inria.fr/consortium/. Xavier Leroy chairs the
scientific committee of the Consortium.

8.1.2. Scientific Advisory for OCamlPro
Participant: Fabrice Le Fessant.

http://caml.inria.fr/consortium/


Project-Team GALLIUM 17

OCamlPro is a startup company founded in 2011 by Fabrice Le Fessant to promote the use of OCaml in the
industry, by providing support, services and tools for OCaml to software companies. OCamlPro performs a lot
of research and development, in close partnership with academic institutions such as IRILL, Inria and Univ.
Paris Sud, and is involved in several collaborative projects with Gallium, such as the Bware ANR, the Vocal
ANR and the Secur-OCaml FUI.

Since 2011, Fabrice Le Fessant is a scientific advisor at OCamlPro, as part of a collaboration contract for Inria,
to transfer his knowledge on the internals of the OCaml runtime and the OCaml compilers.

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR projects
9.1.1.1. BWare

Participants: Damien Doligez, Fabrice Le Fessant.

The “BWare” project (2012–2016) is coordinated by David Delahaye at Conservatoire National des Arts et
Métiers and funded by the Ingénierie Numérique et Sécurité programme of Agence Nationale de la Recherche.
BWare is an industrial research project that aims to provide a mechanized framework to support the automated
verification of proof obligations coming from the development of industrial applications using the B method
and requiring high guarantees of confidence.

9.1.1.2. Verasco
Participants: Jacques-Henri Jourdan, Xavier Leroy.

The “Verasco” project (2012–2016) is coordinated by Xavier Leroy and funded by the Ingéniérie Numérique et
Sécurité programme of Agence Nationale de la Recherche. The objective of this 4.5-year project is to develop
and formally verify a static analyzer based on abstract interpretation, and interface it with the CompCert C
verified compiler.

9.1.1.3. Vocal
Participants: Xavier Leroy, François Pottier.

The “Vocal” project (2015–2020) aims at developing the first mechanically verified library of efficient general-
purpose data structures and algorithms. It is funded by Agence Nationale de la Recherche under its “appel à
projets générique 2015”.

The library will be made available to all OCaml programmers and will be of particular interest to implementors
of safety-critical OCaml programs, such as Coq, Astrée, Frama-C, CompCert, Alt-Ergo, as well as new
projects. By offering verified program components, our work will provide the essential building blocks that
are needed to significantly decrease the cost of developing new formally verified programs.

9.1.2. FSN projects
9.1.2.1. ADN4SE

Participants: Damien Doligez, Martin Riener.

The “ADN4SE” project (2012–2016) is coordinated by the Sherpa Engineering company and funded by the
Briques Génériques du Logiciel Embarqué programme of Fonds national pour la Société Numérique. The
aim of this project is to develop a process and a set of tools to support the rapid development of embedded
software with strong safety constraints. Gallium is involved in this project to provide tools and help for the
formal verification in TLA+ of some important aspects of the PharOS real-time kernel, on which the whole
project is based.
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9.1.2.2. CEEC
Participants: Maxime Dénès, Xavier Leroy.

The “CEEC” project (2011–2015) is coordinated by the Prove & Run company and also involves Esterel
Technologies and Trusted Labs. It is funded by the Briques Génériques du Logiciel Embarqué programme
of Fonds national pour la Société Numérique. The CEEC project develops an environment for the develop-
ment and certification of high-security software, centered on a new domain-specific language designed by
Prove & Run. Our involvement in this project focuses on the formal verification of a C code generator for this
domain-specific language, and its interface with the CompCert C verified compiler.

9.1.3. FUI Projects
9.1.3.1. Secur-OCaml

Participants: Damien Doligez, Fabrice Le Fessant.

The “Secur-OCaml” project (2015–2018) is coordinated by the OCamlPro company, with a consortium
focusing on the use of OCaml in security-critical contexts, while OCaml is currently mostly used in safety-
critical contexts. Gallium is invoved in this project to integrate security features in the OCaml language, to
build a new independant interpreter for the language, and to update the recommendations for developers issued
by the former LaFoSec project of ANSSI.

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. Deepsea

Participants: Umut Acar, Vitalii Aksenov, Arthur Charguéraud, Mike Rainey, Filip Sieczkowski.

The Deepsea project (2013–2018) is coordinated by Umut Acar and funded by FP7 as an ERC Starting Grant.
Its objective is to develop abstractions, algorithms and languages for parallelism and dynamic parallelism,
with applications to problems on large data sets.

9.2.2. ITEA3 Projects
9.2.2.1. Assume

Participants: Xavier Leroy, Luc Maranget.

ASSUME (2015–2018) is an ITEA3 project involving France, Germany, Netherlands, Turkey and Sweden.
The French participants are coordinated by Jean Souyris (Airbus) and include Airbus, Kalray, Sagem, ENS
Paris, and Inria Paris. The goal of the project is to investigate the usability of multicore and manycore
processors for critical embedded systems. Our involvement in this project focuses on the formalisation and
verification of memory models and of automatic code generators from reactive languages.

9.3. International Initiatives
9.3.1. Inria International Partners
9.3.1.1. Informal International Partners

• Princeton University: interactions between the CompCert verified C compiler and the Verified
Software Toolchain developed at Princeton.

• Cambridge University and Microsoft Research Cambridge: formal modeling and testing of weak
memory models.

9.4. International Research Visitors
9.4.1. Visits of International Scientists
9.4.1.1. Research stays abroad

From November 2014 to June 2015, Damien Doligez was on a sabbatical at Jane Street (New York, USA), a
financial company (a member of the Caml Consortium) that invests considerable R&D in the OCaml language
and system.
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10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific events organisation
10.1.1.1. Member of organizing committees

Didier Rémy is a member of the steering committees of the OCaml workshop and the ML Family workshop.

10.1.2. Scientific events selection
10.1.2.1. Chair of conference program committees

Arthur Charguéraud served as program committee chair for for the second International Workshop on Coq for
Programming Languages (CoqPL 2016).

Damien Doligez served as program committee chair for the OCaml Users and Developers workshop (OUD
2015).

10.1.2.2. Member of conference program committees

Umut Acar was a member of the program committees of the 30th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2016) and of the workshop on Algorithms and Systems for MapReduce and
Beyond (BeyondMR 2016). He was also a member of the External Review Committee of the 43rd ACM
Symposium on Principles of Programming Languages (POPL 2016).

Xavier Leroy was a member of the program committees of the 1st Summit on Advances in Programming
Languages (SNAPL 2015) and of the Compiler Construction conference (CC 2016).

Xavier Leroy was a member of the award committee for the 2015 ACM SIGPLAN Software System award.

Mike Rainey was a member of the program committee of the International Conference on Functional
Programming (ICFP 2015).

Arthur Charguéraud and Didier Rémy were members of the program committee of the European Symposium
on Programming Languages (ESOP 2016).

10.1.2.3. Reviewer

In 2015, the members of Gallium reviewed at least 80 conference submissions.

10.1.3. Journal
10.1.3.1. Member of editorial boards

Xavier Leroy is area editor (programming languages) for the Journal of the ACM. He is on the editorial board
for the Research Highlights column of Communications of the ACM. He is a member of the editorial board of
the Journal of Automated Reasoning.

François Pottier is a member of the editorial board of the Journal of Functional Programming.

10.1.3.2. Reviewer

In 2015, the members of Gallium reviewed at least 4 journal submissions and 10 grant proposals.

10.1.4. Leadership within the scientific community
Pierre Courtieu and Xavier Leroy are members of the Coq steering commitee.

10.1.5. Research administration
Xavier Leroy is délégué scientifique adjoint of Inria Paris-Rocquencourt and an appointed member of Inria’s
Commission d’Évaluation. In 2015, he participated in the following Inria hiring and promotion committees:
jury d’admissibilité CR2 Paris-Rocquencourt (vice-chair); jury d’admissibilité CR2 Nancy; and promotions
CR1. He was a member of the hiring committee for a professor position at ENS Rennes.
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Luc Maranget is an elected member of the Comité Technique Inria.

Luc Maranget chairs the Commission des utilisateurs des moyens informatiques – Recherche of Inria Paris-
Rocquencourt.

François Pottier is a member of the Commission de Développement Technologique and (as of January 2016)
chairs the Comité de Suivi Doctoral of Inria Paris.

Didier Rémy represents Inria in the commission des études of the MPRI master, co-organized by U. Paris
Diderot, ENS Cachan, ENS Paris, and École Polytechnique.

Didier Rémy is Inria’s Deputy Scientific Director (ADS) in charge of Algorithmics, Programming, Software
and Architecture.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master: Xavier Leroy and Didier Rémy, “Functional programming languages”, 45h, M2 (MPRI),
Université Paris Diderot, France.

Master: Luc Maranget, “Semantics, languages and algorithms for multi-core programming”, 13.5h,
M2 (MPRI), Université Paris Diderot, France.

Licence: François Pottier, “Programmation avancée” (INF441), 20h, L3, École Polytechnique,
France.

Master: François Pottier, “Compilation” (INF564), 20h, M1, École Polytechnique, France.

Master: François Pottier, “Programming with permissions in Mezzo”, 4.5h, M2, 15th SFM summer
school, Bertinoro, Italy.

Licence: Mike Rainey and Umut Acar, “Theory and practice of parallel computing” (part of a longer
course entitled 15-210, “Parallel and Sequential Data Structures and Algorithms”), 9h, L3, Carnegie
Mellon University, USA.

10.2.2. Supervision
M2 (Master Pro): Keryan Didier, Université Denis Diderot, supervised by Luc Maranget.

M2 (MPRI): Benjamin Farinier, Université Paris Diderot, supervised by François Pottier.

M2 (MPRI): Armaël Guéneau, ENS Lyon, supervised by Arthur Charguéraud and François Pottier.

PhD in progress: Vitalii Aksenov, “Parallel Dynamic Algorithms”, Université Paris Diderot, since
September 2015, supervised by Umut Acar (co-advised with Anatoly Shalyto, ITMO University of
Saint Petersburg, Russia).

PhD in progress: Jacques-Henri Jourdan, “Verasco: a formally verified C static analyzer”, Université
Paris Diderot, since September 2012, supervised by Xavier Leroy.

PhD in progress: Gabriel Scherer, “Which types have a unique inhabitant?”, Université Paris Diderot,
since October 2011, supervised by Didier Rémy.

PhD in progress: Thomas Williams, “Putting Ornaments into practice”, Université Paris Diderot,
since September 2014, supervised by Didier Rémy.

10.2.3. Juries
Pierre Courtieu was a member of the Ph.D. jury of Sylvain Dailler, Université d’Orléans, December 2015.

Xavier Leroy was a member of the PhD juries of Tie Cheng, ENS Paris, September 2015; Vincent Laporte,
Université Rennes 1, November 2015; and Robbert Krebbers, Radboud University, December 2015.

François Pottier was president of the Ph.D. jury of Bruno Bernardo, École Polytechnique, September 2015.
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10.3. Popularization
Jacques-Henri Jourdan is involved in the organization of the Junior Seminar of Inria Paris-Rocquencourt.

Jacques-Henri Jourdan and Fabrice Le Fessant manned a stand at “Salon Culture & Jeux Mathématiques” in
Paris.

Fabrice Le Fessant is one of the main organizers of the OCaml Meetup in Paris.

Xavier Leroy gave a popularization talk on critical software and its formal verification at the computer science
colloquium of University Pierre et Marie Curie.

Since 2012, the Gallium team has published a research blog at http://gallium.inria.fr/blog/, edited by Gabriel
Scherer. This blog continued its activity in 2015, with 10 posts from 8 different authors.
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