
Activity Report 2015

Project-Team INDES

Secure Diffuse Programming

RESEARCH CENTER
Sophia Antipolis - Méditerranée

THEME
Distributed programming and Soft-
ware engineering

Table of contents

1. Members . 1
2. Overall Objectives . 2
3. Research Program . 2

3.1. Parallelism, concurrency, and distribution 2
3.2. Web and functional programming 2
3.3. Security of diffuse programs 3

4. Application Domains .3
4.1. Web programming 3
4.2. Multimedia 3
4.3. Robotics 4

5. New Software and Platforms . 4
5.1.1. The HOP web programming environment 4
5.1.2. The Bigloo compiler 4

6. New Results . 5
6.1. Web programming 5

6.1.1. Hop.js 5
6.1.2. Data source 6

6.2. Distributed programming 6
6.3. Types 6

6.3.1. Behavioural Types 6
6.3.2. Abstract Rewriting Systems 6

6.4. Security 7
6.4.1. Hybrid Typing of Secure Information Flow in a JavaScript-like Language 7
6.4.2. Modular Monitor Extensions for Information Flow Security in JavaScript 7
6.4.3. Relaxed Noninterference 7
6.4.4. Hybrid Monitoring of Attacker knowledge 7
6.4.5. A Taxonomy of Information Flow Monitors 7
6.4.6. A Study of JavaScript constructs used in Top Alexa Sites 8

7. Partnerships and Cooperations . 8
7.1. National Initiatives 8

7.1.1. ANR AJACS 8
7.1.2. FUI UCF 8

7.2. European Initiatives 9
7.2.1. FP7 9

7.2.1.1. MEALS 9
7.2.1.2. RAPP 9

7.2.2. Collaborations in European Programs, except FP7 & H2020 9
7.3. International Research Visitors 10

8. Dissemination . 10
8.1. Promoting Scientific Activities 10

8.1.1. Scientific events organisation 10
8.1.1.1. General chair, scientific chair 10
8.1.1.2. Member of the organizing committees 10

8.1.2. Scientific events selection 11
8.2. Teaching - Supervision - Juries 11

8.2.1. Teaching 11
8.2.2. Supervision 11
8.2.3. Juries 11

8.3. Transfer 12

2 Activity Report INRIA 2015

8.3.1. Price discrimination in e-commerce 12
8.3.2. WebRobotics 12

9. Bibliography .13

Project-Team INDES

Creation of the Team: 2009 January 01, updated into Project-Team: 2010 July 01

Keywords:

Computer Science and Digital Science:
1.3. - Distributed Systems
2. - Software
2.1. - Programming Languages
2.1.3. - Functional programming
2.1.7. - Distributed programming
2.1.8. - Synchronous languages
2.1.9. - Dynamic languages
2.2.1. - Static analysis
2.2.3. - Run-time systems
4. - Security and privacy
4.3.3. - Cryptographic protocols
4.6. - Authentication
4.7. - Access control
4.8. - Privacy-enhancing technologies

Other Research Topics and Application Domains:
6.3.1. - Web
6.4. - Internet of things
9.4.1. - Computer science
9.8. - Privacy

1. Members
Research Scientists

Manuel Serrano [Team leader, Inria, Senior Researcher, HdR]
Nataliia Bielova [Inria, Researcher]
Ilaria Castellani [Inria, Researcher]
Tamara Rezk [Inria, Researcher]
Bernard Serpette [Inria, Researcher]

Engineers
Cédric Duminy [Inria, from May 2015]
Vincent Prunet [Inria]
Erwan Demairy [Inria, until Oct 2015]

PhD Students
Yoann Couillec [Inria, until Oct 2015]
Francis Doliére Some [Inria, from Nov 2015]
Colin Vidal [Inria, from Jul 2015]

Visiting Scientist
Vineet Rajani [MPI, until Mar 2015]

Administrative Assistant

2 Activity Report INRIA 2015

Nathalie Bellesso [Inria]
Others

Gérard Boudol [Emeritus Researcher]
Francis Doliére Some [Inria, intern, from Jul 2015 until Sep 2015]
Rohan Katyal [Inria, intern, from Jun 2015 until Aug 2015]
Diana Ioana Proteasa Nicola [M2 intern, until Jan 2015]

2. Overall Objectives

2.1. Overall Objectives
The goal of the Indes team is to study models for diffuse computing and develop languages for secure
diffuse applications. Diffuse applications, of which Web 2.0 applications are a notable example, are the new
applications emerging from the convergence of broad network accessibility, rich personal digital environment,
and vast sources of information. Strong security guarantees are required for these applications, which
intrinsically rely on sharing private information over networks of mutually distrustful nodes connected by
unreliable media.

Diffuse computing requires an original combination of nearly all previous computing paradigms, ranging from
classical sequential computing to parallel and concurrent computing in both their synchronous / reactive and
asynchronous variants. It also benefits from the recent advances in mobile computing, since devices involved
in diffuse applications are often mobile or portable.

The Indes team contributes to the whole chain of research on models and languages for diffuse computing,
going from the study of foundational models and formal semantics to the design and implementation of
new languages to be put to work on concrete applications. Emphasis is placed on correct-by-construction
mechanisms to guarantee correct, efficient and secure implementation of high-level programs. The research is
partly inspired by and built around Hop, the web programming model proposed by the former Mimosa team,
which takes the web as its execution platform and targets interactive and multimedia applications.

3. Research Program

3.1. Parallelism, concurrency, and distribution
Concurrency management is at the heart of diffuse programming. Since the execution platforms are highly het-
erogeneous, many different concurrency principles and models may be involved. Asynchronous concurrency is
the basis of shared-memory process handling within multiprocessor or multicore computers, of direct or fifo-
based message passing in distributed networks, and of fifo- or interrupt-based event handling in web-based
human-machine interaction or sensor handling. Synchronous or quasi-synchronous concurrency is the basis of
signal processing, of real-time control, and of safety-critical information acquisition and display. Interfacing
existing devices based on these different concurrency principles within HOP or other diffuse programming
languages will require better understanding of the underlying concurrency models and of the way they can
nicely cooperate, a currently ill-resolved problem.

3.2. Web and functional programming
We are studying new paradigms for programming Web applications that rely on multi-tier functional program-
ming [6]. We have created a Web programming environment named HOP. It relies on a single formalism for
programming the server-side and the client-side of the applications as well as for configuring the execution
engine.

Project-Team INDES 3

HOP is a functional language based on the SCHEME programming language. That is, it is a strict functional
language, fully polymorphic, supporting side effects, and dynamically type-checked. HOP is implemented as
an extension of the BIGLOO compiler that we develop [7]. In the past, we have extensively studied static
analyses (type systems and inference, abstract interpretations, as well as classical compiler optimizations) to
improve the efficiency of compilation in both space and time.

3.3. Security of diffuse programs
The main goal of our security research is to provide scalable and rigorous language-based techniques that can
be integrated into multi-tier compilers to enforce the security of diffuse programs. Research on language-based
security has been carried on before in former Inria teams [2], [1]. In particular previous research has focused
on controlling information flow to ensure confidentiality.

Typical language-based solutions to these problems are founded on static analysis, logics, provable cryptog-
raphy, and compilers that generate correct code by construction [4]. Relying on the multi-tier programming
language HOP that tames the complexity of writing and analysing secure diffuse applications, we are studying
language-based solutions to prominent web security problems such as code injection and cross-site scripting,
to name a few.

4. Application Domains
4.1. Web programming

Along with games, multimedia applications, electronic commerce, and email, the web has popularized
computers for daily life. The revolution is engaged and we may be at the dawn of a new era of computing where
the web is a central element. The web constitutes an infrastructure more versatile, polymorphic, and open, in
other words, more powerful, than any dedicated network previously invented. For this very reason, it is likely
that most of the computer programs we will write in the future, for professional purposes as well as for our own
needs, will extensively rely on the web. In addition to allowing reactive and graphically pleasing interfaces,
web applications are de facto distributed. Implementing an application with a web interface makes it instantly
open to the world and accessible from much more than one computer. The web also partially solves the
problem of platform compatibility because it physically separates the rendering engine from the computation
engine. Therefore, the client does not have to make assumptions on the server hardware configuration, and
vice versa. Lastly, HTML is highly durable. While traditional graphical toolkits evolve continuously, making
existing interfaces obsolete and breaking backward compatibility, modern web browsers that render on the
edge web pages are still able to correctly display the web pages of the early 1990?s. For these reasons, the
web is arguably ready to escape the beaten track of n-tier applications, CGI scripting and interaction based on
HTML forms. However, we think that it still lacks programming abstractions that minimize the overwhelming
amount of technologies that need to be mastered when web programming is involved. Our experience on
reactive and functional programming is used for bridging this gap.

4.2. Multimedia
Electronic equipments are less and less expensive and more and more widely spread out. Nowadays, in
industrial countries, computers are almost as popular as TV sets. Today, almost everybody owns a mobile
phone. Many are equipped with a GPS or a PDA. Modem, routers, NASes and other network appliances are
also commonly used, although they are sometimes sealed under proprietary packaging such as the Livebox or
the Freebox. Most of us evolve in an electronic environment which is rich but which is also populated with
mostly isolated devices. The first multimedia applications on the web have appeared with the Web 2.0. The
most famous ones are Flickr, YouTube, or Deezer. All these applications rely on the same principle: they allow
roaming users to access the various multimedia resources available all over the Internet via their web browser.
The convergence between our new electronic environment and the multimedia facilities offered by the web will
allow engineers to create new applications. However, since these applications are complex to implement this
will not happen until appropriate languages and tools are available. In the Indes team, we develop compilers,
systems, and libraries that address this problem.

4 Activity Report INRIA 2015

4.3. Robotics
The web is the de facto standard of communication for heterogeneous devices. The number of devices able to
access the web is permanently increasing. Nowadays, even our mobile phones can access the web. Tomorrow it
could even be the turn of our wristwatches! The web hence constitutes a compelling architecture for developing
applications relying on the ambient computing facilities. However, since current programming languages do
not allow us to develop easily these applications, ambient computing is currently based on ad-hoc solutions.
Programming ambient computing via the web is still to be explored. The tools developed in the Indes team
allow us to build prototypes of a robot as a web entity, and the use of remote web services to manage, monitor
or extend the features of the robot. Among the direct benefits of relying on a web framework for robotics are
the ability to use any web enabled device such as a smartphone or tablet to drive the robot.

5. New Software and Platforms

5.1. Web programming
Participants: Yoann Couillec, Colin Vidal, Vincent Prunet, Manuel Serrano [correspondant].

5.1.1. The HOP web programming environment
HOP is a higher-order language designed for programming interactive web applications such as web agendas,
web galleries, music players, etc. It exposes a programming model based on two computation levels. The first
one is in charge of executing the logic of an application while the second one is in charge of executing the
graphical user interface. HOP separates the logic and the graphical user interface but it packages them together
and it supports strong collaboration between the two engines. The two execution flows communicate through
function calls and event loops. Both ends can initiate communications.

The HOP programming environment consists in a web broker that intuitively combines in a single architecture
a web server and a web proxy. The broker embeds a HOP interpreter for executing server-side code and a HOP
client-side compiler for generating the code that will get executed by the client.

An important effort is devoted to providing HOP with a realistic and efficient implementation. The HOP
implementation is validated against web applications that are used on a daily-basis. In particular, we have
developed HOP applications for authoring and projecting slides, editing calendars, reading RSS streams, or
managing blogs.

HOP has won the software open source contest organized by the ACM Multimedia Conference 2007. It is
released under the GPL license. It is available at http://hop.inria.fr.

• Participants: Manuel Serrano

• Contact: Manuel Serrano

• URL: http://hop.inria.fr

5.1.2. The Bigloo compiler
The programming environment for the Bigloo compiler [7] is available on the Inria Web site at the following
URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo. The distribution contains an optimizing compiler that
delivers native code, JVM bytecode, and .NET CLR bytecode. It contains a debugger, a profiler, and various
Bigloo development tools. The distribution also contains several user libraries that enable the implementation
of realistic applications.

http://hop.inria.fr
http://hop.inria.fr
http://www-sop.inria.fr/teams/indes/fp/Bigloo

Project-Team INDES 5

BIGLOO was initially designed for implementing compact stand-alone applications under Unix. Nowadays, it
runs harmoniously under Linux and MacOSX. The effort initiated in 2002 for porting it to Microsoft Windows
is pursued by external contributors. In addition to the native back-ends, the BIGLOO JVM back-end has enabled
a new set of applications: Web services, Web browser plug-ins, cross platform development, etc. The new
BIGLOO .NET CLR back-end that is fully operational since release 2.6e enables a smooth integration of
Bigloo programs under the Microsoft .NET environment.

• Participants: Manuel Serrano

• Contact: Manuel Serrano

• URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo

6. New Results

6.1. Web programming
Participants: Yoann Couillec, Vincent Prunet, Manuel Serrano [correspondant].

6.1.1. Hop.js
Multitier programming languages unify within a single formalism and a single execution environment the
programming of the different tiers of distributed applications. On the Web, this programming paradigm unifies
the client tier, the server tier, and, when one is used, the database tier. This homogenization offers several
advantages over traditional Web programming that rely on different languages and different environments for
the two or three tiers of the Web application: programmers have only one language to learn, maintenance and
evolution are simplified by the use of a single formalism, global static analyses are doable as a single semantics
is involved, debugging and other runtime tools are more powerful as they access global informations about the
execution.

The three first multitier platforms for the Web all appeared in 2006: GWT (a.k.a., Google Web Toolkit),
Links, and Hop [6], [5]. Each relied on a different programming model and languages. GWT maps the Java
programming model on the Web, as it allows, Java/Swing likes programs to be compiled and executed on
the Web; Links is functional language with experimental features such as the storing of the whole execution
context on the client; Hop is based on the Scheme programming language. These three pioneers have open the
path for the other multitier languages such as, Ocsigen for Ocaml, UrWeb, js-scala, etc.

In spite of their interesting properties, multitier languages have not become that popular on the Web. Today,
only GWT is widely used in industrial applications but arguably GWT is not a fully multitier language
as developing applications with GWT requires explicit JavaScript and HTML programming. This lack of
popularity of other systems is likely due to their core based languages than to the programming model itself.

JavaScript is the defacto standard on the Web. Since the mid 90’s, it is the language of the client-side
programming and more recently, with systems like Node.js, it is also a viable solution for the server-side
programming. As we are convinced by the virtues of multitier programming we have started a new project
consisting of enabling multitier programming JavaScript. We have created a new language called HopScript,
which is a minimalist extension of JavaScript for multitier programming, and we have implemented a brand
new runtime environment called Hop.js. This environment contains a builtin Web server, on-the-fly HopScript
compilers, and many runtime libraries.

HopScript is a super set of JavaScript, i.e., all JavaScript programs are legal HopScript programs. Hop.js is
a compliant JavaScript execution environment as it succeeds at 99% of the Ecma 262 tests suite. The Hop.js
environment also aims at Node.js compatibility. In its current version it supports about 70% of the Node.js
runtime environment. In particular, it fully supports the Node.js modules, which lets Hop programs reuse
existing Node.js modules as is.

http://www-sop.inria.fr/teams/indes/fp/Bigloo

6 Activity Report INRIA 2015

After a full year of active development to enhance JavaScript and Node.js compatibility, to incorporate features
of JavaScript 1.6, and to design new language constructs for machine-to-machine communication, we are now
ready to release Hop.js. This will appear at the beginning of 2016.

6.1.2. Data source
During the past few years the volume of accumulated data has increased dramatically. New kinds of data
stores have emerged as NoSQL family stores. Many modern applications now collect, analyze, and produce
data from several heterogeneous sources. However implementing such applications is still difficult because of
lack of appropriate tools and formalisms. We propose a solution to this problem in the context of the JavaScript
programming language by extending array comprehensions. Our extension allows programmers to query data
from usual stores, such as SQL databases, NoSQL databases, Semantic Web data repositories, Web pages, or
even custom user defined data structures. The extension has been implemented in the Hop.js system. It has
been described in the paper [10], which has been presented at the ACM DBPL’15 conference.

6.2. Distributed programming
Participants: Gérard Boudol, Johan Grande, Manuel Serrano [correspondant].

Shared-memory concurrency is a classic concurrency model which, among other things, makes it possible to
take advantage of multicore processors that are now widespread in personal computers. Concurrent programs
are prone to deadlocks which are notoriously hard to predict and debug. Programs using mutexes, a very
popular synchronization mechanism, are no exception.

We have studied deadlock avoidance methods with the aim of making programming with mutexes easier. We
first studied a method that uses a static analysis by means of a type and effect system, then a variation on this
method in a dynamically typed language.

We developed more the second method. It mixes deadlock prevention and avoidance to provide an easy-to-use
and expressive deadlock-free locking function. We implemented it as a Hop library. This lead us to develop a
starvation-free algorithm to simultaneously acquire an arbitrary number of mutexes, and to identify the concept
of asymptotic deadlock. While doing so, we also developed an optimization of exceptions (finally blocks).

Our performance tests seem to show that using our library has negligible impact on the performance of real-life
applications. Most of our work could be applied to other structured programming languages such as Java.

This work has been presented at the 17th International Symposium on Principles and Practice of Declarative
Programming (PPDP’15) [13]. More details can be found in Grande’s PhD thesis [8].

6.3. Types
Participants: Ilaria Castellani, Bernard Serpette.

6.3.1. Behavioural Types
The survey paper https://hal.inria.fr/hal-01213201 presents a state-of-the-art of a recent trend of research on the
use of behavioural types for specifying and analysing security properties of communication-centred systems.
It is essentially an outcome of the working group on security of the BETTY COST Action, and it offers a
unified overview of various proposals that have been put forward in the last few years, both within the BETTY
community and outside it, to combine security analysis with behavioural types.

6.3.2. Abstract Rewriting Systems
We have formalised, with the Coq system, the beginning of Paul-André Melliès’s thesis concerning abstract
rewriting systems. Behind the interest of studying rewriting systems, which are the roots of all small step
semantics of programming languages, this particular formalisation was attractive since it gives a concrete
example where we have to manage dependant types.

This was done in collaboration with Eduardo Bonelli and Pablo Barenbaum of University of Quilmes,
Argentina. The specification and the proofs of this work take 2200 lines of Coq.

Project-Team INDES 7

6.4. Security
Participants: Ilaria Castellani, Francis Doliere Some, Nataliia Bielova, Bernard Serpette, Tamara Rezk
[correspondant].

6.4.1. Hybrid Typing of Secure Information Flow in a JavaScript-like Language
We propose a novel type system for securing information flow in a core of JavaScript. This core takes
into account the defining features of the language, such as prototypical inheritance, extensible objects, and
constructs that check the existence of object properties. We design a hybrid version of the proposed type
system. This version infers a set of assertions under which a program can be securely accepted and instruments
it so as to dynamically check whether these assertions hold. By deferring rejection to runtime, the hybrid
version can typecheck secure programs that purely static type systems cannot accept.

This work has been published at the 10th International Symposium on Trustworthy Global Computing [11].

6.4.2. Modular Monitor Extensions for Information Flow Security in JavaScript
Client-side JavaScript programs often interact with the web page into which they are included, as well as with
the browser itself, through APIs such as the DOM API, the XMLHttpRequest API, and the W3C Geolocation
API. Precise reasoning about JavaScript security must therefore take API invocation into account. However,
the continuous emergence of new APIs, and the heterogeneity of their forms and features, renders API behavior
a moving target that is particularly hard to capture. To tackle this problem, we propose a methodology
for modularly extending sound JavaScript information flow monitors with a generic API. Hence, to verify
whether an extended monitor complies with the proposed noninterference property, our methodology requires
only to prove that the API satisfies a predefined set of conditions. In order to illustrate the practicality of
our methodology, we show how an information flow monitor-inlining compiler can take into account the
invocation of arbitrary APIs, without changing the code or the proofs of the original compiler. We provide an
implementation of such a compiler with an extension for handling a fragment of the DOM Core Level 1 API.
Furthermore, our implementation supports the addition of monitor extensions for new APIs at runtime. This
work has been published at the 10th International Symposium on Trustworthy Global Computing [12].

6.4.3. Relaxed Noninterference
We have began a study concerning the use of gradual typing for down casting or declassification for
information flow. The particularity of this work is to use a finite state machine to gradually accept the down
casting process.

This work is done with Éric Tanter of University of Santiago de Chile, in the context of the project Conicyt
Redes CEV Challenges on Electronic Voting.

6.4.4. Hybrid Monitoring of Attacker knowledge
Enforcement of non-interference requires to prove that an attacker’s knowledge about the initial state remains
the same after observing a programs public output. We define a powerful hybrid monitoring mechanism which
evaluates dynamically the knowledge that is contained in program variables. To get a precise estimate of
the knowledge, the monitor statically analyses non-executed branches. We show that our knowledge-based
approach can be combined with existing dynamic monitors for non-interference. A distinguishing feature
of such a combination is that the combined monitor is provably more powerful than each mechanism taken
separately. We demonstrate this by proposing a knowledge-enhanced version of a dynamic monitor based on
the no-sensitive-upgrade principle. We show how to use the knowledge computed by our hybrid monitor to
quantify information leakage associated to the program output. The monitor and its static analysis has been
formalized and proved correct within the Coq proof assistant.

6.4.5. A Taxonomy of Information Flow Monitors
We propose a rigorous comparison of information flow monitors with respect to two dimensions: soundness
and transparency.

8 Activity Report INRIA 2015

For soundness, we notice that the standard information flow security definition called Termination-Insensitive
Non-interference (TINI) allows the presence of termination channels, however it does not describe whether the
termination channel was present in the original program, or it was added by a monitor. We propose a stronger
notion of noninterference, that we call Termination-Aware Non-interference (TANI), that captures this fact, and
thus allows us to better evaluate the security guarantees of different monitors. We further investigate TANI,
and state its formal relations to other soundness guarantees of information flow monitors. For transparency,
we identify different notions from the literature that aim at comparing the behaviour of monitors. We notice
that one common notion used in the literature is not adequate since it identifies as better a monitor that
accepts insecure executions, and hence may augment the knowledge of the attacker. To discriminate between
monitors’ behaviours on secure and insecure executions, we factorized two notions that we call true and false
transparency. These notions allow us to compare monitors that were deemed to be incomparable in the past.

We analyse five widely explored information flow monitors: no-sensitive- upgrade (NSU), permissive-upgrade
(PU), hybrid monitoring (HM), se- cure multi-execution (SME), and multiple facets (MF).

This work has been accepted for publication in the International Conference on Principles of Security and
Trust (POST 2016).

6.4.6. A Study of JavaScript constructs used in Top Alexa Sites
Several works on JavaScript analysis have shown that including remote scripts can introduce severe security
implications in the behavior of the whole web application. To deal with different kinds of attacks, a number
of research groups are developing automatic tools to analyze JavaScript programs. However, most of these
works rely on one assumption: the scripts are written in a subset of JavaScript language meaning that only
certain constructs are used (that are easier to analyse automatically) and others are omitted (for example, eval
is impossible to analyze statically). The goal of the internship was to account for the use of each JavaScript
construct in real world programs. To achieve that, we first did a large-scale crawl of the top 10,000 Alexa sites,
collecting both inlined scripts and remote scripts. Second, we established the popularity of remote scripts.
Next, we accounted for the occurrence of JavaScript constructs in the collected programs. Finally, we use the
occurrence of different constructs as basis to propose a subset of JavaScript language, which covers most of
JavaScript programs found in the wild. One can rely on this evidence-based subset of JavaScript in future
works on that language.

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR AJACS

The AJACS project (Analyses of JavaScript Applications: Certification & Security) has been funded by the
ANR for 42 months, starting December 2014. The goal of AJACS project is to provide strong security and
privacy guarantees on the client side for web application scripts. The Indes members are involved in the tasks
WP2 Certified Analyses and WP3 Security of JavaScript Applications. The partners of this project include
Inria teams Celtique (coordinator), Toccata, and Prosecco.

7.1.2. FUI UCF
The 3 years long UCF project aims at developing a reactive Web platforms for delivering multimedia contents.
The partners of the project are the startups Alterway, OCamlPro, and XWiki, and the academic research
laboratories of University Pierre et Marie Curie and Denis Diderot.

Project-Team INDES 9

7.2. European Initiatives
7.2.1. FP7
7.2.1.1. MEALS

Title: Mobility between Europe and Argentina applying Logics to Systems
Program: FP7
Instrument: International Research Staff Exchange Scheme
Duration: October 2011 - September 2015
Coordinator: Pedro D’Argenio
Partners:

Imperial College of Science, Technology and Medicine (United Kingdom)
Rheinisch-Westfaelische Technische Hochschule Aachen (Germany)
Technische Universiteit Eindhoven (Netherlands)
Technische Universitaet Dresden (Germany)
University of Leicester (United Kingdom)
Universitaet Desarlandes (Germany)
Universidad de Córdoba (Argentina)
Universidad de Buenos Aires (Argentina)

Inria contact: Castuscia Palamidessi
Abstract:The MEALS project (Mobility between Europe and Argentina applying Logics to Systems)
goals cover three aspects of formal methods: specification (of both requirement properties and
system behavior), verification, and synthesis. The Indes members are involved in the task of Security
and Information Flow Properties (WP3). The partners in this task include University of Buenos
Aires, University of Córdoba, Inria (together with Catuscia Palamidessi, Kostas Chatzikokolakis,
Miguel Andrés) and University of Twente. The web page of the project can be found at http://www.
meals-project.eu.

7.2.1.2. RAPP

Program: http://rapp-project.eu
Title: Robot App Store
Collaborator: Inria Coprin
Abstract: RAPP is a 36 months pan-european FP7 project, started in December 2013. Hop is used
in the development of prototypes of the Coprin Ang rollator transfer device, for mobility assistance
and activity monitoring.

7.2.2. Collaborations in European Programs, except FP7 & H2020
Program: ICT Cost Action IC1201
Project acronym: BETTY
Project title: Behavioural Types for Reliable Large-Scale Software Systems
Duration: October 2012 - October 2016
Coordinator: Simon Gay, University of Glasgow
Other partners: Several research groups, belonging to 22 european countries
Abstract: The aim of BETTY is to investigate and promote behavioural type theory as the basis for
new foundations, programming languages, and software development methods for communication-
intensive distributed systems. Behavioural type theory encompasses concepts such as interfaces,
communication protocols, contracts, and choreography.

http://www.meals-project.eu
http://www.meals-project.eu
http://rapp-project.eu

10 Activity Report INRIA 2015

Program: ICT Cost Action IC1405
Project title: Reversible computation - extending horizons of computing

Duration: November 2014 - November 2018

Coordinator: Irek Ulidowski, University of Leicester

Abstract: Reversible computation is an emerging paradigm that extends the standard forwards mode
of computation with the ability to execute in reverse. It aims to deliver novel computing devices and
software, and to enhance traditional systems. The potential benefits include the design of reversible
logic gates and circuits - leading to low-power computing and innovative hardware for green ICT,
new conceptual frameworks and language abstractions, and software tools for reliable and recovery-
oriented distributed systems.

This Action is the first European network of excellence aimed at coordinating research on reversible
computation.

7.3. International Research Visitors
7.3.1. Visits of International Scientists
7.3.1.1. Internships

Vineet Rajani

Date: December 2014 - March 2015

MPI (Germany)

Katyal Rohan

Date: June 2015 - Aug 2015

Institution: IIIT-D (India)

Francis Dolière Some

Date: July 2015 - Sept 2015

University of Ouagadougou (Burkina)

8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific events organisation
8.1.1.1. General chair, scientific chair

Manuel Serrano was the General chair of the 11th ACM Dynamic Language Symposium (DLS’15), co-located
with Splash 2015 (http://2015.splashcon.org/track/dls2015). Manuel Serrano was the General chair of 13th
Trends In Functional Programming Symposium. (https://tfp2015.inria.fr/).

8.1.1.2. Member of the organizing committees

Nataliia Bielova was a publication chair of International Symposium on Engineering Secure Software and
Systems (ESSoS 2015). Ilaria Castellani co-organised the workshop TRENDS 2015, affiliated with the
CONCUR 2015 conference which took place in Madrid at the beginning of September.

http://2015.splashcon.org/track/dls2015
https://tfp2015.inria.fr/

Project-Team INDES 11

8.1.2. Scientific events selection
8.1.2.1. Member of the conference program committees

• Ilaria Castellani served on the programme committee member of the conferences CONCUR 2015,
TGC 2015, TTCS 2015 and ICTAC 2015.

• Tamara Rezk served on the programme committee member of the conferences ESSOS 2015, CSF
2015, POST 2015, PLAS 2015.

• Manuel Serrano served on the program committee of the 20th ACM ICFP’15.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Master : Nataliia Bielova, Information Flow Security in Web Applications, 15 ETD, University of
Pierre et Marie Curie, France

Doctorat : Ilaria Castellani, Behavioral Types, 15H ETD, University of Florence, Italy

Licence : Vincent Prunet, Algorithms and Data Structures, 80 ETD, L2, Lycée International de
Valbonne Sophia Antipolis (within the scope of the national Inria action to promote early CS courses
in all scientific curricula), France

Master : Tamara Rezk, Web Application Security, 28H ETD, University of Nice Sophia Antipolis,
France

Master : Tamara Rezk, Proofs of Cryptography, 28H ETD, University of Nice Sophia Antipolis,
France

Master : Tamara Rezk, Information Flow Security in Web Applications, 15 ETD, University of Pierre
et Marie Curie, France

Master: Bernard Serpette, From Lambda-calculus and Pi-calculus to an Abstract Distributed Ma-
chine, 24H ETD, Escuela de Verano de Ciencias Informàticas, Rio Cuarto, Argentina

Master: Manuel Serrano, Programming the Diffuse Web, 4,5h ETD, Ecole Normale Supérieure de
Cachan, France

8.2.2. Supervision
PhD : Johan Grande, Conception and Implementation of a modular concurrent programming
language, University of Nice Sophia Antipolis, September 2015, Manuel Serrano and Gérard Boudol

PhD in progress: Yoann Couillec, Langages de programmation et données ouvertes, University of
Nice Sophia Antipolis, 1/10/2012, Manuel Serrano

PhD in progress : Francis Doliére Some, Web Tracking Prevention, November 2015, Nataliia Bielova
and Tamara Rezk

PhD in progress : Colin Vidal, HipHop, September 2015, Manuel Serrano and Gérard Berry

PFE master 2: Julien Chiramello, Décomposition en nombres premiers en informatique quantique,
Tamara Rezk and Benjamin Grégoire

8.2.3. Juries
Ilaria Castellani was a member of the “Comité de sélection” for a position of Maître de conférences
at the University of Paris-Est Créteil (Paris 12).

Ilaria Castellani was an examiner of the PhD thesis of Ioana Cristescu, Université Paris-Diderot
(Paris 7).

Tamara Rezk was an examiner of the PhD thesis of Marco Patrignani, KU Leuven University.

Manuel Serrano was a member of a "comité de sélection" of UPMC (Paris 6).

12 Activity Report INRIA 2015

8.3. Transfer
8.3.1. Price discrimination in e-commerce

In 2014, we started acollaborative project with Thomas Vissers, Wouter Joosen (KULeuven, Belgium) and
Nick Nikiforakis (Stony Brook University, USA). The goal of this project is to analyse the price discrimination
in e-commerce, and more precisely in the online airline tickets websites. This work (published at HotPETs
2014) has achieved a strong impact on the general public and society at large – its scientific results has been
disseminated via the popular science French magazine “Science et vie” No. 1177, in the article called “Achat
sur Internet – Des prix á la tête du client!”.

8.3.2. WebRobotics
The WebRobotics initiative aims at developing collaborations with partner academic and industry teams
to jointly prototype and experiment end user applications involving assistive robots and sensor devices
(depending on the size and number of the embedded components, applications may be either classified as
robotic or IoT ones). Each WebRobotics project is structured around partner medical institutions that provide
key requirements to specifications and use the actual prototype throughout their daily activity. WebRobotics
Applications all use Hop.js as their core framework, natively supporting web protocols for communication
and distribution of tasks, and any web enabled device such as a smartphone or tablet to drive the robots and
applications. In 2015, The initiative accounted to two full time engineers.

The Top Three Benefits of WebRobotics:
• WebRobotics focuses on key societal issues, developing real applications for demanding users.
• Application developers and users feedback to Hop.js framework developers, helping identify and

prioritize key requirements.
• The WebRobotics application portfolio fosters the dissemination and transfer of the Hop.js technol-

ogy to the Industry.

The WebRobotics initiative now encompasses several prototypes in use by medical foundations and hospitals.
• RAPP. The WebRobotics project is now part of the RAPP FP7 european project, launched in

December 2013, where Hop.js technology is used by several academic and SME R&D teams to
develop a distributed software platform and applications for assistive robotics. Two prototypes are
being developed, the first one is a personal coach robot (a Nao humanoid robot embedding Hop.js
distributed applications), and the second one is a smart rollator (a walking aid with additional
hardware and software services for rehabilitation, training and activity monitoring. The rollator
hardware and robotic components are provided by Inria Hephaistos). Both prototypes are being
evaluated by partner medical institutions. Indes contribution to the project is supported by the EC
grant and by an Inria self funded ADT (Technology Development Program).

• Hopcare. Indes collaborates with other research teams (Inria STARS, Nice University Cobtek
Project) and local institutes and SMEs to foster the development distributed monitoring and su-
pervision applications with the Hop.js technology. An expert engineer is dedicated to this project
(grant from UCN@Sophia Labex, since may 2015).

– ICP (Institut Claude Pompidou Hospital, in Nice) is now using the Alzheimer diagnosis
tool developed using Hop.js. User Data generated from Inria/Stars sensors and image
analysis software are collected by a Hop.js server and processed before being delivered
to the Physician’s web tablet, as an editable web report, or paper ready PDF reports.

– The activity monitoring application enables real-time monitoring of various events gen-
erated by hardware/software monitoring tools (such as the video monitoring applications
from Inria/Stars) as well as user defined events. Hop.js is the common framework for the
whole application (communications with remote information servers, processing of input
data, database management, user authentication and authorization, custom views for web
clients). The application will soon be deployed at the Nice Valrose EHPAD (a specialized
institution for elderly who need medical care), where Inria runs an experimentation lab.

Project-Team INDES 13

– A third application has been developed to enable the configuration and use of Inria/Stars
video analysis tools through a web interface. The application is used by researchers to tune
their data processing algorithms.

9. Bibliography
Major publications by the team in recent years

[1] G. BARTHE, T. REZK, A. RUSSO, A. SABELFELD. Security of Multithreaded Programs by Compilation, in
"ESORICS", 2007, pp. 2-18

[2] G. BOUDOL, I. CASTELLANI. Noninterference for Concurrent Programs and Thread Systems, in "Theoretical
Computer Science", 2002, vol. 281, no 1, pp. 109-130

[3] G. BOUDOL, Z. LUO, T. REZK, M. SERRANO. Reasoning about Web Applications: An Operational Semantics
for HOP, in "ACM Transactions on Programming Languages and Systems (TOPLAS)", 2012, vol. 34, no 2

[4] C. FOURNET, T. REZK. Cryptographically sound implementations for typed information-flow security, in
"Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008", 2008, pp. 323-335

[5] M. SERRANO, G. BERRY. Multitier Programming in Hop - A first step toward programming
21st-century applications, in "Communications of the ACM", August 2012, vol. 55, no 8, pp.
53–59 [DOI : 10.1145/2240236.2240253], http://cacm.acm.org/magazines/2012/8/153796-multitier-
programming-in-hop/abstract

[6] M. SERRANO, E. GALLESIO, F. LOITSCH. HOP, a language for programming the Web 2.0, in "Proceedings
of the First Dynamic Languages Symposium", Portland, Oregon, USA, October 2006

[7] M. SERRANO. Bee: an Integrated Development Environment for the Scheme Programming Language, in
"Journal of Functional Programming", May 2000, vol. 10, no 2, pp. 1–43

Publications of the year
Doctoral Dissertations and Habilitation Theses

[8] J. GRANDE. Conception et implémentation d’un langage de programmation concurrente modulaire, Université
Nice Sophia Antipolis, September 2015, https://hal.inria.fr/tel-01246636

Articles in International Peer-Reviewed Journals

[9] S. CAPECCHI, I. CASTELLANI, M. DEZANI-CIANCAGLINI. Information Flow Safety in Multiparty Sessions,
in "Mathematical Structures in Computer Science", 2015, 43 p. [DOI : 10.1017/S0960129514000619],
https://hal.inria.fr/hal-01237236

International Conferences with Proceedings

[10] Y. COUILLEC, M. SERRANO. Requesting Heterogeneous Data Sourceswith Array Comprehensions in Hop.js,
in "15th Symposium on Database Programming Languages", Pittsburgh, United States, ACM, October 2015,
4 p. , https://hal.inria.fr/hal-01246628

http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract
http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract
https://hal.inria.fr/tel-01246636
https://hal.inria.fr/hal-01237236
https://hal.inria.fr/hal-01246628

14 Activity Report INRIA 2015

[11] J. FRAGOSO SANTOS, T. JENSEN, T. REZK, A. SCHMITT. Hybrid Typing of Secure Information Flow in a
JavaScript-like Language, in "10th International Symposium on Trustworthy Global Computing (TGC 2015)",
Madrid, Spain, August 2015, https://hal.archives-ouvertes.fr/hal-01243029

[12] J. FRAGOSO SANTOS, T. REZK, A. ALMEIDA MATOS. Modular Monitor Extensions for Information
Flow Security in JavaScript, in "Trustworthy Global Computing", Madrid, Spain, 2015, https://hal.archives-
ouvertes.fr/hal-01247123

[13] J. GRANDE, G. BOUDOL, M. SERRANO. Jthread, a deadlock-free mutex library, in "17th International
Symposium on Principles and Practice of Declarative Programming", Sienne, Italy, July 2015, 12 p.
[DOI : 10.1145/2790449.2790523], https://hal.inria.fr/hal-01246618

Scientific Books (or Scientific Book chapters)

[14] M. ITURBURU, E. GOIBURU, J. YANGUAS, E. ANDUEZA, E. CORRAL, C. ALDERETE, A. ORBEGOZO,
D. DANEY, V. PRUNET, J.-P. MERLET. User Needs and Requirements for the Mobility Assistance and
Activity Monitoring Scenario within the RAPP Project, in "Progress in Automation, Robotics and Measuring
Techniques", R. SZEWCZYK, C. ZIELIŃSKI, M. KALICZYŃSKA (editors), Springer International Publishing,
2015, vol. 351, pp. 105-117 [DOI : 10.1007/978-3-319-15847-1_11], https://hal.inria.fr/hal-01145219

Research Reports

[15] B. P. SERPETTE. Using counters for absence prediction in Esterel, Inria Sophia Antipolis - Méditerranée,
June 2015, https://hal.inria.fr/hal-01226760

https://hal.archives-ouvertes.fr/hal-01243029
https://hal.archives-ouvertes.fr/hal-01247123
https://hal.archives-ouvertes.fr/hal-01247123
https://hal.inria.fr/hal-01246618
https://hal.inria.fr/hal-01145219
https://hal.inria.fr/hal-01226760

