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2. Overall Objectives

2.1. Presentation
Algorithmic number theory dates back to the dawn of mathematics itself, cf. Eratosthenes’s sieve to enumerate
consecutive prime numbers. With the arrival of computers, previously unsolvable problems have come into
reach, which has boosted the development of more or less practical algorithms for essentially all number
theoretic problems. The field is now mature enough for a more computer science driven approach, taking into
account the theoretical complexities and practical running times of the algorithms.

Concerning the lower level multiprecision arithmetic, folklore has asserted for a long time that asymptotically
fast algorithms such as Schönhage–Strassen multiplication are impractical; nowadays, however, they are used
routinely. On a higher level, symbolic computation provides numerous asymptotically fast algorithms (such as
for the simultaneous evaluation of a polynomial in many arguments or linear algebra on sparse matrices),
which have only partially been exploited in computational number theory. Moreover, precise complexity
analyses do not always exist, nor do sound studies to choose between different algorithms (an exponential
algorithm may be preferable to a polynomial one for a large range of inputs); folklore cannot be trusted in a
fast moving area such as computer science.

Another problem is the reliability of the computations; many number theoretic algorithms err with a small
probability, depend on unknown constants or rely on a Riemann hypothesis. The correctness of their output
can either be ensured by a special design of the algorithm itself (slowing it down) or by an a posteriori
verification. Ideally, the algorithm outputs a certificate, providing an independent fast correctness proof. An
example is integer factorisation, where factors are hard to obtain but trivial to check; primality proofs have
initiated sophisticated generalisations.

One of the long term goals of the LFANT project team is to make an inventory of the major number theoretic
algorithms, with an emphasis on algebraic number theory and arithmetic geometry, and to carry out complexity
analyses. So far, most of these algorithms have been designed and tested over number fields of small degree
and scale badly. A complexity analysis should naturally lead to improvements by identifying bottlenecks,
systematically redesigning and incorporating modern asymptotically fast methods.

Reliability of the developed algorithms is a second long term goal of our project team. Short of proving the
Riemann hypothesis, this could be achieved through the design of specialised, slower algorithms not relying
on any unproven assumptions. We would prefer, however, to augment the fastest unproven algorithms with the
creation of independently verifiable certificates. Ideally, it should not take longer to check the certificate than
to generate it.

All theoretical results are complemented by concrete reference implementations in PARI/GP, which allow to
determine and tune the thresholds where the asymptotic complexity kicks in and help to evaluate practical
performances on problem instances provided by the research community. Another important source for
algorithmic problems treated by the LFANT project team is modern cryptology. Indeed, the security of all
practically relevant public key cryptosystems relies on the difficulty of some number theoretic problem; on the
other hand, implementing the systems and finding secure parameters require efficient algorithmic solutions to
number theoretic problems.

3. Research Program

3.1. Number fields, class groups and other invariants
Participants: Bill Allombert, Karim Belabas, Cyril Bouvier, Julio Brau Avila, Jean-Paul Cerri, Iuliana
Ciocanea Teodorescu, Henri Cohen, Jean-Marc Couveignes, Andreas Enge, Fredrik Johansson, Pınar Kılıçer,
Pierre Lezowski.
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Modern number theory has been introduced in the second half of the 19th century by Dedekind, Kummer,
Kronecker, Weber and others, motivated by Fermat’s conjecture: There is no non-trivial solution in integers
to the equation xn + yn = zn for n > 3. For recent textbooks, see [5]. Kummer’s idea for solving Fermat’s
problem was to rewrite the equation as (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζn−1y) = zn for a primitive n-th
root of unity ζ, which seems to imply that each factor on the left hand side is an n-th power, from which a
contradiction can be derived.

The solution requires to augment the integers by algebraic numbers, that are roots of polynomials in Z[X].
For instance, ζ is a root of Xn − 1, 3

√
2 is a root of X3 − 2 and

√
3
5 is a root of 25X2 − 3. A number field

consists of the rationals to which have been added finitely many algebraic numbers together with their sums,
differences, products and quotients. It turns out that actually one generator suffices, and any number field K
is isomorphic to Q[X]/(f(X)), where f(X) is the minimal polynomial of the generator. Of special interest
are algebraic integers, “numbers without denominators”, that are roots of a monic polynomial. For instance,
ζ and 3

√
2 are integers, while

√
3
5 is not. The ring of integers of K is denoted by OK ; it plays the same role in

K as Z in Q.

Unfortunately, elements in OK may factor in different ways, which invalidates Kummer’s argumentation.
Unique factorisation may be recovered by switching to ideals, subsets of OK that are closed under addition
and under multiplication by elements of OK . In Z, for instance, any ideal is principal, that is, generated by
one element, so that ideals and numbers are essentially the same. In particular, the unique factorisation of
ideals then implies the unique factorisation of numbers. In general, this is not the case, and the class group
ClK of ideals of OK modulo principal ideals and its class number hK = |ClK | measure how far OK is from
behaving like Z.

Using ideals introduces the additional difficulty of having to deal with units , the invertible elements of OK :
Even when hK = 1, a factorisation of ideals does not immediately yield a factorisation of numbers, since ideal
generators are only defined up to units. For instance, the ideal factorisation (6) = (2) · (3) corresponds to the
two factorisations 6 = 2 · 3 and 6 = (−2) · (−3). While in Z, the only units are 1 and −1, the unit structure
in general is that of a finitely generated Z-module, whose generators are the fundamental units. The regulator
RK measures the “size” of the fundamental units as the volume of an associated lattice.

One of the main concerns of algorithmic algebraic number theory is to explicitly compute these invariants
(ClK and hK , fundamental units and RK), as well as to provide the data allowing to efficiently compute with
numbers and ideals of OK ; see [30] for a recent account.

The analytic class number formula links the invariants hK andRK (unfortunately, only their product) to the ζ-
function of K, ζK(s) :=

∏
p prime ideal of OK

(1−N p−s)
−1, which is meaningful when R(s) > 1, but which

may be extended to arbitrary complex s 6= 1. Introducing characters on the class group yields a generalisation
of ζ- to L-functions. The generalised Riemann hypothesis (GRH), which remains unproved even over the
rationals, states that any such L-function does not vanish in the right half-plane R(s) > 1/2. The validity of
the GRH has a dramatic impact on the performance of number theoretic algorithms. For instance, under GRH,
the class group admits a system of generators of polynomial size; without GRH, only exponential bounds are
known. Consequently, an algorithm to compute ClK via generators and relations (currently the only viable
practical approach) either has to assume that GRH is true or immediately becomes exponential.

When hK = 1 the number fieldK may be norm-Euclidean, endowing OK with a Euclidean division algorithm.
This question leads to the notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper part of this spectrum, yielding
for instance generalised Euclidean gcd algorithms.

3.2. Function fields, algebraic curves and cryptology
Participants: Karim Belabas, Julio Brau Avila, Guilhem Castagnos, Jean-Marc Couveignes, Andreas Enge,
Hamish Ivey-Law, Enea Milio, Damien Robert, Emmanouil Tzortzakis.
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Algebraic curves over finite fields are used to build the currently most competitive public key cryptosystems.
Such a curve is given by a bivariate equation C(X,Y ) = 0 with coefficients in a finite field Fq . The
main classes of curves that are interesting from a cryptographic perspective are elliptic curves of equation
C = Y 2 − (X3 + aX + b) and hyperelliptic curves of equation C = Y 2 − (X2g+1 + · · ·) with g > 2.

The cryptosystem is implemented in an associated finite abelian group, the Jacobian JacC. Using the language
of function fields exhibits a close analogy to the number fields discussed in the previous section. Let Fq(X)
(the analogue of Q) be the rational function field with subring Fq[X] (which is principal just as Z). The
function field of C is KC = Fq(X)[Y ]/(C); it contains the coordinate ring OC = Fq[X,Y ]/(C). Definitions
and properties carry over from the number field case K/Q to the function field extension KC/Fq(X).
The Jacobian JacC is the divisor class group of KC, which is an extension of (and for the curves used in
cryptography usually equals) the ideal class group of OC.

The size of the Jacobian group, the main security parameter of the cryptosystem, is given by an L-
function. The GRH for function fields, which has been proved by Weil, yields the Hasse–Weil bound
(
√
q − 1)

2g 6 | JacC | 6 (
√
q + 1)

2g
, or | JacC | ≈qg , where the genus g is an invariant of the curve that cor-

relates with the degree of its equation. For instance, the genus of an elliptic curve is 1, that of a hyperelliptic
one is degX C−1

2 . An important algorithmic question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the discrete logarithm problem (DLP) be difficult
in the underlying group; that is, given elementsD1 andD2 = xD1 of JacC, it must be difficult to determine x.
Computing x corresponds in fact to computing JacC explicitly with an isomorphism to an abstract product of
finite cyclic groups; in this sense, the DLP amounts to computing the class group in the function field setting.

For any integer n, the Weil pairing en on C is a function that takes as input two elements of order n of JacC
and maps them into the multiplicative group of a finite field extension Fqk with k = k(n) depending on n. It
is bilinear in both its arguments, which allows to transport the DLP from a curve into a finite field, where it is
potentially easier to solve. The Tate-Lichtenbaum pairing, that is more difficult to define, but more efficient to
implement, has similar properties. From a constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k usually becomes so big that the result of a pairing cannot even be output
any more. One of the major algorithmic problems related to pairings is thus the construction of curves with a
given, smallish k.

3.3. Complex multiplication
Participants: Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge, Hamish Ivey-Law, Fredrik
Johansson, Chloë Martindale, Enea Milio, Damien Robert.

Complex multiplication provides a link between number fields and algebraic curves; for a concise introduction
in the elliptic curve case, see [32], for more background material, [31]. In fact, for most curves C over a finite
field, the endomorphism ring of JacC, which determines its L-function and thus its cardinality, is an order in
a special kind of number field K, called CM field. The CM field of an elliptic curve is an imaginary-quadratic
field Q(

√
D) with D < 0, that of a hyperelliptic curve of genus g is an imaginary-quadratic extension of a

totally real number field of degree g. Deuring’s lifting theorem ensures that C is the reduction modulo some
prime of a curve with the same endomorphism ring, but defined over the Hilbert class field HK of K.

Algebraically, HK is defined as the maximal unramified abelian extension of K; the Galois group of HK/K
is then precisely the class group ClK . A number field extension H/K is called Galois if H ' K[X]/(f) and
H contains all complex roots of f . For instance, Q(

√
2) is Galois since it contains not only

√
2, but also the

second root −
√

2 of X2 − 2, whereas Q( 3
√

2) is not Galois, since it does not contain the root e2πi/3 3
√

2 of
X3 − 2. The Galois group GalH/K is the group of automorphisms of H that fix K; it permutes the roots of f .
Finally, an abelian extension is a Galois extension with abelian Galois group.
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Analytically, in the elliptic case HK may be obtained by adjoining to K the singular value j(τ) for a
complex valued, so-called modular function j in some τ ∈ OK ; the correspondence between GalH/K and ClK
allows to obtain the different roots of the minimal polynomial f of j(τ) and finally f itself. A similar, more
involved construction can be used for hyperelliptic curves. This direct application of complex multiplication
yields algebraic curves whose L-functions are known beforehand; in particular, it is the only possible way of
obtaining ordinary curves for pairing-based cryptosystems.

The same theory can be used to develop algorithms that, given an arbitrary curve over a finite field, compute
its L-function.

A generalisation is provided by ray class fields; these are still abelian, but allow for some well-controlled
ramification. The tools for explicitly constructing such class fields are similar to those used for Hilbert class
fields.

4. Highlights of the Year

4.1. Highlights of the Year
The team has been evaluated in 2015, and our scientific project for the next four years has been validated by
the external reviewers.

Fredrik Johansson, who was already a postdoc last year, has been recruited as a full time researcher.

The team has organised the Atelier Pari/GP in January 2015 and the ECC 2015 international conference (with
a summer school) in September 2015.

Athanasios Angelakis has defended his PhD thesis on Universal Adelic Groups for Imaginary Quadratic
Number Fields and Elliptic Curves in September 2015.

Julio Brau has defended his PhD thesis on Galois representations of elliptic curves and abelian entanglements
in December 2015.

Enea Milio has defended his PhD thesis on Computing modular polynomials in dimension 2 [11] in December
2015.

The European H2020 project OpenDreamKit, in which the team participates, has been accepted.

5. New Software and Platforms

5.1. APIP
Another Pairing Implementation in PARI
SCIENTIFIC DESCRIPTION

Apip , Another Pairing Implementation in PARI, is a library for computing standard and optimised variants of
most cryptographic pairings.

The following pairings are available: Weil, Tate, ate and twisted ate, optimised versions (à la Ver-
cauteren–Hess) of ate and twisted ate for selected curve families.

The following methods to compute the Miller part are implemented: standard Miller double-and-add method,
standard Miller using a non-adjacent form, Boxall et al. version, Boxall et al. version using a non-adjacent
form.

The final exponentiation part can be computed using one of the following variants: naive exponentiation,
interleaved method, Avanzi–Mihailescu’s method, Kato et al.’s method, Scott et al.’s method.

Part of the library has been included into PARI/GP proper.
FUNCTIONAL DESCRIPTION
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APIP is a library for computing standard and optimised variants of most cryptographic pairings.
• Participant: Jérôme Milan
• Contact: Jérôme Milan
• URL: http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml

5.2. Arb
FUNCTIONAL DESCRIPTION

Arb is a C library for arbitrary-precision floating-point ball arithmetic. It supports real and complex numbers,
polynomials, power series, matrices, and evaluation of many transcendental functions. All is done with
automatic, rigorous error bounds. It has been accepted for inclusion in SageMath.
• Participant: Fredrik Johansson
• Contact: Fredrik Johansson
• URL: http://fredrikj.net/arb/

5.3. AVIsogenies
Abelian Varieties and Isogenies
FUNCTIONAL DESCRIPTION

AVIsogenies is a Magma package for working with abelian varieties, with a particular emphasis on explicit
isogeny computation.

Its prominent feature is the computation of (l,l)-isogenies between Jacobian varieties of genus-two hyperellip-
tic curves over finite fields of characteristic coprime to l, practical runs have used values of l in the hundreds.

It can also be used to compute endomorphism rings of abelian surfaces, and find complete addition laws on
them.
• Participants: Gaëtan Bisson, Romain Cosset and Damien Robert
• Contact: Damien Robert
• URL: http://avisogenies.gforge.inria.fr/

5.4. CM
FUNCTIONAL DESCRIPTION

The Cm software implements the construction of ring class fields of imaginary quadratic number fields and of
elliptic curves with complex multiplication via floating point approximations. It consists of libraries that can
be called from within a C program and of executable command line applications.
• Participant: Andreas Enge
• Contact: Andreas Enge
• URL: http://www.multiprecision.org/index.php?prog=cm&page=home

5.5. CMH
Computation of Igusa Class Polynomials
KEYWORDS: Mathematics - Cryptography - Number theory
FUNCTIONAL DESCRIPTION

Cmh computes Igusa class polynomials, parameterising two-dimensional abelian varieties (or, equivalently,
Jacobians of hyperelliptic curves of genus 2) with given complex multiplication.
• Participants: Emmanuel Thomé, Andreas Enge and Regis Dupont
• Contact: Emmanuel Thomé
• URL: http://cmh.gforge.inria.fr

http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml
http://fredrikj.net/arb/
http://avisogenies.gforge.inria.fr/
http://www.multiprecision.org/index.php?prog=cm&page=home
http://cmh.gforge.inria.fr
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5.6. CUBIC
FUNCTIONAL DESCRIPTION

Cubic is a stand-alone program that prints out generating equations for cubic fields of either signature and
bounded discriminant. It depends on the Pari library. The algorithm has quasi-linear time complexity in the
size of the output.

• Participant: Karim Belabas

• Contact: Karim Belabas

• URL: http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz

5.7. Euclid
FUNCTIONAL DESCRIPTION

Euclid is a program to compute the Euclidean minimum of a number field. It is the practical implementation of
the algorithm described in [38] . Some corresponding tables built with the algorithm are also available. Euclid
is a stand-alone program depending on the PARI library.

• Participants: Pierre Lezowski and Jean-Paul Cerri

• Contact: Pierre Lezowski

• URL: http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php

5.8. GNU MPC
FUNCTIONAL DESCRIPTION

Mpc is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding
of the result. It is built upon and follows the same principles as Mpfr. The library is written by Andreas Enge,
Philippe Théveny and Paul Zimmermann.

• Participants: Andreas Enge, Paul Zimmermann, Philippe Théveny and Mickaël Gastineau

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/

5.9. KleinianGroups
FUNCTIONAL DESCRIPTION

KleinianGroups is a Magma package that computes fundamental domains of arithmetic Kleinian groups.

• Participant: Aurel Page

• Contact: Aurel Page

• URL: http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html

5.10. MPFRCX
FUNCTIONAL DESCRIPTION

Mpfrcx is a library for the arithmetic of univariate polynomials over arbitrary precision real (Mpfr ) or complex
(Mpc ) numbers, without control on the rounding. For the time being, only the few functions needed to
implement the floating point approach to complex multiplication are implemented. On the other hand, these
comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

• Participant: Andreas Enge

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/index.php?prog=mpfrcx

http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz
http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php
http://www.multiprecision.org/
http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html
http://www.multiprecision.org/index.php?prog=mpfrcx
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5.11. Nemo
FUNCTIONAL DESCRIPTION Nemo is a computer algebra package for the Julia programming language
maintained by William Hart with code by William Hart, Tommy Hofmann, Claus Fieker, Fredrik Johansson,
Oleksandr Motsak).

The features of Nemo include multiprecision integers and rationals, integers modulo n, p-adic numbers, finite
fields (prime and non-prime order), number field arithmetic, maximal orders of number fields, arithmetic
of ideals in maximal orders, arbitrary precision real and complex balls, generic polynomials, power series,
fraction fields, residue rings and matrices.

• Participant: Fredrik Johansson

• Contact: William Hart

• URL: http://nemocas.org/

5.12. PARI/GP
FUNCTIONAL DESCRIPTION

PARI/GP is a widely used computer algebra system designed for fast computations in number theory
(factorisation, algebraic number theory, elliptic curves, ...), but it also contains a large number of other
useful functions to compute with mathematical entities such as matrices, polynomials, power series, algebraic
numbers, etc., and many transcendental functions.

• Participants: Karim Belabas, Henri Cohen, Andreas Enge and Hamish Ivey-Law

• Contact: Karim Belabas

• URL: http://pari.math.u-bordeaux.fr/

6. New Results

6.1. Class groups and other invariants of number fields
Participants: Karim Belabas, Jean-Paul Cerri, Henri Cohen, Pınar Kılıçer, Pierre Lezowski.

Ohno and Nakagawa have proved relations between the counting functions of certain cubic fields. These
relations may be viewed as complements to the Scholz reflection principle, and Ohno and Nakagawa deduced
them as consequences of ’extra functional equations’ involving the Shintani zeta functions associated to the
prehomogeneous vector space of binary cubic forms. The paper [14] by Henri Cohen, Simon Rubinstein-
Salzedo and Frank Thorne proves an identity relating certain degree fields with Galois groups D and F ,
respectively, for any odd prime, giving another proof of the Ohno–Nakagawa relation between the counting
functions of certain cubic fields.

Pınar Kılıçer and Marco Streng have solved a variant of the class number 1 problem for quartic CM fields
with a geometric motivation [27]; the question is whether a certain class group is trivial, which corresponds
to a genus 2 curve with that complex multiplication being defined over a real-quadratic number field (instead
of an extension). Using classical techniques provides a bound on the discriminant of such fields, which they
refine taking ramification into account to obtain a practically useful bound. A carefully crafted enumeration
algorithm finishes the proof.

In the article [28], P. Lezowski studies the Euclidean properties of matrix algebras Mn(R) over commutative
rings R. In particular, he shows that for any integer n > 1, Mn(R) is a left and right Euclidean ring if and
only if R is principal. The proof is constructive and allows to better understand the Euclidean order types of
matrix algebras. Similar ideas are also applied to prove k-stage Euclidean properties of Mn(R), linking them
with Bézout property for the ring R. The article [28] has been submitted to Journal of Algebra.

The article by Aurel Page on the computation of arithmetic Kleinian groups has appeared [21].

http://nemocas.org/
http://pari.math.u-bordeaux.fr/
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6.2. Complex L-functions and certified arithmetic
Participants: Bill Allombert, Karim Belabas, Henri Cohen, Fredrik Johansson.

Fredrik Johansson’s paper [23] has been published and presented at the 22nd IEEE Symposium on Computer
Arithmetic (ARITH22), Lyon, France. This paper describes a new implementation of the elementary transcen-
dental functions exp, sin, cos, log and atan for variable precision up to approximately 4096 bits. Compared to
the MPFR library, it achieves a maximum speedup ranging from a factor 3 for cos to 30 for atan.

Bill Allombert, Karim Belabas, Henri Cohen and Pascal Molin (Paris 7) have implemented a new framework
in PARI/GP to compute and manipulate complex L-functions and the associated ϑ and Λ functions, exporting
25 new functions to the GP computer algebra system.

6.3. Elliptic curve and Abelian varieties cryptology
Participants: Jean-Marc Couveignes, Andreas Enge, Enea Milio, Damien Robert.

In [29] David Lubicz and Damien Robert explain how to improve the arithmetic of Abelian and Kummer
varieties. The speed of the arithmetic is a crucial factor in the performance of cryptosystems based on abelian
varieties. Depending on the cryptographic application, the speed record holders are elliptic curves (in the
Edwards model) or the Kummer surface of an hyperelliptic curves of genus 2 (in the level 2 theta model). One
drawback of the Kummer surface is that only scalar multiplications are available, which may be a problem
in certain cryptographic protocols. The previous known models to work on the Jacobian rather than the
Kummer surface (Mumford coordinates or the theta model of level 4) are too slow and not competitive with
elliptic curves. This paper explains how to use geometric properties (like projective normality) to speed up the
arithmetic. In particular it introduces a novel addition algorithm on Kummer varieties (compatible addition),
and uses it to speed up multi-exponentiations in Kummer varieties and to obtain new models of abelian surfaces
in which the scalar multiplication is as fast as on the Kummer surface. This paper was written last year but
heavily revised in 2015 and has been accepted (up to minor revisions) in the journal Finite Fields and Their
Applications.

The paper [19] by David Lubicz and Damien Robert about computing certain isogenies in quasi optimal time
has been published in the LMS Journal of Computation and Mathematics and the paper [18] by the same
authors about optimal pairing computation on abelian varieties has been published in the Journal of Symbolic
Computation. This paper expands the article [15] by Romain Cosset and Damien Robert about the computation
of (`, `)-isogenies in dimension 2 which has been published in Mathematics of Computation.

Enea Milio has published one of the main results of his PhD thesis [20]. He has generalised the work of Régis
Dupont for computing modular polynomials in dimension 2 to new invariants. He describes an algorithm to
compute modular polynomials for invariants derived from theta constants and proves under some heuristics
that this algorithm is quasi-linear in its output size. Some properties of the modular polynomials defined from
quotients of theta constants are analysed and experiments with an implementation are related.

The paper [16] by Jean-Marc Couveignes and Tony Ezome explaining how to efficiently evaluate functions,
including Weil functions and canonical theta functions, on Jacobian varieties and their quotients has been
published in the LMS Journal of Computation and Mathematics. This paper also describes a quasi-optimal
algorithm to compute (l, l)-isogenies between Jacobians of genus two curves, using a compact representation
and differential characterisation of isogenies.

In [26], Sorina Ionica and Emmanuel Thomé look at the structure of isogeny graphs of genus 2 Jacobians with
maximal real multiplication. They generalise a result of Kohel’s describing the structure of the endomorphism
rings of the isogeny graph of elliptic curves. Their setting considers genus 2 jacobians with complex
multiplication, with the assumptions that the real multiplication subring is maximal and has class number 1.
Over finite fields, they derive a depth first search algorithm for computing endomorphism rings locally at prime
numbers, if the real multiplication is maximal.

6.4. Cryptology with quadratic fields
Participant: Guilhem Castagnos.
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In [22] Guilhem Castagnos and Fabien Laguillaumie design a linearly homomorphic encryption scheme the
security of which relies on the hardness of the decisional Diffie-Hellman problem. The approach requires
some special features of the underlying group. In particular, its order is unknown and it contains a subgroup
in which the discrete logarithm problem is tractable. Therefore, their instantiation holds in the class group of
a non-maximal order of an imaginary quadratic field. Its algebraic structure makes it possible to obtain such a
linearly homomorphic scheme in which the message space is the whole set of integers modulo a prime p and
which supports an unbounded number of additions modulo p from the ciphertexts. A notable difference with
previous work is that, for the first time, the security does not depend on the hardness of the factorisation of
integers. As a consequence, under some conditions, the prime p can be scaled to fit the application needs. This
paper has beenpresented at the cryptographer’s track at the RSA Conference 2015.

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR Peace – Parameter spaces for Efficient Arithmetic and Curve security Evaluation

Participants: Bill Allombert, Karim Belabas, Jean-Marc Couveignes, Andreas Enge, Hamish Ivey-Law, Enea
Milio, Damien Robert.

http://chic2.gforge.inria.fr/

The PEACE project is joint between the research teams of Institut de Recherche en Mathématiques de Rennes
(IRMAR), LFANT and Institut Mathématiques de Luminy (IML).

The project aims at constituting a comprehensive and coherent approach towards a better understanding of
theoretical and algorithmic aspects of the discrete logarithm problem on algebraic curves of small genus.
On the theoretical side, this includes an effective description of moduli spaces of curves and of abelian
varieties, the maps that link these spaces and the objects they classify. The effective manipulation of moduli
objects will allow us to develop a better understanding of the algorithmic difficulty of the discrete logarithm
problem on curves, which may have dramatic consequences on the security and efficiency of already deployed
cryptographic devices.

One of the anticipated outcomes of this proposal is a new set of general criteria for selecting and validating
cryptographically secure curves (or families of curves) suitable for use in cryptography. Instead of publishing
fixed curves, as is done in most standards, we aim at proposing generating rationales along with explicit
theoretical and algorithmic criteria for their validation.

The ANR organised the conference “Effective moduli spaces and applications to cryptography” in June 2014
as a part of the Centre Henri Lebesgue’s Thematic Semester 2014 “Around moduli spaces”.

7.1.2. ANR Simpatic – SIM and PAiring Theory for Information and Communications security
Participants: Guilhem Castagnos, Damien Robert, Sorina Ionica, Cyril Bouvier.

The SIMPATIC project is an industrial research project, formed by academic research teams and industrial
partners: Orange Labs, École Normale Supérieure, INVIA, Oberthur Technologies, ST-Ericsson France,
Université de Bordeaux 1, Université de Caen Basse-Normandie, Université de Paris 8.

The aim of the SIMPATIC project is to provide the most efficient and secure hardware/software implementation
of a bilinear pairing in a SIM card. This implementation will then be used to improve and develop new
cryptographic algorithms and protocols in the context of mobile phones and SIM cards. The project will more
precisely focus on e-ticketing and e-cash, on cloud storage and on the security of contactless and of remote
payment systems.

D. Robert is a participant in the Task 2 whose role is to give state of the art algorithms for pairing computations,
adapted to the specific hardware requirements of the Simpatic Project.

http://chic2.gforge.inria.fr/
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G. Castagnos is a participant in the Task 4 whose role is to design new cryptographic primitives adapted to the
specific applications of the Simpatic Project.

7.2. European Initiatives
7.2.1. FP7 & H2020 Projects
7.2.1.1. ANTICS

Title: Algorithmic Number Theory in Computer Science

Programm: FP7

Duration: January 2012 - December 2016

Coordinator: Inria

Inria contact: Andreas Enge

’During the past twenty years, we have witnessed profound technological changes, summarised
under the terms of digital revolution or entering the information age. It is evident that these
technological changes will have a deep societal impact, and questions of privacy and security are
primordial to ensure the survival of a free and open society. Cryptology is a main building block
of any security solution, and at the heart of projects such as electronic identity and health cards,
access control, digital content distribution or electronic voting, to mention only a few important
applications. During the past decades, public-key cryptology has established itself as a research topic
in computer science; tools of theoretical computer science are employed to “prove” the security of
cryptographic primitives such as encryption or digital signatures and of more complex protocols. It
is often forgotten, however, that all practically relevant public-key cryptosystems are rooted in pure
mathematics, in particular, number theory and arithmetic geometry. In fact, the socalled security
“proofs” are all conditional to the algorithmic untractability of certain number theoretic problems,
such as factorisation of large integers or discrete logarithms in algebraic curves. Unfortunately,
there is a large cultural gap between computer scientists using a black-box security reduction to
a supposedly hard problem in algorithmic number theory and number theorists, who are often
interested in solving small and easy instances of the same problem. The theoretical grounds on
which current algorithmic number theory operates are actually rather shaky, and cryptologists are
generally unaware of this fact. The central goal of ANTICS is to rebuild algorithmic number theory
on the firm grounds of theoretical computer science.’

7.2.1.2. Open Dream Kit

Title: Algorithmic Number Theory in Computer Science

Programm: FP7

Duration: September 2015 - August 2019

Inria contact: Karim Belabas

OpenDreamKit is a Horizon 2020 European Research Infrastructure project (#676541, call e-
infrastructures for virtual research environments) that will run for four years, starting from Septem-
ber 2015. It will provide substantial funding to the open source computational mathematics ecosys-
tem, and in particular popular tools such as LinBox, MPIR, SageMath, GAP, Pari/GP, LMFDB,
Singular, MathHub, and the IPython/Jupyter interactive computing environment.

From this ecosystem, OpenDreamKit will deliver a flexible toolkit enabling research groups to set
up Virtual Research Environments, customised to meet the varied needs of research projects in pure
mathematics and applications, and supporting the full research life-cycle from exploration, through
proof and publication, to archival and sharing of data and code.

The project involves about 50 people spread over 15 sites in Europe, with a total budget of about 7.6
million euros. The largest portion of that will be devoted to employing an average of 11 researchers
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and developers working full time on the project. Additionally, the participants will contribute the
equivalent of six other people working full time.

Countries involved include France (Universités Paris-Sud, Versailles, Bordeaux, Grenoble and
the industrial partner Logilab), Germany (Kaiserslautern, Bremen), United Kingdom (Oxford,
Southampton, Sheffield, St Andrews, Warwick), Norway (Simula), Poland (University Silesia),
Switzerland (University Zürich).

7.3. International Initiatives
7.3.1. Inria International Labs

The MACISA project-team (Mathematics Applied to Cryptology and Information Security in Africa) is one
of the new teams of LIRIMA. Researchers from Inria and the universities of Bamenda, Bordeaux, Dakar,
Franceville, Maroua, Ngaoundéré, Rennes, Yaoundé cooperate in this team.

The project is concerned with public key cryptology and more specifically the role played by algebraic maps
in this context. The team focus on two themes:

• Theme 1: Rings, primality, factoring and discrete logarithms;

• Theme 2: Elliptic and hyperelliptic curve cryptography.

The project is managed by a team of five permanent researchers: G. Nkiet, J.-M. Couveignes, T. Ezome,
D. Robert and A. Enge. Since Sep. 2014 the coordinator is T. Ezome and the vice-coordinator is D. Robert.
The managing team organises the cooperation, schedules meetings, prepares reports, controls expenses, reports
to the LIRIMA managing team and administrative staff.

A non-exhaustive list of activities organised or sponsored by Macisa includes

• The Summer school (EMA) in Libreville with the International Center for Pure and Applied
Mathematics (ICPAM/CIMPA), March 2015, attended by most of the members of Macisa;

• The visit of Abdoul Aziz Ciss (Dakar) and Emmanuel Fouotsa (Bamenda) to Bordeaux, September
2015, for the Elliptic Curve Cryptography and Summer School conference;

• The visit of Tony Ezome to Bordeaux, October 2015;

• The visit of Damien Robert to Yaoundé, Cameroun, to give courses on cryptography for a special
seminar on security event.

7.3.2. Inria International Partners
7.3.2.1. Informal International Partners

The team is used to collaborate with Leiden University through the ALGANT program for PhD joint
supervision.

Eduardo Friedman (U. of Chile), long term collaborator of K. Belabas and H. Cohen is a regular visitor in
Bordeaux (about 1 month every year).

7.4. International Research Visitors
7.4.1. Visits of International Scientists

Researchers visiting the team to give a talk to the team seminar include David Kohel (Université d’Aix-
Marseille), Tony Ezome (Université des Sciences et Techniques de Masuku, Franceville), Abdoul Aziz Ciss
(Ecole Polytechnique de Thiès, Sénégal), Emmanuel Fouotsa (École Normale Supérieure de l’Université de
Bamenda), Renate Scheidler (University Calgary), Eduardo Friedman (Universidad de Chile), Benjamin Smith
(Inria & LIX, École Polytechnique), Bernadette Perrin-Riou (Paris-Sud).

The visit of Ciss, Ezome and Fouotsa were also part of the collaboration through the Macisa team.
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8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific events organisation

The team has organised the international conference ECC 2015 — 19th Workshop on Elliptic Curve Cryp-
tography in Bordeaux from September 28 to September 30 and a Summer School on elliptic curves the week
before from September 23 to September 25.

The three day conference with 170 participants comprised about fifteen invited lectures by world-renowned
scientist, presenting the major advances of the previous year. Topics ranged widely from new mathematical and
algorithmic results on elliptic curves and abelian varieties, over implementations and attacks of cryptosystems
up to practical studies on real-world use of curve based cryptography. This year, a panel discussion on the
standardisation of elliptic curves for cryptographic use was also organised.

The preceding summer school with about 70 participants included four invited lectures of three hours each
(one of which was given by Damien Robert), and a software tutorial on Sage and Pari/GP. The tutorial on
Pari/GP was done by Bill Allombert and Karim Belabas. The school concluded with an afternoon of computer
exercices.

8.1.1.1. General chair, scientific chair

Andreas Enge and Damien Robert were scientific chairs, Andreas Enge was the general chair.

8.1.1.2. Member of the organizing committees

Andreas Enge, Anne-Laure Gautier and Damier Robert were members of the organizing committee.

8.1.2. Scientific events selection
8.1.2.1. Chair of conference program committees

• Andreas Enge was the programme chair of ECC 2015 (Bordeaux)

8.1.2.2. Member of the conference program committees

• Damien Robert was a member of the ECC 2015 (Bordeaux), Asiacrypt 2015 (Auckland) and CRI
2015 (Yaoundé) program committees.

• Sorina Ionica was a member of the Latincrypt 2015 (Guadalajara, Mexico) program committee.

8.1.3. Journal
8.1.3.1. Member of the editorial boards

K. Belabas acts on the editorial board of Journal de Théorie des Nombres de Bordeaux since 2005 and of
Archiv der Mathematik since 2006.

H. Cohen is an editorial board member of Journal de Théorie des Nombres de Bordeaux; he is an editor for
the Springer book series Algorithms and Computations in Mathematics (ACM).

J.-M. Couveignes is a member of the editorial board of the Publications mathématiques de Besançon since
2010.

A. Enge is an editor of Designs, Codes and Cryptography since 2004.
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8.1.4. Invited talks
• F. Johansson gave an invited talk on "Fast arbitrary-precision evaluation of special functions in the

Arb library" at The 13th International Symposium on Orthogonal Polynomials, Special Functions
and Applications (OPSFA-13), National Institute of Standards and Technology, Gaithersburg, MD,
USA (June 2015)

• S. Ionica gave an invited talk on “Fast scalar multiplicaton in pairing groups” at the "Pairings in
cryptography" Minisymposium, SIAM AG15 Conference, Daejeon, South Korea (August 2015)

• A. Enge gave an invited talk on “Computing with theta functions on abelian surfaces” at the 11th
Symposium on Algebra and Computation (AC2015), Tokyo Metropolitan University (December
2015)

• E. Milio gave an invited talk on “Computation of modular polynomials in dimension 2” at the Elliptic
Curve Cryptography 2015 Conference in Bordeaux (September 2015). He also gave a similar talk at
the Journées codage et cryptographie at la Londe-les-Maures (October 2015).

• D. Robert gave two invited talks on “Isogenies, Polarisations and Real Multiplication”, one for
the Modular Forms and Curves of Low Genus: Computational Aspects conference at Providence
(September 2015) and one for the Journées codage et cryptographie at la Londe-les-Maures (October
2015).

8.1.5. Scientific expertise
J.-M. Couveignes is a member of the scientific council of the labex "Fondation Sciences Mathématiques de
Paris", FSMP, Paris.

J.-M. Couveignes is a member of the ’conseil d’orientation’ of the labex "Institut de Recherche en Mathéma-
tiques, Interactions et Applications", IRMIA, Strasbourg.

8.1.6. Research administration
Since January 2015, K. Belabas is vice-head of the Math Institute (IMB). He also leads the computer science
support service (“cellule informatique”) of IMB and coordinates the participation of the institute in the regional
computation cluster PlaFRIM.

He is an elected member of “commission de la recherche” in the academic senate of Bordeaux University.

He is a member of the “Conseil National des Université” (25th section, pure mathematics).

J.-P. Cerri is an elected member of the scientific council of the Mathematics Institute of Bordeaux (IMB) and
responsible for the bachelor programme in mathematics and informatics.

Since January 2015, J.-M. Couveignes is the head of the Math Institute (IMB).

A. Enge is the head of the COST-GTRI, the Inria body responsible for the scientific evaluation of the
international partnerships of the institute.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Licence: Enea Milio, Analyse, 12h, L1, Université de Bordeaux, France;

Licence: Enea Milio, Mise à niveau Maths, 12h, L1, Université de Bordeaux, France;

Licence: G. Castagnos, Algorithmique algébrique 1, 34.67h, L3, University of Bordeaux, France

Master: G. Castagnos, Cryptanalyse, 60h, M2, University of Bordeaux, France;

Master: G. Castagnos, Cryptologie avancée, 30h, M2, University of Bordeaux, France;

Master: G. Castagnos, Courbes elliptiques, 30h, M2, University of Bordeaux, France;

Master: K. Belabas, Computational number theory, 70h, M2, University of Bordeaux, France;
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Master: K. Belabas, Computer Algebra, 90h, M2, University of Bordeaux, France;
Master: K. Belabas, Algorithms for Public Key Cryptography, 30h, M2, University of Bordeaux,
France;
Summer School: F. Johansson gave three invited lectures on "High-precision methods for zeta
functions" at the UNCG Summer School in Computational Number Theory, Greensboro, NC, USA
in May 2015;
Summer School: J.-M. Couveignes and D. Robert gave a one week course on Algorithmic number
theory and cryptology for the École Mathématique Africaine, organised with support from the Centre
International de Mathématiques Pures et Appliquées (CIMPA) in March 2015 at Franceville, Gabon.
Summer School: D. Robert gave a talk on The group structure of rational points of elliptic
curves over a finite field (including practical exercices on Sage or Pari/GP) for the Elliptic Curves
Cryptography (ECC 2015) Summer School in September 2015 at Bordeaux.
Summer School: D. Robert gave a one week course on Introduction to cryptology as part of the
seminar on security at Yaoundé I University preceding the Colloque de Recherche en Informatique
in December 2015.
Summer School: S. Ionica gave a two lecture course on Introduction to elliptic curve cryptography at
the ASCrypto 2015, the summer school organised at the Latincrypt 2015 conference, in Guadalajara,
Mexico.
Summer School: A. Enge gave eight lectures at the SEAMS school on Algebras and their appli-
cations (Quantum Physics, Cryptography and Statistics) at Universiti Putra Malaysia in November
2015, entitled Elliptic curves (two lectures), Hyperelliptic curves (two lectures), Kummer varieties,
Exponential and subexponential algorithms for the discrete logarithm problem (two lectures), Pair-
ings on elliptic curves.

8.2.2. Supervision
PhD: Athanasios Angelakis, Universal Adelic Groups for Imaginary Quadratic Number Fields and
Elliptic Curves, University of Bordeaux / University of Leiden, supervised by K. Belabas and P.
Stevenhagen, defended 09/2015.
PhD: Julio Brau, Galois representations of elliptic curves and abelian entanglements, University of
Bordeaux / University of Leiden, supervised by K. Belabas and P. Stevenhagen, defended 12/2015.
PhD: Enea Milio, Computing modular polynomials in dimension 2, University Bordeaux, supervised
by A. Enge and D. Robert, defended 12/2015.
PhD in progress: Iuliana Ciocanea, The module isomorphism problem, supervised by K. Belabas and
H. Lenstra.
PhD in progress: Emmanouil Tzortzakis Algorithms for Q-curves, supervised by K. Belabas and P.
Bruin
PhD in progress: Pınar Kılıçer, Topics in complex multiplication, Universities Bordeaux and Leiden,
supervised by A. Enge and M. Streng
PhD in progress: Chloë Martindale, Isogeny graphs, Universities Bordeaux and Leiden, supervised
by A. Enge, P. Stevenhagen, M. Streng
F. Johansson was a mentor in Google Summer of Code for Anubhav Srivastava (undergraduate
student at IIIT Hyderabad) who did a successful GSoC project on "BLAS wrappers for linear algebra
in FLINT"
S. Ionica supervised P. Bert’s Master 1 thesis “Index calculus algorithms for small genus hyperellip-
tic curves”. P. Bert is a student of the CSI master (Univ. of Bordeaux) and was an intern with LFANT
from the 10th of May 2015 to the 31th of July 2015.

8.2.3. Juries
K. Belabas was a member of the jury of Olga Balkanova’s PhD defense in Bordeaux (supervised by G. Molteni
and G. Ricotta)
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K. Belabas was a member (as supervisor) of the juries of Athanasios Angelakis and Julio Brau.

J.-M. Couveignes was a member of the jury, as a referee, for François Arnaud’s HDR defense.

J.-M. Couveignes was a member of the jury, for Cyril Bouvier’s PhD defense.

J.-M. Couveignes was a member of the jury, for Tristan Vaccon’s PhD defense.

J.-M. Couveignes was a member of the jury, for Kevin Atighehchi’s PhD defense.

A. Enge and D. Robert were members (as supervisors) of the jury for Enea Milio’s PhD defense.

8.3. Popularization
Damien Robert participated in a CinémaScience event to discuss with the public after a projection of the film
“Imitation Game” on Alan Turing. The theme of the intervention was “The contributions of Alan Turing from
computer science to cryptography”.
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