
IN PARTNERSHIP WITH:
CNRS

Université Nice - Sophia
Antipolis

Activity Report 2015

Project-Team MCTAO

Mathematics for Control, Transport and
Applications

IN COLLABORATION WITH: Laboratoire Jean-Alexandre Dieudonné (JAD)

RESEARCH CENTER
Sophia Antipolis - Méditerranée

THEME
Optimization and control of dynamic
systems





Table of contents

1. Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Overall Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Research Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1. Control Systems 2
3.2. Structure of nonlinear control systems 3
3.3. Optimal control and feedback control, stabilization 3

3.3.1. Optimal control. 3
3.3.2. Feedback, control Lyapunov functions, stabilization. 4

3.4. Optimal Transport 4
3.5. Small controls and conservative systems, averaging 5

4. Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
4.1. Space engineering, satellites, low thrust control 5

4.1.1. Low thrust 5
4.1.2. Typical problems 6
4.1.3. Properties of the control system. 6

4.2. Quantum Control 6
4.3. Applications of optimal transport 7
4.4. Applications to some domains of mathematics. 7

5. New Software and Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6. New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.1. Optimal control for quantum systems and applications to MRI 8
6.2. Controllability and Optimal control at Low Reynolds number 8
6.3. Averaging in control and application to space mechanics 8

7. Bilateral Contracts and Grants with Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.1. Thales Alenia Space - Inria 9
7.2. CNES - Inria - UMB 9

8. Partnerships and Cooperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.1. Regional Initiatives 9
8.2. National Initiatives 9

8.2.1. ANR 9
8.2.2. Others 9

8.3. European Initiatives 10
8.4. International Research Visitors 10

8.4.1. Visits of International Scientists 10
8.4.2. Visits to International Teams 10

9. Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10





Project-Team MCTAO

Creation of the Team: 2012 January 01, updated into Project-Team: 2013 January 01

Keywords:

Computer Science and Digital Science:
5.10.4. - Robot control
6.1. - Mathematical Modeling
6.4. - Automatic control
6.4.1. - Deterministic control
6.4.3. - Observability and Controlability
6.4.4. - Stability and Stabilization

Other Research Topics and Application Domains:
2.6. - Biological and medical imaging
5.2.4. - Aerospace
6.6. - Embedded systems

As of January, 2015, a formal convention between Inria and Université de Bourgogne agrees that some
researchers of the Institut de Mathématique de Bourgogne (IMB) are full members of McTAO and Inria
members of McTAO may be hosted in Dijon.

McTAO is also a common project team (EPC) with JAD, Université Nice Sophia Antipolis.

1. Members
Research Scientists

Jean-Baptiste Pomet [Team leader, Inria, Senior Researcher, HdR]
Laetitia Giraldi [Inria, Researcher]

Faculty Members
Bernard Bonnard [Univ. Bourgogne, Professor, HdR]
Jean-Baptiste Caillau [Univ. Bourgogne, Professor, HdR]
Ludovic Rifford [Univ. Nice, Professor, HdR]

PhD Students
Zeinab Badreddine [Univ. Bourgogne]
Zheng Chen [Univ. Paris Sud]
Helen-Clare Henninger [Inria, until Oct 2015, supported by Thales Alenia Space and Conseil Régional PACA]
Michael Orieux [Univ. Paris Dauphine, from Sep 2015]
Jeremy Rouot [Inria, supported by CNES and Conseil Régional PACA]
Achille Sassi [Ecole Polytechnique, suported by EADS Astrium]

Post-Doctoral Fellow
Florentina Nicolau [Inria, from Dec 2015]

Visiting Scientists
Velimir Jurdjevic [University of Toronto, from Sep 2015 until Oct 2015]
Thierry Dargent [Thales Alenia Space, Engineer]
Joseph Gergaud [ENSEEIHT Toulouse, Professor, HdR]

Administrative Assistant
Christel Kozinski [Inria]

http://math.u-bourgogne.fr/


2 Activity Report INRIA 2015

Other
Gontran Lance [Inria, Inria, MSc student, ParisTech ENSTA, from May 2015 until Jul 2015]

2. Overall Objectives

2.1. Overall Objectives
The core endeavor of this team is to develop methods in control theory for finite-dimensional nonlinear
systems, as well as in optimal transport, and to be involved in real applications of these techniques. Some
mathematical fields like dynamical systems and optimal transport may benefit from control theory techniques.
Our primary domain of industrial applications will be space engineering, namely designing trajectories
in space mechanics using optimal control and stabilization techniques: transfer of a satellite between two
Keplerian orbits, rendez-vous problem, transfer of a satellite from the Earth to the Moon or more complicated
space missions. A second field of applications is quantum control with applications to Nuclear Magnetic
Resonance and medical image processing. A third and more recent one is the control of micro-swimmers, i.e.
swimming robots where the fluid-structure coupling has a very low Reynolds number.

3. Research Program

3.1. Control Systems
Our effort is directed toward efficient methods for the control of real (physical) systems, based on a model
of the system to be controlled. System refers to the physical plant or device, whereas model refers to a
mathematical representation of it.

We mostly investigate nonlinear systems whose nonlinearities admit a strong structure derived from physics;
the equations governing their behavior are then well known, and the modeling part consists in choosing what
phenomena are to be retained in the model used for control design, the other phenomena being treated as
perturbations; a more complete model may be used for simulations, for instance. We focus on systems that
admit a reliable finite-dimensional model, in continuous time; this means that models are controlled ordinary
differential equations, often nonlinear.

Choosing accurate models yet simple enough to allow control design is in itself a key issue; however, modeling
or identification as a theory is not per se in the scope of our project.

The extreme generality and versatility of linear control do not contradict the often heard sentence “most real
life systems are nonlinear”. Indeed, for many control problems, a linear model is sufficient to capture the
important features for control. The reason is that most control objectives are local, first order variations around
an operating point or a trajectory are governed by a linear control model, and except in degenerate situations
(non-controllability of this linear model), the local behavior of a nonlinear dynamic phenomenon is dictated by
the behavior of first order variations. Linear control is the hard core of control theory and practice; it has been
pushed to a high degree of achievement –see for instance some classics: [45], [37]– that leads to big successes
in industrial applications (PID, Kalman filtering, frequency domain design, H∞ robust control, etc...). It must
be taught to future engineers, and it is still a topic of ongoing research.

Linear control by itself however reaches its limits in some important situations:

1. Non local control objectives. Steering the system from a region to a reasonably remote other one,
as in path planning and optimal control, is outside the scope of information given by a local linear
approximation. It is why these are by essence nonlinear.
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Stabilisation with a basin of attraction larger than the region where the linear approximation is
dominant also needs more inforation than one linear apporximation.

2. Local control at degenerate equilibria. Linear control yields local stabilization of an equilibrium
point based on the tangent linear approximation if the latter is controllable. It is not the case
at interesting operating points of some physical systems; linear control is irrelevant and specific
nonlinear techniques have to be designed. This is an extreme case of the second part of the above
item: the region where the linear approximation is dominant vanishes.

3. Small controls. In some situations, actuators only allow a very small magnitude of the effect of
control compared to the effect of other phenomena. Then the behavior of the system without control
plays a major role and we are again outside the scope of linear control methods.

3.2. Structure of nonlinear control systems
In most problems, choosing the proper coordinates, or the right quantities that describe a phenomenon,
sheds light on a path to the solution. In control systems, it is often crucial to analyze the structure of the
model, deduced from physical principles, of the plant to be controlled; this may lead to putting it via some
transformations in a simpler form, or a form that is most suitable for control design. For instance, equivalence
to a linear system may allow to use linear control; also, the so-called “flatness” property drastically simplifies
path planning [39], [51].

A better understanding of the “set of nonlinear models”, partly classifying them, has another motivation than
facilitating control design for a given system and its model: it may also be a necessary step towards a theory of
“nonlinear identification” and modeling. Linear identification is a mature area of control science; its success
is mostly due to a very fine knowledge of the structure of the class of linear models: similarly, any progress in
the understanding of the structure of the class of nonlinear models would be a contribution to a possible theory
of nonlinear identification.

These topics are central in control theory, but raise very difficult mathematical questions: static feedback
classification is a geometric problem which is feasible in principle, although describing invariants explicitly
is technically very difficult; and conditions for dynamic feedback equivalence and linearization raise unsolved
mathematical problems, that make one wonder about decidability 1.

3.3. Optimal control and feedback control, stabilization
3.3.1. Optimal control.

Mathematically speaking, optimal control is the modern branch of the calculus of variations, rather well
established and mature [22], [49], [29], [56]. Relying on Hamiltonian dynamics is now prevalent, instead
of the standard Lagrangian formalism of the calculus of variations. Also, coming from control engineering,
constraints on the control (for instance the control is a force or a torque, which are naturally bounded) or the
state (for example in the shuttle atmospheric re-entry problem there is a constraint on the thermal flux) are
imposed; the ones on the state are usual but these on the state yield more complicated necessary optimality
conditions and an increased intrinsic complexity of the optimal solutions. Also, in the modern treatment, ad-
hoc numerical schemes have to be derived for effective computations of the optimal solutions.

1Consider the simple system with state (x, y, z) ∈ IR3 and two controls that reads ż = (ẏ − zẋ)
2
ẋ after elimination of the

controls; it is not known whether it is equivalent to a linear system, or flat; this is because the property amounts to existence of a formula
giving the general solution as a function of two arbitrary functions of time and their derivatives up to a certain order, but no bound on this
order is known a priori, even for this very particular example.
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What makes optimal control an applied field is the necessity of computing these optimal trajectories, or rather
the controls that produce these trajectories (or, of course, close-by trajectories). Computing a given optimal
trajectory and its control as a function of time is a demanding task, with non trivial numerical difficulties:
roughly speaking, the Pontryagin Maximum Principle gives candidate optimal trajectories as solutions of a two
point boundary value problem (for an ODE) which can be analyzed using mathematical tools from geometric
control theory or solved numerically using shooting methods. Obtaining the optimal synthesis –the optimal
control as a function of the state– is of course a more intricate problem [29], [34].

These questions are not only academic for minimizing a cost is very relevant in many control engineering
problems. However, modern engineering textbooks in nonlinear control systems like the “best-seller” [41]
hardly mention optimal control, and rather put the emphasis on designing a feedback control, as regular and
explicit as possible, satisfying some qualitative (and extremely important!) objectives: disturbance attenuation,
decoupling, output regulation or stabilization. Optimal control is sometimes viewed as disconnected from
automatic control... we shall come back to this unfortunate point.

3.3.2. Feedback, control Lyapunov functions, stabilization.
A control Lyapunov function (CLF) is a function that can be made a Lyapunov function (roughly speaking, a
function that decreases along all trajectories, some call this an “artificial potential”) for the closed-loop system
corresponding to some feedback law. This can be translated into a partial differential relation sometimes
called “Artstein’s (in)equation” [25]. There is a definite parallel between a CLF for stabilization, solution
of this differential inequation on the one hand, and the value function of an optimal control problem for the
system, solution of a HJB equation on the other hand. Now, optimal control is a quantitative objective while
stabilization is a qualitative objective; it is not surprising that Artstein (in)equation is very under-determined
and has many more solutions than HJB equation, and that it may (although not always) even have smooth
ones.

We have, in the team, a longstanding research record on the topic of construction of CLFs and stabilizing
feedback controls.

3.4. Optimal Transport
We believe that matching optimal transport with geometric control theory is one originality of our team. We
expect interactions in both ways.

The study of optimal mass transport problems in the Euclidean or Riemannian setting has a long history
which goes from the pioneer works of Monge [53] and Kantorovitch [46] to the recent revival initiated by
fundamental contributions due to Brenier [35] and McCann [52].

The same transportation problems in the presence of differential constraints on the set of paths —like being
an admissible trajectory for a control system— is quite new. The first contributors were Ambrosio and Rigot
[23] who proved the existence and uniqueness of an optimal transport map for the Monge problem associated
with the squared canonical sub-Riemannian distance on the Heisenberg groups. This result was extended later
by Agrachev and Lee [20], then by Figalli and Rifford [38] who showed that the Ambrosio-Rigot theorem
holds indeed true on many sub-Riemannian manifolds satisfying reasonable assumptions. The problem of
existence and uniqueness of an optimal transport map for the squared sub-Riemannian distance on a general
complete sub-Riemannian manifold remains open; it is strictly related to the regularity of the sub-Riemannian
distance in the product space, and remains a formidable challenge. Generalized notions of Ricci curvatures
(bounded from below) in metric spaces have been developed recently by Lott and Villani [50] and Sturm
[58], [59]. A pioneer work by Juillet [43] captured the right notion of curvature for subriemannian metric in
the Heisenberg group; Agrachev and Lee [21] have elaborated on this work to define new notions of curvatures
in three dimensional sub-Riemannian structures. The optimal transport approach happened to be very fruitful
in this context. Many things remain to do in a more general context.
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3.5. Small controls and conservative systems, averaging
Using averaging techniques to study small perturbations of integrable Hamiltonian systems dates back to H.
Poincaré or earlier; it gives an approximation of the (slow) evolution of quantities that are preserved in the
non-perturbed system. It is very subtle in the case of multiple periods but more elementary in the single period
case, here it boils down to taking the average of the perturbation along each periodic orbit; see for instance
[24], [57].

When the “perturbation” is a control, these techniques may be used after deciding how the control will depend
on time and state and other quantities, for instance it may be used after applying the Pontryagin Maximum
Principle as in [27], [28], [36], [40]. Without deciding the control a priori, an “average control system” may
be defined as in [26].

The focus is then on studying into details this simpler “averaged” problem, that can often be described by a
Riemannian metric for quadratic costs or by a Finsler metric for costs like minimum time.

This line of research stemmed out of applications to space engineering, see section 4.1.

4. Application Domains

4.1. Space engineering, satellites, low thrust control
Space engineering is very demanding in terms of safe and high-performance control laws (for instance optimal
in terms of fuel consumption, because only a finite amount of fuel is onboard a sattelite for all its “life”). It is
therefore prone to real industrial collaborations.

We are especially interested in trajectory control of space vehicles using their own propulsion devices, outside
the atmosphere. Here we discuss “non-local” control problems (in the sense of section 3.1 point 1): orbit
transfer rather than station keeping; also we do not discuss attitude control.

In the geocentric case, a space vehicle is subject to
- gravitational forces, from one or more central bodies (the corresponding acceleration is denoted by Fgrav.

below),
- a thrust, the control, produced by a propelling device; it is the Gu term below; assume for simplicity that
control in all directions is allowed, i.e. G is an invertible matrix
- other “perturbating” forces (the corresponding acceleration is denoted by F2 below).

In position-velocity coordinates, its dynamics can be written as

ẍ = Fgrav.(x, t)

[
+ F2(x, ẋ, t)

]
+ G(x, ẋ)u , ‖u‖ ≤ umax. (1)

In the case of a single attracting central body (the earth) and in a geocentric frame, Fgrav. does not depend on
time, or consists of a main term that does not depend on time and smaller terms reflecting the action of the
moon or the sun, that depend on time. The second term is often neglected in the design of the control at first
sight; it contains terms like athmospheric drag or solar pressure. G could also bear an explicit dependence on
time (here we omit the variation of the mass, that decreases proportionnally to ‖u‖.

4.1.1. Low thrust
Low thrust means that umax is small, or more precisely that the maximum magnitude of Gu is small with
respect to the one of Fgrav. (but in genral not compared to F2). Hence the influence of the control is very
weak instantaneously, and trajectories can only be significantly modified by accumulating the effect of this
low thrust on a long time. Obviously this is possible only because the free system is somehow conservative.
This was “abstracted” in section 3.5.
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Why low thrust ? The common principle to all propulsion devices is to eject particles, with some relative
speed with respect to the vehicle; conservation of momentum then induces, from the point of view of the
vehicle alone, an external force, the “thrust” (and a mass decrease). Ejecting the same mass of particles with
a higher relative speed results in a proportionally higher thrust; this relative speed (specific impulse, Isp) is a
characteristic of the engine; the higher the Isp, the smaller the mass of particles needed for the same change in
the vehicle momentum. Engines with a higher Isp are highly desirable because, for the same maneuvers, they
reduce the mass of "fuel" to be taken on-board the satellite, hence leaving more room (mass) for the payload.
“Classical” chemical engines use combustion to eject particles, at a somehow limited speed even with very
efficient fuel; the more recent electric engines use a magnetic field to accelerate particles and eject them at
a considerably higher speed; however electrical power is limited (solar cells), and only a small amount of
particles can be accelerated per unit of time, inducing the limitation on thrust magnitude.

Electric engines theoretically allow many more maneuvers with the same amount of particles, with the
drawback that the instant force is very small; sophisticated control design is necessary to circumvent this
drawback. High thrust engines allow simpler control procedures because they almost allow instant maneuvers
(strategies consist in a few burns at precise instants).

4.1.2. Typical problems
Let us mention two.

• Orbit transfer or rendez-vous. It is the classical problem of bringing a satellite to its operating
position from the orbit where it is delivered by the launcher; for instance from a GTO orbit to
the geostationary orbit at a prescribed longitude (one says rendez-vous when the longitude, or the
position on the orbit, is prescribed, and transfer if it is free). In equation (1) for the dynamics, Fgrav.

is the Newtonian gravitation force of the earth (it then does not depend on time); F2 contains all the
terms coming either from the perturbations to the Newtonian potential or from external forces like
radiation pressure, and the control is usually allowed in all directions, or with some restrictions to be
made precise.

• Three body problem. This is about missions in the solar system leaving the region where the attraction
of the earth, or another single body, is preponderant. We are then no longer in the situation of a single
central body, Fgrav. contains the attraction of different planets and the sun. In regions where two
central bodies have an influence, say the earth and the moon, or the sun and a planet, the term Fgrav.

in (1) is the one of the restricted three body problem and dependence on time reflects the movement
of the two “big” attracting bodies.

An issue for future experimental missions in the solar system is interplanetary flight planning
with gravitational assistance. Tackling this global problem, that even contains some combinatorial
problems (itinerary), goes beyond the methodology developed here, but the above considerations are
a brick in this puzzle.

4.1.3. Properties of the control system.
If there are no restrictions on the thrust direction, i.e., in equation (1), if the control u has dimension 3 with an
invertible matrix G, then the control system is “static feedback linearizable”, and a fortiori flat, see section 3.2.
However, implementing the static feedback transformation would consist in using the control to “cancel” the
gravitation; this is obviously impossible since the available thrust is very small. As mentioned in section 3.1,
point 3, the problem remains fully nonlinear in spite of this “linearizable” structure 2.

4.2. Quantum Control
These applications started by a collaboration between B. Bonnard and D. Sugny (a physicist from ICB) in
the ANR project Comoc, localized mainly at the University of Dijon. The problem was the control of the

2However, the linear approximation around any feasible trajectory is controllable (a periodic time-varying linear system); optimal
control problems will have no singular or abnormal trajectories.
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orientation of a molecule using a laser field, with a model that does take into account the dissipation due to the
interaction with the environment, molecular collisions for instance. The model is a dissipative generalization
of the finite dimensional Schrödinger equation, known as Lindblad equation. It is a 3-dimensional system
depending upon 3 parameters, yielding a very complicated optimal control problem that we have solved for
prescribed boundary conditions. In particular we have computed the minimum time control and the minimum
energy control for the orientation or a two-level system, using geometric optimal control and appropriate
numerical methods (shooting and numerical continuation) [32], [31].

More recently, based on this project, we have reoriented our control activity towards Nuclear Magnetic
Resonance (MNR). In MNR medical imaging, the contrast problem is the one of designing a variation
of the magnetic field with respect to time that maximizes the difference, on the resulting image, between
two different chemical species; this is the “contrast”. This research is conducted with Prof. S. Glaser (TU-
München), whose group is performing both in vivo and in vitro experiments; experiments using our techniques
have successfully measured the improvement in contrast between materials chemical species that have an
importance in medicine, like oxygenated and de-oxygenated blood, see [30]; this is however still to be
investigated and improved. The model is the Bloch equation for spin 1

2 particles, that can be interpreted as
a sub-case of Lindblad equation for a two-level system; the control problem to solve amounts to driving in
minimum time the magnetization vector of the spin to zero (for parameters of the system corresponding to
one of the species), and generalizations where such spin 1

2 particles are coupled: double spin inversion for
instance.

A reference book by B. Bonnard and D. Sugny has been published on the topic [33].

4.3. Applications of optimal transport
Optimal Transportation in general has many applications. Image processing, biology, fluid mechanics, mathe-
matical physics, game theory, traffic planning, financial mathematics, economics are among the most popular
fields of application of the general theory of optimal transport. Many developments have been made in all
these fields recently. Three more specific examples:
- In image processing, since a grey-scale image may be viewed as a measure, optimal transportation has been
used because it gives a distance between measures corresponding to the optimal cost of moving densities from
one to the other, see e.g. the work of J.-M. Morel and co-workers [54].
- In representation and approximation of geometric shapes, say by point-cloud sampling, it is also interesting to
associate a measure, rather than just a geometric locus, to a distribution of points (this gives a small importance
to exceptional “outlier” mistaken points); this was developed in Q. Mérigot’s PhD [55] in the GEOMETRICA
project-team. The relevant distance between measures is again the one coming from optimal transportation.
- The specific to the type of costs that we have considered in some mathematical work, i.e. these coming from
optimal control, are concerned with evolutions of densities under state or velocity constraints. A fluid motion
or a crowd movement can be seen as the evolution of a density in a given space. If constraints are given on the
directions in which these densities can evolve, we are in the framework of non-holonomic transport problems.

4.4. Applications to some domains of mathematics.
Control theory (in particular thinking in terms of inputs and reachable set) has brought novel ideas and
progresses to mathematics. For instance, some problems from classical calculus of variations have been
revisited in terms of optimal control and Pontryagin’s Maximum Principle [44]; also, closed geodesics for
perturbed Riemannian metrics where constructed in [47], [48] using control techniques.

Inside McTAO, a work like [10], [9] is definitely in this line, applying techniques from control to construct
some perturbations under constraints of Hamiltonian systems to solve longstanding open questions in the field
of dynamical systems.
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5. New Software and Platforms

5.1. Hampath
KEYWORDS: Geometric control - Second order conditions - Differential homotopy - Ordinary differential
equations
FUNCTIONAL DESCRIPTION

Hampath is a software developped to solve optimal control problems but also to study Hamiltonian flow.

• Participants: Jean-Baptiste Caillau, Olivier Cots and Joseph Gergaud

• Contact: Jean-Baptiste Caillau

• URL: http://cots.perso.enseeiht.fr/hampath/index.html

6. New Results

6.1. Optimal control for quantum systems and applications to MRI
Participants: Bernard Bonnard, Thierry Combot [Université de Bourgogne, IMB], Alain Jacquemard [Uni-
versité de Bourgogne, IMB], Dominique Sugny [Université de Bourgogne, LIC].

Important results have been obtained in this aera that we detail next :

• A complete solution to the time minimal control of a chain of three spins with Ising coupling which
is a toy example applicable to quantum computing [42], [3].

• Optimal control of an ensemble of spins systems with application to MRI : this work is performed in
the framework of the ANR project Explosys , based on our previous results in the contrast problem in
Nuclear Magnetic Imaging. In relation with the laboratory Creatis (Insa Lyon) and TUM (S. Glaser)
the objective is to design robust pulses control, with respect to the relaxation parameters and the
B0 and B1 inhomogneities. The computations are intricated from both the numerical point of view
and exact computaions. From this second point a systematic study of the controlled Bloch equation
has been initiated using exact computer algebraic method in relation with the Inria project-team
POLSYS .

6.2. Controllability and Optimal control at Low Reynolds number
Participants: Piernicola Bettiol [Université de Bretagne Occidentale (Brest)], Bernard Bonnard, Laetitia
Giraldi, Pierre Martinon [project-team COMMANDS], Jean-Baptiste Pomet, Jérémy Rouot.

This new aera is somehow connected to the recent recruitment of L. Giraldi (CR2) in the Mc Tao team. The
problem under study is to design strokes for swimmers at low Reynolds numbers, e .g. the Copepod swimmer
(an abundant variety od zooplankton) or the Purcell swimmer. The problem was studied from the point of view
of geometric optimal control [17], [18] combining theoretical and numerical computations or controllability
techniques [19].

6.3. Averaging in control and application to space mechanics
Participants: Bernard Bonnard, Jean-Baptiste Caillau, Helen-Clare Henninger, Jana Němcová [Instritute of
Chemical Tech, Prague, CZ], Jean-Baptiste Pomet, Jeremy Rouot.

We have obtained results on the structure of the average system for the planar minimum time problem without
perturbation in [4], and the “double average” that takes the lunar perturbation into account in [13]. This is also
the topic of Helen Henninger’s PhD [1].

http://cots.perso.enseeiht.fr/hampath/index.html
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The structure of the problem where the consumption (i.e. the L1 norm of the control) is minimized is studied
in [5].

The book [16] is a general reference opus edited by members of the team.

7. Bilateral Contracts and Grants with Industry

7.1. Thales Alenia Space - Inria
“Transfert orbital dans le problème des deux et trois corps avec la technique de propulsion faible”.

This contract started October, 2012 and ended September, 2015. It partially supported Helen Heninger’s PhD.

The goal was to improve transfer strategies for guidance of a spacecraft in the gravitation field of one central
body (the two-body problem) or two celestial bodies (three-body problem).

7.2. CNES - Inria - UMB
“Poussée faible et moyennation”.
CNES number: 130777/00.

This three year contract started in 2014. It involves CNES and McTAO (both the Inria and the Université de
Bourgogne parts). It concerns averaging techniques in orbit transfers around the earth while taking into acount
many perturbation of the main force (gravity for the earth considered as circular). The objective is to validate
numerically and theoretically the approximations made by using averaging, and to propose methods that refine
the approximation.

8. Partnerships and Cooperations

8.1. Regional Initiatives
• The “région” Provence Alpes Côte d’Azur (PACA) partially supports Helen Heninger’s PhD . The

other part comes from Thales Alenia space, see section 7.1.

• The “région” Provence Alpes Côte d’Azur (PACA) partially supports Jérémy Rouot’s PhD.

8.2. National Initiatives
8.2.1. ANR

Weak KAM beyond Hamilton-Jacobi (WKBHJ). Started march, 2013, duration: 4 years. Ludovic Rifford
is in the scientific comitee.

Géométrie et transport optimal de mesure (GMT). Ludovic Rifford is a member.

8.2.2. Others
Bernard Bonnard and Ludovic Rifford participate in the GDR MOA, a CNRS network on Mathematics of
Optimization and Applications. http://gdrmoa.univ-perp.fr/.

Jean-Baptiste Caillau is in the board of governors of the group SMAI-MODE (http://smai.emath.fr/spip.
php?article338).

Jean-Baptiste Caillau is a member of the Centre de Compétences Techniques (CCT) Mécanique orbitale du
CNES

Jean-Baptiste Caillau is the corresponding member in Dijon for the Labex AMIES (http://www.agence-maths-
entreprises.fr/).

http://perso.ens-lyon.fr/marco.mazzucchelli/KAM-Faible/
http://constantin.vernicos.org/anrGMT/
http://gdrmoa.univ-perp.fr/
http://smai.emath.fr/spip.php?article338
http://smai.emath.fr/spip.php?article338
http://www.agence-maths-entreprises.fr/
http://www.agence-maths-entreprises.fr/
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8.3. European Initiatives
8.3.1. ANR/DFG franco-german project

Exploring the physical limits of spin systems: A challenge in medical imaging (Explosys). Started October,
2014, duration: 4 years.

Bernard Bonnard is a member of this project. The coordinators are Dominique Sugny (Dijon) and Stefen
Glaser (Munich). The budget is approximately 500 K¤.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

Velimir Jurdjevic (University of Toronto), 1 month, September-October, 2015.

8.4.2. Visits to International Teams
Ludovic Rifford stayed at Center for Mathematical Modeling, Universidad de Chile, Santiago (Chili), 6 months
in March-August, 2015.

9. Dissemination

9.1. Teaching - Supervision - Juries
PhD: Helen Heninger, Étude des solutions du transfert orbital avec poussée faible dans le probleme
des deux ou trois corps, defended October 4, 2015, Université de Nice Sophia Antipolis, advisors:
Bernard Bonnard and Jean-Baptiste Pomet.

PhD in progress: Jérémy Rouot, subject: Moyennisation en contrôle et en contrôle optimal, effet des
perturbations non périodiques, Université de Nice Sophia Antipolis, started october, 2013, advisors:
Bernard Bonnard and Jean-Baptiste Pomet.

PhD in progress: Zeinab Badredine, subject: Techniques d’intégrabilité en dynamique des spins et
applications au contrôle optimal, Université de Bourgogne, started october, 2014, advisors: Bernard
Bonnard and Ludovic Rifford.

MSc: Sofya Maslovskaya, Finsler metric associated with average minimum time problems, Ensta
ParisTech, supervisors: Jean-Baptiste Pomet.
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