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2. Overall Objectives
2.1. Main themes

The aim of the Parsifal team is to develop and exploit proof theory and type theory in the specification,
verification, and analysis of computational systems.
• Expertise: the team conducts basic research in proof theory and type theory. In particular, the team is

developing results that help with automated deduction and with the manipulation and communication
of formal proofs.

• Design: based on experience with computational systems and theoretical results, the team develops
new logical principles, new proof systems, and new theorem proving environments.

• Implementation: the team builds prototype systems to help validate basic research results.
• Examples: the design and implementation efforts are guided by examples of specification and veri-

fication problems. These examples not only test the success of the tools but also drive investigations
into new principles and new areas of proof theory and type theory.

The foundational work of the team focuses on structural and analytic proof theory, i.e., the study of formal
proofs as algebraic and combinatorial structures and the study of proof systems as deductive and computational
formalisms. The main focus in recent years has been the study of the sequent calculus and of the deep inference
formalisms.

An important research question is how to reason about computational specifications that are written in a
relational style. To this end, the team has been developing new approaches to dealing with induction, co-
induction, and generic quantification. A second important question is of canonicity in deductive systems, i.e.,
when are two derivations “essentially the same”? This crucial question is important not only for proof search,
because it gives an insight into the structure and an ability to manipulate the proof search space, but also for
the communication of proof objects between different reasoning agents such as automated theorem provers
and proof checkers.

Important application areas currently include:
• Meta-theoretic reasoning on functional programs, such as terms in the λ-calculus
• Reasoning about behaviors in systems with concurrency and communication, such as the π-calculus,

game semantics, etc.
• Combining interactive and automated reasoning methods for induction and co-induction
• Verification of distributed, reactive, and real-time algorithms that are often specified using modal

and temporal logics
• Representing proofs as documents that can be printed, communicated, and checked by a wide range

of computational logic systems.
• Development of cost models for the evaluation of proofs and programs.

3. Research Program
3.1. General overview

There are two broad approaches for computational specifications. In the computation as model approach,
computations are encoded as mathematical structures containing nodes, transitions, and state. Logic is used
to describe these structures, that is, the computations are used as models for logical expressions. Intensional
operators, such as the modals of temporal and dynamic logics or the triples of Hoare logic, are often employed
to express propositions about the change in state.
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The computation as deduction approach, in contrast, expresses computations logically, using formulas, terms,
types, and proofs as computational elements. Unlike the model approach, general logical apparatus such as cut-
elimination or automated deduction becomes directly applicable as tools for defining, analyzing, and animating
computations. Indeed, we can identify two main aspects of logical specifications that have been very fruitful:

• Proof normalization, which treats the state of a computation as a proof term and computation
as normalization of the proof terms. General reduction principles such as β-reduction or cut-
elimination are merely particular forms of proof normalization. Functional programming is based on
normalization [71], and normalization in different logics can justify the design of new and different
functional programming languages [48].

• Proof search, which views the state of a computation as a a structured collection of formulas,
known as a sequent, and proof search in a suitable sequent calculus as encoding the dynamics of
the computation. Logic programming is based on proof search [77], and different proof search
strategies can be used to justify the design of new and different logic programming languages [75].

While the distinction between these two aspects is somewhat informal, it helps to identify and classify different
concerns that arise in computational semantics. For instance, confluence and termination of reductions are
crucial considerations for normalization, while unification and strategies are important for search. A key
challenge of computational logic is to find means of uniting or reorganizing these apparently disjoint concerns.

An important organizational principle is structural proof theory, that is, the study of proofs as syntactic,
algebraic and combinatorial objects. Formal proofs often have equivalences in their syntactic representations,
leading to an important research question about canonicity in proofs – when are two proofs “essentially the
same?” The syntactic equivalences can be used to derive normal forms for proofs that illuminate not only
the proofs of a given formula, but also its entire proof search space. The celebrated focusing theorem of
Andreoli [50] identifies one such normal form for derivations in the sequent calculus that has many important
consequences both for search and for computation. The combinatorial structure of proofs can be further
explored with the use of deep inference; in particular, deep inference allows access to simple and manifestly
correct cut-elimination procedures with precise complexity bounds.

Type theory is another important organizational principle, but most popular type systems are generally
designed for either search or for normalization. To give some examples, the Coq system [85] that implements
the Calculus of Inductive Constructions (CIC) is designed to facilitate the expression of computational features
of proofs directly as executable functional programs, but general proof search techniques for Coq are rather
primitive. In contrast, the Twelf system [81] that is based on the LF type theory (a subsystem of the CIC),
is based on relational specifications in canonical form (i.e., without redexes) for which there are sophisticated
automated reasoning systems such as meta-theoretic analysis tools, logic programming engines, and inductive
theorem provers. In recent years, there has been a push towards combining search and normalization in the
same type-theoretic framework. The Beluga system [82], for example, is an extension of the LF type theory
with a purely computational meta-framework where operations on inductively defined LF objects can be
expressed as functional programs.

The Parsifal team investigates both the search and the normalization aspects of computational specifications
using the concepts, results, and insights from proof theory and type theory.

3.2. Inductive and co-inductive reasoning
The team has spent a number of years in designing a strong new logic that can be used to reason (inductively
and co-inductively) on syntactic expressions containing bindings. This work is based on earlier work by
McDowell, Miller, and Tiu [73] [72] [78] [86], and on more recent work by Gacek, Miller, and Nadathur
[4] [63]. The Parsifal team, along with our colleagues in Minneapolis, Canberra, Singapore, and Cachen, have
been building two tools that exploit the novel features of this logic. These two systems are the following.

• Abella, which is an interactive theorem prover for the full logic.

• Bedwyr, which is a model checker for the “finite” part of the logic.
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We have used these systems to provide formalize reasoning of a number of complex formal systems, ranging
from programming languages to the λ-calculus and π-calculus.

Since 2014, the Abella system has been extended with a number of new features. A number of new significant
examples have been implemented in Abella and an extensive tutorial for it has been written [1].

3.3. Developing a foundational approach to defining proof evidence
The team is developing a framework for defining the semantics of proof evidence. With this framework,
implementers of theorem provers can output proof evidence in a format of their choice: they will only need to
be able to formally define that evidence’s semantics. With such semantics provided, proof checkers can then
check alleged proofs for correctness. Thus, anyone who needs to trust proofs from various provers can put
their energies into designing trustworthy checkers that can execute the semantic specification.

In order to provide our framework with the flexibility that this ambitious plan requires, we have based our
design on the most recent advances within the theory of proofs. For a number of years, various team members
have been contributing to the design and theory of focused proof systems [51] [54] [56] [57] [65] [69] [70] and
we have adopted such proof systems as the corner stone for our framework.

We have also been working for a number of years on the implementation of computational logic systems,
involving, for example, both unification and backtracking search. As a result, we are also building an early and
reference implementation of our semantic definitions.

3.4. Deep inference
Deep inference [66], [68] is a novel methodology for presenting deductive systems. Unlike traditional
formalisms like the sequent calculus, it allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof theory. For example, for systems using deep
inference, we have a greater variety of normal forms for proofs than in sequent calculus or natural deduction
systems. Another advantage of deep inference systems is the close relationship to categorical proof theory.
Due to the deep inference design one can directly read off the morphism from the derivations. There is no
need for a counter-intuitive translation.

The following research problems are investigated by members of the Parsifal team:
• Find deep inference system for richer logics. This is necessary for making the proof theoretic results

of deep inference accessible to applications as they are described in the previous sections of this
report.

• Investigate the possibility of focusing proofs in deep inference. As described before, focusing is a
way to reduce the non-determinism in proof search. However, it is well investigated only for the
sequent calculus. In order to apply deep inference in proof search, we need to develop a theory of
focusing for deep inference.

3.5. Proof nets and atomic flows
Proof nets and atomic flows are abstract (graph-like) presentations of proofs such that all "trivial rule
permutations" are quotiented away. Ideally the notion of proof net should be independent from any syntactic
formalism, but most notions of proof nets proposed in the past were formulated in terms of their relation to the
sequent calculus. Consequently we could observe features like “boxes” and explicit “contraction links”. The
latter appeared not only in Girard’s proof nets [64] for linear logic but also in Robinson’s proof nets [83] for
classical logic. In this kind of proof nets every link in the net corresponds to a rule application in the sequent
calculus.

Only recently, due to the rise of deep inference, new kinds of proof nets have been introduced that take the
formula trees of the conclusions and add additional “flow-graph” information (see e.g., [6], [5] and [67]. On
one side, this gives new insights in the essence of proofs and their normalization. But on the other side, all the
known correctness criteria are no longer available.
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This directly leads to the following research questions investigated by members of the Parsifal team:

• Finding (for classical logic) a notion of proof nets that is deductive, i.e., can effectively be used for
doing proof search. An important property of deductive proof nets must be that the correctness can
be checked in linear time. For the classical logic proof nets by Lamarche and Straßburger [6] this
takes exponential time (in the size of the net).

• Studying the normalization of proofs in classical logic using atomic flows. Although there is no
correctness criterion they allow to simplify the normalization procedure for proofs in deep inference,
and additionally allow to get new insights in the complexity of the normalization.

3.6. Cost Models and Abstract Machines for Functional Programs
In the proof normalization approach, computation is usually reformulated as the evaluation of functional
programs, expressed as terms in a variation over the λ-calculus. Thanks to its higher-order nature, this approach
provides very concise and abstract specifications. Its strength is however also its weakness: the abstraction
from physical machines is pushed to a level where it is no longer clear how to measure the complexity of an
algorithm.

Models like Turing machines or RAM rely on atomic computational steps and thus admit quite obvious cost
models for time and space. The λ-calculus instead relies on a single non-atomic operation, β-reduction, for
which costs in terms of time and space are far from evident.

Nonetheless, it turns out that the number of β-steps is a reasonable time cost model, i.e.,it is polynomially
related to those of Turing machines and RAM. For the special case of weak evaluation (i.e., reducing only
β-steps that are not under abstractions)—which is used to model functional programming languages—this is
a relatively old result due to Blelloch and Greiner [53] (1995). It is only very recently (2014) that the strong
case—used in the implementation models of proof assistants—has been solved by Accattoli and Dal Lago
[49].

With the recent recruitment of Accattoli, the team’s research has expanded in this direction. The topics under
investigations are:

1. Complexity of Abstract Machines. Bounding and comparing the overhead of different abstract
machines for different evaluation schemas (weak/strong call-by-name/value/need λ-calculi) with
respect to the cost model. The aim is the development of a complexity-aware theory of the
implementation of functional programs.

2. Reasonable Space Cost Models. Essentially nothing is known about reasonable space cost models. It
is known, however, that environment-based execution model—which are the mainstream technology
for functional programs—do not provide an answer. We are exploring the use of the non-standard
implementation models provided by Girard’s Geometry of Interaction to address this question.

4. Application Domains

4.1. Integrating a model checker and a theorem prover
The goal of combining model checking with inductive and co-inductive theorem in a rather appealing one.
The strengths of systems in these two different approaches are strikingly different. A model checker is capable
of exploring a finite space automatically: such a tool can repeatedly explores all possible cases of a given a
computational space. On the other hand, a theorem prover might be able to prove clever things about a search
space. For example, a model checker could attempt to discover whether or not there exists a winning strategy
for, say, tic-tac-toe while an inductive theorem prover might be able to prove that if there is a winning strategy
for one board then there is a winning strategy for any symmetric version of that board. Of course, the ability to
combine proofs from these approaches could drastically reduce the amount of state exploration and verification
of proof certificates that are needed to prove the existence of winning strategies.
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Our first step to providing an integration of model checking and (inductive) theorem proving was the
development of a strong logic, that we call G, which extends intuitionistic logic with notions of least and
greatest fixed points. We had developed the proof theory of this logic in earlier papers [4] [63]. We have now
recently converted the Bedwyr system so that it formally accepts almost all definitions and theorem statements
that are accepted by the inductive theorem prover Abella. Thus, these two systems are proving theorems in the
same logic and their results can now be shared.

Bedwyr’s tabling mechanism has been extended so that its it can make use of previously proved lemmas. For
instance, when trying to prove that some board position has a winning strategy, an available stored lemma can
now be used to obtain the result if some symmetric board position is already in the table.

For more about recent progress on providing checkable proof certificates for model checking, see the web site
for Bedwyr http://slimmer.gforge.inria.fr/bedwyr/.

4.2. Implementing trusted proof checkers
Traditionally, theorem provers—whether interactive or automatic—are usually monolithic: if any part of a
formal development was to be done in a particular theorem prover, then the whole of it would need to be done
in that prover. Increasingly, however, formal systems are being developed to integrate the results returned from
several, independent and high-performing, specialized provers: see, for example, the integration of Isabelle
with an SMT solver [62] as well as the Why3 and ESC/Java systems.

Within the Parsifal team, we have been working on foundational aspects of this multi-prover integration
problem. As we have described above, we have been developing a formal framework for defining the semantics
of proof evidence. We have also been working on prototype checkers of proof evidence which are capable of
executing such formal definitions. The proof definition language described in the papers [59], [58] is currently
given an implementation in the λProlog programming language [76]. This initial implementation will be able
to serve as a “reference” proof checker: others who are developing proof evidence definitions will be able to
use this reference checker to make sure that they are getting their definitions to do what they expect.

Using λProlog as an implementation language has both good and bad points. The good points are that it is
rather simple to confirm that the checker is, in fact, sound. The language also supports a rich set of abstracts
which make it impossible to interfere with the code of the checker (no injection attacks are possible). On the
negative side, however, the performance of our λProlog interpreters is lower than that of specially written
checkers and kernels.

4.3. Trustworthy implementations of theorem proving techniques
Instead of integrating different provers by exchanging proof evidence and relying on a backend proof-checker,
another approach to integration consists in re-implementing the theorem proving techniques as proof-search
strategies, on an architecture that guarantees correctness. Focused systems can serve as the basis of such an
architecture, identifying points for choice and backtracking, and providing primitives for the exploration of
the search space. These form a trusted Application Programming Interface that can be used to program and
experiment various proof-search heuristics without worrying about correctness. No proof-checking is needed
if one trusts the implementation of the API.

This approach has led to the development of the Psyche engine.

Two major research directions are currently being explored, based on the above:

• The first one is about understanding how to deal with quantifiers in presence of one or more theories:
On the one hand, traditional techniques for quantified problems, such as unification [47] or quantifier
elimination are usually designed for either the empty theory or very specific theories. On the other
hand, the industrial techniques for combining theories (Nelson-Oppen, Shostak) are designed for
quantifier-free problems, and quantifiers are there dealt with incomplete clause instantiation methods
or trigger-based techniques [61]. We are working on making the two approaches compatible.

http://slimmer.gforge.inria.fr/bedwyr/
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• The above architecture’s modular approach raises the question of how its different modules can
safely cooperate (in terms of guaranteed correctness), while some of them are trusted and others
are not. The issue is particularly acute if some of the techniques are run concurrently and exchange
data at unpredictable times. For this we explore new solutions based on Milner’s LCF [79]. In [30],
we argued that our solutions in particular provide a way to fulfil the “Strategy Challenge for SMT-
solving” set by De Moura and Passmore [88].

5. Highlights of the Year
5.1. Highlights of the Year

Accattoli’s paper with Ugo Dal Lago titled “Beta Reduction is Invariant, Indeed” that appeared in CSL-LICS
2014 was invited to a special issue of LMCS of selected papers from that meeting.

Miller ended his second and final term as the Editor-in-Chief of the ACM Transactions on Computational
Logic. He remains as an Area Editor for Proof Theory.

Miller was a plenary speaker at the joint meeting of LOPSTR 2015 and PPDP 2015 (Siena, Italy) and was an
invited speaker at LSFA 2015 (Natal Brazil) and in the Session on History and Philosophy of Computing at
the 15th Congress of Logic, Methodology and Philosophy of Science, Helsinki.

Miller spoke at the ETH Zurich Department of Computer Science Distinguished Colloquium Series on
April 20.

Graham-Lengrand gave an invited talk at the IFIP Working Group 1.6 on Term Rewriting, on the occasion of
its 2015 annual meeting in Warsaw, Poland.

Accattoli was an invited speaker at the 16th International Workshop on Logic and Computational Complexity
(Kyoto, Japan, 5th of July).

6. New Software and Platforms
6.1. Abella

FUNCTIONAL DESCRIPTION

Abella is an interactive theorem prover for reasoning about computations given as relational specifications.
Abella is particuarly well suited for reasoning about binding constructs.

In 2015, Abella has been extended with
• support for polymorphic definitions and theorems;
• schemas and automatically derived theorems about them;
• the ability to record and replay automated search;
• a number of new examples from process calculi, including a contributed example from Horace Blanc

about relating the π-calculus and the λ-calculus.

One further development is that Abella can now be compiled into JavaScript and run completely inside any
modern browser, thanks to the js_of_ocaml compiler from OCaml bytecode to JavaScript. We expect this
to become rather crucial in popularization of Abella, particularly in a pedagogical context, since it does not
require any local software installation—just a modern web browser.
• Participants: Dale Miller, Kaustuv Chaudhuri, Horace Blanc
• Partner: Department of Computer Science and Engineering, University of Minnesota
• Contact: Kaustuv Chaudhuri
• URL: http://abella-prover.org/
• Online version: http://abella-prover.org/tutorial/try

http://abella-prover.org/
http://abella-prover.org/tutorial/try
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6.2. Bedwyr
Bedwyr - A proof search approach to model checking
FUNCTIONAL DESCRIPTION

Bedwyr is a generalization of logic programming that allows model checking directly on syntactic expression
possibly containing bindings. This system, written in OCaml, is a direct implementation of two recent advances
in the theory of proof search.

It is possible to capture both finite success and finite failure in a sequent calculus. Proof search in such a proof
system can capture both “may” and “must” behavior in operational semantics. Higher-order abstract syntax is
directly supported using term-level lambda-binders, the nabla quantifier, higher-order pattern unification, and
explicit substitutions. These features allow reasoning directly on expressions containing bound variables.

The distributed system comes with several example applications, including the finite pi-calculus (operational
semantics, bisimulation, trace analyses, and modal logics), the spi-calculus (operational semantics), value-
passing CCS, the lambda-calculus, winning strategies for games, and various other model checking problems.

• Participant: Roberto Blanco Martinez

• Contact: Quentin Heath

• URL: http://slimmer.gforge.inria.fr/bedwyr/

6.3. Checkers
Checkers - A proof verifier
KEYWORDS: Proof - Certification - Verification
FUNCTIONAL DESCRIPTION

Checkers is a tool in Lambda-prolog for the certification of proofs. Checkers consists of a kernel which is
based on LKF and is based on the notion of ProofCert.

• Participants: Tomer Libal and Giselle Reis

• Contact: Tomer Libal

• URL: https://github.com/proofcert/checkers

6.4. Mætning
KEYWORDS: Automated Theorem Proving - Intuitionistic Logic

FUNCTIONAL DESCRIPTION

Mætning is an automated theorem prover for first-order intuitionistic logic that is particularly suited for
efficiently finding disproofs, i.e., for establishing that a given goal query is not provable. It is based on the
focused inverse method [54] [74], but augmented by a mechanism for building finite approximations for
infinite search spaces that nevertheless guarantee soundness of a disproof.

Mætning has been released under the terms of the MIT license.

• Participants: Taus Brock-Nannestad, Kaustuv Chaudhuri

• Contact: Kaustuv Chaudhuri

• URL: https://github.com/chaudhuri/maetning

6.5. Psyche
KEYWORDS: Proof-search - Correct-by-construction approach - Programmable Theorem Proving
FUNCTIONAL DESCRIPTION

http://slimmer.gforge.inria.fr/bedwyr/
https://github.com/proofcert/checkers
https://github.com/chaudhuri/maetning
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Psyche is a modular platform for automated or interactive theorem proving, programmed in OCaml and built
on an architecture (similar to LCF) where a small kernel interacts with plugins and decision procedures. The
major effort in 2015 was a complete redesign of its architecture to allow the safe cooperation of various
procedures (for e.g. different theories).

• Participants: Assia Mahboubi, Jean-Marc Notin and Stéphane Graham-Lengrand

• Contact: Assia Mahboubi and Stéphane Graham-Lengrand

• URL: http://www.lix.polytechnique.fr/~lengrand/Psyche/

7. New Results

7.1. The Checkers Proof Certifier
Participants: Tomer Libal, Giselle Reis, Hichem Chihani.

We presented a system description [29] of the Checkers proof certifier, which implements some of the
theoretical ideas developed in the ProofCert project. This version of the system is capable of certifying
a subset of the E-Prover superposition theorem prover. The system is mainly written in λProlog with a
proof importing module written in Ocaml. The system is designed to allow modularity when designing the
semantical translations of proof systems. For this capacity, the system supports, J. A. Robinson’s resolution
and the paramodulation technique of G. Robinson and L. Wos. On top of that, minimal support for some
inference rules of the E-Prover was added.

7.2. Regular Patterns in Second-Order Unification
Participant: Tomer Libal.

We presented a paper [33] detailing a higher-order pre-unification procedure with improved termination over
existing procedures. The classic higher-order unification procedure was presented by G. Huet in 1975 and is
still used as the main unification procedure for higher-order automated theorem provers. This procedure does
not terminate. In this project we have investigated the reasons for that and have shown that by choosing a
specific (but complete) search strategy, an additional set of non-unifiable problems can be detected. As an
example, we have shown that all unification problems generated by the Leo-III theorem prover when proving
Cantor’s theorem are decided by this procedure, in contrast to the classical unification procedure.

7.3. Static guarantees for message-passing computation
Participant: Stéphane Graham-Lengrand.

LCF [79] is a proof-search architecture, where search strategies are programmed via an API and successful
proof-search runs are guaranteed correct, relying on the use of an abstract type theorem. We adapted
the approach and defined principles for message-passing software architectures (where modules interact by
exchanging messages), with the objective of guaranteeing message provenance and integrity. The principles
rely on abstract types to sign messages at no run-time cost, and more generally rely on type-checking to
provide static guarantees (i.e. at compile-time) that the messages produced by a trusted piece of code will
not be altered or faked by an untrusted piece of code. We developed this primarily for safe theorem proving
architectures, but the approach can be applied to other software architectures where modules with different
levels of trust interact.

7.4. Proof-search with quantifiers and theories
Participant: Stéphane Graham-Lengrand.

http://www.lix.polytechnique.fr/~lengrand/Psyche/
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We published our approach to proof-search on quantified problems in presence of one theory [22], where
we identify the specifications required of the theory for the proof-search process to be sound and complete.
Theories with unification procedures or quantifier elimination procedures satisfy our specifications, where
constraint streams and constraint projections play a key role key. Interestingly enough, Bjorner and Janota
[52] independently achieved a similar result with model projections. Our theory-generic approach allows a
clear formulation of what it could mean to combine several quantifier-handling theories, hopefully generalising
what the Nelson-Oppen combination technique does in a quantifier-free context. We recently obtained two new
results towards this:

• First, the cumbersome, stream-querying, and backtracking mechanisms that were required to
implement [22] have been re-expressed in a more satisfying message-passing computational frame-
work.

• Second, we re-expressed the standard quantifier-free combination techniques, mentioned above, as a
concurrent message-passing interaction between different theory-specific procedures, and simplified
their proofs of correctness. This led to the major redesign of Psyche, mentioned above.

7.5. Realizability semantics of abstract focusing, formalized
Participant: Stéphane Graham-Lengrand.

In [21] we presented a parametric system for abstract focusing, building on Zeilberger’s work [87], and
parametrically capturing classical and intuitionistic focused systems. We presented its semantics, building
on Munch-Maccagnoni’s work [80], in terms of abstract realizability models (which were independently
identified by Krivine). The goal was to emphasize the similarities and differences between focusing and
realizability, in the way they exploit the polarities of formulae. The system and its semantics led to a
substantially formalisation in the proof assistant Coq.

7.6. The Meta-Theory of Bisimulation-Up-To
Participants: Kaustuv Chaudhuri, Matteo Cimini, Dale Miller.

The method of proof by bisimulation has proved to be a very successful technique for showing the equivalence
of processes. Unfortunately, in process calculi with infinite transition systems, such as in calculi with a
replication operator, finding a bisimulation requires exploring an infinite search space, which moreover often
tends to have rather intricate and complex structure. One way to combat this complexity—i.e., reduce the
size of candidate bisimulation sets—is to identify redundancies among their members and then to replace
redundant classes by unique inhabitants. This yields families of bisimulation-up-to proof methods that are
parametric over the redundancy relation. For instance, if we consider bisimilarity itself as the redundancy, then
we obtain bisimulation up to bisimilarity; with this relation, the singleton set {(!a, !!a)} is a candidate set for
showing that the processes !a and !!a are bisimilar, for example, when the bisimulation set with redundancies
is infinite.

Since a priori there is no restriction on such redundancy relations, a key theoretical question is when a
bisimulation-up-to relation is sound, i.e., that it is contained in a bisimulation. In the literature there have
been a number of techniques proposed for showing soundness, but they often require the use of complex
reasoning about lattices of fixed points. In [19] (CPP’15) we show how to use the built-in coinduction facilities
of the Abella theorem prover to produce comparatively lightweight proofs of the soundness of many common
bisimulation-up-to techniques for CCS and the π-calculus. A key feature of our approach is that we can use the
facilities already provided by the Abella system for reasoning about the binding constructs for the π-calculus.

7.7. Characterizing Independence in Type Theory
Participants: Kaustuv Chaudhuri, Yuting Wang.
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In formal proof languages based on type theory, it is often the case that a theorem is proved for a certain kind
of typing context, but needs to be used in a different context. For example, theorems about natural numbers
may be proved in an empty typing context, since the type of natural numbers contains no higher-order features
(i.e., natural numbers are closed), but we may need to use these properties of natural numbers when reasoning
about λ-terms in De Bruijn notation, where the typing context is non-empty. In such a situation, it is useful
to automatically transport the existing theorems to the new kinds of contexts, since we know that the theorem
in question cannot depend on the properties of λ-terms. While this example is rather trivial, it becomes non-
trivial when theorems are proved about higher-order data structures, which are commonly encountered when
reasoning about syntax with binding constructs.

One way to achieve such reuse automatically is a technique called subordination, which is based on analyzing
the constructors for a certain type and defining syntactic criteria under which certain normal terms of one
type can have subterms of another type. Unfortunately, the classical definition of subordination lacks a proof-
theoretic justification, and has surprising properties in third-order (and higher) signatures.

In [36] (TLCA’15), we propose a proof-theoretic characterization of a kind of dual to subordination, called
independence, that characterizes when normal terms of one type cannot contain subterms of another type. This
is achieved by means of proving an inductive strengthening lemma about the signatures in the two-level logic
approach. We also show how to automatically prove such lemmas in certain commonly encountered situations
in the theorem prover Abella.

7.8. Disproving Non-Theorems with Saturating Search
Participants: Taus Brock-Nannestad, Kaustuv Chaudhuri.

High-performance automated reasoning techniques such as resolution and the inverse method are well suited
for proving true conjectures, but are ill-behaved for false conjectures. For example, for a simple theory of even
numbers that states that 0 is even and that n+ 2 is even whenever n is even, it is obviously the case that the
conjecture “3 is even” is unprovable, but the algorithm would loop forever proving “0 is even”, “2 is even”,
“4 is even”, etc. This behavior is observed even in the best saturation-based (i.e., forward-reasoning) theorem
provers.

In [25] (TABLEAUX’15), we show how to finitely constrain the search space of saturation-based theorem
provers by the use of unsound extensions of the goal query. These unsound extensions, when combined with
forward subsumption, guarantee that only a finite number of consequences would ever be constructed based on
any goal query, so the proof search procedure is guaranteed to terminate. If a proof is found among them that
does not use the unsound extensions, then we can can succeed with that proof. If no proof is found, then we
can soundly assert that the original goal query was also unprovable, since even a weakened version of it was
unprovable. The only other possibility is that a proof is found using the unsound extension; in this case, we use
the particular instance of unsoundness to refine the original unsound goal to prevent it from being found again,
while maintaining the invariant that the search space is finite, and rerun the search. Since first-order logic is
undecidable, we may need to repeat the refinement procedure indefinitely, but for many kinds of domains,
particularly those arising from typed signatures (such as the even numbers example above), we do eventually
find a saturating approximation that guarantees that the conjecture has no proof.

This algorithm has been implemented as part of the Mætning theorem prover explained in the section on
Software above. We plan to extend it in the future with various automatic refinement heuristics.

7.9. Encoding Bigraph Structure with Subexponentials
Participants: Kaustuv Chaudhuri, Giselle Reis.

Bigraphs were proposed by Robin Milner as a model of ubiquitous computing, which is computation that
is aware both of location and of connections. As a formalism it subsumes many other process calculi such
as CCS and the π-calculus. However, it has a number of problems qua syntax because it is based on graphs
and a complicated theory of composition. The biggest of these problems is how to implement it in a formal
reasoning system.
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In recent years, many members (and ex-members) of the Parsifal team have been experimenting with a variant
of linear logic that has not just a single pair but an arbitrary family of exponential connectives that are arranged
in a pre-order. Each such pair of subexponentials may admit or reject the structural properties of weakening
and contraction. One benefit of subexponentials is that it allows for querying the absence of certain kinds of
exponential formulas without requiring all non-exponential formulas to be deleted as a consequence, which is
the issue with ordinary linear logic.

In [28] (LPAR’15), we show how to represent the structure of bigraphs in terms of a simple theory of linear
logic with subexponentials (SEL). We show that our representation is adequate, i.e., that it respects the
composition and juxtaposition operations on bigraphs. Moreover, we show how one can ask queries about
the nesting of places in the representation without modifying it, which gives us a technical means of encoding
bigraph reactions as well. Some of the details for bigraph reactions remain to be worked out in future work.

7.10. Encoding Additive Connectives with Multiplicatives and Subexponentials
Participant: Kaustuv Chaudhuri.

In a recent workshop on Linearity [55], we have published the formal proof (that was obtained in 2009)
that linear logic with three subexponentials in a certain lattice is undecidable. An extended version of this
paper was submitted to a special issue on Linearity in Mathematical Structures in Computer Science and was
accepted in November 2015.

The preprint of that extended paper [41] gives a direct embedding of propositional MALL (multiplicative
and additive linear logic) using only multiplicative connectives and five subexponentials. This means that
the additive connectives are, in fact, redundant when we have multiplicatives and subexponentials. Moreover,
in the first-order case this encoding is polynomial and focally adequate, which means that MALL can be
simulated at the highest fidelity – at the level of individual inference rules.

7.11. Computation in Focused Intuitionistic Logic
Participants: Taus Brock-Nannestad, Nicolas Guenot, Daniel Gustafsson.

Focusing is a proof-theoretical tecnique for eliminating unnecessary nondeterminism in proofs. Because it cuts
down on nondeterminism, focusing is particularly useful for directing proof search. Focusing thus plays a key
role in explaining the meaning and behaviour of logic programs.

Despite this success in clarifying the operational semantics of logic programming, focusing has not been
as widely studied in the Curry-Howard style “proofs as programs” interpretation. Early results in this
area established that λ-calculi associated with the focused calculi LJT and LJQ had evaluation strategies
corresponding to call-by-name and call-by-value respectively. For the LJF calculus — which contains both
LJT and LJQ as fragments — no such correspondence was known.

In [27] (PPDP’15) we show how a proof-term assignment to (a variant of) Liang and Miller’s focused sequent
calculus LJF permits a uniform treatment of the call-by-value and call-by-name reduction strategies of the
λ-calculus, as well as combinations of these strategies. Additionally, we show how to extract an abstract
machine from LJF by considering machine states as certain configurations of instances of the cut rule. The
aforementioned correspondence extends to this setting, and we show that well-known abstract machines for
call-by-value and call-by-name are in fact exactly the abstract machines that one gets when considering certain
fragments of LJF.

In the seminal work of Paul Blain Levy, the call-by-push-value language was introduced as a way of subsuming
the call-by-value and call-by-name strategies of the λ-calculus. It was later on conjectured that call-by-push-
value was simply implementing a notion of focusing, and indeed this turns out to be the case, as we show in
the aforementioned paper.

7.12. Focused Linear Logic and the λ-calculus
Participants: Taus Brock-Nannestad, Nicolas Guenot.
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Linear Logic enjoys strong symmetries inherited from classical logic while providing a constructive frame-
work comparable to intuitionistic logic. However, the computational interpretation of sequent calculus pre-
sentations of linear logic remains problematic, mostly because of the many rule permutations allowed in the
sequent calculus.

In focused variants of Linear Logic, most of these rule permutations are eliminated by the focusing restriction
— during focusing, a single formula is decomposed eagerly, and the focus is passed down to its subformulas.
Conversely, during inversion, all invertible connectives are decomposed. Moreover, this decomposition is made
fully determinstic by keeping the connectives in question in a list, and only decomposing the first connective
of this list.

The end result of this is that a focused proof in Linear Logic almost always has one particular formula singled
out as the one that will be decomposed. Thus, somewhat curiously, focused Linear Logic behaves much more
like an intuitionistic sequent calculus (where at all times there is a single “special” formula on the right hand
side of the sequent) than a classical calculus.

In [26] (MFPS’15), we study a term assignment for a focused version of Multiplicative Exponential Linear
Logic (MELL), and show how the focusing technique gives rise to a calculus that straightforwardly embeds
both a linear variant of the λ-calculus, and a sequent-based formulation of Parigot’s λµ-calculus.

7.13. There is no complete linear term rewriting system for propositional logic
Participant: Lutz Straßburger.

Recently, we observed that the set of all sound linear inference rules in propositional logic is already coNP-
complete [84]. This means that every boolean tautology can be written as a (left-and right-) linear rewrite
rule. This raises the question of whether there is a rewriting system on linear terms of propositional logic that
is sound and complete for the set of all such rewrite rules. We have shown (in a joint work with Anupam Das)
that, as long as reduction steps are polynomial-time decidable, such a rewriting system does not exist unless
coNP=NP. This is published in [20].

7.14. A (Bi)linear Implementation of Strong Call-by-Value
Participant: Beniamino Accattoli.

The elegant theory of the call-by-value λ-calculus relies on closed terms and weak evaluation (i.e., not under
abstractions) and it is well-known that the number of call-by-value β-steps is a reasonable cost model. When
turning to open terms or strong evaluation—that are used for instance in the implementation of Coq—the
operational theory breaks, and the call-by-value λ-calculus has to be extended with some additional rewriting
rules. In a joint work with Sacerdoti Coen [18], a proposal for open/strong call-by-value, called fireball
calculus, is studied from the point of view of cost models and abstract machines. First, it is shown that open
terms introduce a new malicious behavior, making the study of cost models non-trivial. Second, it is shown
that the number of β-steps in the fireball calculus is a reasonable cost model. Third, a new abstract machine
is introduced and its overhead is shown to be linear with respect to the number of β-steps and the size of the
initial term, providing a surprisingly efficient implementation scheme.

7.15. Implementations of Strong Call-by-Name, Revisited
Participant: Beniamino Accattoli.

The literature about abstract machines for the strong evaluation (i.e., possibly under abstraction) of the ordinary
(i.e., call-by-name) λ-calculus is scarce. Essentially, there is a single, old work: Crégut’s abstract machine
[60] (1990), that is an extension of Krivine abstract machine to compute full normal forms. Crégut studies the
correctness of the machine by means of an explicit substitutions calculus. In this joint work with Barenbaum
and Mazza [17], Crégut’s work is revisited and simplified in the extreme. An alternative, simpler machine is
introduced, the Strong Milner abastract machine. Its correctness is studied via linear substitution calculus, a
new approach to explicit substitutions developed by Accattoli and Kesner that is much simpler than Crégut’s
approach. Moreover, a complexity analysis of the machine is provided: its overhead is shown to be linear in
the number of steps in the linear substitution calculus and in the size of the inital term.
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7.16. Foundational Proof Certificates
We have continued to explore a number of new aspects of framework we call Foundational Proof Certificates
(FPCs). Besides having defined and implemented prototype checkers for FPCs in classical and intuitionistic
logic [37] we have also extended the proof theory underlying numerous modal logics so that FPCs can be
applied to modal logics [35]. We have also extended the notion of FPC to work also in the model checking
setting [31]. In both the modal logic and model checking domains, the key to getting FPCs to work is to have
descriptions of focused proof systems available for those logics.

Given that FPCs are declarative and semantically simple structures, it has been possible to find numerous
applications of them outside the problem of simply checking them. It was shown, for example, that FPCs can
be used to help define the semantics of the output from traditional theorem provers [23]. We have also used
FPCs as proof outlines in order to define high-level tactics to direct proof search [24].

7.17. Multi-level Delimited Control
There has been a great deal of interest in recent years to providing interesting functional programming
primitives that are based on classical logic and not just intuitionistic logic. Unfortunately, the standard sequent
calculus proof theory for classical logic is far too chaotic to provide such a foundation. We have recently
proposed adding to classical (linear) logic an assortment of subexponentials and to provide a rigid structure
for their placement within formulas. This new framework allows for sequent calculus proof theory to provide
to the functional programming paradigm the feature often called multi-level delimited control [32]. The main
result in that paper is also noteworthy in that it shows how to build certain complex synthetic connectives even
though the standard approach (using focusing proof systems) cannot be used.

8. Partnerships and Cooperations

8.1. European Initiatives
8.1.1. FP7 & H2020 Projects
8.1.1.1. Proofcert

Title: ProofCert: Broad Spectrum Proof Certificates

Programm: FP7

Type: ERC

Duration: January 2012 - December 2016

Coordinator: Inria

Inria contact: Dale Miller

’There is little hope that the world will know secure software if we cannot make greater strides in the
practice of formal methods: hardware and software devices with errors are routinely turned against
their users. The ProofCert proposal aims at building a foundation that will allow a broad spectrum of
formal methods—ranging from automatic model checkers to interactive theorem provers—to work
together to establish formal properties of computer systems. This project starts with a wonderful
gift to us from decades of work by logicians and proof theorist: their efforts on logic and proof
has given us a universally accepted means of communicating proofs between people and computer
systems. Logic can be used to state desirable security and correctness properties of software and
hardware systems and proofs are uncontroversial evidence that statements are, in fact, true. The
current state-of-the-art of formal methods used in academics and industry shows, however, that the
notion of logic and proof is severely fractured: there is little or no communication between any two
such systems. Thus any efforts on computer system correctness is needlessly repeated many time in
the many different systems: sometimes this work is even redone when a given prover is upgraded.
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In ProofCert, we will build on the bedrock of decades of research into logic and proof theory the
notion of proof certificates. Such certificates will allow for a complete reshaping of the way that
formal methods are employed. Given the infrastructure and tools envisioned in this proposal, the
world of formal methods will become as dynamic and responsive as the world of computer viruses
and hackers has become.’

8.2. International Research Visitors
8.2.1. Visits of International Scientists

Professor Chuck Liang visited the team from 25 May to 15 June 2015 in order to continue his collaborations
with team members on basic questions of proof theory. This collaboration resulted in a paper that appears in
LPAR 2015 on the topic of subexponentials and the Curry-Howard interpretation of logic.

8.2.1.1. Internships

Leonardo Lima is an intern funded by ProofCert during 1 Oct 2015 – 28 Feb 2016. He is a student of Prof.
Vivek Nigam from Federal University of Paraíba, Brazil. He is working on formalizing the proof theory of
linear logic within the Abella theorem prover.

8.2.2. Visits to International Teams
8.2.2.1. Research stays abroad

Graham-Lengrand spent 6 months, from March 2015 to August 2015 at SRI International, USA. This visit
was to start a collaboration with N. Shankar and B. Dutertre on new algorithms and new architectures for
automated and interactive theorem proving.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. Member of the organizing committees

L. Straßburger was on the Organization Committee for the International Workshop on Efficient and
Natural Proof Systems, held at the University of Bath 14-16 December, 2015

9.1.2. Scientific events selection
9.1.2.1. Chair of conference program committees

K. Chaudhuri was the Program Committee chair of the following meeting.
LFMTP 2015: Logical Frameworks and Meta-Languages: Theory and Practice
Co-chaired with Iliano Cervesato, Carnegie Mellon University (Qatar)

9.1.2.2. Member of conference program committees
D. Miller was on the Program Committees of the following meetings.

TABLEAUX 2015: Automated Reasoning with Analytic Tableaux and Related Methods,
Wroclaw, Poland, September.
PPDP 2015: 17th International Symposium on Principles and Practice of Declarative
Programming, Siena, Italy, 13-16 July.
PxTP 2015: Fourth Workshop on Proof eXchange for Theorem Proving, Berlin, Germany,
2-3 August.
ICALP 2015 (42nd International Colloquium on Automata, Languages, and Program-
ming), Track B, Kyoto, Japan, 6-10 July.
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S. Graham-Lengrand was on the Program Committees of the following meetings.
TABLEAUX 2015: Automated Reasoning with Analytic Tableaux and Related Methods,
Wroclaw, Poland, September.
CSL 2015: 24th EACSL Annual Conference on Computer Science Logic, Berlin, Ger-
many, 7-10 September.

K. Chaudhuri was on the Program Committees of the following meetings.
CPP 2015: ACM-SIGPLAN Conference on Certified Programs and Proofs
FICS 2015: International Workshop on Fixed Points in Computer Science
WoF 2015: International Workshop on Focusing

L. Straßburger was on the Program Committees of the following meetings.
FoSSaCS 2015: 18th International Conference on Foundations of Software Science and
Computation Structures
WENSP: International Workshop on Efficient and Natural Proof Systems

G. Reis was on the Program Committee for the following meeting.
LFMTP 2015: Logical Frameworks and Meta-Languages: Theory and Practice

9.1.2.3. Reviewer

T. Libal was a reviewer for the following workshops:
Fourth Workshop on Proof eXchange for Theorem Proving.

S. Graham-Lengrand was a reviewer for the following conferences:
LPAR 2015: 20th International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, Suva, Fiji, November.
LICS 2015: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, Kyoto,
Japan, July.

D. Ilik was a reviewer for the following conferences:
ESOP 2015: 24th European Joint Conferences on Theory and Practice of Software
FoSSaCS 2015: 18th International Conference on Foundations of Software Science and
Computation Structures
TLCA 2015: 13th International Conference on Typed Lambda Calculi and Applications

M. Volpe was a reviewer for the following conferences:
Tableaux 2015: 24th International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, Wroclaw, Poland, September.

L. Straßburger was a reviewer for the following conferences:
TLCA 2015: 13th International Conference on Typed Lambda Calculi and Applications
LPAR 2015: 20th International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, Suva, Fiji, November.
FLOPS 2016: Thirteenth International Symposium on Functional and Logic Programming
March 4-6, 2016, Kochi, Japan

B. Accattoli was a reviewer for the following conferences:
• CSL 2015: 24th EACSL Annual Conference on Computer Science Logic, Berlin, Ger-

many, 7-10 September.
• TGC 2015: 10th International Symposium on Trustworthy Global Computing, Madrid,

Spain, August 31 to September 1.
• FoSSaCS 2016: 19th International Conference on Foundations of Software Science and

Computation Structures, to be held in Eindhoven, The Netherlands, 2-8 April 2016.
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T. Brock-Nannestad was a reviewer for the following conferences:
• ITP 2015: 6th Conference on Interactive Theorem Proving, Nanjing, China, August 24–27

August, 2015.
• CPP 2016: The 5th ACM SIGPLAN Conference on Certified Programs and Proofs, Saint

Petersburg, Florida, USA, January 18–19, 2016.

9.1.3. Journal
9.1.3.1. Editor-in-chief

D. Miller was Editor-in-Chief of the ACM Transactions on Computational Logic. He completed a six year
term on June 2015.

9.1.3.2. Member of the editorial boards

D. Miller is on the editorial board of the following journals: ACM Transactions on Computational
Logic, Journal of Automated Reasoning (Springer), Theory and Practice of Logic Programming
(Cambridge University Press), and Journal of Applied Logic (Elsevier).
D. Miller served on as an editor for Logical Methods in Computer Science for the production of a
special issue for papers from CSL-LICS 2014.
K. Chaudhuri served as a guest editor for Mathematical Structures in Computer Science special issue
on Logical Frameworks and Meta Languages, based on selected papers from LFMTP 2015

9.1.3.3. Reviewer - Reviewing activities

• T. Libal was a reviewer for the following journals:
Journal of Automated Reasoning (Springer).

• S. Graham-Lengrand was a reviewer for the following journals: J. Appl. Logic, Theoret. Comput.
Sci., Acta Inform.

• D. Ilik was a reviewer for the following journals:
Mathematical Reviews (MathSciNet)
Zentralblatt MATH

• M. Volpe was a reviewer for the following journals:
Annals of Mathematics and Artificial Intelligence;
Journal of Automated Reasoning;
Logica Universalis.

• L. Straßburger was a reviewer for the following journals:
Logical Methods in Computer Science (two articles)
Theoretical Computer Science, Elsevier
Ontos Mathematical Logic, Walter De Gruyter
Logic Journal of the IGLP, Oxford University Press

• B. Accattoli was a reviewer for the following journals:
– Logical Methods in Computer Science (two articles)
– Theoretical Computer Science, Elsevier

9.1.4. Invited talks
D. Miller was a plenary speaker at the joint meeting of LOPSTR 2015 and PPDP 2015 (Siena, Italy)
and was an invited speaker at LSFA 2015 (Natal Brazil) and in the Session on History and Philosophy
of Computing at the 15th Congress of Logic, Methodology and Philosophy of Science, Helsinki.
D. Miller gave spoke at the ETH Zurick Department of Computer Science Distinguished Colloquium
Series on 20 April.
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S. Graham-Lengrand gave an invited talk at the IFIP Working Group 1.6 on Term Rewriting, on the
occasion of its 2015 annual meeting in Warsaw, Poland.

B. Accattoli was an invited speaker at the 16th International Workshop on Logic and Computational
Complexity (Kyoto, Japan, 5th of July).

9.1.5. Leadership within the scientific community
D. Miller was a member of the ACM SIGLOG Advisory Board, the LICS Organizing Board, the
CPP Steering Committee, and the ACM SIGLOG Executive Committee Nominating Committee. He
was also the Chair of the LICS 1995 Test-of-Time Award selection committee.

S. Graham-Lengrand is head of the French National Workgroup on Logic, Algebra, and Computation
(part of GDR Informatique Mathématique, funded by CNRS).

K. Chaudhuri was elected to the Steering Committee of LFMTP (http://lfmtp.org) for a term of 5
years in 2015.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Licence: K. Chaudhuri, “INF 321 : Les principes des langages de programmation”, 40 hours eq.
TD, L3, École polytechnique, France

Licence: K. Chaudhuri, “INF 431 : Programmation concurrente et distribuée”, 40 hours eq. TD, L3,
École polytechnique, France

Licence: S. Graham-Lengrand, “INF411: Les bases de la programmation et de l’algorithmique”, 32
hours eq. TD, L3, École Polytechnique, France.

Master: S. Graham-Lengrand, “INF551: Computational Logic”, 45 hours eq. TD, M1, École Poly-
technique, France.

Master: S. Graham-Lengrand, “MPRI 2-1: Logique linéaire et paradigmes logiques du calcul”, 12
hours, M2, Master Parisien de Recherche en Informatique, France.

Master: D. Miller, “MPRI 2-1: Logique linéaire et paradigmes logiques du calcul”, 12 hours, M2,
Master Parisien de Recherche en Informatique, France.

Licence: T. Libal, “INF 321 : Les principes des langages de programmation”, 40 hours eq. TD, L3,
École polytechnique, France

Master: T. Libal, “INF551: Computer-aided reasoning”, 20 hours eq. TD, M1, Êcole Polytechnique,
France.

9.2.2. Supervision
PhD: Zakaria Chihani, “Certification of first-order proofs in classical and intuitionistic logics”, École
Polytechnique, 2 Nov 2015; supervised by Dale Miller.

PhD in progress: Sonia Marin, 1 Nov 2014, supervised by L. Straßburger and D. Miller

PhD in progress: Roberto Blanco, Ulysse Gérard, and Quentin Heath, supervised by D. Miller

Internship: Horace Blanc, May-September 2015, supervised by B. Accattoli.

9.2.3. Juries
D. Miller was a reporter and president for the PhD jury of Ali Assaf, École Polytechnique, 28
September.

S. Graham-Lengrand was a member of the PhD thesis committee of Simon Cruanes, École Poly-
technique, 10 September.

K. Chaudhuri was a member of the PhD thesis committee of Yuting Wang, University of Minnesota,
5 November.

http://lfmtp.org
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9.3. Popularization
K. Chaudhuri organized a half-day tutorial on Abella as a satellite event of CADE 2015 in Berlin.
The slides from the talk are available as [40], and the tutorial web-site is: http://abella-prover.org/
tutorial. This event was co-organized with Gopalan Nadathur, professor of Computer Science at the
University of Minnesota, USA.

G. Reis participated in “Fête de la Science” as an assistant to the programming activities.
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