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2. Overall Objectives

2.1. Programming securely with cryptography
In recent years, an increasing amount of sensitive data is being generated, manipulated, and accessed online,
from bank accounts to health records. Both national security and individual privacy have come to rely on
the security of web-based software applications. But even a single design flaw or implementation bug in an
application may be exploited by a malicious criminal to steal, modify, or forge the private records of innocent
users. Such attacks are becoming increasingly common and now affect millions of users every year.

The risks of deploying insecure software are too great to tolerate anything less than mathematical proof,
but applications have become too large for security experts to examine by hand, and automated verification
tools do not scale. Today, there is not a single widely-used web application for which we can give a proof
of security, even against a small class of attacks. In fact, design and implementation flaws are still found in
widely-distributed and thoroughly-vetted security libraries designed and implemented by experts.

Software security is in crisis. A focused research effort is needed if security programming and analysis tech-
niques are to keep up with the rapid development and deployment of security-critical distributed applications
based on new cryptographic protocols and secure hardware devices. The goal of our team PROSECCO is to
draw upon our expertise in cryptographic protocols and program verification to make decisive contributions in
this direction.

Our vision is that, over its lifetime, PROSECCO will contribute to making the use of formal techniques
when programming with cryptography as natural as the use of a software debugger. To this end, our
long-term goals are to design and implement programming language abstractions, cryptographic models,
verification tools, and verified security libraries that developers can use to deploy provably secure distributed
applications. Our target applications include cryptographic protocol implementations, hardware-based security
APIs, smartphone- and browser-based web applications, and cloud-based web services. In particular, we aim
to verify the full application: both the cryptographic core and the high-level application code. We aim to verify
implementations, not just models. We aim to account for computational cryptography, not just its symbolic
abstraction.
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We identify three key focus areas for our research in the short- to medium term.

2.1.1. Symbolic verification of cryptographic applications
Our goal is to develop our own security verification tools for models and implementations of cryptographic
protocols and security APIs using symbolic cryptography. Our starting point is the tools we have previously
developed: the specialized cryptographic prover ProVerif, the reverse engineering and formal test tool Tookan,
and the security type systems F7 and F* for the programming language F#. These tools are already used to
verify industrial-strength cryptographic protocol implementations and commercial cryptographic hardware.
We plan to extend and combine these approaches to capture more sophisticated attacks on applications
consisiting of protocols, software, and hardware, as well as to prove symbolic security properties for such
composite systems.

2.1.2. Computational verification of cryptographic applications
We aim to develop our own cryptographic application verification tools that use the computational model
of cryptography. The tools include the computational prover CryptoVerif, and the computationally sound type
system Computational F7 for applications written in F#. Working together, we plan to extend these tools to an-
alyze, for the first time, cryptographic protocols, security APIs, and their implementations under fully precise
cryptographic assumptions. We also plan to pursue links between symbolic and computational verification,
such as computational soundness results that enable computational proofs by symbolic techniques.

2.1.3. Provably secure web applications
We plan to develop analysis tools and verified libraries to help programmers build provably secure web
applications. The tools will include static and dynamic verification tools for client- and server-side JavaScript
web applications, their verified deployment within HTML5 websites and browser extensions, as well as type-
preserving compilers from high-level applications written in F* to JavaScript. In addition, we plan to model
new security APIs in browsers and smartphones and develop the first formal semantics for various HTML5 web
standards. We plan to combine these tools and models to analyze the security of multi-party web applications,
consisting of clients on browsers and smartphones, and servers in the cloud.

3. Research Program

3.1. Symbolic verification of cryptographic applications
Despite decades of experience, designing and implementing cryptographic applications remains dangerously
error-prone, even for experts. This is partly because cryptographic security is an inherently hard problem, and
partly because automated verification tools require carefully-crafted inputs and are not widely applicable.
To take just the example of TLS, a widely-deployed and well-studied cryptographic protocol designed,
implemented, and verified by security experts, the lack of a formal proof about all its details has regularly
led to the discovery of major attacks (including several in 2014) on both the protocol and its implementations,
after many years of unsuspecting use.

As a result, the automated verification for cryptographic applications is an active area of research, with a wide
variety of tools being employed for verifying different kinds of applications.

In previous work, the we have developed the following three approaches:

• ProVerif: a symbolic prover for cryptographic protocol models

• Tookan: an attack-finder for PKCS#11 hardware security devices

• F7: a security typechecker for cryptographic applications written in F#
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3.1.1. Verifying cryptographic protocols with ProVerif
Given a model of a cryptographic protocol, the problem is to verify that an active attacker, possibly with
access to some cryptographic keys but unable to guess other secrets, cannot thwart security goals such
as authentication and secrecy [47]; it has motivated a serious research effort on the formal analysis of
cryptographic protocols, starting with [43] and eventually leading to effective verification tools, such as our
tool ProVerif.

To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus, and
ProVerif abstracts it to a set of generalized Horn clauses. This abstraction is a small approximation: it just
ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than, say, tree
automata-based techniques. The price to pay for this precision is that ProVerif does not always terminate;
however, it terminates in most cases in practice, and it always terminates on the interesting class of tagged
protocols [38]. ProVerif also distinguishes itself from other tools by the variety of cryptographic primitives it
can handle, defined by rewrite rules or by some equations, and the variety of security properties it can prove:
secrecy [35], [22], correspondences (including authentication) [36], and observational equivalences [34].
Observational equivalence means that an adversary cannot distinguish two processes (protocols); equivalences
can be used to formalize a wide range of properties, but they are particularly difficult to prove. Even if the
class of equivalences that ProVerif can prove is limited to equivalences between processes that differ only
by the terms they contain, these equivalences are useful in practice and ProVerif is the only tool that proves
equivalences for an unbounded number of sessions.

Using ProVerif, it is now possible to verify large parts of industrial-strength protocols, such as TLS [31],
JFK [23], and Web Services Security [33], against powerful adversaries that can run an unlimited number of
protocol sessions, for strong security properties expressed as correspondence queries or equivalence assertions.
ProVerif is used by many teams at the international level, and has been used in more than 30 research papers
(references available at http://proverif.inria.fr/proverif-users.html).

3.1.2. Verifying security APIs using Tookan
Security application programming interfaces (APIs) are interfaces that provide access to functionality while
also enforcing a security policy, so that even if a malicious program makes calls to the interface, certain security
properties will continue to hold. They are used, for example, by cryptographic devices such as smartcards and
Hardware Security Modules (HSMs) to manage keys and provide access to cryptographic functions whilst
keeping the keys secure. Like security protocols, their design is security critical and very difficult to get right.
Hence formal techniques have been adapted from security protocols to security APIs.

The most widely used standard for cryptographic APIs is RSA PKCS#11, ubiquitous in devices from
smartcards to HSMs. A 2003 paper highlighted possible flaws in PKCS#11 [40], results which were extended
by formal analysis work using a Dolev-Yao style model of the standard [41]. However at this point it was
not clear to what extent these flaws affected real commercial devices, since the standard is underspecified
and can be implemented in many different ways. The Tookan tool, developed by Steel in collaboration with
Bortolozzo, Centenaro and Focardi, was designed to address this problem. Tookan can reverse engineer the
particular configuration of PKCS#11 used by a device under test by sending a carefully designed series of
PKCS#11 commands and observing the return codes. These codes are used to instantiate a Dolev-Yao model
of the device’s API. This model can then be searched using a security protocol model checking tool to find
attacks. If an attack is found, Tookan converts the trace from the model checker into the sequence of PKCS#11
queries needed to make the attack and executes the commands directly on the device. Results obtained by
Tookan are remarkable: of 18 commercially available PKCS#11 devices tested, 10 were found to be susceptible
to at least one attack.

3.1.3. Verifying cryptographic applications using F7 and F*
Verifying the implementation of a protocol has traditionally been considered much harder than verifying its
model. This is mainly because implementations have to consider real-world details of the protocol, such as
message formats, that models typically ignore. This leads to a situation that a protocol may have been proved

http://proverif.inria.fr/proverif-users.html
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secure in theory, but its implementation may be buggy and insecure. However, with recent advances in both
program verification and symbolic protocol verification tools, it has become possible to verify fully functional
protocol implementations in the symbolic model.

One approach is to extract a symbolic protocol model from an implementation and then verify the model, say,
using ProVerif. This approach has been quite successful, yielding a verified implementation of TLS in F#
[31]. However, the generated models are typically quite large and whole-program symbolic verification does
not scale very well.

An alternate approach is to develop a verification method directly for implementation code, using well-known
program verification techniques such as typechecking. F7 [29] is a refinement typechecker for F#, developed
jointly at Microsoft Research Cambridge and Inria. It implements a dependent type-system that allows us to
specify security assumptions and goals as first-order logic annotations directly inside the program. It has been
used for the modular verification of large web services security protocol implementations [32]. F* [52] is
an extension of F7 with higher-order kinds and a certifying typechecker. Both F7 and F* have a growing user
community. The cryptographic protocol implementations verified using F7 and F* already represent the largest
verified cryptographic applications to our knowledge.

3.2. Computational verification of cryptographic applications
Proofs done by cryptographers in the computational model are mostly manual. Our goal is to provide computer
support to build or verify these proofs. In order to reach this goal, we have already designed the automatic
tool CryptoVerif, which generates proofs by sequences of games. Much work is still needed in order to
develop this approach, so that it is applicable to more protocols. We also plan to design and implement
techniques for proving implementations of protocols secure in the computational model, by generating them
from CryptoVerif specifications that have been proved secure, or by automatically extracting CryptoVerif
models from implementations.

A different approach is to directly verify cryptographic applications in the computational model by typing. A
recent work [44] shows how to use refinement typechecking in F7 to prove computational security for protocol
implementations. In this method, henceforth referred to as computational F7, typechecking is used as the main
step to justify a classic game-hopping proof of computational security. The correctness of this method is based
on a probabilistic semantics of F# programs and crucially relies on uses of type abstraction and parametricity
to establish strong security properties, such as indistinguishability.

In principle, the two approaches, typechecking and game-based proofs, are complementary. Understanding
how to combine these approaches remains an open and active topic of research.

An alternative to direct computation proofs is to identify the cryptographic assumptions under which symbolic
proofs, which are typically easier to derive automatically, can be mapped to computational proofs. This line
of research is sometimes called computational soundness and the extent of its applicability to real-world
cryptographic protocols is an active area of investigation.

3.3. Provably secure web applications
Web applications are fast becoming the dominant programming platform for new software, probably because
they offer a quick and easy way for developers to deploy and sell their apps to a large number of customers.
Third-party web-based apps for Facebook, Apple, and Google, already number in the hundreds of thousands
and are likely to grow in number. Many of these applications store and manage private user data, such as
health information, credit card data, and GPS locations. To protect this data, applications tend to use an ad
hoc combination of cryptographic primitives and protocols. Since designing cryptographic applications is
easy to get wrong even for experts, we believe this is an opportune moment to develop security libraries and
verification techniques to help web application programmers.
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As a typical example, consider commercial password managers, such as LastPass, RoboForm, and 1Password.
They are implemented as browser-based web applications that, for a monthly fee, offer to store a user’s
passwords securely on the web and synchronize them across all of the user’s computers and smartphones. The
passwords are encrypted using a master password (known only to the user) and stored in the cloud. Hence,
no-one except the user should ever be able to read her passwords. When the user visits a web page that has
a login form, the password manager asks the user to decrypt her password for this website and automatically
fills in the login form. Hence, the user no longer has to remember passwords (except her master password) and
all her passwords are available on every computer she uses.

Password managers are available as browser extensions for mainstream browsers such as Firefox, Chrome,
and Internet Explorer, and as downloadable apps for Android and Apple phones. So, seen as a distributed
application, each password manager application consists of a web service (written in PHP or Java), some
number of browser extensions (written in JavaScript), and some smartphone apps (written in Java or Objective
C). Each of these components uses a different cryptographic library to encrypt and decrypt password data.
How do we verify the correctness of all these components?

We propose three approaches. For client-side web applications and browser extensions written in JavaScript,
we propose to build a static and dynamic program analysis framework to verify security invariants. To this end,
we have developed two security-oriented type systems for JavaScript, Defensive JavaScript [30] [30] and TS*
[54], and used them to guarantee security properties for a number of JavaScript applications. For Android
smartphone apps and web services written in Java, we propose to develop annotated JML cryptography
libraries that can be used with static analysis tools like ESC/Java to verify the security of application code. For
clients and web services written in F# for the .NET platform, we propose to use F* to verify their correctness.
We also propose to translate verified F* web applications to JavaScript via a verified compiler that preserves
the semantics of F* programs in JavaScript.

4. Application Domains
4.1. Cryptographic Protocol Libraries

Cryptographic protocols such as TLS, SSH, IPSec, and Kerberos are the trusted base on which the security of
modern distributed systems is built. Our work enables the analysis and verification of such protocols, both in
their design and implementation. Hence, for example, we build and verify models and reference implementa-
tions for well-known protocols such as TLS and SSH, as well as analyze their popular implementations such
as OpenSSL.

4.2. Hardware-based security APIs
Cryptographic devices such as Hardware Security Modules (HSMs) and smartcards are used to protect long-
terms secrets in tamper-proof hardware, so that even attackers who gain physical access to the device cannot
obtain its secrets. These devices are used in a variety of scenarios ranging from bank servers to transportation
cards (e.g. Navigo). Our work investigates the security of commercial cryptographic hardware and evaluates
the APIs they seek to implement.

4.3. Web application security
Web applications use a variety of cryptographic techniques to securely store and exchange sensitive data for
their users. For example, a website may serve pages over HTTPS, authenticate users with a single sign-on
protocol such as OAuth, encrypt user files on the server-side using XML encryption, and deploy client-side
cryptographic mechanisms using a JavaScript cryptographic library. The security of these applications depends
on the public key infrastructure (X.509 certificates), web browsers’ implementation of HTTPS and the same
origin policy (SOP), the semantics of JavaScript, HTML5, and their various associated security standards, as
well as the correctness of the specific web application code of interest. We build analysis tools to find bugs
in all these artifacts and verification tools that can analyze commercial web applications and evaluate their
security against sophisticated web-based attacks.
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5. Highlights of the Year
5.1. Highlights of the year

This year, we published 15 articles in international peer-reviewed journals and conferences, including papers
in prestigious conferences such as IEEE S&P Oakland (2 papers), ACM CCS, NDSS, WWW, ASPLOS, and
ITP, and we won four research awards for our work, detailed below.

We released updates to F*, miTLS, ProVerif, and CryptoVerif, along with our collaborators at other institu-
tions. We discovered serious vulnerabilities in a number of TLS libraries, web browsers, and web servers,
resulting in several published CVEs, and over a dozen software updates based on our recommendations in
widely used software such as Firefox, Chrome, Internet Explorer, Safari, OpenSSL, Java, and Mono.

5.1.1. Awards
• Distinguished paper award, IEEE Symposium for Security and Privacy, 2015
• Best student paper award, ACM Conference on Computer and Communications Security, 2015
• Best paper award, Usenix Workshop on Offensive Technologies, 2015
• Pwnie award for Most Innovative Research, BlackHat USA, 2015

6. New Software and Platforms
6.1. ProVerif

Participants: Bruno Blanchet [correspondant], Xavier Allamigeon [April–July 2004], Vincent Cheval [Sept.
2011–], Benjamin Smyth [Sept. 2009–Feb. 2010].

PROVERIF (http://proverif.inria.fr) is an automatic security protocol verifier in the symbolic model (so called
Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol
verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

• It can handle many different cryptographic primitives, specified as rewrite rules or as equations.
• It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded

message space.

The PROVERIF verifier can prove the following properties:
• secrecy (the adversary cannot obtain the secret);
• authentication and more generally correspondence properties, of the form “if an event has been

executed, then other events have been executed as well”;
• strong secrecy (the adversary does not see the difference when the value of the secret changes);
• equivalences between processes that differ only by terms.

PROVERIF is widely used by the research community on the verification of security protocols (see http://
proverif.inria.fr/proverif-users.html for references).

PROVERIF is freely available on the web, at http://proverif.inria.fr, under the GPL license.

6.2. CryptoVerif
Participants: Bruno Blanchet [correspondant], David Cadé [Sept. 2009–].

CRYPTOVERIF(http://cryptoverif.inria.fr) is an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine.
CRYPTOVERIF can prove secrecy and correspondences, which include in particular authentication. It provides
a generic mechanism for specifying the security assumptions on cryptographic primitives, which can handle
in particular symmetric encryption, message authentication codes, public-key encryption, signatures, hash
functions, and Diffie-Hellman key agreements.

http://proverif.inria.fr/
http://proverif.inria.fr
http://proverif.inria.fr/
http://proverif.inria.fr/
http://proverif.inria.fr/proverif-users.html
http://proverif.inria.fr/proverif-users.html
http://proverif.inria.fr/
http://proverif.inria.fr/
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr
http://cryptoverif.inria.fr/
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The generated proofs are proofs by sequences of games, as used by cryptographers. These proofs are valid
for a number of sessions polynomial in the security parameter, in the presence of an active adversary.
CRYPTOVERIF can also evaluate the probability of success of an attack against the protocol as a function
of the probability of breaking each cryptographic primitive and of the number of sessions (exact security).

CRYPTOVERIF has been used in particular for a study of Kerberos in the computational model, and as a
back-end for verifying implementations of protocols in F# and C.

CRYPTOVERIF is freely available on the web, at http://cryptoverif.inria.fr, under the CeCILL license.

6.3. miTLS
Participants: Karthikeyan Bhargavan [correspondant], Antoine Delignat-Lavaud, Cedric Fournet [Microsoft
Research], Markulf Kohlweiss [Microsoft Research], Alfredo Pironti, Pierre-Yves Strub [IMDEA], Santiago
Zanella-Béguelin [Microsoft Research], Jean Karim Zinzindohoue.

miTLS is a verified reference implementation of the TLS security protocol in F#, a dialect of OCaml for the
.NET platform. It supports SSL version 3.0 and TLS versions 1.0-1.2 and interoperates with mainstream web
browsers and servers. miTLS has been verified for functional correctness and cryptographic security using the
refinement typechecker F7.

A paper describing the miTLS library was published at IEEE S&P 2013, CRYPTO 2014, and several updates
to the software were released in 2015. The software and associated research materials are available from
http://mitls.org.

6.4. flexTLS
Participants: Karthikeyan Bhargavan [correspondant], Alfredo Pironti, Benjamin Beurdouche.

flexTLS is a TLS testing framework based on miTLS, and is released as part of the miTLS distribution.
Unlike miTLS, flexTLS can be configured to run incorrect TLS clients and servers in order to test other
TLS implementations. Using flexTLS we analyzed a series of open source TLS implementations and found
important vulnerabilities like SKIP and FREAK. We also used flexTLS to build proof-of-concept demos for
other attacks such as Logjam.

A paper describing flexTLS was published at Usenix WOOT 2015. The software and associated research
materials are available from http://mitls.org.

6.5. F*
Participants: Nikhil Swamy [Microsoft Research], Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric
Fournet [Microsoft Research], Catalin Hritcu, Chantal Keller, Aseem Rastogi, Pierre-Yves Strub.

F* is a new higher order, effectful programming language (like ML) designed with program verification in
mind. Its type system is based on a core that resembles System Fω (hence the name), but is extended with
dependent types, refined monadic effects, refinement types, and higher kinds. Together, these features allow
expressing precise and compact specifications for programs, including functional correctness properties. The
F* type-checker aims to prove that programs meet their specifications using an automated theorem prover
(usually Z3) behind the scenes to discharge proof obligations. Programs written in F* can be translated to
OCaml, F#, or JavaScript for execution.

A detailed description of F* (circa 2011) appeared in the Journal of Functional Programming [53]. F* has
evolved substantially since then. The latest version of F* is written entirely in F*, and bootstraps in OCaml
and F#. It is under active development at GitHub: https://github.com/FStarLang and the official webpage is at
http://fstar-lang.org.

6.6. ProScript
Participants: Nadim Kobeissi [correspondant], Karthikeyan Bhargavan, Bruno Blanchet.

http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
http://mitls.org
http://mitls.org
https://github.com/FStarLang
http://fstar-lang.org


Project-Team PROSECCO 9

Defensive JavaScript (DJS) is a subset of the JavaScript language that guarantees the behaviour of trusted
scripts when loaded in an untrusted web page. Code in this subset runs independently of the rest of the
JavaScript environment. When propertly wrapped, DJS code can run safely on untrusted pages and keep
secrets such as decryption keys. ProScript is a typed subset of JavaScript, inspired by DJS, that is focused
on writing verifiable cryptographic protocol implementations. In addition to DJS typing, ProScript imposes a
functional style that results in more readable and easily verifiable ProVerif models. ProScript has been used to
write and verify a full implementation of the TextSecure protocol in JavaScript.

The ProScript compiler and various libraries written in ProScript will be made available from the Prosecco
webpage.

7. New Results
7.1. Verification of Security Protocols in the Symbolic Model

Participants: Bruno Blanchet, Miriam Paiola.

The applied pi calculus is a widely used language for modeling security protocols, including as a theoretical
basis of PROVERIF. However, the seminal paper that describes this language [24] does not come with proofs,
and detailed proofs for the results in this paper were never published. This year, Martín Abadi, Bruno Blanchet,
and Cédric Fournet finished the detailed proofs of all results of this paper, started last year, and added a new
example on a symbolic analog of indifferentiability of hash functions. This work is submitted to a journal.

Previously [37], Bruno Blanchet and Miriam Paiola presented an automatic technique for proving secrecy and
authentication properties for security protocols that manipulate lists of unbounded length, for an unbounded
number of sessions. That work relies on an extension of Horn clauses, generalized Horn clauses, designed
to support unbounded lists, and on a resolution algorithm on these clauses. However, in that previous work,
they had to model protocols manually with generalized Horn clauses, which is unpractical. They recently
extended the input language of ProVerif to model protocols with lists of unbounded length. They give the
formal meaning of this extension, translate it automatically to generalized Horn clauses, and prove that this
translation is sound. This work appears as a research report [21].

We implemented several extensions of ProVerif: Bruno Blanchet and Vincent Cheval improved the algorithm
for proving observational equivalence between two processes, by merging them into a single biprocess that
encodes the two processes. Bruno Blanchet also introduced a new construct new a[x1, ..., xn] in ProVerif
which allows to specify the arguments x1, · · · , xn used in the internal representation of the fresh name a. This
extension allows one to tune the precision and speed of the analysis performed by ProVerif. The extended tool
is available at http://proverif.inria.fr, and deposited to the APP (Agence pour la Protection des Programmes).

Stéphanie Delaune, Mark Ryan, and Ben Smyth [42] introduced the idea of swapping data in order to prove
observational equivalence. For instance, ballot secrecy in electronic voting is formalized by saying that A
voting a and B voting b is observationally equivalent to (indistinguishable from) A voting b and B voting a.
Proving such an equivalence typically requires swapping the votes. However, Delaune et al’s approach was
never proved correct. Bruno Blanchet and Ben Smyth filled this gap by formalizing the approach and providing
a detailed soundness proof. They plan to submit this work to a conference.

7.2. Verification of Security Protocols in the Computational model
Participant: Bruno Blanchet.

Bruno Blanchet implemented several extensions of his computational protocol verifier CryptoVerif. In partic-
ular, he improved the global dependency analysis, used in order to show that the result of all tests is indepen-
dent from some random values. He improved the proof of secrecy properties, in particular to prove forward
secrecy properties. He also improved the merging of branches of tests, in particular to be able to merge the
two branches of if b then P1 else P2 even when variables are renamed between P1 and P2. Finally, he added
the display of an explanation of why a cryptographic transformation fails, to make the tool easier to use. The
extended tool is available at http://cryptoverif.inria.fr.

http://proverif.inria.fr/
http://proverif.inria.fr
http://cryptoverif.inria.fr
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Within the ANR project AnaStaSec, Bruno Blanchet verified an air-ground avionic security protocol (Interna-
tional Civil Aviation Organization (ICAO) Document 9880: Manual on Detailed Technical Specifications for
the Aeronautical Telecommunication Network (ATN) using ISO/OSI standards and protocols, Part IV) using
CryptoVerif. He proved entity authentication and message authenticity for the main protocol, in the compu-
tational model of cryptography, and made comments on some points that should be clarified in the protocol
specification. He presented this work at a meeting of the secure dialog service working group of ICAO, in
Toulouse, September 2015. The working group was strongly interested by the presentation and welcomed the
proposal to apply these modelling and formal verification techniques as part of its validation activities.

7.3. The F* programming language
Participants: Nikhil Swamy [Microsoft Research], Catalin Hritcu, Chantal Keller [LRI], Aseem Rastogi
[Univ of Maryland], Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cedric Fournet [Mi-
crosoft Research], Pierre-Yves Strub [IMDEA], Markulf Kohlweiss [Microsoft Research], Jean Karim Zinzin-
dohoue, Santiago Zanella Beguelin [Microsoft Research, MSR-Inria].

F* is a new higher order, effectful programming language (like ML) designed with program verification in
mind. Its type system is based on a core that resembles System Fω (hence the name), but is extended with
dependent types, refined monadic effects, refinement types, and higher kinds. Together, these features allow
expressing precise and compact specifications for programs, including functional correctness properties. The
F* type-checker aims to prove that programs meet their specifications using an automated theorem prover
(usually Z3) behind the scenes to discharge proof obligations. Programs written in F* can be translated to
OCaml, F#, or JavaScript for execution. We published a paper on the design, implementation, and formal core
of F* at POPL 2016. F* is being developed as an open-source project at GitHub: https://github.com/FStarLang
and the official webpage is at http://fstar-lang.org. We released several beta versions of the software this year.

7.4. Micro-Policies and Secure Compilation
Participants: Catalin Hritcu, Arthur Azevedo de Amorim, Zoi Paraskevopoulou, Nikolaos Giannarakis.

Following on from previous work on the micro-policy framework, Catalin Hritcu and his collaborators
published new work on applications and efficient implementations of micro-policies. They published work
on low-level implementations of micro-policies at ASPLOS 2015 [18]. At IEEE S&P, they published a paper
how to write formally verified reference monitors using micro-policies [26].

Other than these published works, Hritcu and his colleagues also worked on using micro-policies to enforce
secure information flow at the hardware level [25], and a secure compiler for a high-level language that relies
on micro-policies to enforce programming language abstractions [45].

7.5. Dependable Property-Based Testing
Participants: Catalin Hritcu, Zoi Paraskevopoulou.

Catalin Hritcu and his student, Zoi Paraskevopoulou, worked on a methodology for formally verified property-
based testing and implemented it as a foundational verification framework for QuickChick, a port of
QuickCheck to Coq. This work was published at ITP 2015 [19]. Catalin Hritcu also worked with a num-
ber of co-authors on a new technique for creating random generators for property-based testing. This work is
currently under submission [46].

7.6. Attacks and Proofs for Transport Layer Security
Participants: Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric Fournet
[Microsoft Research], Markulf Kohlweiss [Microsoft Research], Alfredo Pironti, Pierre-Yves Strub [IMDEA],
Jean Karim Zinzindohoue.

https://github.com/FStarLang
http://fstar-lang.org
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As a countermeasure to our earlier work on the triple handshake attack, we proposed a TLS extension called
session hash which has now been published as an Internet standard (IETF RFC 7627). We also formally
analyzed various protocols such as TLS, IKE, and SSH for key synchronization and triple handshake attacks,
and proved that our session hash countermeasure prevents such attacks on TLS. This work appeared at NDSS
2015 [15].

We discovered and reported an important class of state machine attacks on implementations of the Transport
Layer Security (TLS) protocol. These attacks appear when TLS implementations incorrectly accept messages
which are forbidden by the TLS state machine. We built a test framework for such attacks and analyzed a
number of open source implementations. Our analysis uncovered critical vulnerabilities such as the SKIP
attack on Java and the FREAK attack on almost all mainstream web browsers. The research results were
published at IEEE S&P where our paper won a distinguished paper award [14]. Our work also led to security
updates and CVEs for many web browsers, TLS libraries, and web servers.

Along with colleagues at several other institutions, we discovered the Logjam vulnerability on protocols that
still support weak Diffie-Hellman groups in their key exchange. We showed that the attack could be used
for online and offline attacks on real-world TLS clients and servers. We also showed how the vulnerability
could weaken the security of IPsec and SSH connections. Our research led to widespread changes to the
configurations of web servers, mail servers, web browsers, and TLS libraries. The research was published at
ACM CCS 2015 [12] where it won a Best Paper award.

Antoine Delignat-Lavaud showed how the unsafe sharing of certificates across multiple HTTPS websites could
be exploited to fully compromise the same origin policy for websites, using a vulnerability called virtual host
confusion. A research paper on these attacks appeared at WWW 2015 [17].

7.7. Privacy, Electronic Voting, and Auctions
Participants: Benjamin Smyth [correspondant], Elizabeth Quaglia.

Benjamin Smyth worked on a formal analysis of privacy in Direct Anonymous Attestation schemes [50]. He
also showed how to verify commitment protocols in ProVerif without False attacks [39].

Apart from these published works, Benjamin Smyth and Elizabeth Quaglia worked on formal security analyses
of electronic auction schemes based on existing models for electronic voting [48]. Benjamin Smyth worked
on developing new formal definitions for secrecy and independence in election schemes [51], and on applying
such definitions to the security analysis of real-world voting protocols such as Helios and JCJ [49].

7.8. Computationally Complete Symbolic Attacker Models
Participants: Gergei Bana, Hubert Comon-Lundh [ENS Cachan], Rohit Chadha [University of Missouri].

In previous work, Bana and Comon-Lunch proposed a new approach to computational verification of
cryptographic protocols, by defining a computationally complete symbolic attacker, so that a symbolic proof
against this attacker can be shown to imply a computational proof of security [27], [28].

Following on from this work, Bana and Chadha fully developed the core parts of the computationally complete
symbolic attacker based on indistinguishability. This covers both trace properties and equivalence properties
and can be proved partially complete. They evaluated their method by applying it to several classic protocols.
This work is currently under submission.

Bana, Comon-Lundh, and Koutsos also worked on a decision procedure for the computationally complete
symbolic attacker based on indistinguishability.

8. Bilateral Contracts and Grants with Industry
8.1. Bilateral Grants with Industry

The miTLS project received a grant from Mozilla for work on TLS 1.3. Catalin Hritcu received a PhD grant
from Microsoft Research.
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9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR
9.1.1.1. ProSe

Title: ProSe: Security protocols : formal model, computational model, and implementations (ANR
VERSO 2010.)

Other partners: Inria/Cascade, ENS Cachan-Inria/Secsi, LORIA-Inria/Cassis, Verimag.

Duration: December 2010 - December 2014.

Coordinator: Bruno Blanchet, Inria (France)

Abstract: The goal of the project is to increase the confidence in security protocols, and in order
to reach this goal, provide security proofs at three levels: the symbolic level, in which messages
are terms; the computational level, in which messages are bitstrings; the implementation level: the
program itself.

9.1.1.2. AJACS

Title: AJACS: Analyses of JavaScript Applications: Certification and Security

Other partners: Inria-Rennes/Celtique, Inria-Saclay/Toccata, Inria-Sophia Antipolis/INDES, Impe-
rial College London

Duration: October 2014 - March 2019.

Coordinator: Alan Schmitt, Inria (France)

Abstract: The goal of the AJACS project is to provide strong security and privacy guarantees for web
application scripts. To this end, we propose to define a mechanized semantics of the full JavaScript
language, the most widely used language for the Web, to develop and prove correct analyses for
JavaScript programs, and to design and certify security and privacy enforcement mechanisms.

9.1.2. FUI
9.1.2.1. Pisco

Title: PISCO

Partners: Bull, Cassadian, CEA, CS, Saferiver, Serpikom, Telecom Paristech

Duration: January 2013 - December 2014.

Coordinator: Liliana Calabanti, Bull (France)

Abstract: The goal of the project is to develop a prototype of a new secure applicance based on
a virtual machine architecture accessing an HSM. The role of PROSECCO is to contribute to the
analysis of security http://www.systematic-paris-region.org/en/projets/pisco

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. CRYSP

Title: CRYSP: A Novel Framework for Collaboratively Building Cryptographically Secure Programs
and their Proofs

Programm: FP7

Duration: November 2010 - October 2015

Coordinator: Inria

http://www.systematic-paris-region.org/en/projets/pisco
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Inria contact: Anne-Lise Chenet-Pflieger
The goal of CRYSP is to use recent advances in software verification and dependent type systems
and apply them to the verification of cryptographic protocol implementations written in a variety of
languages. We want to enable the collaborative development of such programs and their specifica-
tions. Our target is to be able to verify mainstream implementations of the Transport Layer Security
Protocol.

9.3. International Initiatives
9.3.1. Inria International Partners
9.3.1.1. Informal International Partners

We have a range of long- and short-term collaborations with various universities and research labs. We
summarize them by project:

• F*: Microsoft Research (Cambdridge, Redmond), IMDEA (Madrid)
• TLS analysis: Microsoft Research (Cambridge), Johns Hopkins University, University of Michigan,

University of Pennsylvania
• Web Security: Microsoft Research (Cambridge, Redmond), Imperial College (London)
• Micro-Policies: University of Pennsylvania, Portland State University

9.4. International Research Visitors
9.4.1. Visits of International Scientists

• Deepak Garg from the Max Planck Institute for Software Systems in Saarbruecken visited the group
from 10-12 June and gave a seminar.

• Udit Dhawan from the University of Pennsylvania visited the group from 10-14 March and gave a
seminar.

• Cedric Fournet and Nikhil Swamy from Microsoft Research visited the group multiple times to work
on joint projects.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific events selection
10.1.1.1. Member of the conference program committees

• ACM POPL – January 2015, Mumbai, India: Karthikeyan Bhargavan
• ACM CCS – October 2015, Denver, USA: Karthikeyan Bhargavan
• ETAPS POST – April 2015, London, UK: Karthikeyan Bhargavan
• ACM SEC@SAC – April 2015, Salamanca, Spain: Karthikeyan Bhargavan
• HotSpot – April 2015, London, UK: Bruno Blanchet

10.1.1.2. Reviewer

• Members of Prosecco reviewed papers for many major conferences and workshops including ACM
CCS, ACM POPL, IEEE S&P, etc.

10.1.2. Journal
10.1.2.1. Member of the editorial boards
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Associate Editor

– of the International Journal of Applied Cryptography (IJACT) – Inderscience Publishers:
Bruno Blanchet

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master: Bruno Blanchet, Cryptographic protocols: formal and computational proofs, 9h equivalent
TD, master M2 MPRI, université Paris VII, France

License: Karthikeyan Bhargavan, INF431, INF421, INF672, INF321, introductory courses at at
Ecole Polytechnique, Palaiseau, France

Doctorat: Catalin Hritcu, lectures at University of Saarbruecken, Germany

Doctorat: Catalin Hritcu, F* tutorials at POPL 2015 and ICFP 2015

10.2.2. Supervision
PhD in progress: Evmorfia-Iro Bartzia
Machine-checked program verification for concrete cryptography,
started October 2011, supervised by Karthikeyan Bhargavan and Pierre-Yves Strub

PhD in progress: Antoine Delignat-Lavaud
Verified security for web applications,
started September 2012, supervised by Karthikeyan Bhargavan

PhD in progress: Jean Karim Zinzindohoue
Analyzing cryptographic protocols and their implementations,
started September 2014, supervised by Karthikeyan Bhargavan

PhD in progress: Nadim Kobeissi
Analyzing cryptographic web applications,
started February 2015, supervised by Karthikeyan Bhargavan

PhD in progress: Yannis Juglaret
Micro-policies and Secure Compilation,
started September 2015, supervised by Catalin Hritcu

10.2.3. Juries
Rémy Chrétien – Ph.D. – Jan. 11, 2016 – ENS Cachan
Automated analysis of equivalence properties for cryptographic protocols
Bruno Blanchet (reviewer)

Joeri de Ruiter – Ph.D. – Aug. 27, 2015 – Radboud University Nijmegen
Lesson learned in the analysis of the EMV and TLS security protocols
Karthikeyan Bhargavan (reviewer)

Bart van Delft – Licentiate – Mar. 14, 2015 – Chalmers University
Karthikeyan Bhargavan (discussion leader)

10.3. Popularization
10.3.1. Popular Press and Vulnerability Reports

The FREAK and Logjam attacks discovered by the miTLS team resulted in articles in many newspapers,
magazine, and popular websites, including the New York Times, Wall Street Journal, Economist, and Wired.
As a result of our discovery of these attacks and their popularization, major changes were made in all web
browsers, web servers, and in the TLS protocol itself.
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10.3.2. Seminars
• Catalin Hritcu: invited talks at CoqPL Workshop (Jan 2015), HP Labs France (May 2015), Inria

Rennes (Jun 2015), PLAS Workshop (Jul 2015), Microsoft Research Redmond (Aug 2015), Univer-
sity of Washington (Aug 2015), ML Workshop (Sep 2015), Alcatel-Lucent Bell Labs (Dec 2015)

• Karthikeyan Bhargavan: invited talks at Real World Crypto (Jan 2015), Inria Nancy (Feb 2015),
OSSIR Paris (Jun 2015), DefCon Crypto Village (Aug 2015), Catrel Workshop (Oct 2015)
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