

[image: cover]

 SPECFUN

 Symbolic Special Functions : Fast and Certified

 2015 Project-Team Activity Report
	

 Research centre:
 Saclay - Île-de-France

 Field: Algorithmics, Programming, Software and Architecture
Theme: Algorithmics, Computer Algebra and Cryptology

 Computer Science and Digital Science:

 	2.1.10. - Domain-specific languages

 	2.1.11. - Proof languages

 	2.4.3. - Proofs

 	7.11. - Performance evaluation

 	7.2. - Discrete mathematics, combinatorics

 	7.6. - Computer Algebra

 Other Research Topics and Application Domains:

 	9.4.2. - Mathematics

 	9.4.3. - Physics

 Project-Team Specfun

 Members

 Overall Objectives	Scientific challenges, expected impact
	Research axes

 Research Program	Studying special functions by computer algebra
	Trusted computer-algebra calculations
	Machine-checked proofs of formalized mathematics

 Highlights of the Year

 New Software and Platforms	Coq
	DynaMoW
	ECS
	Math-Components
	Ring
	Ssreflect

 New Results	Integration of rational functions
	Multiple binomial sums
	Diagonals of rational functions and
selected differential Galois groups
	Algebraic Diagonals and Walks
	A human proof of the Gessel conjecture
	Enumeration of 3-dimensional lattice walks confined to the positive octant
	Efficient algorithms for
rational first integrals
	Quasi-optimal computation of the
p-curvature
	Axiomatic constraint systems for proof search modulo theories
	DynaMoW: Dynamic Mathematics on the Web
	ECS: Encyclopedia of Combinatorial Structures
	Mathematical Components
Library

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Partnerships and Cooperations	National Initiatives
	European Initiatives

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2012 November 01, updated into Project-Team: 2014 July 01
Section: Members
Research Scientists
Frédéric Chyzak [Team leader, Inria, Researcher, HdR]
Assia Mahboubi [Team co-leader, Inria, Researcher]
Alin Bostan [Inria, Researcher]
Philippe Dumas [Éducation Nationale, Professor, until August 2015; Inria, Researcher, since September 2015]
Engineer
Maxence Guesdon [Inria, Engineer, 40%]
PhD Students
Louis Dumont [École Polytechnique]
Thomas Sibut Pinote [École Polytechnique]
Post-Doctoral Fellow
Carst Tankink [Inria, until February 2015]
Visiting Scientist
Marc Mezzarobba [CNRS]
Administrative Assistant
Christine Biard [Inria]

 Overall Objectives

 	Overall Objectives	Scientific challenges, expected impact
	Research axes

 Section:
 Overall Objectives

 Scientific challenges, expected impact

 The general orientation of our team is described by the short name given to it:
Special Functions, that is, particular mathematical functions that have
established names due to their importance in mathematical analysis, physics, and
other application domains. Indeed, we ambition to study special functions with
the computer, by combined means of computer algebra and formal methods.

 Computer-algebra systems have been advertised for decades as software
for “doing mathematics by computer” [67] . For
instance, computer-algebra libraries can uniformly generate a corpus
of mathematical properties about special functions, so as to display
them on an interactive website. This possibility was recently shown by the
computer-algebra component of the
team [20] . Such
an automated generation significantly increases the reliability of the
mathematical corpus, in comparison to the content of existing static
authoritative handbooks. The importance of the validity of these
contents can be measured by the very wide audience that such handbooks
have had, to the point that a book
like [15] remains one of the most cited
mathematical publications ever and has motivated the 10-year-long
project of writing its
successor [17] .
However, can the mathematics produced “by computer” be considered as
true mathematics? More specifically, whereas it is nowadays
well established that the computer helps in discovering and observing
new mathematical phenomenons, can the mathematical statements produced
with the aid of the computer and the mathematical results computed by
it be accepted as valid mathematics, that is, as having the status of
mathematical proofs?
Beyond the reported weaknesses or
controversial design choices of mainstream computer-algebra systems,
the issue is more of an epistemological nature. It will not find its
solution even in the advent of the ultimate computer-algebra system:
the social process of peer-reviewing just falls short of evaluating
the results produced by computers, as reported by
Th. Hales [45] after the publication of his proof of
the Kepler Conjecture about sphere packing.

 A natural answer to this deadlock is to move to an alternative kind of
mathematical software and to use a proof assistant to check the
correctness of the desired properties or formulas. The recent success
of large-scale formalization projects, like the Four-Color Theorem of
graph theory [40] , the above-mentioned Kepler
Conjecture [45] , and, very recently, the Odd Order
Theorem of group theory
(http://www.msr-inria.inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/),
have increased the understanding of the appropriate
software-engineering methods for this peculiar kind of programming.
For computer algebra, this legitimates a move to proof assistants now.

 The Dynamic Dictionary of Mathematical Functions
(http://ddmf.msr-inria.inria.fr/1.9.1/ddmf)
(DDMF) [20] is
an online computer-generated handbook of mathematical functions that
ambitions to serve as a reference for a broad range of applications.
This software was developed by the computer-algebra component of the
team as a project
(http://www.msr-inria.inria.fr/projects/dynamic-dictionary-of-mathematical-functions/)
of the MSR–Inria Joint Centre. It bases on a
library for the computer-algebra system Maple, Algolib
(http://algo.inria.fr/libraries/), whose development
started 20 years ago in Ã�PI Algorithms
(http://algo.inria.fr/). As suggested by the constant
questioning of certainty by new potential users, DDMF deserves a
formal guarantee of correctness of its content, on a level that proof
assistants can provide. Fortunately, the maturity of
special-functions algorithms in Algolib makes DDMF a stepping stone
for such a formalization: it provides a well-understood and unified
algorithmic treatment, without which a formal certification would
simply be unreachable.

 The formal-proofs component of the team emanates from another project
of the MSR–Inria Joint Centre, namely the Mathematical Components
project (MathComp)
(http://www.msr-inria.fr/projects/mathematical-components/).
Since 2006, the MathComp group has endeavoured to develop
computer-checked libraries of formalized mathematics, using the
Coq proof assistant [63] . The methodological
aim of the project was to understand the design methods leading to
successful large-scale formalizations. The work culminated in 2012 with the
completion of a formal proof of the Odd Order Theorem, resulting in
the largest corpus of algebraic theories ever machine-checked with a
proof assistant and a whole methodology
to effectively combine these components in order to tackle complex
formalizations. In particular, these libraries provide a good number of the many
algebraic objects needed to reason about special functions and their
properties, like rational numbers, iterated sums, polynomials, and a
rich hierarchy of algebraic structures.

 The present team takes benefit from these recent advances to
explore the formal certification of the results collected in DDMF.
The aim of this project is to concentrate the formalization
effort on this delimited area, building on DDMF and the Algolib library, as
well as on the Coq system [63] and on the libraries
developed by the MathComp project.

 Use computer algebra but convince users beyond reasonable doubt

 The following few opinions on computer algebra are, we believe,
typical of computer-algebra users' doubts and difficulties when using
computer-algebra systems:

 	
 Fredrik Johansson, expert in the multi-precision numerical evaluation
of special functions and in fast computer-algebra algorithms, writes
on his blog [51] : “Mathematica is great for
cross-checking numerical values, but it's not unusual to run into
bugs, so triple checking is a good habit.” One answer in the
discussion is: “We can claim that Mathematica has [...] an
impossible to understand semantics: If Mathematica's output is
wrong then change the input. If you don't like the answer, change the
question. That seems to be the philosophy behind.”

 	
 A professor's advice to students [59] on using Maple: “You
may wish to use Maple to check your homework answers. If you do then
keep in mind that Maple sometimes gives the wrong answer,
usually because you asked incorrectly, or because of niceties of
analytic continuation. You may even be bitten by an occasional
Maple bug, though that has become fairly unlikely. Even with as
powerful a tool as Maple you will still have to devise your own
checks and you will still have to think.”

 	
 Jacques Carette, former head of the maths group at Maplesoft, about a
bug [16] when asking Maple to take the limit
limit(f(n) * exp(-n), n = infinity) for an undetermined
function f : “The problem is that there is an implicit
assumption in the implementation that unknown functions do not
`grow too fast'.”

 As explained by the expert views above, complaints by computer-algebra
users are often due to their misunderstanding of what a
computer-algebra systems is, namely a purely syntactic tool for
calculations, that the user must complement with a semantics. Still,
robustness and consistency of computer-algebra systems are not ensured
as of today, and, whatever Zeilberger may provocatively say in his
Opinion 94 [68] , a
firmer logical foundation is necessary. Indeed, the fact is that many
“bugs” in a computer-algebra system cannot be fixed by just the usual debugging method of
tracking down the faulty lines in the code. It is sort of “by
design”: assumptions that too often remain implicit are really needed
by the design of symbolic algorithms and cannot easily be expressed in
the programming languages used in computer algebra.
A similar certification initiative has
already been undertaken in the domain of numerical computing, in a
successful manner [49] , [23] . It is natural to
undertake a similar approach for computer algebra.

 Make computer algebra and formal proofs help one another

 Some of the mathematical objects that interest our team are still totally
untouched by formalization.
When implementing them and their theory inside a proof assistant, we
have to deal with the pervasive discrepancy between the published
literature and the actual implementation of computer-algebra
algorithms. Interestingly, this forces us to clarify our
computer-algebraic view on them, and possibly make us discover holes
lurking in published (human) proofs. We are therefore convinced
that the close interaction of researchers from both fields, which is
what we strive to maintain in this team, is a strong asset.

 For a concrete example, the core of Zeilberger's creative telescoping
manipulates rational functions up to simplifications. In summation
applications, checking that these simplifications do not hide
problematic divisions by 0 is most often left to the reader. In the
same vein, in the case of integrals, the published algorithms do not
check the convergence of all integrals, especially in intermediate
calculations. Such checks are again left to the readers. In general,
we expect to revisit the existing algorithms to ensure that they are
meaningful for genuine mathematical sequences or functions, and not
only for algebraic idealizations.

 Another big challenge in this project originates in
the scientific difference between computer algebra and formal proofs.
Computer algebra seeks speed of calculation on concrete
instances of algebraic data structures (polynomials, matrices,
etc). For their part, formal proofs manipulate
symbolic expressions in terms of abstract variables
understood to represent generic elements of algebraic data
structures. In view of this, a continuous challenge is
to develop the right, hybrid thinking attitude that is able to
effectively manage concrete and abstract values simultaneously,
alternatively computing and proving with them.

 Experimental mathematics with special functions

 Applications in combinatorics and mathematical physics frequently involve
equations of so high orders and so large sizes, that computing or even storing
all their coefficients is impossible on existing computers. Making this
tractable is an extraordinary challenge. The approach we believe in is
to design algorithms of good—ideally quasi-optimal—complexity in order to
extract precisely the required data from the equations, while avoiding the
computationally intractable task of completely expanding them into an explicit
representation.

 Typical applications with expected high impact are the automatic discovery and
algorithmic proof of results in combinatorics and mathematical physics for
which human proofs are currently unattainable.

 Section:
 Overall Objectives

 Research axes

 The implementation of certified symbolic computations on
special functions in the Coq proof assistant requires both
investigating new formalization techniques and renewing the
traditional computer-algebra viewpoint on these standard objects.
Large mathematical objects typical of computer algebra occur
during formalization, which also requires us to improve the
efficiency and ergonomics of Coq.
In order to feed this interdisciplinary activity with new motivating
problems, we additionally pursue a research activity oriented towards
experimental mathematics in application domains that involve special
functions. We expect these applications to pose new algorithmic
challenges to computer algebra, which in turn will deserve a
formal-certification effort. Finally, DDMF
is the motivation and the showcase of our progress on the
certification of these computations. While striving to provide a
formal guarantee of the correctness of the information it displays,
we remain keen on enriching its mathematical content
by developing new computer-algebra algorithms.

 Computer algebra certified by the Coq system

 Our formalization effort consists in organizing a cooperation
between a computer-algebra system and a proof assistant. The
computer-algebra system is used to produce efficiently algebraic data,
which are later processed by the proof assistant. The
success of this cooperation relies on the design of appropriate
libraries of formalized mathematics, including certified
implementations of certain computer-algebra algorithms. On the other
side, we expect that scrutinizing the implementation and the output of
computer-algebra algorithms will shed a new light on their semantics and
on their correctness proofs, and help clarifying their documentation.

 Libraries of formalized mathematics

 The appropriate framework for the study of efficient algorithms for
special functions is algebraic.
Representing algebraic theories as Coq formal libraries
takes benefit from the methodology emerging from the success of
ambitious projects like the formal proof of a major classification
result in finite-group theory (the Odd Order
Theorem) [38] .

 Yet, a number of the objects we need to formalize in the
present context has never been investigated using any interactive
proof assistant, despite being considered as commonplaces in computer
algebra. For instance there is up to our knowledge no
available formalization of the theory of non-commutative rings,
of the algorithmic theory of
special-functions closures, or of the asymptotic study of special
functions. We expect our future formal libraries
to prove broadly reusable in later formalizations of seemingly
unrelated theories.

 Manipulation of large algebraic data in a proof
assistant

 Another peculiarity of the mathematical objects we are going to manipulate
with the Coq system is their size. In order to provide a formal guarantee
on the data displayed by DDMF, two related axes of research have to be
pursued.
First, efficient algorithms dealing with these large objects have
to be programmed and run in Coq.
Recent evolutions of the Coq system to improve the efficiency of
its internal computations [18] , [21] make this objective
reachable. Still, how to combine the aforementioned formalization
methodology with these cutting-edge evolutions of Coq remains
one of the prospective aspects of our project.
A second need is to help users interactively
manipulate large expressions occurring in their conjectures, an objective
for which little has been done so far. To address this need,
we work on improving the ergonomics of the system
in two ways: first, ameliorating the reactivity of Coq in its interaction
with the user; second, designing and implementing extensions of its
interface to ease our formalization activity. We expect the outcome of
these lines of research to be useful to a wider audience, interested in
manipulating large formulas on topics possibly unrelated to special functions.

 Formal-proof-producing normalization algorithms

 Our algorithm certifications inside Coq intend to simulate
well-identified components of our Maple packages, possibly by
reproducing them in Coq. It would however not have been judicious to
re-implement them inside Coq in a systematic way. Indeed for a number of its
components, the output of the algorithm is more easily checked than
found, like for instance the solving of a linear system.
Rather, we delegate the discovery of the solutions to an
external, untrusted oracle like Maple. Trusted computations inside
Coq then formally validate the correctness of the a priori
untrusted output. More often than not, this validation consists in
implementing and executing normalization procedures inside
Coq. A challenge of this automation is to make sure they go to scale
while remaining efficient, which requires a Coq version of
non-trivial computer-algebra algorithms. A first, archetypal example we expect to
work on is a non-commutative generalization of the normalization
procedure for elements of rings [44] .

 Better symbolic computations with special functions

 Generally speaking, we design algorithms
for manipulating special functions symbolically,
whether univariate or with parameters, and for extracting
algorithmically any kind of algebraic and analytic information from
them, notably asymptotic properties.
Beyond this, the heart of our research is concerned with
parametrised definite summations and integrations. These very
expressive operations have far-ranging applications, for instance, to
the computation of integral transforms (Laplace, Fourier) or to the
solution of combinatorial problems expressed via integrals
(coefficient extractions, diagonals). The algorithms that we
design for them need to really operate on the level of linear
functional systems, differential and of recurrence.
In all cases, we strive to design our algorithms with the constant goal of good
theoretical complexity, and we observe that our algorithms are also fast in
practice.

 Special-function integration and summation

 Our long-term goal is to design fast algorithms for a general method
for special-function integration (creative telescoping), and
make them applicable to general special-function inputs. Still, our
strategy is to proceed with simpler, more specific classes first
(rational functions, then algebraic functions, hyperexponential
functions, D-finite functions, non-D-finite functions; two variables,
then many variables); as well, we isolate analytic questions by
first considering types of integration with a more purely algebraic
flavor (constant terms, algebraic residues, diagonals of
combinatorics). In particular, we expect to extend our recent
approach [26] to more general classes
(algebraic with nested radicals, for example): the idea is to speed up
calculations by making use of an analogue of Hermite reduction that avoids
considering certificates.
Homologous problems for summation will be addressed as well.

 Applications to experimental mathematics

 As a consequence of our complexity-driven approach to algorithms design, the
algorithms mentioned in the previous paragraph are of good complexity.
Therefore, they naturally help us deal with applications that involve equations
of high orders and large sizes.

 With regard to combinatorics, we expect to advance the algorithmic
classification of combinatorial classes like walks and urns. Here,
the goal is to determine if enumerative generating functions are
rational, algebraic, or D-finite, for example.
Physical problems whose modelling involves special-function integrals
comprise the study of models of statistical mechanics, like the Ising
model for ferro-magnetism, or questions related to Hamiltonian systems.

 Number theory is another promising domain of applications. Here, we
attempt an experimental approach to the automated certification of integrality
of the coefficients of mirror maps for Calabi–Yau manifolds. This could also
involve the discovery of new Calabi–Yau operators and the certification of
the existing ones. We also plan to algorithmically discover and certify new
recurrences yielding good approximants needed in irrationality proofs.

 It is to be noted that in all of these application domains, we would
so far use general algorithms, as was done in earlier works of
ours [25] , [30] , [28] .
To push the scale of applications further, we plan to consider in each
case the specifics of the application domain to tailor our algorithms.

 Interactive and certified mathematical web sites

 In continuation of our past project of an encyclopedia at
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf ,
we ambition to
both enrich and certify the formulas
about the special functions that we provide online. For each
function, our website shows its essential properties and the
mathematical objects attached to it, which are often infinite in
nature (numerical evaluations, asymptotic expansions). An interactive
presentation has the advantage of allowing for
adaption to the user's needs. More advanced content will broaden the
encyclopedia:

 	
 the algorithmic discussion of equations with parameters, leading
to certified automatic case analysis based on arithmetic properties
of the parameters;

 	
 lists of summation and integral formulas involving special
functions, including validity conditions on the parameters;

 	
 guaranteed large-precision numerical evaluations.

 Research Program

 	Research Program	Studying special functions by computer algebra
	Trusted computer-algebra calculations
	Machine-checked proofs of formalized mathematics

 Section:
 Research Program

 Studying special functions by computer algebra

 Computer algebra manipulates symbolic representations of exact
mathematical objects in a computer, in order to perform computations
and operations like simplifying expressions and solving equations for
“closed-form expressions”. The manipulations are often fundamentally
of algebraic nature, even when the ultimate goal is analytic. The
issue of efficiency is a particular one in computer algebra, owing to
the extreme swell of the intermediate values during calculations.

 Our view on the domain is that research on the algorithmic
manipulation of special functions is anchored between two paradigms:

 	
 adopting linear differential equations as the right data
structure for special functions,

 	
 designing efficient algorithms in a complexity-driven way.

 It aims at four kinds of algorithmic goals:

 	
 algorithms combining functions,

 	
 functional equations solving,

 	
 multi-precision numerical evaluations,

 	
 guessing heuristics.

 This interacts with three domains of research:

 	
 computer algebra, meant as the search for quasi-optimal
algorithms for exact algebraic objects,

 	
 symbolic analysis/algebraic analysis;

 	
 experimental mathematics (combinatorics, mathematical physics,
...).

 This view is made explicit in the present section.

 Equations as a data structure

 Numerous special functions satisfy linear differential and/or
recurrence equations. Under a mild technical condition, the existence
of such equations induces a finiteness property that makes the main
properties of the functions decidable. We thus speak of
D-finite functions. For example, 60 % of the chapters in the
handbook [15] describe D-finite functions.
In addition, the class is closed under a rich set of algebraic operations.
This makes linear functional equations just the right data structure
to encode and manipulate special functions. The power of this
representation was observed in the early
1990s [69] , leading to the design of many
algorithms in computer algebra.
Both on the theoretical and algorithmic sides, the study of D-finite
functions shares much with neighbouring mathematical domains:
differential algebra,
D-module theory,
differential Galois theory,
as well as their counterparts for recurrence equations.

 Algorithms combining functions

 Differential/recurrence equations that define special functions can be
recombined [69] to define: additions and
products of special functions; compositions of special functions;
integrals and sums involving special functions. Zeilberger's fast
algorithm for obtaining recurrences satisfied by parametrised binomial
sums was developed in the early 1990s already [70] .
It is the basis of all modern definite summation and integration
algorithms. The theory was made fully rigorous and algorithmic in
later works, mostly by a group in Risc (Linz, Austria) and by members
of the
team [58] , [66] , [34] , [32] , [33] , [52] .
The past ÉPI Algorithms contributed several implementations
(gfun [61] ,
Mgfun [34]).

 Solving functional equations

 Encoding special functions as defining linear functional equations
postpones some of the difficulty of the problems to a delayed solving
of equations. But at the same time, solving (for special classes of
functions) is a sub-task of many algorithms on special functions,
especially so when solving in terms of polynomial or rational
functions.
A lot of work has been done in this direction in the 1990s;
more intensively since the 2000s, solving differential and recurrence
equations in terms of special functions has also been investigated.

 Multi-precision numerical evaluation

 A major conceptual and algorithmic difference exists for numerical
calculations between data structures that fit on a machine word and
data structures of arbitrary length, that is, multi-precision
arithmetic. When multi-precision floating-point numbers became
available, early works on the evaluation of special functions were
just promising that “most” digits in the output were correct, and
performed by heuristically increasing precision during intermediate
calculations, without intended rigour. The original theory
has evolved in a
twofold way since the 1990s:
by making computable all constants hidden in asymptotic
approximations, it became possible to guarantee a prescribed
absolute precision; by employing state-of-the-art algorithms on
polynomials, matrices, etc, it became possible to have evaluation
algorithms in a time complexity that is linear in the output size, with a
constant that is not more than a few units.
On the implementation side, several original works
exist, one of which (NumGfun [57]) is
used in our DDMF.

 Guessing heuristics

 “Differential approximation”, or “Guessing”, is an operation to get an ODE
likely to be satisfied by a given approximate series expansion of an unknown
function. This has been used at least since the 1970s
and is a key stone in spectacular applications in experimental
mathematics [30] . All this is based
on subtle algorithms for Hermite–Padé approximants [19] . Moreover,
guessing can at times be complemented by proven quantitative results that turn
the heuristics into an algorithm [27] .
This is a promising algorithmic approach that deserves more attention than it
has received so far.

 Complexity-driven design of algorithms

 The main concern of computer algebra has long been to prove the feasibility of
a given problem, that is, to show the existence of an algorithmic solution for
it. However, with the advent of faster and faster computers, complexity
results have ceased to be of theoretical interest only. Nowadays, a large
track of works in computer algebra is interested in developing fast
algorithms, with time complexity as close as possible to linear in their
output size. After most of the more pervasive objects like integers,
polynomials, and matrices have been endowed with fast algorithms for the main
operations on them [39] , the community, including ourselves, started to
turn its attention to differential and recurrence objects in the
2000s.
The subject is still not as developed as in the commutative case, and a major
challenge remains to understand the combinatorics behind summation and
integration. On the methodological side, several paradigms occur repeatedly in
fast algorithms: “divide and conquer” to balance calculations, “evaluation and
interpolation” to avoid intermediate swell of data, etc. [24] .

 Section:
 Research Program

 Trusted computer-algebra calculations

 Encyclopedias

 Handbooks collecting mathematical properties aim at serving as
reference, therefore trusted, documents. The decision of
several authors or maintainers of such knowledge bases to move from paper
books [15] , [17] , [62] to websites and wikis (for instance
http://dlmf.nist.gov/
for special functions or http://oeis.org/ for integer sequences)
allows for a more collaborative effort in proof reading.
Another step toward further confidence is to manage
to generate the content of an encyclopedia by
computer-algebra programs, as is the case with the Wolfram Functions
Site (http://functions.wolfram.com/) or
DDMF (http://ddmf.msr-inria.inria.fr/1.9.1/ddmf).
Yet, due to the lingering doubts about computer-algebra systems,
some encyclopedias propose both cross-checking by different
systems and handwritten companion paper proofs of their
content (http://129.81.170.14/~vhm/Table.html).
As of today, there is no encyclopedia certified with formal
proofs.

 Computer algebra and symbolic logic

 Several attempts have been
made in order to extend existing computer-algebra systems with
symbolic manipulations of logical formulas.
Yet, these works are more about extending the
expressivity of computer-algebra systems than about improving the
standards of correctness and
semantics of the systems. Conversely, several projects have addressed
the communication of a proof system with a computer-algebra
system, resulting in an increased
automation available in the proof
system, to the price of the uncertainty of the computations
performed by this oracle.

 Certifying systems for computer algebra

 More ambitious projects have
tried to design a
new computer-algebra system providing an environment where the user could
both program efficiently
and elaborate formal and machine-checked proofs of correctness, by
calling a general-purpose proof assistant like the Coq
system. This approach requires a huge manpower and a daunting effort
in order to re-implement a complete computer-algebra system, as well
as the libraries of formal mathematics required by such formal proofs.

 Semantics for computer algebra

 The move to machine-checked proofs of the mathematical correctness of
the output of computer-algebra implementations demands a prior
clarification about the often implicit assumptions on
which the presumably correctly implemented algorithms
rely. Interestingly, this preliminary work,
which could be considered as independent from a formal certification
project, is seldom precise or even available in the literature.

 Formal proofs for symbolic components of computer-algebra systems

 A number of authors have investigated ways to organize the
communication of a chosen computer-algebra system with a chosen proof
assistant in order to certify specific components of the computer-algebra
systems, experimenting various combinations of systems
and various formats for mathematical exchanges.
Another line of
research consists in the implementation and certification of
computer-algebra algorithms inside the
logic [65] , [44] , [54] or as a proof-automation
strategy. Normalization algorithms are of
special interest when they allow to check results possibly obtained by
an external computer-algebra oracle [37] . A discussion
about the systematic separation of the search for a solution and
the checking of the solution is already clearly outlined
in [50] .

 Formal proofs for numerical components of computer-algebra systems

 Significant progress has been made in the certification of numerical
applications by formal proofs. Libraries formalizing and implementing
floating-point arithmetic as well as
large numbers and arbitrary-precision arithmetic
are available. These libraries are used to certify
floating-point programs, implementations of
mathematical functions and for
applications like hybrid systems.

 Section:
 Research Program

 Machine-checked proofs of formalized mathematics

 To be checked by a machine, a proof needs to be expressed in a constrained,
relatively simple formal language. Proof assistants provide facilities to
write proofs in such languages.
But, as merely writing, even in a formal language, does not constitute
a formal proof just per se, proof assistants also provide a proof checker:
a small and well-understood piece of software in charge of verifying
the correctness of arbitrarily large proofs.
The gap between the low-level formal language a machine can check and the
sophistication of an average page of mathematics is conspicuous and
unavoidable.
Proof assistants try to bridge this gap by offering facilities, like
notations or automation, to support convenient formalization methodologies.
Indeed, many aspects, from the logical foundation to the user interface,
play an important role in the feasibility of formalized mathematics inside
a proof assistant.

 Logical foundations and proof assistants

 While many logical foundations for mathematics have been proposed,
studied, and implemented, type theory is the one that
has been more successfully employed to formalize mathematics, to the
notable exception of the Mizar system [55] ,
which is based on set theory. In particular, the calculus of construction
(CoC) [35] and its
extension with inductive types
(CIC) [36] , have been studied for more than
20 years and been implemented by several independent tools (like
Lego, Matita, and Agda). Its reference implementation,
Coq [63] , has been used for several large-scale
formalizations projects (formal certification of a compiler back-end;
four-color theorem).
Improving the type theory underlying the Coq
system remains an active area of research.
Other systems based on different type theories do exist and, whilst
being more oriented toward software verification, have been also used
to verify results of mainstream mathematics (prime-number theorem;
Kepler conjecture).

 Computations in formal proofs

 The most distinguishing feature of CoC is that computation is promoted to
the status of rigorous logical argument. Moreover, in its extension CIC,
we can recognize the key ingredients of a functional
programming language like inductive types, pattern matching, and recursive
functions.
Indeed, one can program effectively inside tools based on CIC like Coq.
This possibility has paved
the way to many effective formalization techniques that were essential
to the most impressive formalizations made in CIC.

 Another milestone in the promotion of the computations-as-proofs
feature of Coq has been the integration of compilation
techniques in the system to speed up evaluation.
Coq can now run realistic programs in the logic, and hence easily
incorporates calculations into proofs that
demand heavy computational steps.

 Because of their different choice for the underlying logic, other proof
assistants have to simulate computations outside the formal system, and
indeed fewer attempts to formalize mathematical proofs involving heavy
calculations have been made in these tools.
The only notable exception, which was finished in 2014,
the Kepler conjecture, required
a significant work to
optimize the rewriting engine that simulates evaluation in Isabelle/HOL.

 Large-scale computations for proofs inside the Coq system

 Programs run and proved correct inside the logic are especially useful
for the conception of automated decision procedures.
To this end, inductive types are used as an internal language
for the description of mathematical objects by their syntax, thus enabling
programs to reason and compute by case analysis and
recursion on symbolic expressions.

 The output of complex and optimized programs external
to the proof assistant can also be stamped with a formal proof of
correctness when their result is easier to check than to
find. In that case one can benefit from their efficiency
without compromising the level of confidence on their output at the
price of writing and certify a
checker inside the logic. This approach, which has been successfully
used in various contexts,
is very relevant to the present research project.

 Relevant contributions from the Mathematical Component libraries

 Representing abstract algebra in a proof assistant has been studied
for long.
The libraries developed by the MathComp project
for the proof of the Odd Order Theorem provide a rather
comprehensive hierarchy of structures;
however, they originally feature a large number of instances of structures
that they need to organize.
On the methodological side,
this hierarchy is an incarnation of an original
work [38]
based on various mechanisms, primarily type inference, typically employed
in the area of programming languages.
A large amount of information that is implicit in
handwritten proofs, and that must become explicit at formalization time,
can be systematically recovered following this methodology.

 Small-scale reflection [41]
is another methodology promoted by the MathComp project.
Its ultimate goal is to ease formal proofs by systematically
dealing with as many bureaucratic steps as possible,
by automated computation.
For instance, as opposed to the style advocated by Coq's standard
library, decidable predicates are systematically represented
using computable boolean functions: comparison on integers
is expressed as program, and to state that a≤b one compares
the output of this program run on a and b with true.
In many cases, for example when a and b are values, one can prove
or disprove the inequality by pure computation.

 The MathComp library was consistently designed after uniform principles
of software engineering.
These principles range from simple ones, like naming conventions, to
more advanced ones, like generic programming,
resulting in a robust and reusable collection of formal mathematical
components. This large body of formalized mathematics covers a broad
panel of algebraic theories, including of course advanced topics of
finite group theory, but also linear algebra, commutative
algebra, Galois theory, and representation theory.
We refer the interested reader to the online documentation
of these libraries [64] , which represent about 150,000
lines of code and include roughly 4,000 definitions and 13,000
theorems.

 Topics not addressed by these libraries and that might be relevant to
the present project include real analysis and differential
equations. The most advanced work of formalization on these domains is
available in the HOL-Light system [46] , [47] , [48] , although some existing developments of
interest [22] , [56] are also available for Coq.
Another aspect of the MathComp libraries that needs improvement,
owing to the size of the data we manipulate, is the
connection with efficient data structures and implementations, which
only starts to be explored.

 User interaction with the proof assistant

 The user of a proof assistant describes the proof he wants to
formalize in the system using a textual language.
Depending on the peculiarities of the formal system and the
applicative domain, different proof languages have been developed.
Some proof assistants promote the use of a declarative
language,
when the Coq and Matita systems are more oriented toward a procedural
style.

 The development of the large, consistent body of MathComp
libraries has prompted the need to design an alternative and coherent
language extension for the Coq proof assistant [43] , [42] , enforcing
the robustness of proof scripts to the numerous changes induced by
code refactoring and enhancing the support for the methodology
of small-scale reflection.

 The development of large libraries is quite a novelty for the Coq system.
In particular any long-term development process requires the iteration of
many refactoring steps and very little support is provided by most
proof assistants, with the notable exception of
Mizar [60] .
For the Coq system,
this is an active area of
research.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 Awards

 Pierre Lairez has been awarded this year the “Ecole Polytechnique thesis
prize”, for his PhD thesis defended in
2014 [53] .

 New Software and Platforms

 	New Software and Platforms	Coq
	DynaMoW
	ECS
	Math-Components
	Ring
	Ssreflect

 Section:
 New Software and Platforms

 Coq

 Keywords: Proof - Certification - Formalisation

 Functional Description

 Coq provides both a dependently-typed functional programming language and a logical formalism, which, altogether, support the formalisation of mathematical theories and the specification and certification of properties of programs. Coq also provides a large and extensible set of automatic or semi-automatic proof methods. Coq's programs are extractible to OCaml, Haskell, Scheme, ...

 	
 Participants: Benjamin Grégoire, Enrico Tassi, Bruno Barras, Yves Bertot, Pierre Boutillier, Xavier Clerc, Pierre Courtieu, Maxime Denes, Stéphane Glondu, Vincent Gross, Hugo Herbelin, Pierre Letouzey, Assia Mahboubi, Julien Narboux, Jean-Marc Notin, Christine Paulin-Mohring, Pierre-Marie Pédrot, Loïc Pottier, Matthias Puech, Yann Régis-Gianas, François Ripault, Matthieu Sozeau, Arnaud Spiwack, Pierre-Yves Strub, Benjamin Werner, Guillaume Melquiond and Jean-Christophe Filliâtre

 	
 Partners: CNRS - Université Paris-Sud - ENS Lyon - Université Paris-Diderot

 	
 Contact: Hugo Herbelin

 	
 URL: http://coq.inria.fr/

 Section:
 New Software and Platforms

 DynaMoW

 Dynamic Mathematics on the Web

 Functional Description

 Programming tool for controlling the generation of mathematical websites that embed dynamical mathematical contents generated by computer-algebra calculations. Implemented in OCaml.

 	
 Participants: Frédéric Chyzak, Alexis Darrasse and Maxence Guesdon

 	
 Contact: Frédéric Chyzak

 	
 URL: http://ddmf.msr-inria.inria.fr/DynaMoW/

 Section:
 New Software and Platforms

 ECS

 Encyclopedia of Combinatorial Structures

 Functional Description

 On-line mathematical encyclopedia with an emphasis on sequences that arise in the context of decomposable combinatorial structures, with the possibility to search by the first terms in the sequence, keyword, generating function, or closed form.

 	
 Participants: Stéphanie Petit, Alexis Darrasse, Frédéric Chyzak and Maxence Guesdon

 	
 Contact: Frédéric Chyzak

 	
 URL: http://algo.inria.fr/encyclopedia/

 Section:
 New Software and Platforms

 Math-Components

 Mathematical Components library

 Functional Description

 The Mathematical Components library is a set of Coq libraries that cover the mechanization of the proof of the Odd Order Theorem.

 	
 Participants: Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot, Georges Gonthier, Stéphane Le Roux, Assia Mahboubi, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi and Russell O'connor

 	
 Contact: Assia Mahboubi

 	
 URL: http://www.msr-inria.fr/projects/mathematical-components-2/

 Section:
 New Software and Platforms

 Ring

 Functional Description

 Coq normalization tool and decision procedure for expressions in commutative ring theories. Implemented in Coq and OCaml. Integrated in the standard distribution of the Coq proof assistant since 2005.

 	
 Contact: Assia Mahboubi

 Section:
 New Software and Platforms

 Ssreflect

 Functional Description

 Ssreflect is a tactic language extension to the Coq system, developed by the Mathematical Components team.

 	
 Participants: Cyril Cohen, Yves Bertot, Laurence Rideau, Enrico Tassi, Laurent Théry, Assia Mahboubi and Georges Gonthier

 	
 Contact: Yves Bertot

 	
 URL: http://ssr.msr-inria.inria.fr/

 New Results

 	New Results	Integration of rational functions
	Multiple binomial sums
	Diagonals of rational functions and
selected differential Galois groups
	Algebraic Diagonals and Walks
	A human proof of the Gessel conjecture
	Enumeration of 3-dimensional lattice walks confined to the positive octant
	Efficient algorithms for
rational first integrals
	Quasi-optimal computation of the
p-curvature
	Axiomatic constraint systems for proof search modulo theories
	DynaMoW: Dynamic Mathematics on the Web
	ECS: Encyclopedia of Combinatorial Structures
	Mathematical Components
Library

 Section:
 New Results

 Integration of rational functions

 Periods of rational integrals are specific integrals, with respect to one or
several variables, whose integrand is a rational function and whose domain of
integration is closed. This particular class of integrals contains large
families of functions naturally occurring in combinatorics and statistical
physics, such as diagonals, constant terms and positive part of rational
functions. Periods involving one parameter are classically known to satisfy
Picard-Fuchs equations, a special type of linear differential equations
with a very rich analytic and arithmetic structure. As for other
special-function manipulations, handling periods through those differential
equations is a good way to actually compute them, and this was the topic of
Pierre Lairez' PhD thesis defended in 2014 [53] and
awarded the “Ecole Polytechnique thesis prize” in 2015.

 Computing multivariate integrals is one speciality of the team and our
algorithms are known to treat much more general integrals than just periods of
rational integrals. However, integration is still slow in practice when the
number of variables goes increasing. By looking at periods of rational
functions, the hope is to obtain relevant complexity bounds and faster
algorithms.

 The goal of reaching relevant theoretical complexity bounds had been reached
in 2013 [31] but a practically fast algorithm was
still missing. This year, we described a new algorithm which is efficient in
practice [4] , though its complexity is not known. This
algorithm allows to compute quickly integrals that are too big to be computed
with previous algorithms. As a challenging benchmark, we computed 210 integrals
given by Batyrev and Kreuzer in their work on Calabi–Yau varieties.
This achievement gave strong visibility to the
paper and allowed a quick dissemination of the implementation, which is provided
in Magma under a CeCILL B license. The algorithm is now used on a regular basis
by several teams. We know of:

 	
 Tom Coates' team (Dpt. of Mathematics, Imperial College, London, UK),
which uses the software in their work about mirror symmetry and classification
of Fano varieties;

 	
 Duco van Straten (Institute of Mathematics, University of Mainz,
Germany), who uses the software in his work in algebraic geometry;

 	
 Gert Alkmvist (Dpt. of Mathematics, University of Lund, Sweden), who
uses the software in his work of enumerating the Calabi–Yau differential
equations.

 Section:
 New Results

 Multiple binomial sums

 Multiple binomial sums form a large class of multi-indexed sequences, closed
under partial summation, which contains most of the sequences obtained by
multiple summation of binomial coefficients and also all the sequences with
algebraic generating function. We study in [14] the
representation of the generating functions of binomial sums by integrals of
rational functions. The outcome is twofold. Firstly, we show that a univariate
sequence is a multiple binomial sum if and only if its generating function is
the diagonal of a rational function. Secondly we propose algorithms that
decide the equality of multiple binomial sums and that compute recurrence
relations for them. In conjunction with geometric simplifications of the
integral representations, this approach behaves well in practice. The process
avoids the computation of certificates and the problem of accurate summation
that afflicts discrete creative telescoping, both in theory and in practice.

 Section:
 New Results

 Diagonals of rational functions and
selected differential Galois groups

 Diagonals of rational functions naturally occur in lattice statistical
mechanics and enumerative combinatorics. In all the examples emerging from
physics, the minimal linear differential operators annihilating these
diagonals of rational functions have been shown to actually possess orthogonal
or symplectic differential Galois groups. In order to understand the emergence
of such orthogonal or symplectic groups, we exhaustively analyze
in [1] three (constrained) sets of diagonals of
rational functions, corresponding respectively to rational functions of three
variables, four variables and six variables. The conclusion is that, even for
these sets of examples which, at first sight, have no relation with physics,
their differential Galois groups are always orthogonal or symplectic groups.
We also discuss conditions on the rational functions such that the operators
annihilating their diagonals do not correspond to orthogonal or symplectic
differential Galois groups, but rather to generic special linear groups.

 Section:
 New Results

 Algebraic Diagonals and Walks

 The diagonal of a multivariate power series F is the univariate power series
𝖣𝗂𝖺𝗀F generated by the diagonal terms of F. Diagonals form an
important class of power series; they occur frequently in number theory,
theoretical physics and enumerative combinatorics.
In [7] we study algorithmic questions related to
diagonals in the case where F is the Taylor expansion of a bivariate
rational function. It is classical that in this case 𝖣𝗂𝖺𝗀F is an
algebraic function. We propose an algorithm that computes an annihilating
polynomial for 𝖣𝗂𝖺𝗀F. Generically, it is its minimal polynomial
and is obtained in time quasi-linear in its size. We show that this minimal
polynomial has an exponential size with respect to the degree of the input
rational function. We then address the related problem of enumerating directed
lattice walks. The insight given by our study leads to a new method for
expanding the generating power series of bridges, excursions and meanders. We
show that their first N terms can be computed in quasi-linear complexity in
N, without first computing a very large polynomial equation. An extended
version of this work is presented in [13] .

 Section:
 New Results

 A human proof of the Gessel conjecture

 Counting lattice paths obeying various geometric constraints is a classical
topic in combinatorics and probability theory. Many recent works deal with the
enumeration of 2-dimensional walks with prescribed steps confined to the
positive quadrant. A notoriously difficult case concerns the so-called
Gessel walks: they are planar walks confined to the positive quarter
plane, that move by unit steps in any of the following directions: West,
North-East, East and South-West. In 2001, Ira Gessel conjectured a closed-form
expression for the number of such walks of a given length starting and ending
at the origin. In 2008, Kauers, Koutschan and Zeilberger gave a computer-aided
proof of this conjecture. The same year, Bostan and Kauers showed, using again
computer algebra tools, that the trivariate generating function of Gessel
walks is algebraic. We propose in [3] the first “human
proofs” of these results. They are derived from a new expression for the
generating function of Gessel walks in terms of special functions. This work
has been published in the prestigious journal Transactions of the AMS.

 Section:
 New Results

 Enumeration of 3-dimensional lattice walks confined to the positive octant

 Small step walks in 2D are by now quite well understood, but almost everything
remains to be done in higher dimensions. We explored
in [2] the classification problem for 3-dimensional
walks with unit steps confined to the positive octant. The first difficulty is
their number: there are 11 074 225 cases (instead of 79 in dimension 2). In
our work, we focused on the 35 548 that have at most six steps. We applied to
them a combined approach, first experimental and then rigorous. Among the
35 548 cases, we first found 170 cases with a finite group; in the remaining
cases, our experiments suggest that the group is infinite. We then rigorously
proved D-finiteness of the generating series in all the 170 cases, with the
exception of 19 intriguing step sets for which the nature of the generating
function still remains unclear. In two challenging cases, no human proof is
currently known, and we derived computer-algebra proofs, thus constituting the
first proofs for those two step sets.

 Section:
 New Results

 Efficient algorithms for
rational first integrals

 We presented in [29] fast algorithms for computing
rational first integrals with degree bounded by N of a planar polynomial
vector field of degree d≤N. The main novelty is that such rational
first integrals are obtained by computing via systems of linear equations
instead of systems of quadratic equations. This leads to a probabilistic
algorithm with arithmetic complexity Õ(N2ω) and to a
deterministic algorithm for solving the problem in Õ(d2N2ω+1)
arithmetic operations, where ω is the exponent of linear algebra. By
comparison, the best previous algorithm uses at least dω+1N4ω+4 arithmetic operations. Our new algorithms are moreover very efficient in
practice.

 Section:
 New Results

 Quasi-optimal computation of the
p-curvature

 The p-curvature of a system of linear differential equations in positive
characteristic p is a matrix that measures to what extent the system is
close to having a fundamental matrix of rational function solutions. This
notion, originally introduced in the arithmetic theory of differential
equations, has been recently used as an effective tool in computer algebra and
in combinatorial applications. We have described in [6]
a recent algorithm for computing the p-curvature, whose complexity is almost
optimal with respect to the size of the output. The new algorithm performs
remarkably well in practice. Its design relies on the existence of a
well-suited ring, of so-called Hurwitz series, for which an analogue of the
Cauchy–Lipschitz Theorem holds, and on a FFT-like method in which the
“evaluation points” are Hurwitz series.

 Section:
 New Results

 Axiomatic constraint systems for proof search modulo theories

 Goal-directed proof search in first-order logic uses meta-variables to
delay the choice of witnesses; substitutions for such variables are
produced when closing proof-tree branches, using first-order
unification or a theory-specific background reasoner. We have
investigated a generalization of such mechanisms whereby
theory-specific constraints are produced instead of substitutions. In
order to design modular proof-search procedures over such mechanisms,
we provide a sequent calculus with meta-variables, which manipulates
such constraints abstractly. Proving soundness and completeness of the
calculus leads to an acclimatization that identifies the conditions
under which abstract constraints can be generated and propagated in
the same way unifiers usually are. We then extract from our abstract
framework a component interface and a specification for concrete
implementations of background reasoners. This is a common work with
Damien Rouhling (ENS Lyon), Stéphane Lengrand (CNRS, LIX) and
Jean-Marc Notin (CNRS, LIX), based on the PhD contributions of Mahfuza
Farooque (unaffiliated). It is described in [8] .

 Section:
 New Results

 DynaMoW: Dynamic Mathematics on the Web

 The interactivity needed by our on-line encyclopedia DDMF is made possible
by implementing it over our tool DynaMoW
(http://ddmf.msr-inria.inria.fr/DynaMoW/). This Ocaml library
simultaneously controls external symbolic calculations and web-page
generation and was first developed from 2008 to 2011. With the evolution
of Ocaml and web technologies, it became possible to hope for a more
reactive and configurable tool, by using light-weight threads and
websockets. A new design was elaborated this year by F. Chyzak and
M. Guesdon, and DynaMoW was rewritten by the latter. Using this new
DynaMoW will require a complete and potentially time-consuming port of
DDMF. So we decided that experimenting with the port of a smaller
DynaMoW-based application should be done to ascertain the new design of
DynaMoW-based before going to scale with DDMF. To this end, we applied
DynaMoW to another on-line encyclopedia of our's, ECS. The code is now
stabilizing, and will be released next year, after documentation is
written.

 Section:
 New Results

 ECS: Encyclopedia of Combinatorial Structures

 The Encyclopedia of Combinatorial Structures (ECS,
http://algo.inria.fr/encyclopedia/) originates as a project in
Project-Team Algorithms, with a first release back in 1998. It is an
on-line mathematical encyclopedia with an emphasis on sequences that arise
in the context of decomposable combinatorial structures, with the
possibility to search by the first terms in the sequence, keyword,
generating function, or closed form. As such, ECS ambitions to be seen as
a young cousin of Sloane's famous Encyclopedia of Integer Sequences
http://www.research.att.com/articles/featured_stories/2012_03/201203_OEIS.html?fbid=cibE46xiHwx . The latter lists more
general types of sequences, and points to numerous entries in ECS for
specific properties. With regard to our software development, ECS has
served as a nice testbed for several evolutions of DynaMoW, in particular
in 2009 and 2011. This year, F. Chyzak and M. Guesdon ported ECS to the
language of the new DynaMoW. Public release is expected soon in 2016, and
will please the many users waiting for this new release after the former
website was discontinued for technical reasons.

 Section:
 New Results

 Mathematical Components
Library

 We have released a new version of the Mathematical Components
Library
(http://www.msr-inria.fr/projects/mathematical-components-2/),
including an updated version of the Ssreflect package
(http://ssr.msr-inria.inria.fr/). A
major refactoring of the archive now allows a more modular
distribution, through several thematic packages, also available via
the OPAM package manager. We have also opened our development
repository and we mirror it on the GitHub platform, in order to better
foster the community of users of the library.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 	
 Mathematical Components (project of the MSR–Inria
Joint Centre).

 Goal: Investigate the design of large-scale, modular
and reusable libraries of formalized mathematics, using the Coq proof
assistant. This project successfully formalized the proof of the Odd
Order Theorem, resulting in a corpus of libraries related to various
areas of algebra.

 Leader: G. Gonthier (MSR Cambridge). Participants:
F. Chyzak, A. Mahboubi.

 Website:
http://www.msr-inria.fr/projects/mathematical-components/ .

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 Member of the organizing committees

 	
 A. Bostan has served in the organizing committee of the
Journées Nationales de Calcul Formel (JNCF 2015), the
annual meeting of the French computer algebra community.

 	
 A. Mahboubi has served in the organizing and scientific
committees of Mathematics, Algorithms and Proofs
(MAP 2016).

 Scientific events selection

 Member of the conference program committees

 	
 A. Bostan is part of the Scientific advisory board of the
conference series Conference on Effective Methods in
Algebraic Geometry (MEGA).

 	
 F. Chyzak has served as a conference program committee member
for the Conference on Intelligent Computer Mathematics
(CICM 2015).

 	
 A. Mahboubi has served as a program committee member
for the 25th International Conference on Automated
Deduction (CADE 25).

 	
 A. Mahboubi has served as a program committee member
for the 21st International Conference on Types for
Proofs and Programs (TYPES 2015).

 	
 A. Mahboubi has served as a program committee member
for the Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP 2015).

 Reviewer

 	
 A. Bostan has served as reviewer for the International
Symposium on Symbolic and Algebraic Computation (ISSAC 2015).

 	
 F. Chyzak has served as reviewer for the International
Symposium on Symbolic and Algebraic Computation (ISSAC 2015).

 	
 A. Mahboubi has served as reviewer for the international
conferences NASA Formal Methods Symposium (NFM 2015),
Certified Programs and Proofs (CPP 2015), Typed
Lambda Calculi and Applications (TLCA 2015),
Conference on Intelligent Computer Mathematics (CICM
2015) and for the national conference Journées Nationales
des Langages Applicatifs (JFLA 2015).

 	
 Th. Sibut-Pinote has served as reviewer for the
International Conference on Automated Deduction (CADE
2015).

 Journal

 Reviewer - Reviewing activities

 	
 A. Bostan has served as reviewer for the Journal of Symbolic
Computation, the Journal of Complexity and Applicable Algebra in
Engineering, Communication and Computing.

 	
 F. Chyzak has served several times as a reviewer for the Journal
of Symbolic Computation.

 	
 A. Mahboubi has served as a reviewer for the Journal of
Formalized Reasoning and several times for Journal of Automated
Reasoning.

 Invited talks

 	
 A. Bostan has given an invited 3-hours lecture at the
Séminaire Lotharingien de Combinatoire in Ellwangen, Germany (March 2015)
and another 3-hours lecture at the SFB-Workshop on Restricted Lattice Walks in RISC, Hagenberg, Austria (May 2015).

 	
 A. Bostan has given an invited talk in the conference Automatic Sequences, Number Theory, and Aperiodic Order, held at the Technical University of Delft, Netherlands (Oct 2015).

 	
 A. Bostan has given a talk during the Thematic Program
on Computer Algebra (Fields Institute, Toronto, Canada,
September 2015).

 	
 F. Chyzak has given a number of talks on his ongoing work
(joint with A. Bostan of the team) on obtaining hypergeometric
closed-form expressions in the enumerative combinatorics of
walks: Functional Equations in Limoges (Limoges, March
2015), Thematic Program on Computer Algebra (Fields
Institute, Toronto, Canada, September 2015), Séminaire
Philippe Flajolet (Institut Henri Poincaré, Paris, October
2015).

 	
 A. Mahboubi has given an invited talk common to the conferences
14th Asian Logic Conference (ALC 15) and
6th Indian Conference on Logic and its Application
(ICLA 15), in Mumbai, India (January 2015).

 	
 A. Mahboubi has given an invited talk to the Workshop
on Homotopy Type Theory / Univalent Foundations, satellite
of the International Conference on Rewriting, Deduction,
and Programming, in Warsaw, Poland (July 2015).

 	
 A. Mahboubi has given a talk during the
Thematic Program on Computer Algebra (Fields
Institute, Toronto, Canada, December 2015).

 Scientific expertise

 	
 F. Chyzak is member of the steering committee of the
Journées Nationales de Calcul Formel (JNCF 2015), the
annual meeting of the French computer algebra community.

 	
 A. Mahboubi has been nominated as a member of the managment
committee the COST action EUTYPES (CA15123) The European
research network on types for programming and
verification, coordinated by Herman Geuvers.

 Research administration

 	
 A. Mahboubi is a member of the Commission
Scientifique of the Inria–Saclay-Île-de-France center.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Master: A. Bostan, Algorithmes efficaces en calcul formel, 18h, M2, MPRI, France

 	
 Master: F. Chyzak, Algorithmes efficaces en calcul
formel, 4.5h, M2, MPRI, France

 	
 Master: A. Mahboubi, Assistants de preuve, 18h, M2, MPRI,
France

 	
 License: L. Dumont, various courses, 64h, Université Paris-Sud,
France.

 	
 License: Th. Sibut-Pinote, various courses, 64h, École Polytechnique,
France.

 Supervision

 	
 PhD in progress: L. Dumont, Algorithmique
efficace pour les diagonales, applications en
combinatoire, physique et théorie des nombres, École
Polytechnique, started in September 2013, supervised by
A. Bostan and B. Salvy.

 	
 PhD in progress: Th. Sibut-Pinote, Calcul numérique
et démonstrations mathématiques, de la rigueur à la preuve
formelle, École Polytechnique, started in September 2014,
supervised by A. Mahboubi.

 	
 Master intership in progress (M1): G. Boisseau and
Th. Huffschmitt,
Combination of decision procedures in presence of
meta-variables, École
Polytechnique, supervised by A. Mahboubi (jointly with
S. Graham-Lengrand from LIX).

 Juries

 	
 A. Bostan has served as a jury member of the French Agrégation de Mathématiques – épreuve de modélisation, option C.

 	
 A. Bostan has served as an examiner in the PhD jury of Cuang Tran, Calcul formel dans la base des polynômes unitaires de Chebyshev, Université Paris 6, October 9, 2015.

 	
 F. Chyzak has served as an examiner in the PhD jury of Suzy Maddah,
Formal Reduction of Differential Systems, Université de Limoges,
September 25, 2015.

 	
 A. Mahboubi has served as an examiner in the half-way
PhD defense of Pierre Boutry, Learning environment for interactive
proof in geometry, University of Strasbourg, June 15th, 2015.

 Section:
 Dissemination

 Popularization

 	
 A. Bostan has published, together with Kilian Raschel, a
popularization article titled Compter les excursions sur un
échiquier in the popular science magazine Pour la Science, the
French version of the Scientific American.

 Bibliography

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[1]

 	A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil.
Diagonals of rational functions and selected differential Galois groups, in: Journal of Physics A: Mathematical and Theoretical, December 2015, vol. 48, no 50, pp. 504001–504030. [
DOI : 10.1088/1751-8113/48/50/504001]
https://hal.archives-ouvertes.fr/hal-01242668

 	[2]

 	A. Bostan, M. Bousquet-Mélou, M. Kauers, S. Melczer.
On 3-dimensional lattice walks confined to the positive octant, in: Annals of Combinatorics, March 2015, 36 p, forthcoming.
https://hal.archives-ouvertes.fr/hal-01063886

 	[3]

 	A. Bostan, I. Kurkova, K. Raschel.
A human proof of Gessel's lattice path conjecture, in: Transactions of the American Mathematical Society, October 2015, forthcoming.
https://hal.archives-ouvertes.fr/hal-00858083

 	[4]

 	P. Lairez.
Computing periods of rational integrals, in: Mathematics of Computation, 2015, 34 p, forthcoming.
https://hal.inria.fr/hal-00981114

 International Conferences with Proceedings

 	[5]

 	B. Barras, C. Tankink, E. Tassi.
Asynchronous processing of Coq documents: from the kernel up to the user interface, in: Proceedings of ITP, Nanjing, China, August 2015.
https://hal.inria.fr/hal-01135919

 	[6]

 	A. Bostan, X. Caruso, É. Schost.
A Fast Algorithm for Computing the p-Curvature, in: ISSAC 2015, Bath, United Kingdom, ACM Press, July 2015, pp. 69–76. [
DOI : 10.1145/2755996.2756674]
https://hal.archives-ouvertes.fr/hal-01164471

 	[7]

 	A. Bostan, L. Dumont, B. Salvy.
Algebraic Diagonals and Walks, in: ISSAC'15 International Symposium on Symbolic and Algebraic Computation, Bath, United Kingdom, ACM Press, July 2015, pp. 77–84. [
DOI : 10.1145/2755996.2756663]
https://hal.archives-ouvertes.fr/hal-01240729

 	[8]

 	D. Rouhling, M. Farooque, S. Graham-Lengrand, J.-M. Notin, A. Mahboubi.
Axiomatic constraint systems for proof search modulo theories, in: 10th International Symposium on Frontiers of Combining Systems (FroCoS'15), Wroclaw, Poland, C. Lutz, S. Ranise (editors), LNAI, Springer, September 2015, vol. 9322. [
DOI : 10.1007/978-3-319-24246-0_14]
https://hal.inria.fr/hal-01107944

 Scientific Books (or Scientific Book chapters)

 	[9]

 	P. Nicodeme (editor)
Nablus2014 CIMPA Summer School, Proceedings of the Nablus2014 CIMPA Summer School, Pierre Nicodeme and Naji Qatanani, Nablus, Palestinian Territories, December 2015, 138 p.
https://hal.archives-ouvertes.fr/hal-01214113

 Internal Reports

 	[10]

 	G. Gonthier, A. Mahboubi, E. Tassi.
A Small Scale Reflection Extension for the Coq system, Inria Saclay Ile de France, 2015, no RR-6455.
https://hal.inria.fr/inria-00258384

 Scientific Popularization

 	[11]

 	A. Bostan, K. Raschel.
Compter les excursions sur un échiquier, in: Pour la science, March 2015, no 449, pp. 40–46.
https://hal.archives-ouvertes.fr/hal-01246339

 Other Publications

 	[12]

 	A. Bostan.
Computer Algebra for Lattice Path Combinatorics, March 2015, Lecture.
https://hal.archives-ouvertes.fr/cel-01242698

 	[13]

 	A. Bostan, L. Dumont, B. Salvy.
Algebraic Diagonals and Walks: Algorithms, Bounds, Complexity, October 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01244914

 	[14]

 	A. Bostan, P. Lairez, B. Salvy.
Multiple binomial sums, October 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01220573

 References in notes

 	[15]

 	M. Abramowitz, I. A. Stegun (editors)
Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1992, xiv+1046 p, Reprint of the 1972 edition.

 	[16]

 	Computer Algebra Errors, Article in mathematics blog MathOverflow.
http://mathoverflow.net/questions/11517/computer-algebra-errors

 	[17]

 	F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (editors)
NIST Handbook of mathematical functions, Cambridge University Press, 2010.

 	[18]

 	M. Armand, B. Grégoire, A. Spiwack, L. Théry.
Extending Coq with Imperative Features and its Application to SAT Verication, in: Interactive Theorem Proving, international Conference, ITP 2010, Edinburgh, Scotland, July 11–14, 2010, Proceedings, Lecture Notes in Computer Science, Springer, 2010.

 	[19]

 	B. Beckermann, G. Labahn.
A uniform approach for the fast computation of matrix-type Padé approximants, in: SIAM J. Matrix Anal. Appl., 1994, vol. 15, no 3, pp. 804–823.

 	[20]

 	A. Benoit, F. Chyzak, A. Darrasse, S. Gerhold, M. Mezzarobba, B. Salvy.
The Dynamic Dictionary of Mathematical Functions (DDMF), in: The Third International Congress on Mathematical Software (ICMS 2010), K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (editors), Lecture Notes in Computer Science, 2010, vol. 6327, pp. 35–41.
http://dx.doi.org/10.1007/978-3-642-15582-6_7

 	[21]

 	M. Boespflug, M. Dénès, B. Grégoire.
Full reduction at full throttle, in: First International Conference on Certified Programs and Proofs, Taiwan, December 7–9, Lecture Notes in Computer Science, Springer, 2011.

 	[22]

 	S. Boldo, C. Lelay, G. Melquiond.
Improving Real Analysis in Coq: A User-Friendly Approach to Integrals and Derivatives, in: Certified Programs and Proofs, C. Hawblitzel, D. Miller (editors), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, vol. 7679, pp. 289-304.
http://dx.doi.org/10.1007/978-3-642-35308-6_22

 	[23]

 	S. Boldo, G. Melquiond.
Flocq: A Unified Library for Proving Floating-point Algorithms in Coq, in: Proceedings of the 20th IEEE Symposium on Computer Arithmetic, Tübingen, Germany, July 2011, pp. 243–252.

 	[24]

 	A. Bostan.
Algorithmes rapides pour les polynômes, séries formelles et matrices, in: Actes des Journées Nationales de Calcul Formel, Luminy, France, 2010, pp. 75–262, Les cours du CIRM, tome 1, numéro 2.
http://ccirm.cedram.org:80/ccirm-bin/fitem?id=CCIRM_2010__1_2_75_0

 	[25]

 	A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine.
Globally nilpotent differential operators and the square Ising model, in: J. Phys. A: Math. Theor., 2009, vol. 42, no 12, 50 p.
http://dx.doi.org/10.1088/1751-8113/42/12/125206

 	[26]

 	A. Bostan, S. Chen, F. Chyzak, Z. Li.
Complexity of creative telescoping for bivariate rational functions, in: ISSAC'10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, New York, NY, USA, ACM, 2010, pp. 203–210.
http://doi.acm.org/10.1145/1837934.1837975

 	[27]

 	A. Bostan, F. Chyzak, G. Lecerf, B. Salvy, É. Schost.
Differential equations for algebraic functions, in: ISSAC'07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, C. W. Brown (editor), ACM Press, 2007, pp. 25–32.
http://dx.doi.org/10.1145/1277548.1277553

 	[28]

 	A. Bostan, F. Chyzak, M. van Hoeij, L. Pech.
Explicit formula for the generating series of diagonal 3D rook paths, in: Sém. Loth. Comb., 2011, vol. B66a, 27 p.
http://www.emis.de/journals/SLC/wpapers/s66bochhope.html

 	[29]

 	A. Bostan, G. Chèze, T. Cluzeau, J.-A. Weil.
Efficient Algorithms for Computing Rational First Integrals and Darboux Polynomials of Planar Polynomial Vector Fields, in: Mathematics of Computation, December 2014, forthcoming.
https://hal.archives-ouvertes.fr/hal-00871663

 	[30]

 	A. Bostan, M. Kauers.
The complete generating function for Gessel walks is algebraic, in: Proceedings of the American Mathematical Society, September 2010, vol. 138, no 9, pp. 3063–3078, With an appendix by Mark van Hoeij.

 	[31]

 	A. Bostan, P. Lairez, B. Salvy.
Creative telescoping for rational functions using the Griffiths-Dwork method, in: ISSAC'13 - 38th International Symposium on Symbolic and Algebraic Computation, Boston, United States, Northeastern University, Boston, Massachusetts, USA, 2013, pp. 93-100. [
DOI : 10.1145/2465506.2465935]
http://hal.inria.fr/hal-00777675

 	[32]

 	F. Chyzak.
An extension of Zeilberger's fast algorithm to general holonomic functions, in: Discrete Math., 2000, vol. 217, no 1-3, pp. 115–134, Formal power series and algebraic combinatorics (Vienna, 1997).

 	[33]

 	F. Chyzak, M. Kauers, B. Salvy.
A Non-Holonomic Systems Approach to Special Function Identities, in: ISSAC'09: Proceedings of the Twenty-Second International Symposium on Symbolic and Algebraic Computation, J. May (editor), 2009, pp. 111–118.
http://dx.doi.org/10.1145/1576702.1576720

 	[34]

 	F. Chyzak, B. Salvy.
Non-commutative elimination in Ore algebras proves multivariate identities, in: J. Symbolic Comput., 1998, vol. 26, no 2, pp. 187–227.

 	[35]

 	T. Coquand, G. P. Huet.
The Calculus of Constructions, in: Inf. Comput., 1988, vol. 76, no 2/3, pp. 95-120.
http://dx.doi.org/10.1016/0890-5401(88)90005-3

 	[36]

 	T. Coquand, C. Paulin-Mohring.
Inductively defined types, in: Proceedings of Colog'88, P. Martin-Löf, G. Mints (editors), Lecture Notes in Computer Science, Springer-Verlag, 1990, vol. 417.

 	[37]

 	D. Delahaye, M. Mayero.
Dealing with algebraic expressions over a field in Coq using Maple, in: J. Symbolic Comput., 2005, vol. 39, no 5, pp. 569–592, Special issue on the integration of automated reasoning and computer algebra systems.
http://dx.doi.org/10.1016/j.jsc.2004.12.004

 	[38]

 	F. Garillot, G. Gonthier, A. Mahboubi, L. Rideau.
Packaging Mathematical Structures, in: Theorem Proving in Higher-Order Logics, S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (editors), Lecture Notes in Computer Science, Springer, 2009, vol. 5674, pp. 327–342.

 	[39]

 	J. von zur. Gathen, J. Gerhard.
Modern computer algebra, 2nd, Cambridge University Press, New York, 2003, xiv+785 p.

 	[40]

 	G. Gonthier.
Formal proofs—the four-colour theorem, in: Notices of the AMS, 2008, vol. 55, no 11, pp. 1382-1393.

 	[41]

 	G. Gonthier, A. Mahboubi.
An introduction to small scale reflection in Coq, in: Journal of Formalized Reasoning, 2010, vol. 3, no 2, pp. 95–152.

 	[42]

 	G. Gonthier, A. Mahboubi, E. Tassi.
A Small Scale Reflection Extension for the Coq system, Inria, 2008, no RR-6455.
http://hal.inria.fr/inria-00258384

 	[43]

 	G. Gonthier, E. Tassi.
A language of patterns for subterm selection, in: ITP, LNCS, 2012, vol. 7406, pp. 361–376.

 	[44]

 	B. Grégoire, A. Mahboubi.
Proving Equalities in a Commutative Ring Done Right in Coq, in: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, Lecture Notes in Computer Science, Springer, 2005, vol. 3603, pp. 98–113.

 	[45]

 	T. Hales.
Formal proof, in: Notices of the AMS, 2008, vol. 55, no 11, pp. 1370-1380.

 	[46]

 	J. Harrison.
A HOL Theory of Euclidean space, in: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, J. Hurd, T. Melham (editors), Lecture Notes in Computer Science, Springer-Verlag, 2005, vol. 3603.

 	[47]

 	J. Harrison.
Formalizing an analytic proof of the prime number theorem, in: Journal of Automated Reasoning, 2009, vol. 43, pp. 243–261, Dedicated to Mike Gordon on the occasion of his 60th birthday.

 	[48]

 	J. Harrison.
Theorem proving with the real numbers, CPHC/BCS distinguished dissertations, Springer, 1998, I p.

 	[49]

 	J. Harrison.
A Machine-Checked Theory of Floating Point Arithmetic, in: Theorem Proving in Higher Order Logics: 12th International Conference, TPHOLs'99, Nice, France, Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, L. Théry (editors), Lecture Notes in Computer Science, Springer-Verlag, 1999, vol. 1690, pp. 113–130.

 	[50]

 	J. Harrison, L. Théry.
A Skeptic's Approach to Combining HOL and Maple, in: J. Autom. Reason., December 1998, vol. 21, no 3, pp. 279–294.
http://dx.doi.org/10.1023/A:1006023127567

 	[51]

 	F. Johansson.
Another Mathematica bug, Article on personal blog.
http://fredrik-j.blogspot.fr/2009/07/another-mathematica-bug.html

 	[52]

 	C. Koutschan.
A fast approach to creative telescoping, in: Math. Comput. Sci., 2010, vol. 4, no 2-3, pp. 259–266.
http://dx.doi.org/10.1007/s11786-010-0055-0

 	[53]

 	P. Lairez.
Periods of rational integrals : algorithms and applications, École polytechnique, November 2014.
https://pastel.archives-ouvertes.fr/tel-01089130

 	[54]

 	A. Mahboubi.
Implementing the cylindrical algebraic decomposition within the Coq system, in: Mathematical Structures in Computer Science, 2007, vol. 17, no 1, pp. 99–127.

 	[55]

 	R. Matuszewski, P. Rudnicki.
Mizar: the first 30 years, in: Mechanized Mathematics and Its Applications, 2005, vol. 4.

 	[56]

 	M. Mayero.
Problèmes critiques et preuves formelles, Université Paris 13, novembre 2012, Habilitation à Diriger des Recherches.

 	[57]

 	M. Mezzarobba.
NumGfun: a package for numerical and analytic computation and D-finite functions, in: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, New York, ACM, 2010, pp. 139–146.
http://dx.doi.org/10.1145/1837934.1837965

 	[58]

 	P. Paule, M. Schorn.
A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities, in: J. Symbolic Comput., 1995, vol. 20, no 5-6, pp. 673–698, Symbolic computation in combinatorics Δ1 (Ithaca, NY, 1993).
http://dx.doi.org/10.1006/jsco.1995.1071

 	[59]

 	B. Petersen.
Maple, Personal web site.

 	[60]

 	P. Rudnicki, A. Trybulec.
On the Integrity of a Repository of Formalized Mathematics, in: Proceedings of the Second International Conference on Mathematical Knowledge Management, London, UK, MKM '03, Springer-Verlag, 2003, pp. 162–174.
http://dl.acm.org/citation.cfm?id=648071.748518

 	[61]

 	B. Salvy, P. Zimmermann.
Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, in: ACM Trans. Math. Software, 1994, vol. 20, no 2, pp. 163–177.

 	[62]

 	N. J. A. Sloane, S. Plouffe.
The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995.

 	[63]

 	The Coq Development Team.
The Coq Proof Assistant: Reference Manual.
http://coq.inria.fr/doc/

 	[64]

 	The Mathematical Component Team.
A Formalization of the Odd Order Theorem using the Coq proof assistant, September 2012.
http://www.msr-inria.fr/projects/mathematical-components/

 	[65]

 	L. Théry.
A Machine-Checked Implementation of Buchberger's Algorithm, in: J. Autom. Reasoning, 2001, vol. 26, no 2, pp. 107-137.
http://dx.doi.org/10.1023/A:1026518331905

 	[66]

 	K. Wegschaider.
Computer generated proofs of binomial multi-sum identities, RISC, J. Kepler University, May 1997, 99 p.

 	[67]

 	S. Wolfram.
Mathematica: A system for doing mathematics by computer (2nd ed.), Addison-Wesley, 1992, I p.

 	[68]

 	D. Zeilberger.
Opinion 94: The Human Obsession With “Formal Proofs” is a Waste of the Computer's Time, and, Even More Regretfully, of Humans' Time, 2009.
http://www.math.rutgers.edu/~zeilberg/Opinion94.html

 	[69]

 	D. Zeilberger.
A holonomic systems approach to special functions identities, in: J. Comput. Appl. Math., 1990, vol. 32, no 3, pp. 321–368.

 	[70]

 	D. Zeilberger.
The method of creative telescoping, in: J. Symbolic Comput., 1991, vol. 11, no 3, pp. 195–204.

 OEBPS/international.html

OEBPS/uid113.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 Collaborations in European Programs, except FP7 & H2020

 		
 Program: COST

 		
 Project acronym: EUTYPES (CA15123)

 		
 Project title: The European
research network on types for programming and
verification

 		
 Duration: October 2015 - October 2019

 		
 Coordinator: Herman Geuvers (Radboud University, Nijmegen, the
Netherlands)

 		
 Other partners: Czech Republic, Estonia, Macedonia, Germany,
Greece, the Netherlands, Norway, Poland, Serbia, Slovenia, United
Kingdom.

 		
 Abstract: Types are pervasive in programming and information
technology. A type defines a formal interface between software
components, allowing the automatic verification of their
connections, and greatly enhancing the robustness and reliability of
computations and communications. In rich dependent type theories,
the full functional specification of a program can be expressed as a
type. Type systems have rapidly evolved over the past years,
becoming more sophisticated, capturing new aspects of the behaviour
of programs and the dynamics of their execution. This COST Action
will give a strong impetus to research on type theory and its many
applications in computer science, by promoting: (1) the synergy
between theoretical computer scientists, logicians and
mathematicians to develop new foundations for type theory, for
example as based on the recent development of “homotopy type
theory”, (2) the joint development of type theoretic tools as proof
assistants and integrated programming environments, (3) the study of
dependent types for programming and its deployment in software
development, (4) the study of dependent types for verification and
its deployment in software analysis and verification. The action
will also tie together these different areas and promote
cross-fertilisation. Europe has a strong type theory community,
ranging from foundational research to applications in programming
languages, verification and theorem proving, which is in urgent need
of better networking. A COST Action that crosses the borders will
support the collaboration between groups and complementary
expertise, and mobilise a critical mass of existing type theory research.

OEBPS/domaine.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid109.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR

 		
 ParalITP (ANR-11-INSE-001).

 Goal: Improve the performances and the ergonomics of interactive
provers by taking advantage of modern, parallel hardware.

 Leader: B. Wolff (University of Orsay, Paris Paris-Sud).
Participants: A. Mahboubi, C. Tankink.

 Website: http://paral-itp.lri.fr/ .

 		
 FastRelax (ANR-14-CE25-0018).

 Goal: Develop computer-aided proofs of numerical values, with
certified and reasonably tight error bounds, without sacrificing
efficiency.

 Leader: B. Salvy (Inria, ÉNS Lyon).
Participants: A. Mahboubi, Th. Sibut-Pinote.

 Website: http://fastrelax.gforge.inria.fr/ .

OEBPS/IMG/iTunesArtwork.png
Activity Report 2015
Project-Team Specfun

Symbolic Special
Functions : Fast and
Certified

