
Activity Report 2015

Project-Team TEA

Time, Events and Architectures

RESEARCH CENTER
Rennes - Bretagne-Atlantique

THEME
Embedded and Real-time Systems

Table of contents

1. Members . 2
2. Overall Objectives . 2

2.1. Introduction 2
2.2. Context 2
2.3. Motivations 3
2.4. Challenges 3

3. Research Program . 4
3.1. Previous Works 4
3.2. Modelling Times 5
3.3. Modelling Architectures 6
3.4. Application to Scheduling Theory 6
3.5. Virtual Prototyping 7

4. Application Domains .8
4.1. Automotive and Avionics 8
4.2. Factory Automation 9

5. Highlights of the Year . 9
6. New Software and Platforms . 10

6.1. The Eclipse project POP 10
6.2. The Polychrony toolset 10
6.3. SigCert: translation validation from Signal to C 13
6.4. ADFG: Affine data-flow graphs scheduler synthesis under Eclipse 14

7. New Results . 15
7.1. Polychronous automata 15
7.2. Runtime verification and trace analysis 16
7.3. Integration of Polychrony with QGen 17
7.4. Formal semantics and model-based analysis of AADL specifications 18
7.5. Refinement types for reactive system models 18
7.6. Formal verification of timing aspects of cyber-physical systems using a contract theory 19

8. Bilateral Contracts and Grants with Industry . 19
8.1. Bilateral Contracts with Industry 19
8.2. Bilateral Grants with Industry 19

9. Partnerships and Cooperations . 20
9.1. National Initiatives 20

9.1.1. ANR 20
9.1.2. Competitivity Clusters 20
9.1.3. PAI CORAC 21

9.2. International Initiatives 21
9.2.1. International Project Grants 21

9.2.1.1. US Air Force Office for Scientific Research – Grant FA8655-13-1-3049 21
9.2.1.2. Applied Science & Technology Research Institute (ASTRI, Hong Kong) 21

9.2.2. Inria International Labs 21
9.2.3. Inria International Partners 22

9.2.3.1. POLYCORE 22
9.2.3.2. VESA 23
9.2.3.3. TIX 23

9.3. International Research Visitors 23
10. Dissemination . 23

10.1. Promoting Scientific Activities 23
10.1.1. Scientific events organisation 23

2 Activity Report INRIA 2015

10.1.2. Scientific events selection 24
10.1.2.1. Chair of conference program committees 24
10.1.2.2. Member of the conference program committees 24
10.1.2.3. reviewer 24

10.1.3. Journal 24
10.1.3.1. Member of the editorial boards 24
10.1.3.2. reviewer 24

10.1.4. Invited talks 24
10.1.5. Scientific expertise 24

10.2. Teaching - Supervision - Juries 25
10.2.1. Supervision 25
10.2.2. Juries 25

11. Bibliography .25

Project-Team TEA

Creation of the Team: 2014 January 01, updated into Project-Team: 2015 January 01

Keywords:

Computer Science and Digital Science:
1.2. - Networks
1.2.7. - Cyber-physical systems
1.2.8. - Network security
1.5. - Complex systems
1.5.1. - Systems of systems
1.5.2. - Communicating systems
2.1. - Programming Languages
2.1.1. - Semantics of programming languages
2.1.10. - Domain-specific languages
2.1.6. - Concurrent programming
2.1.8. - Synchronous languages
2.2. - Compilation
2.2.1. - Static analysis
2.2.3. - Run-time systems
2.3. - Embedded and cyber-physical systems
2.3.1. - Embedded systems
2.3.2. - Cyber-physical systems
2.3.3. - Real-time systems
2.4. - Reliability, certification
2.4.1. - Analysis
2.4.2. - Verification
2.4.3. - Proofs
2.5. - Software engineering
4.4. - Security of equipment and software
4.5. - Formal methods for security
4.7. - Access control
5.7.2. - Music
6.1.1. - Continuous Modeling (PDE, ODE)
6.1.3. - Discrete Modeling (multi-agent, people centered)
6.2.1. - Numerical analysis of PDE and ODE
6.2.5. - Numerical Linear Algebra
6.2.6. - Optimization
7.4. - Logic in Computer Science
7.6. - Computer Algebra

Other Research Topics and Application Domains:
5.1. - Factory of the future
5.2. - Design and manufacturing

2 Activity Report INRIA 2015

6.1.1. - Software engineering
6.4. - Internet of things
6.6. - Embedded systems
9.2.1. - Music, sound
9.4.1. - Computer science

1. Members
Research Scientists

Jean-Pierre Talpin [Team leader, Inria, Senior Researcher, HdR]
Thierry Gautier [Inria, Researcher]
Vania Joloboff [Inria, Senior Researcher]
Paul Le Guernic [Inria, Senior Researcher]

Engineers
Clement Guy [Inria]
Alexandre Honorat [Inria]
Christophe Junke [Inria]

PhD Student
Simon Lunel [Mitsubishi Electric R&D, granted by CIFRE]

Administrative Assistant
Stephanie Lemaile [Inria]

2. Overall Objectives

2.1. Introduction
An embedded architecture is an artefact of heterogeneous constituants and at the crossing of several design
viewpoints: software, embedded in hardware, interfaced with the physical world. Time takes different forms
when observed from each of these viewpoints: continuous or discrete, event-based or time-triggered. Unfor-
tunately, modelling and programming formalisms that represent software, hardware and physics significantly
alter this perception of time. Moreover, time reasoning in system design is usually isolated to a specific design
problem: simulation, profiling, performance, scheduling, parallelisation, simulation. The aim of project-team
TEA is to define a conceptually unified framework for reasoning on time in cyber-physical system design,
and to put this reflection to practice by revisiting analysis and synthesis issues in real-time system design with
soundness and compositionality gained from formalisation.

2.2. Context
In the construction of complex systems, information technology (IT) has become a central force of revolution-
ary changes, driven by the exponential increase of computational power. In the field of telecommunication, IT
provides the necessary basis for systems of networked distributed applications. In the field of control engineer-
ing, IT provides the necessary basis for embedded control applications. The combination of telecommunication
and embedded systems into networked embedded systems opens up a new range of systems, capable of pro-
viding more intelligent functionality thank to information and communication (ICT). Networked embedded
systems have revolutionised several application domains: energy networks, industrial automation and transport
systems.

Project-Team TEA 3

20th-century science and technology brought us effective methods and tools for designing both computational
and physical systems. But the design of cyber-physical systems (CPS) is much more than the union of
those two fields. Traditionally, information scientists only have a hazy notion of requirements imposed by
the physical environment of computers. Similarly, mechanical, civil, and chemical engineers view computers
strictly as devices executing algorithms. To the extent we have designed CPS, we have done so in an ad hoc,
on-off manner that is not repeatable. A new science of CPS design will allow us to create new machines with
complex dynamics and high reliability, to apply its principles to new industries and applications in a reliable
and economically efficient way. Progress requires nothing less than the construction of a new science and
technology foundation for CPS that is simultaneously physical and computational.

2.3. Motivations
Beyond the buzzword, a CPS is nothing new. In fact, it is an ubiquitous object of our everyday life. CPSs have
evolved from individual independent units (e.g an ABS brake) to more and more integrated networks of units,
which may be aggregated into larger components or sub-systems. For example, a transportation monitoring
network aggregates monitored stations and trains through a large scale distributed system with relatively high
latency. Each individual train is being controlled by a train control network, each car in the train has its own
real-time bus to control embedded devices. More and more, CPSs are mixing real-time low latency technology
with higher latency distributed computing technology.

In the past 15 years, CPS development has moved towards Model Driven Engineering (MDE). With MDE
methodology, first all requirements are gathered together with use cases, then a model of the system is built
(sometimes several models) that satisfy the requirements. There are several modelling formalisms that have
appeared in the past ten years with more or less success. The most successful are the executable models,
models that can be exercised, tested and validated. This approach can be used for both software and hardware.

A common feature found in CPSs is the ever presence of concurrency and parallelism in models. Large
systems are increasingly mixing both types of concurrency. They are structured hierarchically and comprise
multiple synchronous devices connected by buses or networks that communicate asynchronously. This led to
the advent of so-called GALS (Globally Asynchronous, Locally Synchronous) models, or PALS (Physically
Asynchronous, Logically Synchronous) systems, where reactive synchronous objects are communicating
asynchronously. Still, these infrastructures, together with their programming models, share some fundamental
concerns: parallelism and concurrency synchronisation, determinism and functional correctness, scheduling
optimality and calculation time predictability.

Additionally, CPSs monitor and control real-world processes, the dynamics of which are usually governed by
physical laws. These laws are expressed by physicists as mathematical equations and formulas. Discrete CPS
models cannot ignore these dynamics, but whereas the equations express the continuous behaviour usually
using real numbers (irrational) variables, the models usually have to work with discrete time and approximate
floating point variables.

2.4. Challenges
A cyber-physical (or reactive, or embedded) system is the integration of heterogeneous components originating
from several design viewpoints: reactive software, some of which is embedded in hardware, interfaced with the
physical environment through mechanical parts. Time takes different forms when observed from each of these
viewpoints: it is discrete and event-based in software, discrete and time-triggered in hardware, continuous in
mechanics or physics. Design of CPS often benefits from concepts of multiform and logical time(s) for their
natural description. High-level formalisms used to model software, hardware and physics additionally alter
this perception of time quite significantly.

In model-based system design, time is usually abstracted to serve the purpose of one of many design tasks:
verification, simulation, profiling, performance analysis, scheduling analysis, parallelisation, distribution, or
virtual prototyping. For example in non-real-time commodity software, timing abstraction such as number of
instructions and algorithmic complexity is sufficient: software will run the same on different machines, except

4 Activity Report INRIA 2015

slower or faster. Alternatively, in cyber-physical systems, multiple recurring instances of meaningful events
may create as many dedicated logical clocks, on which to ground modelling and design practices.

Time abstraction increases efficiency in event-driven simulation or execution (i.e SystemC simulation models
try to abstract time, from cycle-accurate to approximate-time, and to loosely-time), while attempting to retain
functionality, but without any actual guarantee of valid accuracy (responsibility is left to the model designer).
Functional determinism (a.k.a. conflict-freeness in Petri Nets, monotonicity in Kahn PNs, confluence in
Milner’s CCS, latency-insensitivity and elasticity in circuit design) allows for reducing to some amount the
problem to that of many schedules of a single self-timed behaviour, and time in many systems studies is
partitioned into models of computation and communication (MoCCs). Multiple, multiform time(s) raises the
question of combination, abstraction or refinement between distinct time bases. The question of combining
continuous time with discrete logical time calls for proper discretisation in simulation and implementation.
While timed reasoning takes multiple forms, there is no unified foundation to reasoning about multi-form time
in system design.

The objective of project-team TEA is henceforth to define formal models for timed quantitative reasoning, or
put simply for time reasoning, in embedded system design. Formal time models and calculi should allow us
to revisit common domain problems in real-time system design, such as time predictability and determinism,
memory ressources predictability, real-time scheduling, mixed-criticality and power management; yet from the
perspective gained from inter-domain timed and quantitative abstraction or refinement relations. A regained
focus on fundamentals will allow to deliver better tooled methodologies for virtual prototyping and integration
of embedded architectures.

3. Research Program

3.1. Previous Works
The challenges of team TEA support the claim that sound Cyber-Physical System design (including embedded,
reactive, and concurrent systems altogether) should consider multi-form time models as a central aspect. In
this aim, architectural specifications found in software engineering are a natural focal point to start from.
Architecture descriptions organise a system model into manageable components, establish clear interfaces
between them, collect domain-specific constraints and properties to help correct integration of components
during system design. The definition of a formal design methodology to support heterogeneous or multi-form
models of time in architecture descriptions demands the elaboration of sound mathematical foundations and
the development of formal calculi and methods to instrument them. This constitutes the research program of
team TEA.

System design based on the “synchronous paradigm” has focused the attention of many academic and
industrial actors on abstracting non-functional implementation details from system design. This elegant design
abstraction focuses on the logic of interaction in reactive programs rather than their timed behaviour, allowing
to secure functional correctness while remaining an intuitive programming model for embedded systems. Yet,
it corresponds to embedded technologies of single cores and synchronous buses from the 90s, and may hardly
cover the semantic diversity of distribution, parallelism, heterogeneity, of cyber-physical systems found in 21st
century internet-connected, true-timeTM -synchronized clouds, of tomorrow’s grids.

By contrast with a synchronous hypothesis yet from the same era, the polychronous MoCC implemented
in the data-flow specification language Signal, available in the Eclipse project POP 1 and in the CCSL
standard 2, are inherently capable of describing multi-clock abstractions of GALS systems. The POP and
TimeSquare projects provide tooled infrastructures to refine high-level specifications into real-time streaming

1Polychrony on POLARSYS, an Eclipse project in the POLARSYS Industry Working Group, 2013. https://www.POLARSYS.org/
projects/POLARSYS.pop

2Clock Constraints in UML/MARTE CCSL. C. André, F. Mallet. Technical Report RR-6540. Inria, 2008. http://hal.inria.fr/inria-
00280941

https://www.POLARSYS.org/projects/POLARSYS.pop
https://www.POLARSYS.org/projects/POLARSYS.pop
http://hal.inria.fr/inria-00280941
http://hal.inria.fr/inria-00280941

Project-Team TEA 5

applications or locally synchronous and globally asynchronous systems, through a series of model analysis,
verification, and synthesis services. These tool-supported refinement and transformation techniques can assist
the system engineer from the earliest design stages of requirement specification to the latest stages of synthesis,
scheduling and deployment. These characteristics make polychrony much closer to the required semantic for
compositional, refinement-based, architecture-driven, system design.

While polychrony was a step ahead of the traditional synchronous hypothesis, CCSL is a leap forward from
synchrony and polychrony. The essence of CCSL is “multi-form time” toward addressing all of the domain-
specific physical, electronic and logical aspects of cyber-physical system design.

3.2. Modelling Times
To make a sense and eventually formalize the semantcs of time in system design, we should most certainly rely
on algebraic representations of time found in previous works and introduce the paradigm of "time systems"
(type systems to represent time) in a way reminiscent to CCSL. Just as a type system abstracts data carried
along operations in a program, a time system abstracts the causal interaction of that program module or
hardware element with its environment, its pre and post conditions, its assumptions and guarantees, either
logical or numerical, discrete or continuous. Some fundamental concepts of the time systems we envision are
present in the clock calculi found in data-flow synchronous languages like Signal or Lustre, yet bound to a
particular model of concurrency, hence time.

In particular, the principle of refinement type systems 3, is to associate information (data-types) inferred from
programs and models with properties pertaining, for instance, to the algebraic domain on their value, or any
algebraic property related to its computation: effect, memory usage 4, pre-post condition, value-range, cost,
speed, time, temporal logic 5.

Being grounded on type and domain theories, a time system should naturally be equipped with program
analysis techniques based on type inference (for data-type inference) or abstract interpretation (for program
properties inference) to help establish formal relations between heterogeneous component “types”. Just as
a time calculus may formally abstract timed concurrent behaviours of system components, timed relations
(abstraction and refinement) represent interaction among components.

Scalability and compositionality dictates the use of assume-guarantee reasoning to represent them, and
to facilitate composition by behavioural sub-typing, in the spirit of the (static) contract-based formalism
proposed by Passerone et al. 6. Verification problems encompassing heterogeneously timed specifications
are common and of great variety: checking correctness between abstract and concrete time models relates
to desynchronisation (from synchrony to asynchrony) and scheduling analysis (from synchrony to hardware).
More generally, they can be perceived from heterogeneous timing viewpoints (e.g. mapping a synchronous-
time software on a real-time middleware or hardware).

This perspective demands capabilities not only to inject time models one into the other (by abstract inter-
pretation, using refinement calculi), to compare time abstractions one another (using simulation, refinement,
bisimulation, equivalence relations) but also to prove more specific properties (synchronisation, determinism,
endochrony).

To check conformance between heterogeneously timed specifications, we will consider variants of the abstract
interpretation framework proposed by Bertrane et al. 7 to inject properties from one time domain into another,
continuous 8 or discrete 9.

3Abstract Refinement Types. N. Vazou, P. Rondon, and R. Jhala. European Symposium on Programming. Springer, 2013.
4Region-based memory management. Tofte, M., Talpin, J.-P. Information and Computation, 1997.
5LTL types FRP. A. Jeffrey. PLPV’12.
6A contract-based formalism for the specification of heterogeneous systems. L. Benvenistu, A. Ferrari, L. Mangeruca, E. Mazzi, R.

Passerone, C. Sofronis. Forum on design languages, 2008
7Temporal Abstract Domains. J. Bertrane. International Conference on Engineering of Complex Computer Systems. IEEE, 2011
8Abstract Interpretation of the Physical Inputs of Embedded Programs. O. Bouissou, M. Martel. Verification, Model Checking, and

Abstract Interpretation. LNCS 4905, Springer, 2008

6 Activity Report INRIA 2015

All this formalisation effort will allow to effectively perform the tooled validation of common cross-domain
properties (e.g. cost v.s. power v.s. performance v.s. software mapping) and tackle equally common yet
though case studies such as these linking battery capacity, to onboard CPU performance, to static software
schedulability, to logical software correctness and plant controllability: the choice of the right sampling period
across the system components.

3.3. Modelling Architectures
To address the formalisation of such cross-domain case studies, modelling the architecture formally plays an
essential role. An architectural model represents components in a distributed system as boxes with well-defined
interfaces, connections between ports on component interfaces, and specifies component properties that can be
used in analytical reasoning about the model. Several architectural modelling languages for embedded systems
have emerged in recent years, including the SAE AADL 10, SysML 11, UML MARTE 12.

In system design, an architectural specification serves several important purposes. First, it breaks down a
system model into manageable components to establish clear interfaces between components. In this way,
complexity becomes manageable by hiding details that are not relevant at a given level of abstraction. Clear,
formally defined, component interfaces allow us to avoid integration problems at the implementation phase.
Connections between components, which specify how components affect each other, help propagate the effects
of a change in one component to the linked components.

Most importantly, an architectural model is a repository to share knowledge about the system being designed.
This knowledge can be represented as requirements, design artefacts, component implementations, held
together by a structural backbone. Such a repository enables automatic generation of analytical models for
different aspects of the system, such as timing, reliability, security, performance, energy, etc. Since all the
models are generated from the same source, the consistency of assumptions w.r.t. guarantees, of abstractions
w.r.t. refinements, used for different analyses becomes easier, and can be properly ensured in a design
methodology based on formal verification and synthesis methods.

Related works in this aim, and closer in spirit to our approach (to focus on modelling time) are domain-
specific languages such as Prelude 13 to model the real-time characteristics of embedded software architectures.
Conversely, standard architecture description languages could be based on algebraic modelling tools, such as
interface theories with the ECDAR tool 14.

In project TEA, it takes form by the normalisation of the AADL standard’s formal semantics and the proposal
of a time specification annex in the form of related standards, such as CCSL, to model concurrency time and
physical properties, and PSL, to model timed traces.

3.4. Application to Scheduling Theory
Based on sound formalisation of time and CPS architectures, real-time scheduling theory provides tools
for predicting the timing behaviour of a CPS which consists of many interacting software and hardware
components. Expressing parallelism among software components is a crucial aspect of the design process
of a CPS. It allows for efficient partition and exploitation of available resources.

The literature about real-time scheduling 15 provides very mature schedulability tests regarding many schedul-
ing strategies, preemptive or non-preemptive scheduling, uniprocessor or multiprocessor scheduling, etc.
Scheduling of data-flow graphs has also been extensively studied in the past decades.

9Proving the Properties of Communicating Imperfectly-Clocked Synchronous Systems. J. Bertrane. Static Analysis Symposium.
Springer, 2006

10Architecture Analysis and Design Language, AS-5506. SAE, 2004. http://standards.sae.org/as5506b
11System Modelling Language. OMG, 2007. http://www.omg.org/spec/SysML
12UML Profile for MARTE. OMG, 2009. http://www.omg.org/spec/MARTE
13The Prelude language. LIFL and ONERA, 2012. http://www.lifl.fr/~forget/prelude.html
14PyECDAR, timed games for timed specifications. Inria, 2013. https://project.inria.fr/pyecdar
15A survey of hard real-time scheduling for multiprocessor systems. R. I. Davis and A. Burns. ACM Computing Survey 43(4), 2011.

http://standards.sae.org/as5506b
http://www.omg.org/spec/SysML
http://www.omg.org/spec/MARTE
http://www.lifl.fr/~forget/prelude.html
https://project.inria.fr/pyecdar

Project-Team TEA 7

A milestone in this prospect is the development of abstract affine scheduling techniques 16. It consists, first,
of approximating task communication patterns (here Safety-Critical Java threads) using cyclo-static data-
flow graphs and affine functions. Then, it uses state of the art ILP techniques to find optimal schedules and
concretise them as real-time schedules for Safety Critical Java programs 17 18.

Abstract scheduling, or the use of abstraction and refinement techniques in scheduling borrowed to the
theory of abstract interpretation 19 is a promising development toward tooled methodologies to orchestrate
thousands of heterogeneous hardware/software blocks on modern CPS architectures (just consider modern
cars or aircrafts). It is an issue that simply defies the state of the art and known bounds of complexity theory
in the field, and consequently requires a particular address.

To develop the underlying theory of this promising research topic, we first need to deepen the theoretical
foundation to establish links between scheduling analysis and abstract interpretation. A theory of time systems
would offer the ideal framework to pursue this development. It amounts to representing scheduling constraints,
inferred from programs, as types or contract properties. It allows to formalise the target time model of the
scheduler (the architecture, its middle-ware, its real-time system) and defines the basic concepts to verify
assumptions made in one with promises offered by the other: contract verification or, in this case, synthesis.

3.5. Virtual Prototyping
Virtual Prototyping is the technology of developing realistic simulators from models of a system under design;
that is, an emulated device that captures most, if not all, of the required properties of the real system, based on
its specifications. A virtual prototype should be run and tested like the real device. Ideally, the real application
software would be run on the virtual prototyping platform and produce the same results as the real device with
the same sequence of outputs and reported performance measurements. This may be true to some extent only.
Some trade-offs have often to be made between the accuracy of the virtual prototype, and time to develop
accurate models.

In order to speed-up simulation time, the virtual prototype must trade-off with something. Depending upon
the application designer’s goals, one may be interested in trading some loss of accuracy in exchange for
simulation speed, which leads to constructing simulation models that focus on some design aspects and
provide abstraction of others. A simulation model can provide an abstraction of the simulated hardware in
three directions:

• Computation abstraction. A hardware component computes a high level function by carrying out a
series of small steps executed by composing logical gates. In a virtual prototyping environment, it is
often possible to compute the high level function directly by using the available computing resources
on the simulation host machine, thus abstracting the hardware function.

• Communication abstraction. Hardware components communicate together using some wiring, and
some protocol to transmit the data. Simulation of the communication and the particular protocol may
be irrelevant for the purpose of virtual prototyping: communication can be abstracted into higher
level data transmission functions.

• Timing Abstraction. In a cycle accurate simulator, there are multiple simulation tasks, and each task
makes some progress on each clock cycle, but this slows down the simulation. In a virtual prototyping
experiment, one may not need such precise timing information: coarser time abstractions can be
defined allowing for faster simulation.

16Buffer minimization in earliest-deadline first scheduling of dataflow graphs. A. Bouakaz and J.-P. Talpin. Conference on Languages,
Compilers and Tools for Embedded Systems. ACM, June 2013.

17Affine data-flow graphs for the synthesis of hard real-time applications. A. Bouakaz, J.-P. Talpin, and J. Vitek. Application of
Concurrency to System Design. IEEE Press, June 2012.

18Design of Safety-Critical Java Level 1 Applications Using Affine Abstract Clocks. A. Bouakaz and J.-P. Talpin. International
Workshop on Software and Compilers for Embedded Systems. ACM, June 2013.

19La vérification de programmes par interprétation abstraite. P. Cousot. Séminaire au Collège de France, 2008.

8 Activity Report INRIA 2015

The cornerstone of a virtual prototyping platform is the component that simulates the processor(s) of the
platform, and its associated peripherals. Such simulation can be static or dynamic.

A solution usually adopted to handle time in virtual prototyping is to manage hierarchical time scales, use
component abstractions where possible to gain performance, use refinement to gain accuracy where needed.
Localised time abstraction may not only yield faster simulation, but facilitate also verification and synthesis
(e.g. synchronous abstractions of physically distributed systems). Such an approach requires computations and
communications to be harmoniously discretised and abstracted from originally heterogeneous viewpoints onto
a structuring, articulating, pivot model, for concerted reasoning about time and scheduling of events in a way
that ensures global system specification correctness.

In the short term these component models could be based on libraries of predefined models of different levels
of abstractions. Such abstractions are common in large programming workbench for hardware modelling, such
as SystemC, but less so, because of the engineering required, for virtual prototyping platforms.

The approach of team TEA provides an additional ingredient in the form of rich component interfaces. It
therefore dictates to further investigate the combined use of conventional virtual prototyping libraries, defined
as executable abstractions of real hardware, with executable component simulators synthesised from rich
interface specifications (using, e.g., conventional compiling techniques used for synchronous programs).

4. Application Domains

4.1. Automotive and Avionics
From our continuous collaboration with major academic and industrial partners through projects TOPCASED,
OPENEMBEDD, SPACIFY, CESAR, OPEES, P and CORAIL, our experience has primarily focused on the
aerospace domain. The topics of time and architecture of team TEA extend to both avionics and automotive.
Yet, the research focus on time in team TEA is central in any aspect of, cyber-physical, embedded system
design in factory automation, automotive, music synthesis, signal processing, software radio, circuit and
system on a chip design; many application domains which, should more collaborators join the team, would
definitely be worth investigating.

Multi-scale, multi-aspect time modelling, analysis and software synthesis will greatly contribute to architecture
modelling in these domains, with applications to optimised (distributed, parallel, multi-core) code generation
for avionics (project Corail with Thales avionics, section 8) as well as modelling standards, real-time
simulation and virtual integration in automotive (project with Toyota ITC, section 8).

Together with the importance of open-source software, one of these projects, the FUI Project P (section 8),
demonstrated that a centralised model for system design could not just be a domain-specific programming
language, such as discrete Simulink data-flows or a synchronous language. Synchronous languages implement
a fixed model of time using logical clocks that are abstraction of time as sensed by software. They correspond
to a fixed viewpoint in system design, and in a fixed hardware location in the system, which is not adequate to
our purpose and must be extended.

In project P, we first tried to define a centralised model for importing discrete-continuous models onto a
simplified implementation of SIMULINK: P models. Certified code generators would then be developed from
that format. Because this does not encompass all aspects being translated to P, the P meta-model is now being
extended to architecture description concepts (of the AADL) in order to become better suited for the purpose
of system design. Another example is the development of System Modeller on top of SCADE, which uses the
more model-engineering flavoured formalism SysML to try to unambiguously represent architectures around
SCADE modules.

Project-Team TEA 9

An abstract specification formalism, capable of representing time, timing relations, with which heterogeneous
models can be abstracted, from which programs can be synthesised, naturally appears better suited for the
purpose of virtual prototyping. RT-Builder, based on Signal like Polychrony and developed by TNI, was
industrially proven and deployed for that purpose at Peugeot. It served to develop the virtual platform
simulating all onboard electronics of PSA cars. This ‘hardware in the loop” simulator was used to test
equipments supplied by other manufacturers with respect to virtual cars. In the avent of the related automotive
standard, RT-Builder then became AUTOSAR-Builder.

4.2. Factory Automation
In the new collaboration with Mitsubishi R&D, started in 2015, we explore another application domain where
time and domain heterogeneity are prime concerns: factory automation. In factory automation alone, a system
is conventionally built from generic computing modules: PLCs (Programmable Logic Controllers), connected
to the environment with actuators and detectors, and linked to a distributed network. Each individual,
physically distributed, PLC module must be timely programmed to perform individually coherent actions
and fulfill the global physical, chemical, safety, power efficiency, performance and latency requirements of
the whole production chain. Factory chains are subject to global and heterogeneous (physical, electronical,
functional) requirements whose enforcement must be orchestrated for all individual components.

Model-based analysis in factory automation emerges from different scientific domains and focus on different
CPS abstractions that interact in subtle ways: logic of PLC programs, real-time electromechanical processing,
physical and chemical environments. This yields domain communication problems that render individual
domain analysis useless. For instance, if one domain analysis (e.g. software) modifies a system model in a
way that violates assumptions made by another domain (e.g. chemistry) then the detection of its violation may
well be impossible to explain to either of the software and chemistry experts.

As a consequence, cross-domain analysis issues are discovered very late during system integration and lead to
costly fixes. This is particularly prevalent in multi-tier industries, such as avionic, automotive, factories, where
systems are prominently integrated from independently-developed parts.

5. Highlights of the Year

5.1. Highlights of the Year
TEA became an Inria project-team in 2015 and developed new and promising collaborations with Mitsubishi,
on factory automations, with UCSD on refinement type theory and with UCSD-UCLA again, on time
synchronisation protocols verificaton.

We published a paper in the automotive session of the 52nd. Digital Automation Conference (core A*) on our
project with Toyota ITC [19] as well as two patents filed with the USPTO.

5.1.1. Awards
Our paper on "Polychronous automata" [13] received the Best Paper Award at the TASE’15 conference.

BEST PAPER AWARD:

[13]
P. LE GUERNIC, T. GAUTIER, J.-P. TALPIN, L. BESNARD. Polychronous Automata, in "TASE 2015, 9th
International Symposium on Theoretical Aspects of Software Engineering", Nanjing, China, IEEE Computer
Society, September 2015, pp. 95-102 [DOI : 10.1109/TASE.2015.21], https://hal.archives-ouvertes.fr/hal-
01240440

https://hal.archives-ouvertes.fr/hal-01240440
https://hal.archives-ouvertes.fr/hal-01240440

10 Activity Report INRIA 2015

6. New Software and Platforms

6.1. The Eclipse project POP
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The distribution of project POP 20 is a major achievement of the ESPRESSO (and now TEA) project-team.
The Eclipse project POP is a model-driven engineering front-end to our open-source toolset Polychrony. It
was finalised in the frame of project OPEES, as a case study: by passing the POLARSYS qualification kit
as a computer aided simulation and verification tool. This qualification was implemented by CS Toulouse
in conformance with relevant generic (platform independent) qualification documents. Polychrony is now
distributed by the Eclipse project POP on the platform of the POLARSYS industrial working group. Project-
team TEA aims at continuing its dissemination to academic partners, as to its principles and features, and
industrial partners, as to the services it can offer.

Technically, project POP is composed of the Polychrony toolset, under GPL license, and its Eclipse framework,
under EPL license. SSME (Syntactic Signal-Meta under Eclipse), is the metamodel of the Signal language
implemented with Eclipse/Ecore. It describes all syntactic elements specified in Signal Reference Manual
21: all Signal operators (e.g. arithmetic, clock synchronization), model (e.g. process frame, module), and
construction (e.g. iteration, type declaration).

The metamodel primarily aims at making the language and services of the Polychrony environment available
to inter-operation and composition with other components (e.g. AADL, Simulink, GeneAuto, P) within an
Eclipse-based development toolchain. Polychrony now comprises the capability to directly import and export
Ecore models instead of textual Signal programs, in order to facilitate interaction between components within
such a toolchain.

The download site for project POP has opened in 2015 at: https://www.polarsys.org/projects/polarsys.pop. It
should be noted that the Eclipse Foundation does not host code under GPL license. So, the Signal toolbox
useful to compile Signal code from Eclipse is hosted on our web server.

6.2. The Polychrony toolset
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The Polychrony toolset is an Open Source development environment for critical/embedded systems. It is based
on Signal, a real-time polychronous dataflow language. It provides a unified model-driven environment to
perform design exploration by using top-down and bottom-up design methodologies formally supported by
design model transformations from specification to implementation and from synchrony to asynchrony. It can
be included in heterogeneous design systems with various input formalisms and output languages.

The Polychrony toolset provides a formal framework to:

• validate a design at different levels, by the way of formal verification and/or simulation,

• refine descriptions in a top-down approach,

• abstract properties needed for black-box composition,

• assemble heterogeneous predefined components (bottom-up with COTS),

• generate executable code for various architectures.

20Polychrony on POLARSYS (POP), an Eclipse project in the POLARSYS Industry Working Group, 2013. https://www.POLARSYS.
org/projects/POLARSYS.pop

21SIGNAL V4-Inria version: Reference Manual. Besnard, L., Gautier, T. and Le Guernic, P. http://www.irisa.fr/espresso/Polychrony,
2010

https://www.polarsys.org/projects/polarsys.pop
https://www.POLARSYS.org/projects/POLARSYS.pop
https://www.POLARSYS.org/projects/POLARSYS.pop
http://www.irisa.fr/espresso/Polychrony

Project-Team TEA 11

Figure 1. The Eclipse POP Environment

12 Activity Report INRIA 2015

Figure 2. The Polychrony toolset high-level architecture

Project-Team TEA 13

The Polychrony toolset contains three main components and an experimental interface to GNU Compiler
Collection (GCC):

• The Signal toolbox, a batch compiler for the Signal language, and a structured API that provides a
set of program transformations. Itcan be installed without other components and is distributed under
GPL V2 license.

• The Signal GUI, a Graphical User Interface to the Signal toolbox (editor + interactive access to
compiling functionalities). It can be used either as a specific tool or as a graphical view under Eclipse.
In 2015, it has been transformed and restructured, in order to get a more up-to-date interface allowing
multi-window manipulation of programs. It is distributed under GPL V2 license.

• The SSME platform, a front-end to the Signal toolbox in the Eclipse environment. It is distributed
under EPL license.

• GCCst, a back-end to GCC that generates Signal programs (not yet available for download).

The Polychrony toolset also provides a large library of Signal programs and examples, user documentations
and developer-oriented implementation documents, and facilities to generate new versions.

The Polychrony toolset can be freely downloaded on the following web sites:
• The Polychrony toolset public web site: http://polychrony.inria.fr/. This site, intended for users and

for developers, contains downloadable executable and source versions of the software for differ-
ents platforms, user documentation, examples, libraries, scientific publications and implementation
documentation. In particular, this is the site for the open-source distribution of Polychrony.

• The Inria GForge: https://gforge.inria.fr. This site, intended for internal developers, contains the
whole sources of the environment and their documentation.

As part of its open-source release, the Polychrony toolset not only comprises source code libraries but also
an important corpus of structured documentation, whose aim is not only to document each functionality and
service, but also to help a potential developer to package a subset of these functionalities and services, and
adapt them to developing a new application-specific tool: a new language front-end, a new back-end compiler.
This multi-scale, multi-purpose documentation aims to provide different views of the software, from a high-
level structural view to low-level descriptions of basic modules. It supports a distribution of the software “by
apartment” (a functionality or a set of functionalities) intended for developers who would only be interested
by part of the services of the toolset.

6.3. SigCert: translation validation from Signal to C
Participants: Van-Chan Ngo, Jean-Pierre Talpin, Thierry Gautier, Paul Le Guernic, Loïc Besnard.

Translation validation 22 23 is a technique that attempts to verify that program transformations preserve the
program semantics. It is obvious to prove globally that the source program and its final compiled program have
the same semantics. However, we believe that a better approach is to separate concerns and prove each analysis
and transformation stage separately with respect to ad-hoc data-structures to carry the semantic information
relevant to that phase.

In the case of the Signal compiler [1], [7], the preservation of the semantics can be decomposed into the
preservation of clock semantics at the clock calculation phase [15] and that of data dependencies at the static
scheduling phase[16], and, finally, value-equivalence of variables at the code generation phase[14].
Translation Validation for Clock Transformations in a Synchronous Compiler. The clock semantics of
the source and transformed programs are formally represented as clock models. A clock model is a first-order
logic formula that characterizes the presence/absence status of all signals in a Signal program at a given
instant. Given two clock models, a clock refinement between them is defined which expresses the semantic
preservation of clock semantics[15]. A method to check the existence of clock refinement is defined as a
satisfiability problem which can be automatically and efficiently proved by a SMT solver 24.

22Translation validation. Pnueli A., Siegel M., and Singerman E. In Proceedings of TACAS’98, 1998.
23Translation validation: From signal to c. M. Siegel A. Pnueli and E. Singeman. In Correct Sytem Design Recent Insights and

Advances, 2000.
24Satisfiability modulo theories: An appetizer. L. de Moura and N. Bjorner. In Brazilian Symposium on Formal Methods, 2009.

http://polychrony.inria.fr/
https://gforge.inria.fr

14 Activity Report INRIA 2015

Precise Deadlock Detection for Polychronous Data-flow Specifications. Dependency graphs are a com-
monly used data structure to encode the streams of values in data-flow programs and play a central role in
scheduling instructions during automated code generation from such specifications. We propose a precise and
effective method that combines a structure of dependency graph and first order logic formulas to check whether
multi-clocked data-flow specifications are deadlock-free before generating code from them. We represent the
flow of values in the source programs by means of a dependency graph and attach first-order logic formulas
to condition these dependencies. We use an SMT solver to effectively reason about the implied formulas and
check deadlock freedom [16].
Implementation and Experiments. At a high level, our prototype tool SigCert ([14]) developed in OCaml
could check the correctness of the compilation of Signal compiler w.r.t clock semantics, data dependence, and
value-equivalence as given in Figure 3. The individual modules designed in the context of this work are now
being implemented and integrated in the open-source Polychrony toolset.

*.SIG *_BASIC_TRA.SIG *_BOOL_TRA.SIG *_SEQ_TRA.SIG C/C++, Java

Clock calculation,
Boolean abstraction Scheduling Code generation

Clock
model

Clock
model

Clock
Refin
ement

Clock
Refin
ement

Clock
model

Signal Compiler

Validator

SDDG

SDDG

SDDG
Refinement

SDVG

SDVG

SDVG
Normalizing

Preservation of clock
semantics

Preservation of data
dependency

Preservation of value-
equivalence of variables

Figure 3. Our Integration within Polychrony Toolset

6.4. ADFG: Affine data-flow graphs scheduler synthesis under Eclipse
Participants: Alexandre Honorat, Jean-Pierre Talpin, Thierry Gautier, Loïc Besnard.

We have proposed a dataflow design model [2] of SCJ/L1 applications 25 in which handlers (periodic and
aperiodic actors) communicate only through lock-free channels. Hence, each mission is modeled as a dataflow
graph. The presented dataflow design model comes with a development tool integrated in the Eclipse IDE for
easing the development of SCJ/L1 applications and enforcing the restrictions imposed by the design model. It
consists of a GMF editor where applications are designed graphically and timing and buffering parameters can
be synthesized. Indeed, abstract affine scheduling is first applied on the dataflow subgraph, that consists only
of periodic actors, to compute timeless scheduling constraints (e.g. relation between the speeds of two actors)
and buffering parameters. Then, symbolic fixed-priority schedulability analysis (i.e., synthesis of timing and
scheduling parameters of actors) considers both periodic and aperiodic actors.

25Safety critical Java technology specification. JSR-302, Year = 2010

Project-Team TEA 15

Through a model-to-text transformation, using Acceleo, the SCJ code for missions, interfaces of handlers,
and the mission sequencer is automatically generated in addition to the annotations needed by the memory
checker. Channels are implemented as cyclic arrays or cyclical asynchronous buffers; and a fixed amount of
memory is hence reused to store the infinite streams of tokens. The user must provide the SCJ code of all the
handleAsyncEvent() methods. We have integrated the SCJ memory checker 26 in our tool so that potential
dangling pointers can be highlighted at compile-time. To enhance functional determinism, we would like to
develop an ownership type system to ensure that actors are strongly isolated and communicate only through
buffers.

Figure 4. The ADFG Tool

The ADFG tool is being further developed in the context of the ADT "La vie d’AADL" in order to serve
both as scheduler synthesis tool from AADL specifications and SCJ tasksets. We plan to further the front end
analysis tools from Java task sets in order to build the input CSDF graphs from program analysis, in the context
of a future PhD.

7. New Results

7.1. Polychronous automata
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

26Static checking of safety critical Java annotations. Tang, D. Plsek, A. and Vitek, J. International Workshop on Java Technologies for
Real-Time and Embedded Systems, 2010

16 Activity Report INRIA 2015

We have defined a model of polychronous automata based on clock relations [13]. A specificity of this
model is that an automaton is submitted to clock constraints: these finite-state automata define transition
systems to express explicit reactions together with properties, in the form of Boolean formulas over logical
time, to constrain their behavior. This allows one to specify a wide range of control-related configurations,
either reactive, or restrictive with respect to their control environment. A semantic model is defined for these
polychronous automata, that relies on a Boolean algebra of clocks. Polychronous automata integrate smoothly
with data-flow equations in the polychronous model of computation.

This formal model of automata also supports the recommendations adopted by the SAE committee on the
AADL to implement a timed and synchronous behavioural annex for the standard 27.

A minimal syntactic extension of the Signal language has been defined to integrate polychronous automata
in Polychrony. We have added a new syntactic category of process, called automaton. In such an automaton
process, labeled processes represent states, and generic processes such as Transition are used to represent
the automaton features. Usual equations can be used in these automaton processes to specify constraints or to
define computations.

We have also defined and implemented the refinement of Signal processes as automata. A given Signal program
may be seen as an automaton which contains one single state and one single transition, labeled by a clock. This
clock is the upper bound of all the clocks of the program (the tick of the program). The construction of a refined
automaton from a Signal program is based on delayed signals, viewed as state variables (in particular Boolean
ones). A state of the automaton is a Signal program with some valuation of its state variables. Transitions
are labeled by clocks, which represent the events that fire these transitions. The principle of the construction
consists in dividing a given state according to the possible values of a state variable (i.e., true and false for
Boolean state variables) in order to get two states, and thus two new Signal programs. Each one of these two
states is obtained using a rewriting of the starting program. Moreover, the absence of value for the state variable
(which can be considered as another possible value) is taken into account in the clocks labelling the transitions.
The construction of the automaton is a hierarchic process. Thanks to the clock hierarchy, this construction,
which would be expensive in the worst case (the size of the explicit automaton being an exponential of its
number of state variables), may be heavily simplified.

7.2. Runtime verification and trace analysis
Participants: Vania Joloboff, Daian Yue, Frédéric Mallet.

When engineers design a new cyber physical system, there are well known requirements that can be translated
as system properties that must be verified. These properties can be expressed in some formalism and when the
model has been designed, the properties can be checked at the model level, using model checking techniques or
other model verification techniques. When building a virtual prototype of the system, including a combination
of simulated hardware, firmware and application software, the executable models can be augmented also
with property verification, for example in the PSL language, or simply by introducing assertions in the
implementation code.

This requires that the properties are well specified at the time the virtual prototype is assembled. However it
is also the case that many intrinsic properties are actually unforeseen when the virtual prototype is assembled,
for example that some hardware buffer overflow should not remain unnoticed by the software. In most cases,
during system design the simulation fails: the engineers then must investigate the cause of the failure. Most
of time the failure is due to an unexpected sequence of states and transitions that involve several components
mixing hardware and software that could not be checked at the model level (e.g. state explosion) or was simply
unforeseen. The engineers then have to investigate the cause of failure.

27Logically timed specification in the AADL: a synchronous model of computation and communication (recommendations to the SAE

committee on AADL). L. Besnard, E. Borde, P. Dissaux, T. Gautier, P. Le Guernic, and J.-P. Talpin. Technical Report RT-0446, Inria, 2014.

Project-Team TEA 17

A widely used technique for that consists in storing all of the trace data of simulation sessions into trace files,
which are analyzed later with specialized trace analyzer tools. Such trace files have become huge, possibly
hundred of Gigabytes as all data are stored into the trace files, and have become untractable by human manual
handling. The engineers use some kind of search tools to identify the cause of failure and after iterative
refinement steps, which are very time consuming, eventually identify the reason, most often some unforeseen
causality chain of events and state transitions that lead to a failure. A new system property can then be captured
and included into the set of verified properties.

In order to better identify the reason for such failures and capture the missing properties that the system should
verify we have started to work on a new run time verification approach based on trace analysis. Approaches
like PSL requires that the properties to verify are known before hand. Our approach is attempting for the
engineers to experiment various property verification of failing simulations without re-building the virtual
prototype. We are investigating a technique for trace analysis that makes it possible to investigate properties
either statically working from a trace file or dynamically by introducing a dynamic verification component
into the virtual prototype.

The first idea is to introduce a formal mapping/filtering technique such that the raw data generated by a virtual
prototype can be mapped onto a formal trace model. For that, we propose to use a model transformer whose
code is generated from a higher level. Using the Eclipse modelling framework, we propose for the virtual
prototyping engineers to first describe using a Domain Specific Language how the raw output of the simulator
can be filtered and mapped to a formal model. This Domain Specific Language takes as input the description
of the simulator output, and the description of the formal output, following fixed meta models. In current
version, the meta model of the virtual prototype dictates that it generates ’trace items’ where each trace item
is specified as a sequence of identified binary data variables (bits, bytes, words..) that carry a timestamp.

The model transformer generates code (in our case C++) that is dynamically invoked by the virtual prototype
to dynamical map the trace output. An advantage of doing that is that all irrelevant data with regards to a tested
property can be ignored and the size of trace files can be considerably reduced. For our experiment, we have
chosen logical clock CCSL as our formal target formalism. The Eclipse EMF tool we have defined allows
users to define a mapping model from the local simulation events from the SimSoC simulator to a logical
clock format.

The second idea is to hide the complexity of the formal method formulas into a user friendly property
specification language. For example, we do not want to expose the end-users engineers to understand the
intricacies of CCSL or LTL. The property specification language is translated into CCSL formulas, which in
turn generate automata. It should be possible then, to some extent, to change the formalism underneath the
language without changing the properties expressed by the user.

The property specification language ultimately compiles into automata that parse the formal trace output
generated above. At runtime of the virtual prototype, the mapping library is dynamically loaded by the
simulator and generates input for the automata. The verification of the properties can be dynamic, with a
true runtime verification, or statically by analyzing the (much smaller) trace file after a failure.

This year we have investigated this approach, designed the architecture described above and carried some
experimental work, but a significant part of the implementation still remains to be done. We have started
designing a new property specification language where the users can express properties such as causality (e.g.
the train must not start if the door is opened) or jittering or clock drift in image processing [11], [10]. There
remain some theoretical issues with regards to which properties can be effectively verified.

7.3. Integration of Polychrony with QGen
Participants: Christophe Junke, Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The FUI project P gave birth to the QGen qualifiable model compiler, developed by Adacore. The tool accepts
a discrete subset of Simulink expressed in a language called P and produces C or Ada code. It is currently not
known if an architectural description language is going to be integrated in QGen, as originally planned.

18 Activity Report INRIA 2015

We developed a transformation tool named P2S for expressing P system models in Signal, using the EMF
(Eclipse Modelling Framework) technology. P2S tool is written in Clojure, a language inspired by Lisp
running on the Java Virtual Machine, which helped us define a terse and expressive API for manipulating
Signal models while remaining fully interoperable with existing Java libraries (including Eclipse plugins and
especially Polychrony ones).

We experimented this transformation tool on small to medium use cases provided by members of the P
project. Our work is detailed in a conference paper titled “Integration of Polychrony and QGen Model
Compiler”, which will appear at ERTSS’16 28. A perspective of our work is to convert the intermediate
code emitted by QGen as Signal too (under development), in order to produce a fully executable Signal
model of Simulink models, and combine them with architectural description of systems in AADL, and/or
P’s architecture language.

7.4. Formal semantics and model-based analysis of AADL specifications
Participants: Loïc Besnard, Etienne Borde, Thierry Gautier, Paul Le Guernic, Clément Guy, Jean-Pierre
Talpin, Huafeng Yu.

Last year, the SAE committee on the AADL adopted our recommendations to implement a timed and
synchronous behavioural annex for the standard. We have defined a new model of polychronous constrained
automata that has been provided as semantic model for our proposal of an extension of the AADL behavioural
annex. An experimental implementation of the semantic features of this “timing annex” will be provided
through the Polychrony framework. For that purpose, representations of automata have been introduced in
the Signal toolbox of Polychrony. The implementation will enrich the already existing transformation from
AADL models to Signal programs to consider behaviour of AADL models, and will be integrated in the POP
environment for Eclipse. The transformation from AADL behaviour annex to Signal programs use the Signal
extension for polychronous automata, which are used as the common semantic domain. The implementation
is currently tested with the adaptive cruise control case study developed with Toyota ITC.

Our work with the SAE committee is sponsored by Toyota, with whom we started a new project in 2014
jointly with VTRL as US partner. The main topic of our project is the semantic-based model integration of
automotive architectures, virtual integration, toward formal verification and automated code synthesis [19].
The project led to the elaboration of a case study of an adaptive cruise control system, supported through
an AADL implementation and a video of demonstration. The case study implementation is an AADL model
representing the whole adaptive cruise control system, from car devices (e.g., brakes, throttle or radar) to
software behavior, including embedded hardware (buses, processors and memories). It will be used in the
future to demonstrate property and constraint analyses through heterogeneous systems. Huafeng Yu, our main
collaborator at Toyota ITC, presented the video of demonstration at the annual Toyota show case. Early returns
from the show case express a growing interest of Toyota for architecture and timing of car embedded systems,
which could lead to new collaborations.

7.5. Refinement types for reactive system models
Participants: Pierre Jouvelot, Sandeep Shukla, Jean-Pierre Talpin.

We introduced a new technique born from the field of functional programming to adapt and extend it to the
case of reaction systems, the notion of refinement types of Jahla et al. 29. Our idea is to formulate the analysis
of algebraic properties in synchronous and reactive programs as data-dependent type properties formulated
using multi-sorted logic formulas, which we call liquid clocks [20], [18]. Our objectives are to cover the case
of several models of concurrency and computation: synchronous, asynchronous, data-parallel; as well as to
formulate such algebraic properties for linear, continuous and logical forms of time, all into the same type-
theoretical framework. This work, born from two collaborations With USAF/VT and with the ANR Feever
project, will be pursued within the TIX international partnership.

28Integration of polychrony in the QGen model compiler. C. Junke, T. Gautier, L. Besnard, J.-P. Talpin. ERTS’16 - European Congress
on Embeddd Real-Rime Software and Systems, 2016.

29Liquid Types. P. M. Rondon, M. Kawaguchi, R. Jhala. PLDI, 2008

Project-Team TEA 19

7.6. Formal verification of timing aspects of cyber-physical systems using a
contract theory
Participants: Jean-Pierre Talpin, Benoit Boyer, David Mentre, Simon Lunel.

This is a new project in collaboration with Mitsubishi Electronics Research Centre Europe (MERCE). The
primary goal of our project is to ensure correctness-by-design in cyber-physical systems, i.e., systems that
mix software and hardware in a physical environment, e.g., Mitsubishi factory automation lines. We plan to
explore a multi-sorted algebraic framework for static analysis and formal verification starting from a simple
use case extracted from Mitsubishi factory automation documentations. This will serve as a basis to more
ambitious research where we intend to leverage recent advance in type theory, SMT solvers for nonlinear
real arithmetic (dReal and δ-decidability) and contracts theory (meta-theory of Benveniste et al., Ruchkin’s
contracts) to provide a general framework of reasoning about heterogeneous factory components.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. Toyota Info-Technology Centre (2014+)

Title: Co-Modeling of Safety-Critical Multi-threaded Embedded Software for Multi-Core Embedded
Platforms

Inria principal investigator: Jean-Pierre Talpin

International Partner (Institution - Laboratory - Researcher):

Toyota Info-Technology Centre, Mountain View, California

Virginia Tech Research Laboratories, Arlington

Duration: renewed yearly since 2014

Abstract: We started a new project in April 2014 funded by Toyota ITC, California, to work with
Huafeng Yu (a former post-doctorate of team ESPRESSO) and with VTRL as US partner. The main
topic of our project is the semantic-based model integration of automotive architectures, virtual
integration, toward formal verification and automated code synthesis. This year, Toyota ITC is
sponsoring our submission for the standardisation of a time annex in the SAE standard AADL.

In a second work-package, we aim at elaborating a standardised solution to virtually integrate and
simulate a car based on heterogeneous models of its components. This year, it will be exemplified by
the elaboration of a case study in collaboration with Virginia Tech. The second phase of the project
will consist of delivering an open-source, reference implementation, of the proposed AADL standard
and validate it with a real-scale model of the initial case-study.

8.2. Bilateral Grants with Industry
8.2.1. Mitsubishi Electric R&D Europe (2015-2018)

Title: Analysis and verification for correct by construction orchestration in automated factories

Inria principal investigator: Jean-Pierre Talpin, Simon Lunel

International Partner: Mitsubishi Electric R&D Europe

Duration: 2015 - 2018

20 Activity Report INRIA 2015

Abstract: The primary goal of our project is to ensure correctness-by-design in cyber-physical
systems, i.e., systems that mix software and hardware in a physical environment, e.g., Mitsubishi
factory automation lines. We plan to explore a multi-sorted algebraic framework for static analysis
and formal verification starting from a simple use case extracted from Mitsubishi factory automation
documentations. This will serve as a basis to more ambitious research where we intend to leverage
recent advance in type theory, SMT solvers for nonlinear real arithmetic (dReal and δ-decidability)
and contracts theory (meta-theory of Benveniste et al., Ruchkin’s contracts) to provide a general
framework of reasoning about heterogeneous factory components.

9. Partnerships and Cooperations
9.1. National Initiatives
9.1.1. ANR

Program: ANR
Project acronym: Feever
Project title: Faust Environment Everyware
Duration: 2014-2016
Coordinator: Pierre Jouvelot, Mines ParisTech
Other partners: Grame, Inria Rennes, CIEREC
URL: http://www.feever.fr
Abstract:

The aim of project FEEVER is to ready the Faust music synthesis language for the Web. In this
context, we collaborate with Mines ParisTech to define a type system suitable to model music signals
timed at multiple rates and to formally support playing music synthesised from different physical
locations.

9.1.2. Competitivity Clusters
Program: FUI
Project acronym: P
Project title: Project P
Duration: March 2011 - Sept. 2015
Coordinator: Continental Automotive France
Other partners: 19 partners (Airbus, Astrium, Rockwell Collins, Safran, Thales Alenia Space, Thales
Avionics...)
URL: http://www.open-do.org/projects/p/
Abstract:

The aim of project P is 1/ to aid industrials to deploy model-driven engineering technology for the
development of safety-critical embedded applications, 2/ to contribute on initiatives such as ITEA2
OPEES and Artemisia CESAR to develop support for tools inter-operability, and 3/ to provide
state-of-the-art automated code generation techniques from multiple, heterogeneous, system-levels
models. The focus of project P is the development of a code generation toolchain starting from
domain-specific modeling languages for embedded software design and to deliver the outcome of
this development as an open-source distribution, in the aim of gaining an impact similar to GCC for
general-purpose programming, as well as a kit to aid with the qualification of that code generation
toolchain.

The contribution of project-team TEA in project P is to bring the necessary open-source technology
of the Polychrony environment to allow for the synthesis of symbolic schedulers for software
architectures modeled with P in a manner ensuring global asynchronous deterministic execution..

http://www.feever.fr
http://www.open-do.org/projects/p/

Project-Team TEA 21

9.1.3. PAI CORAC
Program: CORAC
Project acronym: CORAIL
Project title: Composants pour l’Avionique Modulaire Étendue
Duration: July 2013 - May 2017
Coordinator: Thales Avionics
Other partners: Airbus, Dassault Aviation, Eurocopter, Sagem...
URL: http://www.corac-ame.com/
Abstract:

The CORAIL project aims at defining components for Extended Modular Avionics. The contribution
of project-team TEA is to define a specification method and to provide a generator of multi-task
applications.

9.2. International Initiatives
9.2.1. International Project Grants
9.2.1.1. US Air Force Office for Scientific Research – Grant FA8655-13-1-3049

Title: Co-Modeling of Safety-Critical Multi-threaded Embedded Software for Multi-Core Embedded
Platforms
Inria principal investigator: Jean-Pierre Talpin
International Partner (Institution - Laboratory - Researcher):

Virginia Tech Research Laboratories, Arlington (United States)
Embedded Systems Group, Teschnische Universität Kaiserslautern (Germany)

Duration: 2013 - 2016
See also: http://www.irisa.fr/espresso/Polycore
Abstract: The aim of the USAF OSR Grant FA8655-13-1-3049 is to support collaborative research
entitled “Co-Modeling of safety-critical multi-threaded embedded software for multi-core embedded
platforms” between Inria project-team ESPRESSO, the VTRL Fermat Laboratory and the TUKL
embedded system research group, under the program of the Polycore associate-project.

9.2.1.2. Applied Science & Technology Research Institute (ASTRI, Hong Kong)
Title: Virtual Prototyping of Embedded Software Architectures
Inria principal investigator: Jean-Pierre Talpin
International Partner: ASTRI, Hong Kong
Duration: 2015 - 2016
Abstract: the topics of our present collaboration is essentially on heterogeneous time modelling
for virtual prototyping in cyber-physical systems. Our project covers a wide spectrum of area of
experience developed since 2012 and comprising

• model-based design and analysis of cyber-physical systems;
• system-level virtual prototyping and validation;
• design space exploration and system synthesis;

9.2.2. Inria International Labs
9.2.2.1. SACCADES

Title: Saccades
International Partner:

http://www.corac-ame.com/
http://www.irisa.fr/espresso/Polycore

22 Activity Report INRIA 2015

LIAMA

East China Normal University

Inria project-teams Aoste and Tea

Duration: 2003 - now

The SACCADES project is a LIAMA project hosted by East China Normal University and jointly led
by Vania Joloboff (Inria) and Min Zhang (ECNU). The SACCADES project aims at improving the
development of reliable cyber physical systems and more generally of distributed systems combining
asynchronous with synchronous aspects, with different but complementary angles:

• develop the theoretical support for Models of Computations and Communications
(MoCCs) that are the fundamentals basis of the tools.

• develop software tools (a) to enable the development and verification of executable models
of the application software, which may be local or distributed and (b) to define and
optimize the mapping of software components over the available resources.

• develop virtual prototyping technology enabling the validation of the application software
on the target hardware platform.

The ambition of SACCADES project is to develop

• Theoretical Support for Cyber Physical Systems

• Software Tools for design and validation of CPS

• Virtual Prototyping of CPS

9.2.3. Inria International Partners
9.2.3.1. POLYCORE

Title: Models of computation for embedded software design

International Partner:

Virginia Tech Research Laboratories (USA)

University of Kanpur (India)

Duration: 2002 - now

Team TEA collaborates with Sandeep Shukla (now with IIT Kanpur) and his team at Virginia Tech,
since 2002 (NSF-Inria BALBOA and Polycore projects, USAF OSR grant).

To date, our fruitful and sustained collaboration has yield the creation of the ACM-IEEE MEM-
OCODE conference series 30 in 2003, of the ACM-SIGDA FMGALS workshop series, and of a full-
day tutorial at ACM-IEEE DATE’09 on formal methods in system design. We have jointly edited
two books with Springer 31 32, two special issues of the IEEE Transactions on Computers and one
of the IEEE Transactions on Industrial Informatics, and published more than 40 joint journal articles
and conference papers.

This year, we published a joint paper at the 52nd. Digital Automation Conference in San
Francisco [19].

30ACM-IEEE MEMOCODE conference series
31Formal methods and models for system design, R. Gupta, S. Shukla, J.-P. Talpin, Eds. ISBN 1-4020-8051-4. Springer, 2004.
32Synthesis of embedded systems. S. Shukla, J.-P. Talpin, Eds. ISBN 978-1-4419-6399-4. Springer, 2010

Project-Team TEA 23

9.2.3.2. VESA

Title: Virtual Prototyping of embedded software architectures

International Partner:

Applied Science & Technology Research Institute (ASTRI, Hong Kong)

The University of Hong Kong

Duration: 2012 - now

We collaborate with John Koo, now with ASTRI, and LIAMA since 2012 through visiting grants
of the Chinese Academy of Science and of the University of Rennes on the topics of heterogeneous
time modelling and virtual prototyping in cyber-physical systems.

9.2.3.3. TIX

Title: Time In Cybernetic Systems

International Partner:

Rajesh Gupta, UCSD

Mani Srivastava, UCLA

Start year: 2015

The first topic of our collaboration is the formal definition of cross-domains clock models in
system design and the formal verification of time stabilisation and synchronisation protocols used
in distributed systems (sensor networks, data-bases). In this prospect, the NSF project Roseline is
our basis of investigation (https://sites.google.com/site/roselineproject). Roseline aims at enabling
robust, secure and efficient knowledge of time across the system stack.

Our second topic of collaboration is the refoundation of time modelling in high-level reactive and
scripting languages, for application to the above using uni-kernels to cut through system stacks. We
aim at applying the concepts of refinement types to formally specify and infer timing properties
in CPS models from different system design view-point (physical, hardware, software) and using
different levels of abstraction into multi-sorted 1st order logic (delta-decidability, linear arithmetic,
Boolean logic, temporal logic).

9.3. International Research Visitors
9.3.1. Visits to International Teams
9.3.1.1. Research stays abroad

Jean-Pierre Talpin was awarded a visiting researcher grant by USAF OSR in 2014. In this context, he visited
the Arlington and Falls Church VT campuses in Spring, Summer of 2015, and UC San Diego in Autumn 2015.

Thierry Gautier was invited to visit NUAA (Nanjing University of Aeronautics and Astronautics), Nanjing,
China, in September 2015.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific events organisation
10.1.1.1. Member of the organizing committees

Jean-Pierre Talpin is a member of the steering committee of the ACM-IEEE Conference on Methods and
Models for System Design (MEMOCODE).

https://sites.google.com/site/roselineproject

24 Activity Report INRIA 2015

10.1.2. Scientific events selection
10.1.2.1. Chair of conference program committees

Jean-Pierre Talpin co-chaired the AVICPS’15 workshop at RTSS’15

10.1.2.2. Member of the conference program committees

Jean-Pierre Talpin served the program committee of:

• MEMOCODE’15, 13th ACM-IEEE International Conference on Formal Methods and Models for
System Design

• ACVI’15, 2nd Workshop Architecture Centric Virtual Integration

• AVICPS’15, 5th Analytic Virtual Integration of Cyber-Physical Systems Workshop

• FACS’15, 12th International Conference on Formal Aspects of Component Software

• FTSCS’15, 8th International Workshop on Formal Techniques for Safety-Critical Systems

• ICESS’15, 12th International Conference on Embedded Software and Systems

• SCOPES’15, 18th International Workshop on Software and Compilers for Embedded Systems

• SAC’15, 30th ACM/SIGAPP Symposium on Applied Computing

Thierry Gautier served as program committee member for the 2015 Electronic System Level Synthesis
Conference, ESLsyn 2015 (http://ecsi.org//eslsyn).

10.1.2.3. reviewer

Thierry Gautier reviewed for ICCAD 2015 and MEMOCODE 2015.

10.1.3. Journal
10.1.3.1. Member of the editorial boards

Jean-Pierre Talpin is Associate Editor with the ACM Transactions for Embedded Computing Systems (TECS),
with the Springer journal on Frontiers of Computer Science (FCS), and with the EURASIP journal of
embedded systems (JES).

Jean-Pierre Talpin was Guest Editor of two special issues of the ACM TECS on Architecture-Centric Virtual
Integration and on Formal Methods for System Design.

10.1.3.2. reviewer

Jean-Pierre Talpin reviewed articles for Acta Informatica.

Thierry Gautier reviewed for Frontiers of Computer Science.

10.1.4. Invited talks
Jean-Pierre Talpin gave a lecture on "Sémantique formelle de modèles d’architecture" at the Ecole temps-réel
2015 in Rennes

10.1.5. Scientific expertise
Jean-Pierre Talpin is co-author with Huafeng Yu and Sandeep Shukla of two patents filed with the USPTO:

• T1834.10134US01 – A timing-oriented and architecture-centric system design using contracts

• T1834.10131US01 – Bottom-up approach for integrating models for software components using
contracts

http://ecsi.org//eslsyn

Project-Team TEA 25

10.2. Teaching - Supervision - Juries
10.2.1. Supervision

• Jean-Pierre Talpin is the supervisor of Simon Lunel’s thesis on "Timed contract algebras for correct
by construction real-time system design" and co-supervisor of Imré Frotier de la Mésselière with
Mines ParisTech until June 2015.

10.2.2. Juries
Jean-Pierre Talpin served as Referee (rapporteur) for the HDR Thesis defense of Claire Paggetti , entitled
"Programmation sûre de plates-formes embarquées de type multi/pluri-cœurs".

Jean-Pierre Talpin served as Referee (rapporteur) for the PhD. Thesis Defence of

• Elie Richa, Telecom ParisTech, entitled "Qualification of Source Code Generators in the Avionics
Domain : Automated Testing of Model Transformation Chains".

• Ahlem Triki, Université de Grenoble , entitled "Distributed Implementations of Timed Component-
based Systems".

• Yu Bai, TU Kaiserslautern , entitled "Model-based Design of Embedded Systems by Desynchroniza-
tion".

11. Bibliography
Major publications by the team in recent years

[1] L. BESNARD, T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Compilation of Polychronous Data Flow
Equations, in "Synthesis of Embedded Software", S. K. SHUKLA, J.-P. TALPIN (editors), Springer, 2010,
pp. 1-40 [DOI : 10.1007/978-1-4419-6400-7_1], http://hal.inria.fr/inria-00540493

[2] A. BOUAKAZ, J.-P. TALPIN. Design of Safety-Critical Java Level 1 Applications Using Affine Abstract Clocks,
in "International Workshop on Software and Compilers for Embedded Systems", St. Goar, Germany, June
2013, pp. 58-67 [DOI : 10.1145/2463596.2463600], https://hal.inria.fr/hal-00916487

[3] C. BRUNETTE, J.-P. TALPIN, A. GAMATIÉ, T. GAUTIER. A metamodel for the design of polychronous
systems, in "The Journal of Logic and Algebraic Programming", 2009, vol. 78, no 4, pp. 233 - 259, IFIP
WG1.8 Workshop on Applying Concurrency Research in Industry [DOI : 10.1016/J.JLAP.2008.11.005],
http://www.sciencedirect.com/science/article/pii/S1567832608000957

[4] A. GAMATIÉ, T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Polychronous Design of Embedded Real-Time
Applications, in "ACM Transactions on Software Engineering and Methodology (TOSEM)", April 2007, vol.
16, no 2, http://doi.acm.org/10.1145/1217295.1217298

[5] A. GAMATIÉ, T. GAUTIER. The Signal Synchronous Multiclock Approach to the Design of Distributed
Embedded Systems, in "IEEE Transactions on Parallel and Distributed Systems", 2010, vol. 21, no 5, pp.
641-657 [DOI : 10.1109/TPDS.2009.125], http://hal.inria.fr/inria-00522794

[6] A. GAMATIÉ, T. GAUTIER, P. LE GUERNIC. Synchronous design of avionic applications based on model
refinements, in "Journal of Embedded Computing (IOS Press)", 2006, vol. 2, no 3-4, pp. 273-289, http://hal.
archives-ouvertes.fr/hal-00541523

http://hal.inria.fr/inria-00540493
https://hal.inria.fr/hal-00916487
http://www.sciencedirect.com/science/article/pii/S1567832608000957
http://doi.acm.org/10.1145/1217295.1217298
http://hal.inria.fr/inria-00522794
http://hal.archives-ouvertes.fr/hal-00541523
http://hal.archives-ouvertes.fr/hal-00541523

26 Activity Report INRIA 2015

[7] P. LE GUERNIC, J.-P. TALPIN, J.-C. LE LANN. Polychrony for system design, in "Journal of Circuits, Systems
and Computers, Special Issue on Application Specific Hardware Design", June 2003, vol. 12, no 03, http://
hal.inria.fr/docs/00/07/18/71/PDF/RR-4715.pdf

[8] D. POTOP-BUTUCARU, Y. SOREL, R. DE SIMONE, J.-P. TALPIN. From Concurrent Multi-clock Programs to
Deterministic Asynchronous Implementations, in "Fundamenta Informaticae", January 2011, vol. 108, no 1-2,
pp. 91–118, http://dl.acm.org/citation.cfm?id=2362088.2362094

[9] J.-P. TALPIN, J. OUY, T. GAUTIER, L. BESNARD, P. LE GUERNIC. Compositional design of
isochronous systems, in "Science of Computer Programming", February 2012, vol. 77, no 2, pp. 113-
128 [DOI : 10.1016/J.SCICO.2010.06.006], http://hal.archives-ouvertes.fr/hal-00768341

Publications of the year
Articles in International Peer-Reviewed Journals

[10] V. JOLOBOFF, S. WANG, Y. DENG. Fast approximately timed simulation, in "WIT Transactions on
Information and Communication Technologies", March 2015, vol. 978-1-78466-054-3, no 68, 756 p. , https://
hal.archives-ouvertes.fr/hal-01081104

International Conferences with Proceedings

[11] V. JOLOBOFF, J.-F. MONIN, X. SHI. Towards Verified Faithful Simulation, in "Dependable Software
Engineering: Theories, Tools, and Applications", Nanjing, China, S. VERLAG (editor), November 2015,
https://hal.inria.fr/hal-01242963

[12] C. JUNKE, T. GAUTIER, L. BESNARD, J.-P. TALPIN. Integration of polychrony in the QGen model compiler,
in "ERTS’16 - European Congress on Embeddd Real-Rime Software and Systems", Toulouse, France, January
2016, https://hal.inria.fr/hal-01241808

[13] Best Paper
P. LE GUERNIC, T. GAUTIER, J.-P. TALPIN, L. BESNARD. Polychronous Automata, in "TASE 2015, 9th
International Symposium on Theoretical Aspects of Software Engineering", Nanjing, China, IEEE Computer
Society, September 2015, pp. 95-102 [DOI : 10.1109/TASE.2015.21], https://hal.archives-ouvertes.fr/hal-
01240440.

[14] V. C. NGO, J.-P. TALPIN, T. GAUTIER, L. BESNARD, P. LE GUERNIC. Modular translation validation of a
full-sized synchronous compiler using off-the-shelf verification tools (abstract), in "International Workshop on
Software and Compilers for Embedded Systems", St Goar, Germany, ACM, June 2015, https://hal.inria.fr/hal-
01148919

[15] V. C. NGO, J.-P. TALPIN, T. GAUTIER, P. LE GUERNIC. Translation Validation for Clock Transformations in
a Synchronous Compiler, in "FASE - ETAPS 2015", London, United Kingdom, Springer, April 2015, https://
hal.inria.fr/hal-01087795

[16] V. C. NGO, J.-P. TALPIN, T. GAUTIER. Translation Validation for Synchronous Data-flow Specification in the
SIGNAL Compiler, in "International Conference on Formal Techniques for Distributed Objects, Components
and Systems", Grenoble, France, Formal Techniques for Distributed Objects, Components, and Systems,

http://hal.inria.fr/docs/00/07/18/71/PDF/RR-4715.pdf
http://hal.inria.fr/docs/00/07/18/71/PDF/RR-4715.pdf
http://dl.acm.org/citation.cfm?id=2362088.2362094
http://hal.archives-ouvertes.fr/hal-00768341
https://hal.archives-ouvertes.fr/hal-01081104
https://hal.archives-ouvertes.fr/hal-01081104
https://hal.inria.fr/hal-01242963
https://hal.inria.fr/hal-01241808
https://hal.archives-ouvertes.fr/hal-01240440
https://hal.archives-ouvertes.fr/hal-01240440
https://hal.inria.fr/hal-01148919
https://hal.inria.fr/hal-01148919
https://hal.inria.fr/hal-01087795
https://hal.inria.fr/hal-01087795

Project-Team TEA 27

Springer, June 2015, vol. 9039, pp. 66-80 [DOI : 10.1007/978-3-319-19195-9_5], https://hal.inria.fr/hal-
01148901

[17] J. PRASHI, S. KUMAR SHUKLA, J.-P. TALPIN, H. YU. Mapping Functional Behavior onto Architectural
Model in a Model Driven Embedded System Design, in "Symposium On Applied Computing", Salamanca,
Spain, April 2015, https://hal.inria.fr/hal-01148908

[18] J.-P. TALPIN, P. JOUVELOT, S. KUMAR SHUKLA. Towards refinement types for time-dependent data-flow
networks, in "ACM-IEEE Conference on Methods and Models for System Design", Austin, United States, I.
C. SOCIETY (editor), September 2015, https://hal.inria.fr/hal-01241806

[19] H. YU, J. PRASHI, J.-P. TALPIN, S. K. SHUKLA, S. SHIRAISHI. Model-Based Integration for Automotive
Control Software, in "Digital Automation Conference", San Francisco, United States, ACM, June 2015, https://
hal.inria.fr/hal-01148905

Research Reports

[20] J.-P. TALPIN, P. JOUVELOT, S. KUMAR SHUKLA. Liquid Clocks - Refinement Types for Time-Dependent
Stream Functions, Inria Rennes - Bretagne Atlantique ; Inria, June 2015, no RR-8747, https://hal.inria.fr/hal-
01166350

https://hal.inria.fr/hal-01148901
https://hal.inria.fr/hal-01148901
https://hal.inria.fr/hal-01148908
https://hal.inria.fr/hal-01241806
https://hal.inria.fr/hal-01148905
https://hal.inria.fr/hal-01148905
https://hal.inria.fr/hal-01166350
https://hal.inria.fr/hal-01166350

