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2. Overall Objectives

2.1. Overall Objectives
Our research addresses the broad application domain of cryptography and cryptanalysis from the algorithmic
perspective. We study all the algorithmic aspects, from the top-level mathematical background down to the
optimized high-performance software implementations. Several kinds of mathematical objects are commonly
encountered in our research. Some basic ones are truly ubiquitous: integers, finite fields, polynomials, real
and complex numbers. We also work with more structured objects such as number fields, algebraic curves, or
polynomial systems. In all cases, our work is geared towards making computations with these objects effective
and fast.

The mathematical objects we deal with are of utmost importance for the applications to cryptology, as they
are the background of the most widely developed cryptographic primitives, such as the RSA cryptosystem or
the Diffie–Hellman key exchange. The two facets of cryptology—cryptography and cryptanalysis—are central
to our research. The key challenges are the assessment of the security of proposed cryptographic primitives,
through the study of the cornerstone problems, which are the integer factorization and discrete logarithm
problems, as well as the optimization work in order to enable cryptographic implementations that are both
efficient and secure.

Among the research themes we set forth, two are guided by the most important mathematical objects used
in today’s cryptography, and two others are rather guided by the technological background we use to address
these problems.

• Extended NFS family. A common algorithmic framework, called the Number Field Sieve (NFS),
addresses both the integer factorization problem as well as the discrete logarithm problem over finite
fields. We have numerous algorithmic contributions in this context, and develop software to illustrate
them.

We plan to improve on the existing state of the art in this domain by researching new algorithms, by
optimizing the software performance, and by demonstrating the reach of our software with highly
visible computations.

• Algebraic curves and their Jacobians. We develop algorithms and software for computing essential
properties of algebraic curves for cryptology, eventually enabling their widespread cryptographic
use.

One of the challenges we address here is point counting. In a wider perspective, we also study the
link between abelian varieties over finite fields and principally polarized abelian varieties over fields
of characteristic zero, together with their endomorphism ring. In particular, we work in the direction
of making this link an effective one. We are also investigating various approaches for attacking the
discrete logarithm problem in Jacobians of algebraic curves.

• Arithmetic. Our work relies crucially on efficient arithmetic, be it for small or large sizes. We work
on improving algorithms and implementations, for computations that are relevant to our application
areas.

• Polynomial systems. It is rather natural with algebraic curves, and occurs also in NFS-related
contexts, that many important challenges can be represented via polynomial systems, which have
structural specificities. We intend to develop algorithms and tools that, when possible, take advantage
of these specificities.
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As represented by Figure 1, the first two challenges above interact with the latter two, which are also research
topics in their own right. Both algorithmic and software improvements are the necessary ingredients for
success. The different axes of our research form thus a coherent set of research directions, where we apply a
common methodology.

Extended NFS family Algebraic curves

Arithmetic

Polynomial systemsSmall characteristic
DLP algorithms

DLP on E(F2n);
Decomposition;
Point counting.

Cado-NFS;
Linear algebra.

Explicit formulae;
Isogenies, End(J);
Abel–Jacobi, Θ(z).

Figure 1. Visual representation of the thematic organization of CARAMBA.

We consider that the impact of our research on cryptology in general owes a lot to the publication of concrete
practical results. We are strongly committed to making our algorithms available as software implementations.
We thus have several long-term software development projects that are, and will remain, parts of our research
activity.

2.2. Scientific Grounds
Public-key cryptography is our main application target. We are interested in the study of the cryptographic
primitives that serve as a basis for the most widespread protocols.

Since the early days of public-key cryptography, and through the practices and international standards that
have been established for several decades, the most widespread cryptographic primitives have been the RSA
cryptosystem, as well as the Diffie–Hellman key exchange using multiplicative groups of finite fields. The level
of security provided by these cryptographic primitives is related to the hardness of the underlying mathematical
problems, which are integer factorization and the discrete logarithm problem. The complexity of attacking
them is known to be subexponential in the public key size, and more precisely written as LN (1/3, c) for
factoring an integer N , where the L notation stands for

LN (α, c) = exp
(
c(1 + o(1))(logN)

α
(log logN)

1−α
)
.

This complexity is achieved with the Number Field Sieve (NFS) algorithm and its many derivatives. This
means that as the desired security level s grows, the matching public key size grows roughly like s3. As to
how these complexity estimates translate into concrete assessments and recommendations, the hard facts are
definitely the computational records that are set periodically by academics, and used as key ingredients by
governmental agencies emitting recommendations for the industry [36], [23].

Software for NFS is obviously the entry point to computational records. Few complete NFS implementations
exist, and their improvement is of crucial importance for better assessment of the hardness of the key cryp-
tographic primitives considered. Here, “improvement” may be understood in many ways: better algorithms
(outperforming the NFS algorithm as a whole is certainly a tremendous improvement, but replacing one of its
numerous substeps is one, too), better implementations, better parallelization, or better adaptation to suitable
hardware. The numerous sub-algorithms of NFS strongly depend on arithmetic efficiency. This concerns vari-
ous mathematical objects, from integers and polynomials to ideals in number fields, lattices, or linear algebra.
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Since the early 1990’s, no new algorithm improved on the complexity of NFS. As it is used in practice,
the algorithm has complexity LN (1/3, (64/9)

1/3
) for factoring general integers or for computing discrete

logarithms in prime fields of similar size (the so-called “multiple polynomial” variants have better complexity
by a very thin margin, but this has not yet yielded to a practical improvement). Given the wide use of the
underlying hard problems, progress in this area is of utmost importance. In 2013, several new algorithms have
modified the complexity of the discrete logarithm problem in small characteristic fields, which is a closely
related problem, reaching a heuristic quasi-polynomial time algorithm [24], [31], [30], [29]. A stream of
computational records have been obtained since 2013 using these algorithms, using in particular techniques
from polynomial system solving, or from Galois theory. These new algorithms, together with these practical
realizations, have had a very strong impact of course on the use of small-characteristic fields for cryptography
(now clearly unsuitable), as well as on pairings on elliptic curves over small-characteristic finite fields (which
are also no longer considered safe to use).

While it is relatively easy to set public key sizes for RSA or Diffie–Hellman that are “just above” the reach
of academic computing power with NFS, the sensible cryptographic choice is to aim at security parameters
that are of course well above this feasibility limit, in particular because assessing this limit precisely is in fact
a very difficult problem. In line with the security levels offered by symmetric primitives such as AES-128,
public key sizes should be chosen so that with current algorithmic knowledge, an attacker would need at least
2128 elementary operations to solve the underlying hard problem. Such security parameters would call for
RSA key sizes above 3,000 bits, which is seldom seen, except in contexts where computing power is plentiful
anyway.

Since the mid-1980’s, elliptic curves, and more generally Jacobians of algebraic curves, have been proposed
as alternative mathematical settings for building cryptographic primitives.

A genus-1 curve

y2 = x3 + ax+ b.

A genus-2 curve

y2 = x5 + a4x
4 + · · ·+ a0.

Figure 2.

The discrete logarithm problem in these groups is formidably hard, and in comparison to the situation with the
traditional primitives mentioned above, the cryptanalysis algorithms are such that the appropriate public-key
size grows only linearly with the desired security level: a 256-bit public key, using algebraic curves, is well
suited to match the hardness of AES-128. This asset makes algebraic curves more attractive for the future of
public-key cryptography.

Challenges related to algebraic curves in cryptology are rather various, and call for expertise in several areas.
Suggesting curves to be used in the cryptographic context requires to solve the point counting problem. This
may be done by variants of the Schoof–Elkies–Atkin algorithm and its generalizations (which, in genus
2, require arithmetic modulo multivariate systems of equations), or alternatively the use of the complex
multiplication method, a rich theory that opens the way to several problems in computational number theory.

The long-awaited transition from the legacy primitives to primitives based on curves is ready to happen, only
circumstantially slowed down presently by the need to agree on a new set of elliptic curves (not because
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of any attack, but because of skepticism over how the currently widespread ones have been generated). The
Internet Research Task Force has completed in 2015 a standardization proposal [34]. In this context, the
recommended curves are not of the complex multiplication family, and enjoy instead properties that allow fast
implementation, and avoid a few implementation difficulties. Those are also naturally chosen to be immune to
the few known attacks on the discrete logarithm problem for curves. No curve of genus 2 has made its way to
the standardization process so far, however one candidate exists for the 128-bit security level [28].

The discrete logarithm problem on curves is very hard. Some results were obtained however for curves over
extension fields, using techniques such as the Weil descent, or the point decomposition problem. In this
context, the algorithmic setup connects to polynomial system solving, fast arithmetic, and linear algebra.

Another possible route for transitioning away from RSA and finite field-based cryptography is suggested,
namely the switch to the “post-quantum” cryptographic primitives. Public-key cryptographic primitives that
rely on mathematical problems related to Euclidean lattices or coding theory have an advantage: they would
resist the potential advent of a quantum computer. Research on these topics is quite active, and there is no
doubt that when the efficiency challenges that are currently impeding their deployment are overcome, the
standardization of some post-quantum cryptographic primitives will be a worthwhile addition to the general
cryptographic portfolio. The NSA has recently devoted an intriguing position text to this topic [37] (for
a glimpse of some of the reactions within the academic community, the reference [33] is useful). Post-
quantum cryptography, as a research topic, is complementary to the topics we address most, which are
NFS and algebraic curves. We are absolutely confident that, at the very least for the next decade, primitives
based on integer factoring, finite fields, and algebraic curves will continue to hold the lion’s share in the
cryptographic landscape. We also expect that before the advent of standardized and widely developed post-
quantum cryptographic primitives, the primitives based on algebraic curves will become dominant (despite the
apparent restraint from the NSA on this move).

We acknowledge that the focus on cryptographic primitives is part of a larger picture. Cryptographic primitives
are part of cryptographic protocols, which eventually become part of cryptographic software. All these steps
constitute research topics in their own right, and need to be scrutinized (as part of independent research efforts)
in order to be considered as dependable building blocks. This being said, the interplay of the different aspects,
from primitives to protocols, sometimes spawns very interesting and fruitful collaborations. A very good
example of this is the LogJam attack [22].

3. Research Program

3.1. The Extended Family of the Number Field Sieve
The Number Field Sieve (NFS) has been the leading algorithm for factoring integers for more than 20 years,
and its variants have been used to set records for discrete logarithms in finite fields. It is reasonable to
understand NFS as a framework that can be used to solve various sorts of problems. Factoring integers and
computing discrete logarithms are the most prominent for the cryptographic observer, but the same framework
can also be applied to the computation of class groups.

The state of the art with NFS is built from numerous improvements of its inner steps. In terms of algorithmic
improvements, the recent research activity on the NFS family has been rather intense. Several new algorithms
have been discovered in over the 2014–2016 period, and their practical reach has been demonstrated by actual
experiments.

The algorithmic contributions of the CARAMBA members to NFS would hardly be possible without access to
a dependable software implementation. To this end, members of the CARAMBA team have been developing
the Cado-NFS software suite since 2007. Cado-NFS is now the most widely visible open source implementa-
tion of NFS, and is a crucial platform for developing prototype implementations for new ideas for the many
sub-algorithms of NFS. Cado-NFS is free software (LGPL) and follows an open development model, with
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publicly accessible development repository and regular software releases. Competing free software imple-
mentations exist, such as msieve, developed by J. Papadopoulos. In Lausanne, T. Kleinjung develops his own
code base, which is unfortunately not public.

The workplan of CARAMBA on the topic of the Number Field Sieve algorithm and its cousins includes the
following aspects:

• Pursue the work on NFS, which entails in particular making it ready to tackle larger challenges.
Several of the important computational steps of NFS that are currently identified as stumbling
blocks will require algorithmic advances and implementation improvements. We will illustrate the
importance of this work by computational records.

• Work on the specific aspects of the computation of discrete logarithms in finite fields.
• As a side topic, the application of the broad methodology of NFS to the treatment of “ideal lattices”

and their use in cryptographic proposals based on Euclidean lattices is also relevant.

3.2. Algebraic Curves in Cryptology
The challenges associated to algebraic curves in cryptology are diverse, because of the variety of mathematical
objects to be considered. These challenges are also connected to each other. On the cryptographic side,
efficiency matters. As of 2016, the most widely used set of elliptic curves, the so-called NIST curves, are
in the process of being replaced by a new set of candidate elliptic curves for future standardization. This is the
topic of RFC 7748 [34].

On the cryptanalytic side, the discrete logarithm problem on (Jacobians of) curves has resisted all attempts
for many years. Among the currently active topics, the decomposition algorithms raise interesting problems
related to polynomial system solving, as do attempts to solve the discrete logarithm problem on curves defined
over binary fields. In particular, while it is generally accepted that the so-called Koblitz curves (base field
extensions of curves defined over GF(2)) are likely to be a weak class among the various curve choices, no
concrete attack supports this claim fully.

The research objectives of CARAMBA on the topic of algebraic curves for cryptology are as follows:
• Work on the practical realization of some of the rich mathematical theory behind algebraic curves.

In particular, some of the fundamental mathematical objects have potentially important connections
to the broad topic of cryptology: Abel-Jacobi map, Theta functions, computation of isogenies,
computation of endomorphisms, complex multiplication.

• Improve the point counting algorithms so as to be able to tackle larger problems. This includes
significant work connected to polynomial systems.

• Seek improvements on the computation of discrete logarithms on curves, including by identifying
weak instances of this problem.

3.3. Computer Arithmetic
Computer arithmetic is part of the common background of all team members, and is naturally ubiquitous in
the two previous application domains mentioned. However involved the mathematical objects considered may
be, dealing with them first requires to master more basic objects: integers, finite fields, polynomials, and real
and complex floating-point numbers. Libraries such as GNU MP, GNU MPFR, GNU MPC do an excellent job
for these, both for small and large sizes (we rarely, if ever, focus on small-precision floating-point data, which
explains our lack of mention of libraries relevant to it).

Most of our involvement in subjects related to computer arithmetic is to be understood in connection to our
applications to the Number Field Sieve and to abelian varieties. As such, much of the research work we
envision will appear as side-effects of developments in these contexts. On the topic of arithmetic work per se:

• We will seek algorithmic and practical improvements to the most basic algorithms. That includes for
example the study of advances algorithms for integer multiplication, and their practical reach.

• We will continue to work on the arithmetic libraries in which we have crucial involvement, such as
GNU MPFR, GNU MPC, GF2X, MPFQ, and also GMP-ECM.



Project-Team CARAMBA 7

3.4. Polynomial Systems
Systems of polynomial equations have been part of the cryptographic landscape for quite some time, with
applications to the cryptanalysis of block and stream ciphers, as well as multivariate cryptographic primitives.

Polynomial systems arising from cryptology are usually not generic, in the sense that they have some distinct
structural properties, such as symmetries, or bi-linearity for example. During the last decades, several results
have shown that identifying and exploiting these structures can lead to dedicated Gröbner bases algorithms
that can achieve large speedups compared to generic implementations [27], [26].

Solving polynomial systems is well done by existing software, and duplicating this effort is not relevant.
However we develop test-bed open-source software for ideas relevant to the specific polynomial systems that
arise in the context of our applications. The TinyGB software, that we describe further in 6.3, is our platform
to test new ideas.

We aim to work on the topic of polynomial system solving in connection with our involvement in the
aforementioned topics.

• We have high expertise on Elliptic Curve Discrete Logarithm Problem on small characteristic finite
fields, because it also involves highly structured polynomial systems. While so far we have not
contributed to this hot topic, this could of course change in the future.

• Recent hirings (Minier) are likely to lead the team to study particular polynomial systems in context
which are more related to symmetric key cryptography.

• More centered on polynomial systems per se, we will mainly pursue the study of the specificities of
the polynomial systems that are strongly linked to our targeted applications, and for which we have
significant expertise [27], [26]. We also want to see these recent results provide practical benefits
compared to existing software, in particular for systems relevant for cryptanalysis.

4. Application Domains

4.1. Better Awareness and Avoidance of Cryptanalytic Threats
Our study of the Number Field Sieve family of algorithms aims at showing how the threats underlying various
supposedly hard problems are real. Our record computations, as well as new algorithms, contribute to having
a scientifically accurate assessment of the feasibility limit for these problems, given academic computing
resources. The data we provide in this way is a primary ingredient for government agencies whose purpose
includes guidance for the choice of appropriate cryptographic primitives. For example the French ANSSI
1, German BSI, or the NIST 2 in the United States base their recommendations on such computational
achievements.

The software we make available to achieve these cryptanalytic computations also allows us to give cost esti-
mates for potential attacks to cryptographic systems that are taking the security/efficiency/legacy compatibility
trade-offs too lightly. Attacks such as LogJam [22] are understood as being serious concerns thanks to our con-
vincing proof-of-concepts. In the LogJam context, this impact has led to rapid worldwide security advisories
and software updates that eventually defeat some potential intelligence threats and improve confidentiality of
communications.

1In [23], the minimal recommended RSA key size is 2048 bits for an usage up to 2030. See also Annex B, in particular Section B.1
“Records de calculs cryptographiques”.

2The work [32] is one of the only two academic works cited by NIST in the initial version (2011) of the report [36].
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4.2. Promotion of Better Cryptography
We also promote the switch to algebraic curves as cryptographic primitives. Those offer nice speed and ex-
cellent security, while primitives based on elementary number theory (integer factorization, discrete logarithm
in finite fields), which underpin e.g., RSA, are gradually forced to adopt unwieldy key sizes so as to comply
with the desired security guarantees of modern cryptography. Our contributions to the ultimate goal of hav-
ing algebraic curves eventually take over the cryptographic landscape lie in our fast arithmetic contributions,
our contributions to the point counting problem, and more generally our expertise on the diverse surrounding
mathematical objects, or on the special cases where the discrete logarithm problem is not hard enough and
should be avoided.

We also promote cryptographically sound electronic voting, for which we develop the Belenios prototype
software, (licensed under the AGPL). It depends on research made in collaboration with the PESTO team, and
provides stronger guarantees than current state of the art.

4.3. Key Software Tools
The vast majority of our work is eventually realized as software. We can roughly categorize it in two groups.
Some of our software covers truly fundamental objects, such as the GNU MPFR, GNU MPC, GF2X, or
MPFQ packages. To their respective extent, these software packages are meant to be included or used in
broader projects. For this reason, it is important that the license chosen for this software allows proper reuse,
and we favor licenses such as the LGPL, which is not restrictive. We can measure the impact of this software
by the way it is used in e.g., the GNU Compiler Collection (GCC), in Victor Shoup’s Number Theory Library
(NTL), or in the Sage computer algebra system. The availability of these software packages in most Linux
distributions is also a good measure for the impact of our work.

We also develop more specialized software. Our flagship software package is Cado-NFS, and we also
develop some others with various levels of maturity, such as GMP-ECM, CMH, or Belenios, aiming at
quite diverse targets. Within the lifespan of the CARAMBA project, we expect more software packages of
this kind to be developed, specialized towards tasks relevant to our research targets: important mathematical
structures attached to genus 2 curves, generation of cryptographically secure curves, or tools for attacking
cryptographically hard problems. Such software both illustrates our algorithms, and provides a base on which
further research work can be established. Because of the very nature of these specialized software packages
as research topics in their own right, needing both to borrow material from other projects, and being possible
source of inspiring material for others, it is again important that these be developed in a free and open-source
development model.

5. Highlights of the Year

5.1. Highlights of the Year
The Caramba project-team was created on January 1st, 2016!

In October 2016, Pierrick Gaudry and Emmanuel Thomé, together with colleagues from the University of
Pennsylvania (USA), have performed a discrete logarithm computation of a 1024-bit trapdoored prime [18].

6. New Software and Platforms

6.1. Belenios
Belenios - Verifiable online voting system
KEYWORD: E-voting
FUNCTIONAL DESCRIPTION
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Belenios is an online voting system that provides confidentiality and verifiability. End-to-end verifiability
relies on the fact that the ballot box is public (voters can check that their ballots have been taken into account)
and on the fact that the tally is publicly verifiable (anyone can recount the votes). Confidentiality relies on the
encryption of the votes and the distribution of the decryption key.

Belenios builds upon Helios, a voting protocol used in several elections. The main design enhancement of
Belenios vs Helios is that the ballot box can no longer add (fake) ballots, due to the use of credentials.

In 2016 our online platform has been used for several elections, for instance: representatives at the “comité de
centre” in several Inria research centers, at the “conseil de laboratoire” at IRISA, and for the head of the “GT
Calcul Formel” of the GDR-IM.

• Participants: Pierrick Gaudry, Stéphane Glondu and Véronique Cortier
• Partners: CNRS - Inria
• Contact: Stéphane Glondu
• URL: http://belenios.gforge.inria.fr/

6.2. Kalray-ECM
KEYWORDS: Factorization - Kalray
FUNCTIONAL DESCRIPTION

Implementation of the factorization algorithm based on elliptic curves (ECM) for the MPPA-256 Kalray
processor.

• Authors: Jérémie Detrey, Pierrick Gaudry and Masahiro Ishii
• Partner: Nara Institute of Science and Technology, Japan
• Contact: Jérémie Detrey
• URL: https://gforge.inria.fr/projects/kalray-ecm

6.3. TinyGB
• Author: Pierre-Jean Spaenlehauer
• Contact: Pierre-Jean Spaenlehauer
• URL: https://gforge.inria.fr/projects/tinygb/
• Licence: LGPL-3.0+

TinyGB is a software implementing tools for computing Gröbner bases of ideals in polynomial rings over finite
fields. It has been released in April 2016.

It is not competitive with state-of-art software for computations over small prime fields. However, for
polynomial systems over Z/pZ, with p > 231, its timings are competitive with the computer algebra system
Magma-2.22-2 (although the Magma is much better in terms of memory requirements). This is due to the
fact that TinyGB relies on the library MPFQ (developed in the Caramba team) for the efficient arithmetic over
large prime fields. For instance, computing the grevlex Gröbner basis of a system of 13 dense homogeneous
quadratic equations in 13 variables over the field Z/(231 + 11)Z can be achieved within 907 seconds with
TinyGB, whereas Magma-2.22-2 requires 4459 seconds (on an Intel Core i5-4590@3.30GHz).

The distribution of TinyGB contains the libraries OpenBLAS, FFLAS-FFPACK and MPFQ.

7. New Results

7.1. Collecting Relation for the Number Field Sieve in Medium Characteristic
Participants: Pierrick Gaudry, Laurent Grémy [contact], Marion Videau.

http://belenios.gforge.inria.fr/
https://gforge.inria.fr/projects/kalray-ecm
https://gforge.inria.fr/projects/tinygb/
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We study the relation collection of NFS in medium characteristic, especially in GF(p6) [4]. We compare
different polynomial selections that affect drastically the relation collection step, by giving the explicit formula
in 3 dimensions of two functions to select the best polynomials. For the relation collection, we design new
sieve algorithms in 3 dimensions and do the practical comparison of the different polynomial selections for
different p. Finally, we perform the relation collection step for a field of 389 bits in 800 days, the largest
computed relation collection in this type of field.

7.2. Recent Progress on the Elliptic Curve Discrete Logarithm Problem
Participant: Pierrick Gaudry [contact].

A survey on the elliptic curve discrete logarithm problem has been written in collaboration with S. Galbraith
(Auckland). It appeared in a special issue of DCC [3], for the 25th birthday of the journal.

7.3. A Modified Block Lanczos Algorithm with Fewer Vectors
Participant: Emmanuel Thomé [contact].

In the context of a book project entitled “Topics in Computational Number Theory inspired by Peter L.
Montgomery” (edited by Joppe W. Bos and Arjen K. Lenstra), E. Thomé contributed a chapter on “the Block
Lanczos algorithm” (owed to Peter L. Montgomery [35]). This was the occasion to rework and streamline the
presentation of the block Lanczos algorithm. In fact, several new characteristics of the algorithm were obtained
in this process: a version adapted to homogeneous systems, an improvement on the memory footprint of the
algorithm, and a heuristic justification for the success probability of the algorithm. While the collated book is
still not published yet (publication is expected in 2017), the chapter is published in preprint form as [14].

7.4. Factorization of RSA-220 with CADO-NFS
Participants: Pierrick Gaudry, Emmanuel Thomé, Paul Zimmermann [contact].

In May 2016 we have completed with CADO-NFS the factorization of RSA-220 [15], which was started
in December 2013. The sieving was completed in September 2014, and the first phase of the linear algebra
(krylov) in October 2014. However we had to improve CADO-NFS to be able to run the lingen sub-step
of the linear algebra. This was completed in January 2016, and the end of the factorization ran smoothly. This
factorization is the largest one done with CADO-NFS, and the third largest one overall, after RSA-768 (232
digits) factored in December 2009, and 3697 + 1 (221 digits) factored by NFS@Home in February 2015.

7.5. Linear Time Interactive Certificates for the Minimal Polynomial and the
Determinant of a Sparse Matrix
Participant: Emmanuel Thomé [contact].

Following discussion with Jean-Guillaume Dumas which began in March 2015 on the topic of computing
checkpoints for the krylov step of the block Wiedemann algorithm, we determined that a scheme very similar
to this checkpointing technique (originally designed to spot data corruption errors) was able to provide a
proving algorithm —in the cryptographic sense— for the computation of the minimal polynomial of a sparse
matrix, or for its determinant. This led to a joint paper with Jean-Guillaume Dumas, Erich Kaltofen and Gilles
Villard, published at ISSAC 2016 [8].

7.6. A Kilobit Hidden SNFS Discrete Logarithm Computation
Participants: Pierrick Gaudry, Emmanuel Thomé [contact].
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In collaboration with Josh Fried and Nadia Heninger from University of Pennsylvania, we worked on discrete
logarithm computation modulo primes of a special form, amenable to computation with the Special Number
Field Sieve (SNFS). Our original interest in this question came from the observation that primes which are
conspicuous SNFS targets are found in the wild, as we observed in the context of the LogJam attack in 2015.
We first ran a test computation on such a prime in March (p = 2784−228 + 1027679, found in the LibTomcrypt
library. For modern cryptographic uses, such a prime qualifies undoubtedly as “not good’). Based on the
computational data obtained, and on further work, we expanded to larger sizes. We crafted a prime which was
chosen as a “best case” for SNFS, yet with the property that this SNFS-optimality cannot be detected. We call
such primes “trapdoored primes”. We showed that computing discrete logarithms modulo trapdoored primes
is entirely feasible for 1024-bit primes. In the article [18], we also showed that there are primes which are
found in the wild (e.g., in RFC 5114) which could plausibly be trapdoored primes, given that no justification
of their origin is provided. In fact, while cryptographic best practice is to provide “rigid” choices whenever
random choices are to be set publicly, the sad truth is that random data lacking a justification is found quite
often.

In the context of [18], we also put into practice an improvement of the implementation of the block Wiedemann
algorithm in Cado-NFS, that allowed to reduce the time for the linear algebra computation significantly.

7.7. Solving Discrete Logarithms on a 170-bit MNT Curve by Pairing
Reduction
Participants: Aurore Guillevic [contact], Emmanuel Thomé [contact].

The project of computing discrete logarithms in finite fields of the form GF(pn) for small n comes from the
need to estimate precisely the security level of pairing-based cryptography. After the two record computations
of 2014 and 2015 in GF(p2) of 160 and 180 decimal digits (532 and 597 bits) we investigated GF(p3) and
took a real-life elliptic curve proposed in 2001 by Miyaji, Nakabayashi and Takano (MNT-3 curve). Thanks
to a pairing computation (in few milliseconds), a discrete logarithm computation in the 170-bit MNT-3 curve,
which is hard, can be done instead by a discrete logarithm computation in GF(p3) of 508 bits, which is much
faster. This computation involved Aurore Guillevic (post-doctoral fellow in 2016 at the University of Calgary,
Canada), Emmanuel Thomé, and François Morain (LIX/École Polytechnique/Inria Saclay, GRACE team). The
computation took 2.97 years in total: 1.81 years for the relation collection, 1.16 years for the linear algebra
and 2 days for the individual discrete logarithm computation. The work was presented at the Selected Areas
in Cryptography conference in Newfoundland, Canada, and published in the proceedings [11].

The next step will be to adapt the new NFS variant called Extended-Tower-NFS to attack MNT-4 and MNT-6
curves, which means computing discrete logarithms in GF(p4) and GF(p6). This new challenge will require
the higher dimension sieve developed by Laurent Grémy.

7.8. Computing Jacobi’s Theta in Quasi-linear Time
Participant: Hugo Labrande [contact].

Most of the results have been obtained in 2015. The article was accepted for publication in 2016 [5].

We study the multiprecision computation of the theta function in genus 1, i.e., the Jacobi theta function. The
main result is that θ(z, τ) can be computed in time that is quasi-linear in the precision P , using an algorithm
which follows the same strategy as the case of theta-constants (Dupont, 2006). A thorough analysis of the
precision loss is given in order to prove correctness.

Along with this work, we have publicly released an open source implementation of the algorithm in C (using
the GNU MPC library). This implementation shows this algorithm is faster than a more naive approach for
precisions greater than 300,000 digits.

7.9. Computing Theta Functions in Quasi-linear Time in Genus 2 and Above
Participants: Hugo Labrande, Emmanuel Thomé [contact].
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We study the multiprecision computation of the theta function in genus 2. We extend the quasi-linear algorithm
for Jacobi’s theta to genus 2, generalizing the approach we undertook in previous work; this required finding
workarounds, most notably for the choice of signs and for being able to apply Newton’s method. We also give
an outline of an algorithm for the theta function in genus g, but the workarounds we found in genus 2 would
need to be generalized to this case before claiming any sort of result in genus g [6].

We released along with this work a Magma implementation of our fast genus 2 algorithm, along with an
implementation of a somewhat naive (but previously state-of-the-art) algorithm for genus 2. Our results show
that our algorithm is faster than the naive one for precisions greater than 3,000 digits.

7.10. Computing Small Certificates of Inconsistency of Quadratic Fewnomial
Systems
Participant: Pierre-Jean Spaenlehauer [contact].

This is a joint work with Jean-Charles Faugère (Inria, EPI Polsys) and Jules Svartz (Inria EPI Polsys/Ministère
Éducation Nationale). Most of the results have been obtained in 2015. This work was finalized and published
in 2016 [10].

We study how Gröbner bases algorithms can be adapted to compute certificates that quadratic fewnomial
systems (i.e., systems in which only a small subset of monomials occur in the equations) do not have any
solution. The main results are algorithms and complexity bounds which take into account the sparsity of the
monomial support of the system, under some mild genericity assumptions on the coefficients of the systems.

7.11. Critical Point Computations on Smooth Varieties: Degree and
Complexity Bounds
Participant: Pierre-Jean Spaenlehauer [contact].

This is a joint work with Mohab Safey El Din (Univ. Paris 6, EPI Polsys). This work led to a publication in
the proceedings of the ISSAC conference [13].

Let V ⊂ Cn be an equidimensional algebraic set and g be an n-variate polynomial with rational coefficients.
Computing the critical points of the map that evaluates g at the points of V is a cornerstone of several
algorithms in real algebraic geometry and optimization. Under the assumption that the critical locus is finite
and that the projective closure of V is smooth, we provide sharp upper bounds on the degree of the critical
locus which depend only on deg(g) and the degrees of the generic polar varieties associated to V . Using
these degree bounds and an algorithm due to Bank, Giusti, Heintz, Lecerf, Matera and Solernó, we derive
complexity bounds which are quadratic in the degree bounds (up to logarithmic factors) and polynomial in all
the other parameters of the problem.

7.12. Constructing Sparse Polynomial Systems with Many Positive Solutions
Participant: Pierre-Jean Spaenlehauer [contact].

This is a joint work with Frédéric Bihan (Univ. de Savoie, LAMA). Most of the results have been obtained in
2015 [25]; we improved the results during 2016.

Consider a regular triangulation of the convex-hull P of a set A of n points in Rd, and a real matrix C of size
d× n. A version of Viro’s method allows to construct from these data an unmixed polynomial system with
support A and coefficient matrix C whose number of positive solutions is bounded from below by the number
of d-simplices which are positively decorated byC (a d-simplex is positively decorated byC if the d× (d+ 1)
sub-matrix of C corresponding to the simplex has a kernel vector all coefficients of which are positive). We
show that all the d-simplices of a triangulation can be positively decorated if and only if the triangulation
is balanced, which in turn is equivalent to the fact that its dual graph is bipartite. This allows us to identify,
among classical families, monomial supports which admit maximally positive systems, giving some evidence
in favor of a conjecture due to Bihan. We also use this technique in order to construct fewnomial systems with
many positive solutions.
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7.13. Modular Arithmetic and ECM on the Kalray MPPA-256 Processor
Participants: Jérémie Detrey [contact], Pierrick Gaudry.

In collaboration with Masahiro Ishii from the Nara Institute of Science and Technology, Nara (Japan) we have
developed a fast modular arithmetic library for the Kalray MPPA-256, which is a many-core processor with a
VLIW architecture. Carefully written assembly allowed us to obtain a close to optimal use of the computing
units of all the cores for the multiprecision multiplication of integers. As an application, the ECM factoring
algorithm was implemented on top of our library. The performances are very interesting compared to other
architectures like GPU, especially in terms of power consumption [19].

7.14. Determinism and Computational Power of Real Measurement-based
Quantum Computation
Participant: Luc Sanselme [contact].

This is a joint work with Simon Perdrix (CNRS, Carte Team at Loria). This work has begun in 2014.

The starting point for this work was about a problem in «Quantum cloud computing». A person with a classical
resource wants to perform a quantum computation. To do so he asks some quantum resources to perform his
computation. The difficult part is that he wants to be sure that the quantum resources he asks to perform
his computation don’t cheat and return him the good results. This kind of «Quantum cloud computing» is
called interactive proofs. The quantum resources are called the provers. Real Measurement-based quantum
computing (MBQC) has been used for interactive proofs by McKague.

Measurement-based quantum computing (MBQC) is a universal model for quantum computation. The combi-
natorial characterization of determinism in this model, powered by measurements, and hence, fundamentally
probabilistic, is the cornerstone of most of the breakthrough results in this field. To answer our question, we
needed to develop some tools in this MBQC field. The most general known sufficient condition for a deter-
ministic MBQC to be driven is that the underlying graph of the computation has a particular kind of flow
called Pauli flow. The necessity of the Pauli flow was an open question. We showed that the Pauli flow is
necessary for real-MBQC, and not in general providing counter-examples for (complex) MBQC. We explored
the consequences of this result for real MBQC and its applications. Real MBQC and more generally real
quantum computing is known to be universal for quantum computing. In the interactive proofs developed by
McKague, the two-prover case corresponds to real-MBQC on bipartite graphs. While (complex) MBQC on
bipartite graphs are universal, the universality of real MBQC on bipartite graphs was an open question. We
showed that real bipartite MBQC is not universal: we proved that all measurements of real bipartite MBQC
can be parallelized. Therefore, real bipartite MBQC leads to constant depth computations. As a consequence,
McKague techniques cannot lead to two-prover interactive proofs.

7.15. Fast Integer Multiplication Using Generalized Fermat Primes
Participants: Svyatoslav Covanov [contact], Emmanuel Thomé.

The paper [17] describes an algorithm for the multiplication of two n-bit integers. It achieves the best
asymptotic complexity boundO(n log n · 4log∗ n) under a hypothesis on the distribution of generalized Fermat
primes of the form r2

λ

+ 1. This hypothesis states that there always exists a sufficiently small interval in which
we can find such a prime. Experimental results give evidence in favor of this assumption. This article has been
submitted to Mathematics of Computation and some corrections, that have been requested, are processed
currently.

7.16. Search for Primitive Trinomials
Participant: Paul Zimmermann [contact].

This is a joint work with Richard Brent (University of Newcastle, Australia).
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We have performed a search for primitive trinomials xr + xs + 1 over GF(2) of degree r = 42 643 801,
r = 43 112 609, r = 57 885 161 and r = 74 207 281, which are the new Mersenne prime exponents found
by the GIMPS project. We found respectively 5, 4, 0 and 3 primitive trinomials [16], for example the three
primitive trinomials of degree 74 207 281 are (with their reverse trinomials):

x74207281 + x9156813 + 1, x74207281 + x9999621 + 1, x74207281 + x30684570 + 1.

8. Bilateral Contracts and Grants with Industry

8.1. Training and Consulting with HTCS
The training and consulting activities begun in 2012 with the HTCS company have been pursued, and the
existing contract has been renewed in identical form.

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. PEPS JCJC INS2I SPICE

The SPICE proposal (“Systèmes Polynomiaux et calcul d’Indice sur les Courbes Elliptiques : indicateurs
de complexité en petite caractéristique”) has been accepted in the PEPS JCJC INS2I program in 2016. It
involves Pierre-Jean Spaenlehauer (CARAMBA) and Vanessa Vitse (Université Joseph Fourier). This project
is coordinated by Vanessa Vitse.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organization
10.1.1.1. Member of the Organizing Committees

• Together with Anne-Lise Charbonnier (Inria Nancy – Grand Est), the Caramba team is organizing
the “Journées Codage et Cryptographie 2017”, whose objective is to regroup the French speaking
community working on error-correcting codes and on cryptography. It is affiliated with the “Groupe
de travail C2” of the GDR-IM.

10.1.2. Scientific Events Selection
10.1.2.1. Member of steering committees

• Pierrick Gaudry is a member of the steering committee of the Workshop on Elliptic Curve Cryptog-
raphy (ECC).

10.1.2.2. Member of the Conference Program Committees

• Emmanuel Thomé was a member of the program committee of the 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt 2016).

• Marine Minier was a member of the Program Committee of the conference MyCrypt 2016.
• Pierrick Gaudry was a member of the Program Committee of the conference Selected Areas in

Cryptography SAC 2016 and of EUROCRYPT 2017.
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• Paul Zimmermann was a member of the Program Committee of the International Workshop on the
Arithmetic of Finite Fields (WAIFI 2016).

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• Pierrick Gaudry is a member of the editorial board of the journal Applicable Algebra in Engineering,
Communication and Computing.

10.1.3.2. Reviewer - Reviewing Activities

Members of the project-team did share in reviewing submissions to renowned conferences and journals. Actual
publications venues are not disclosed for anonymity reasons.

10.1.4. Invited Talks
• Emmanuel Thomé was invited as a Distinguished Lecturer for the Computer and Information

Security Seminar at the University of Pennsylvania in November 2016.

• Pierrick Gaudry was invited speaker at the YACC 2016 conference in Porquerolles, at the workshop
“Mathematical Structures for Cryptography” in Leiden (Netherlands), and at the “Journées Aléa
2016” in Marseille.

10.1.5. Other committees
• Jérémie Detrey is chairing the Commission des Utilisateurs des Moyens Informatiques (CUMI) of

the Inria Nancy – Grand Est research center.

• Emmanuel Thomé is a member of

– the management committee for the research project “CPER Cyberentreprises” (co-chair).

– the Comité Local Hygiène, Sécurité, et Conditions de Travail of the Inria Nancy – Grand
Est research center.

• Pierrick Gaudry is vice-head of the Commission de mention Informatique of the École doctorale
IAEM of the University of Lorraine;

• Pierre-Jean Spaenlehauer is a member of the Commission développement technologique (CDT) of
the Inria Nancy – Grand Est research center.

• Paul Zimmermann is member of the Scientific Committee of the EXPLOR Mésocentre, and was
member until August of the Inria Evaluation Board and the CoSI (Commission Scientifique).

10.1.6. Research Administration
• Laurent Grémy is a member of the Conseil de laboratoire of the Loria.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master: Jérémie Detrey, Sécurité des systèmes d’information, 6 hours (practical sessions), M2
Informatique, Université de Lorraine, Faculté des sciences et technologies, Vandœuvre-les-Nancy,
France.

Master: Pierre-Jean Spaenlehauer, Introduction à la cryptographie, 18h eq. TD, M1 Informatique,
Université de Lorraine, Faculté des sciences et technologies, Vandœuvre-les-Nancy, France.

Master: Pierre-Jean Spaenlehauer, Introduction à la sécurité des systèmes et à la cryptographie,
32h eq. TD, M2 Mathématiques IMOI, Université de Lorraine, Faculté des sciences et technologies,
Vandœuvre-les-Nancy, France.

Master: Emmanuel Thomé, Introduction to Cryptography, 12 hours (lectures), M1, Télécom Nancy,
Villers-lès-Nancy, France.
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Master: Emmanuel Thomé, Cryptography and Security, 20 hours (lectures + exercises), M2, Télé-
com Nancy and École des Mines de Nancy, France.
Licence: Jérémie Detrey, Méthodologie, 24 hours (practical sessions), L1, Université de Lorraine,
Faculté des sciences et technologies, Vandœuvre-les-Nancy, France.
Licence: Jérémie Detrey, Sécurité des applications Web, 2 hours (lecture), L1, Université de Lor-
raine, IUT Charlemagne, Nancy, France.
Jérémie Detrey, Introduction à la sécurité et à la cryptographie, 10 hours (lectures) + 10 hours
(tutorial sessions) + 10 hours (practical sessions), L3, Université de Lorraine, Faculté des sciences
et technologies, Vandœuvre-les-Nancy, France.
Licence: Pierrick Gaudry, Méthodologie, 48 hours (practical sessions), L1, Université de Lorraine,
Faculté des sciences et technologies, Vandœuvre-lès-Nancy, France.

10.2.2. Supervision
Internship: Nicolas Levy, Algorithmes de factorisation d’entiers basés sur la structure des corps
quadratiques réels, L3 ÉNS Lyon, June-July, Pierre-Jean Spaenlehauer.
Internship: Joshua Peigner, Factorisation d’idéaux pour l’implantation du crible algébrique, ÉNS
Rennes, June-July, Emmanuel Thomé.
Internship: Robin Fedele, Consolidation de la couche Python de CADO-NFS, Univ. Lorraine, May-
June, Paul Zimmermann.
Internship: Élise Tasso, Étude comparative de divers algorithmes de friabilisation, Mines Nancy,
October-June (1 day each week), Pierrick Gaudry.
Ph.D. in progress: Simon Abelard, Comptage de points de courbes algébriques sur les corps finis
et interactions avec les systèmes polynomiaux, Univ. Lorraine; since Sep. 2015, Pierrick Gaudry &
Pierre-Jean Spaenlehauer.
Ph.D. in progress: Svyatoslav Covanov, Algorithmes de multiplication : complexité bilinéaire et
méthodes asymptotiquement rapides, since Sep. 2014, Jérémie Detrey et Emmanuel Thomé.
Ph.D. in progress: Laurent Grémy, Analyse et optimisation d’algorithmes de cribles arithmétiques,
since Oct. 2013, Pierrick Gaudry & Marion Videau.
Ph.D. defended: Hugo Labrande, Explicit computation of the Abel-Jacobi map and its inverse [1],
defended on November 14th, 2016.

10.2.3. Juries
Marine Minier: reviewer of the PhD Implantation sécurisée de protocoles cryptographiques basés
sur les codes correcteurs d’erreurs by Tania Richmont defended at Univ. Jean Monnet Saint-Etienne,
October 24th, 2016.
Pierrick Gaudry: reviewer of the PhD Computational Aspects of Jacobians of Hyperelliptic Curves
by Alina Dudeanu defended at EPFL, Switzerland; member of the jury for the PhD of Florent Ulpat
Rovetta (Marseille) and of Hugo Labrande (Nancy).
Emmanuel Thomé: reviewer (and president of jury) of the Habilitation Thesis Contributions à la
Résolution Algébrique et Applications en Cryptologie by Guénaël Renault, defended at University
Pierre et Marie Curie, December 8th, 2016.
Emmanuel Thomé: jury member (advisor) for the PhD of Hugo Labrande (see above).

10.3. Popularization
• Laurent Grémy and Pierre-Jean Spaenlehauer have animated a stand in the “Village des Sciences du

Loria” in March 2016.
• Laurent Grémy and Pierre-Jean Spaenlehauer have animated a stand during the celebration of the

Loria’s 40 years anniversary in June 2016.
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• Pierrick Gaudry organized and participated to a debate fed by excerpts from movies on the topic of
cryptography and privacy in October 2016.
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