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2. Overall Objectives

2.1. Introduction
Keywords: Compilation, code analysis, code optimization, memory optimization, combinatorial opti-

mization, algorithmics, polyhedral optimization, hardware accelerators, high-level synthesis, high-
performance computing, multicore, GPU, FPGA, DSP.

Compsys has been developing compilation techniques, more precisely code analysis and code optimization
techniques, to help programming or designing “embedded computing systems” and platforms for “small”
HPC (High-Performance Computing). The team focused first on both low-level (back-end) optimizations and
high-level (front-end, mainly source-to-source) transformations, for specialized embedded processors (DSP)
and high-level synthesis of hardware accelerators (FPGA). More recent activities included a shift towards
abstract interpretation and program termination, the compilation for GPUs and multicores, and the analysis
of parallel languages. The main characteristic of Compsys is its use of algorithmic and formal methods (with
graph algorithms, linear programming, polyhedral optimizations) to address code analysis and optimization
problems (e.g., termination, register allocation, memory optimizations, scheduling, automatic generation of
interfaces) and the validation of these techniques through the development of compilation tools.

Compsys started as an Inria project in 2004, after 2 years of maturation. This first period of Compsys,
Compsys I, was positively evaluated in Spring 2007 after its first 4 years period (2004-2007). It was again
evaluated by AERES in 2009, as part of the general evaluation of LIP, and got the best possible mark, A+. The
second period (2007-2012), Compsys II, was again evaluated positively by Inria in Spring 2012 and formally
prolonged into Compsys III at the very end of 2012. In 2013, Fabrice Rastello moved to Grenoble first to
expand the activities of Compsys in the context of Giant, a R&D technology center with several industrial and
academic actors. He left officially the team in 2014 to work on his own. The research directions of Compsys III
then followed the lines presented in the synthesis report provided for the 2012 evaluation, including a shift
towards the compilation of streaming programming, the analysis and optimizations of parallel languages, and
an even stronger focus on polyhedral optimizations and their extensions. While Christophe Alias was mostly
involved in his developments of the Zettice/XTREMLOGIC start-up, the hiring of Laure Gonnord (in 2013)
and Tomofumi Yuki (in 2014) added new forces on the code analysis research aspects and on HPC polyhedral-
related topics. However, Christophe Alias and Laure Gonnord left the team in Sep. 2015. Reaching the limit of
12 years, the project-team ended officially in Dec. 2015, but with no possible future as a new project, because
it was below critical mass. Compsys was nevertheless extended as an Inria team until Dec. 2016, in particular
to allow the (positive) final Inria evaluation in Spring 2016 and to let the last participants think about their
future. At the end of 2016, Tomofumi Yuki moved back to Rennes in the Cairn Inria team, Paul Feautrier
is still a member of LIP as an emeritus professor at ENS-Lyon but is now a long term visitor to the Parkas
Inria team in Paris, and Alain Darte remains CNRS researcher at LIP, ENS-Lyon, but is not affiliated to Inria
anymore.

Section 2.2 defines the general context of the team’s activities. Section 2.3 presents the research objectives and
main achievements in Compsys I, i.e., until 2007. Section 2.4 shows how the research directions of the team
were modified for Compsys II and outlines the main results we obtained in this period (until 2012). Finally,
Section 2.5 summarizes the goals and achievements of Compsys III. More details can be found in the annual
Inria reports. As for the highlights of the past year, i.e., 2016, they are given in Section 5.1.

2.2. General Presentation
Classically, an embedded computer is a digital system that is part of a larger system and that is not directly
accessible to the user. Examples are appliances like phones, TV sets, washing machines, game platforms, or
even larger systems like radars and sonars. In particular, this computer is not programmable in the usual
way. Its program, if it exists, is supplied as part of the manufacturing process and is seldom (or ever)
modified thereafter. As the embedded systems market grows and evolves, this view of embedded systems is
becoming obsolete and tends to be too restrictive. Many aspects of general-purpose computers apply to modern
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embedded platforms. Nevertheless, embedded systems remain characterized by a set of specialized application
domains, rigid constraints (cost, power, efficiency, heterogeneity), and its market structure. The term embedded
system has been used for naming a wide variety of objects. More precisely, there are two categories of so-
called embedded systems: a) control-oriented and hard real-time embedded systems (automotive, plant control,
airplanes, etc.); b) compute-intensive embedded systems (signal processing, multi-media, stream processing)
processing large data sets with parallel and/or pipelined execution. Compsys is primarily concerned with this
second type of embedded systems, referred to as embedded computing systems.

Today, the industry sells many more embedded processors than general-purpose processors; the field of
embedded systems is one of the few segments of the computer market where the European industry still has a
substantial share, hence the importance of embedded system research in the European research initiatives.
Our priority towards embedded software was motivated by the following observations: a) the embedded
system market was expanding, among many factors, one can quote pervasive digitalization, low-cost products,
appliances, etc.; b) research on software for embedded systems was poorly developed in France, especially
if one considers the importance of actors like Alcatel, STMicroelectronics, Matra, Thales, etc.; c) since
embedded systems increase in complexity, new problems are emerging: computer-aided design, shorter time-
to-market, better reliability, modular design, component reuse, etc.

A specific aspect of embedded computing systems is the use of various kinds of processors, with many
particularities (instruction sets, registers, data and instruction caches, now multiple cores) and constraints
(code size, performance, storage, power). The development of compilers is crucial for this industry, as selling
a platform without its programming environment and compiler would not be acceptable. To cope with such a
range of different processors, the development of robust, generic (retargetable), though efficient compilers is
mandatory. Unlike standard compilers for general-purpose processors, compilers for embedded processors and
hardware accelerators can be more aggressive (i.e., take more time to optimize) for optimizing some important
parts of applications. This opens a new range of optimizations. Another interesting aspect is the introduction of
platform-independent intermediate languages, such as Java bytecode, that is compiled dynamically at runtime
(aka just-in-time). Extreme lightweight compilation mechanisms that run faster and consume less memory
have to be developed. The introduction of intermediate languages such as OpenCL was also a sign of the
need for portability (as well as productivity) across diverse (if not heterogeneous) platforms. One of the initial
objectives of Compsys was thus to revisit existing compilation techniques in the context of such embedded
computing systems, to deconstruct some of these techniques, to improve them, and to develop new techniques
taking constraints of embedded processors and platforms into account.

As for high-level synthesis (HLS), several compilers/systems have appeared, after some first unsuccessful
industrial attempts in the past. These tools are mostly based on C or C++ as for example SystemC, VCC,
CatapultC, Altera C2H, Pico-Express, Vivado HLS. Academic projects also exist (or existed) such as Flex and
Raw at MIT, Piperench at Carnegie-Mellon University, Compaan at the University of Leiden, Ugh/Disydent
at LIP6 (Paris), Gaut at Lester (Bretagne), MMAlpha (Insa-Lyon), and others. In general, the support for
parallelism in HLS tools is minimal, especially in industrial tools. Also, the basic problem that these projects
have to face is that the definition of performance is more complex than in classical systems. In fact, it is a multi-
criteria optimization problem and one has to take into account the execution time, the size of the program, the
size of the data structures, the power consumption, the manufacturing cost, etc. The impact of the compiler
on these costs is difficult to assess and control. Success will be the consequence of a detailed knowledge of
all steps of the design process, from a high-level specification to the chip layout. A strong cooperation of the
compilation and chip design communities was needed. The main expertise in Compsys for this aspect was
in the parallelization and optimization of regular computations. Hence, we targeted applications with a large
potential parallelism, but we attempted to integrate our solutions into the big picture of CAD environments.

More generally, the aims of Compsys were to develop new compilation and optimization techniques for the
field of embedded computing system design. This field is large, and Compsys did not intend to cover it in
its entirety. As previously mentioned, we were mostly interested in the automatic design of accelerators,
for example designing a VLSI or FPGA circuit for a digital filter, or later GPUs and multicores, and
in the development of new back-end compilation strategies for embedded processors. We studied code
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transformations that optimize features such as execution time, power consumption, code and die size, memory
constraints, and compiler reliability. These features are related to embedded systems but some are not specific
to them. The code transformations we developed were both at source level and at assembly level. A specificity
of Compsys has always been to mix a solid theoretical basis for all code optimizations we introduced with
algorithmic/software developments. Within Inria, our project was related to the “architecture and compilation”
theme, more precisely code optimization, as some of the research conducted in Parkas (previously known as
Alchemy), Alf (previously known as Caps), Camus, and to high-level architectural synthesis, as some of the
research in Cairn.

At the end of the 90s, most french researchers working on high-performance computing (automatic paral-
lelization, languages, operating systems, networks) moved to grid computing. We thought that applications,
industrial needs, and research problems were more interesting in the design of embedded platforms. Fur-
thermore, we were convinced that our expertise on high-level code transformations could be more useful in
this field. This is the reason why Tanguy Risset came to Lyon in 2002 to create the Compsys team with
Anne Mignotte and Alain Darte, before Paul Feautrier, Antoine Fraboulet, and Fabrice Rastello joined the
group. Before integrating the team, all Compsys members had a background in automatic parallelization, and
high-level program analyses and transformations. Paul Feautrier was the initiator of the polyhedral model for
program transformations around 1990 and, before coming to Lyon, started to be more interested in program-
ming models and optimizations for embedded applications, in particular through collaborations with Philips.
Alain Darte worked on mathematical tools and algorithmic issues for parallelism extraction in programs. He
became interested in the automatic generation of hardware accelerators, thanks to his stay at HP Labs in the
Pico project in 2001. Antoine Fraboulet did a PhD with Anne Mignotte – who was working on high-level
synthesis (HLS) – on code and memory optimizations for embedded applications. Fabrice Rastello did a PhD
on tiling transformations for parallel machines, then was hired by STMicroelectronics where he worked on
assembly code optimizations for embedded processors. Tanguy Risset worked for a long time on the synthe-
sis of systolic arrays, being the main architect of the HLS tool MMAlpha. Christophe Alias did a PhD on
algorithm recognition for program optimizations and parallelization, and two post-docs, one in Compsys on
array contraction, one in Ohio State University with Prof. P. Sadayappan on memory optimizations. Laure
Gonnord did a PhD on invariant generation and program analysis and became interested on compilation and
code generation since her postdoc in the team. Finally, Tomofumi Yuki did a PhD on polyhedral programming
environments and optimizations (in Colorado State University, with Prof. S. Rajopadhye) before a post-doc on
polyhedral HLS in the Cairn team (Rennes).

To understand why we think automation in our field is highly important, it may be worth to quote Bob Rau
and his colleagues (IEEE Computer, Sep. 2002):

"Engineering disciplines tend to go through fairly predictable phases: ad hoc, formal and rigorous, and au-
tomation. When the discipline is in its infancy and designers do not yet fully understand its potential problems
and solutions, a rich diversity of poorly understood design techniques tends to flourish. As understanding
grows, designers sacrifice the flexibility of wild and woolly design for more stylized and restrictive method-
ologies that have underpinnings in formalism and rigorous theory. Once the formalism and theory mature, the
designers can automate the design process. This life cycle has played itself out in disciplines as diverse as PC
board and chip layout and routing, machine language parsing, and logic synthesis.

We believe that the computer architecture discipline is ready to enter the automation phase. Although the
gratification of inventing brave new architectures will always tempt us, for the most part the focus will shift to
the automatic and speedy design of highly customized computer systems using well-understood architecture
and compiler technologies.”

We share this view of the future of architecture and compilation. Without targeting too ambitious objectives,
we were convinced of two complementary facts: a) the mathematical tools developed in the past for manip-
ulating programs in automatic parallelization were lacking in high-level synthesis and embedded computing
optimizations and, even more, they started to be rediscovered frequently in less mature forms, b) before being
able to really use these techniques in HLS and embedded program optimizations, we needed to learn a lot from
the application side, from the electrical engineering side, and from the embedded architecture side. Our pri-
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mary goal was thus twofold: to increase our knowledge of embedded computing systems and to adapt/extend
code optimization techniques, primarily designed for high performance computing, to the special case of em-
bedded computing systems. In the initial Compsys proposal, we proposed four research directions, centered
on compilation methods for embedded applications, both for software and accelerators design:

• Code optimization for specific processors (mainly DSP and VLIW processors);

• Platform-independent loop transformations (including memory optimization);

• Silicon compilation and hardware/software codesign;

• Development of polyhedral (but not only) optimization tools.

These research activities were primarily supported by a marked investment in polyhedra manipulation tools
and, more generally, solid mathematical and algorithmic studies, with the aim of constructing operational
software tools, not just theoretical results. Hence the fourth research theme was centered on the development
of these tools.

2.3. Summary of Compsys I Achievements
The main achievements of Compsys I were the following:

• The development of a strong collaboration with the compilation group at STMicroelectronics, with
important results in aggressive optimizations for instruction cache and register allocation.

• New results on the foundation of high-level program transformations, including scheduling tech-
niques for process networks and a general technique for array contraction (memory reuse) based on
the theory of lattices.

• Many original contributions with partners closer to hardware constraints, including CEA, related to
SoC simulation, hardware/software interfaces, power models, and simulators.

The Compsys team has been evaluated by Inria for the first time in April 2007. The evaluation, conducted
by Erik Hagersted (Uppsala University), Vinod Kathail (Synfora, inc), J. (Ram) Ramanujam (Baton Rouge
University) was positive. Compsys I thus continued into Compsys II for 4-5 years but in a new configuration
as Tanguy Risset (who was hired professor at Insa-Lyon) and Antoine Fraboulet (assistant professor at Insa-
Lyon) left the project to follow research directions closer to their host laboratory at Insa-Lyon.

2.4. Summary of Compsys II Achievements
Due to Compsys size reduction (from 5 permanent researchers to 3 in 2008, then 4 again in 2009), the team
then focused, in Compsys II, on two research directions only:

• Code generation for embedded processors, on the two opposite, though connected, aspects: aggres-
sive compilation and just-in-time compilation.

• High-level program analysis and transformations for high-level synthesis tools.

The main achievements of Compsys II were:

• the great success of the collaboration with STMicroelectronics with many deep results on SSA
(Static Single Assignment), register allocation, liveness scalar analysis, and intermediate program
representations;

• the design of high-level program analysis, optimizations, and tools, mainly related to high-level
synthesis (some leading to the development of the Zettice start-up), including liveness array analysis,
memory folding, as well as program (while loops) termination.

For more details on the past years of Compsys II, see the previous annual reports from 2008 to 2012.
Compsys II was positively evaluated in Spring 2012 by Inria. The evaluation committee members were
Walid Najjar (University of California Riverside), Paolo Faraboschi (HP Labs), Scott Mahlke (University
of Michigan), Pedro Diniz (University of Southern California), Peter Marwedel (TU Dortmund), and Pierre
Paulin (STMicroelectronics, Canada), the last three assigned specifically to Compsys.
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2.5. Summary of Compsys III Achievements
For Compsys III, the changes in the permanent members (departure of Fabrice Rastello and arrival of Laure
Gonnord, while she was only external collaborator of Compsys until Sep. 2013) reduced the forces on back-
end code optimizations, and in particular dynamic compilation, but increased (for a short period only) the
forces on program analysis. In this context, Compsys III has continued to develop fundamental concepts or
techniques whose applicability should go beyond a particular architectural or language trend, as well as stand-
alone tools (either as proofs of concepts or to be used as basic blocks in larger tools/compilers developed by
others) and our own experimental prototypes. One of the main objectives of Compsys III has been to try to
push the polyhedral model beyond its present limits both in terms of analysis techniques (possibly integrating
approximation and runtime support) and of applicability (e.g., analysis of parallel or streaming languages,
program verification, compilation towards accelerators such as GPU or multicores). The hiring of Tomofumi
Yuki supported this new direction. The achievements of Compsys III include work on:

• Back-end code analysis including fast scalar liveness analysis, register spilling analysis, pointer and
array analysis.

• Polyhedral code analysis and optimizations, including communication analysis for kernel offloading
to FPGA and GPU, analysis of while loops, analysis of parallel and streaming languages (liveness,
memory folding, race detection), parametric tiling, polynomial extensions.

Compsys III was positively evaluated in Spring 2016 (with regrets with respect to its undesired stop) in Spring
2016. This evaluation also served as the final evaluation of Compsys after 12 years. The evaluation committee
members were Krzystof Czarnecki (University of Waterloo), Benoît Dupont de Dinechin (Kalray), Nikil Dutt
(UC Irvine), Walid Najjar (UC Riverside), Kristoffer Rose (Two Sigma Investments, NYW), Christian Schulte
(KTH Royal Institute of Technology), Tulika Mitra (NUS), J. (Ram) Ramanujam (Lousiana State Univ.),
Kathryn S. McKinley (chair, Microsoft), the last three being directly responsible for Compsys evaluation.

More details on the 2013, 2014, 2015 activities are given in the corresponding annual reports (see also the
synthesis report provided for the 2016 evaluation). The new results for this year (2016) are given in Section 5.1
(highlights) and from Section 7.1 to 7.7 (new results).

3. Research Program

3.1. Architecture and Compilation Trends
The embedded system design community is facing two challenges:

• The complexity of embedded applications is increasing at a rapid rate.

• The needed increase in processing power is no longer obtained by increases in the clock frequency,
but by increased parallelism.

While, in the past, each type of embedded application was implemented in a separate appliance, the present
tendency is toward a universal hand-held object, which must serve as a cell-phone, as a personal digital
assistant, as a game console, as a camera, as a Web access point, and much more. One may say that embedded
applications are of the same level of complexity as those running on a PC, but they must use a more constrained
platform in terms of processing power, memory size, and energy consumption. Furthermore, most of them
depend on international standards (e.g., in the field of radio digital communication), which are evolving
rapidly. Lastly, since ease of use is at a premium for portable devices, these applications must be integrated
seamlessly to a degree that is unheard of in standard computers.
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All of this dictates that modern embedded systems retain some form of programmability. For increased
designer productivity and reduced time-to-market, programming must be done in some high-level language,
with appropriate tools for compilation, run-time support, and debugging. This does not mean however that
all embedded systems (or all of an embedded system) must be processor based. Another solution is the
use of field programmable gate arrays (FPGA), which may be programmed at a much finer grain than a
processor, although the process of FPGA “programming” is less well understood than software generation.
Processors are better than application-specific circuits at handling complicated control and unexpected events.
On the other hand, FPGAs may be tailored to just meet the needs of their application, resulting in better
energy and silicon area usage. It is expected that most embedded systems will use a combination of general-
purpose processors, specific processors like DSPs, and FPGA accelerators (or even low-power GPUs). Such a
combination DSP+FPGA is already present in recent versions of the Atom Intel processor.

As a consequence, parallel programming, which has long been confined to the high-performance community,
must become the common place rather than the exception. In the same way that sequential programming
moved from assembly code to high-level languages at the price of a slight loss in performance, parallel
programming must move from low-level tools, like OpenMP or even MPI, to higher-level programming
environments. While fully-automatic parallelization is a Holy Grail that will probably never be reached in
our lifetimes, it will remain as a component in a comprehensive environment, including general-purpose
parallel programming languages, domain-specific parallelizers, parallel libraries and run-time systems, back-
end compilation, dynamic parallelization. The landscape of embedded systems is indeed very diverse and
many design flows and code optimization techniques must be considered. For example, embedded processors
(micro-controllers, DSP, VLIW) require powerful back-end optimizations that can take into account hardware
specificities, such as special instructions and particular organizations of registers and memories. FPGA and
hardware accelerators, to be used as small components in a larger embedded platform, require “hardware
compilation”, i.e., design flows and code generation mechanisms to generate non-programmable circuits. For
the design of a complete system-on-chip platform, architecture models, simulators, debuggers are required.
The same is true for multicores of any kind, GPGPU (“general-purpose” graphical processing units), CGRA
(coarse-grain reconfigurable architectures), which require specific methodologies and optimizations, although
all these techniques converge or have connections. In other words, embedded systems need all usual aspects
of the process that transforms some specification down to an executable, software or hardware. In this wide
range of topics, Compsys concentrated on the code optimizations aspects (and the associated analysis) in
this transformation chain, restricting to compilation (transforming a program to a program) for embedded
processors and programmable accelerators, and to high-level synthesis (transforming a program into a circuit
description) for FPGAs.

Actually, it is not a surprise to see compilation and high-level synthesis getting closer (in the last 10
years now). Now that high-level synthesis has grown up sufficiently to be able to rely on place-and-route
tools, or even to synthesize C-like languages, standard techniques for back-end code generation (register
allocation, instruction selection, instruction scheduling, software pipelining) are used in HLS tools. At the
higher level, programming languages for programmable parallel platforms share many aspects with high-
level specification languages for HLS, for example the description and manipulations of nested loops, or the
model of computation/communication (e.g., Kahn process networks and its many “streaming” variants). In
all aspects, the frontier between software and hardware is vanishing. For example, in terms of architecture,
customized processors (with processor extensions as first proposed by Tensilica) share features with both
general-purpose processors and hardware accelerators. FPGAs are both hardware and software as they are fed
with “programs” representing their hardware configurations.

In other words, this convergence in code optimizations explains why Compsys studied both program com-
pilation and high-level synthesis, and at both front-end and back-end levels, the first one acting more at the
granularity of memories, transfers, and multiple cores, the second one more at the granularity of registers,
system calls, and single core. Both levels must be considered as they interact with each other. Front-end op-
timizations must be aware of what back-end optimizations will do, as single core performance remain the
basis for good parallel performances. Some front-end optimizations even act directly on back-end features, for
example register tiling considered as a source-level transformation. Also, from a conceptual point of view, the
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polyhedral techniques developed by Compsys are actually the symbolic front-end counterpart, for structured
loops, of back-end analysis and optimizations of unstructured programs (through control-flow graphs), such
as dependence analysis, scheduling, lifetime analysis, register allocation, etc. A strength of Compsys was to
juggle with both aspects, the first one based on graph theory with SSA-type optimizations, the other on poly-
hedra representing loops, and to exploit the correspondence between both. This has still to be exploited, for
applying polyhedral techniques to more irregular programs. Besides, Compsys had a tradition of building free
software tools for linear programming and optimization in general, as needed for our research.

3.1.1. Compilation and Languages Issues in the Context of Embedded Processors, “Embedded
Systems”, and Programmable Accelerators
Compilation is an old activity, in particular back-end code optimizations. The development of embedded
systems was one of the reasons for the revival of compilation activities as a research topic. Applications
for embedded computing systems generate complex programs and need more and more processing power.
This evolution is driven, among others, by the increasing impact of digital television, the first instances
of UMTS networks, and the increasing size of digital supports, like recordable DVD, and even Internet
applications. Furthermore, standards are evolving very rapidly (see for instance the successive versions of
MPEG). As a consequence, the industry has focused on programmable structures, whose flexibility more
than compensates for their larger size and power consumption. The appliance provider has a choice between
hard-wired structures (Asic), special-purpose processors (Asip), (quasi) general-purpose processors (DSP for
multimedia applications), and now hardware accelerators (dedicated platforms – such as those developed by
Thales or the CEA –, or more general-purpose accelerators such as GPUs or even multicores, even if these are
closer to small HPC platforms than truly embedded systems). Our cooperation with STMicroelectronics, until
2012, focused on investigating the compilation for specialized processors, such as the ST100 (DSP processor)
and the ST200 (VLIW DSP processor) family. Even for this restricted class of processors, the diversity is
large, and the potential for instruction level parallelism (SIMD, MMX), the limited number of registers and
the small size of the memory, the use of direct-mapped instruction caches, of predication, generated many
open problems. Our goal was to contribute to their understanding and their solutions.

An important concept to cope with the diversity of platforms is the concept of virtualization, which is a key for
more portability, more simplicity, more reliability, and of course more security. This concept – implemented at
low level through binary translation and just-in-time (JIT) compilation 1 – consists in hiding the architecture-
dependent features as long as possible during the compilation process. It has been used for a while for servers
such as HotSpot, a bit more recently for workstations, and now for embedded computing. The same needs drive
the development of intermediate languages such as OpenCL to, not necessarily hide, but at least make more
uniform, the different facets of the underlying architectures. The challenge is then to design and compile high-
productivity and high-performance languages 2 (coping with parallelism and heterogeneity) that can be ported
to such intermediate languages, or to architecture-dependent runtime systems. The offloading of computation
kernels, through source-to-source compilation, targeting back-end C dialects, has the same goals: to automate
application porting to the variety of accelerators.

For JIT compilation, the compactness of the information representation, and thus its pertinence, is an impor-
tant criterion for such late compilation phases. Indeed, the intermediate representation (IR) is evolving not
only from a target-independent description to a target-dependent one, but also from a situation where the com-
pilation time is almost unlimited (cross-compilation) to one where any type of resource is limited. This is one
of the reasons why static single assignment (SSA), a sparse compact representation of liveness information,
became popular in embedded compilation. If time constraints are common to all JIT compilers (not only for

1Aggressive compilation consists in allowing more time to implement more complete and costly solutions: compilation time is less
relevant than execution time, size, and energy consumption of the produced code, which can have a critical impact on the cost and
quality of the final product. The application is usually cross-compiled, i.e., compiled on a powerful platform distinct from the target
processor. Just-in-time compilation, on the other hand, corresponds to compiling applets on demand on the target processor. The code can
be uploaded or sold separately on a flash memory. Compilation is performed at load time and even dynamically during execution. The
optimization heuristics, constrained by time and limited resources, are far from being aggressive. They must be fast but smart enough.

2For examples of such languages, see the keynotes event we organized in 2013: http://labexcompilation.ens-lyon.fr/hpc-languages.

http://labexcompilation.ens-lyon.fr/hpc-languages
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embedded computing), the benefit of using SSA is also in terms of its good ratio pertinence/storage of in-
formation. It also enables to simplify algorithms, which is also important for increasing the reliability of the
compiler. In this context, our aim has been, in particular, to develop exact or heuristic solutions to combina-
torial problems that arise in compilation for VLIW and DSP processors, and to integrate these methods into
industrial compilers for DSP processors (mainly ST100, ST200, Strong ARM). Such combinatorial problems
can be found in register allocation, opcode selection, code placement, when removing the SSA multiplexer
functions (known as φ functions). These optimizations are usually done in the last phases of the compiler,
using an assembly-level intermediate representation. As mentioned in Sections 2.3 and 2.4, we made a lot of
progress in this area in our past collaborations with STMicroelectronics (see also previous activity reports).
Through the Sceptre and Mediacom projects, we first revisited, in the light of SSA, some code optimizations
in an aggressive context, to develop better strategies, without eliminating too quickly solutions that may have
been considered as too expensive in the past. Then we exploited the new concepts introduced in the aggressive
context to design better algorithms in a JIT context, focusing on the speed of algorithms and their memory
footprint, without compromising too much on the quality of the generated code.

Our recent research directions were more focused on programmable accelerators, such as GPU and multicores,
but still considering static compilation and without forgetting the link between high-level (in general at source-
code level) and low-level (i.e., at assembly-code level) optimizations. They concerned program analysis (of
both sequential and parallel specifications), program optimizations (for memory hierarchies, parallelism,
streaming, etc.), and also the link with applications, and between compilers and users (programmers).
Polyhedral techniques play an important role in these directions, even if control-flow-based techniques remain
in the background and may come back at any time in the foreground. This is also the case for high-level
synthesis, as exposed in the next section.

3.1.2. Context of High-Level Synthesis and FPGA Platforms
High-level synthesis has become a necessity, mainly because the exponential increase in the number of
gates per chip far outstrips the productivity of human designers. Besides, applications that need hardware
accelerators usually belong to domains, like telecommunications and game platforms, where fast turn-around
and time-to-market minimization are paramount. When Compsys started, we were convinced that our expertise
in compilation and automatic parallelization could contribute to the development of the needed tools.

Today, synthesis tools for FPGAs or ASICs come in many shapes. At the lowest level, there are proprietary
Boolean, layout, and place-and-route tools, whose input is a VHDL or Verilog specification at the structural
or register-transfer level (RTL). Direct use of these tools is difficult, for several reasons:

• A structural description is completely different from an usual algorithmic language description, as it
is written in term of interconnected basic operators. One may say that it has a spatial orientation, in
place of the familiar temporal orientation of algorithmic languages.

• The basic operators are extracted from a library, which poses problems of selection, similar to the
instruction selection problem in ordinary compilation.

• Since there is no accepted standard for VHDL synthesis, each tool has its own idiosyncrasies and
reports its results in a different format. This makes it difficult to build portable HLS tools.

• HLS tools have trouble handling loops. This is particularly true for logic synthesis systems,
where loops are systematically unrolled (or considered as sequential) before synthesis. An efficient
treatment of loops needs the polyhedral model. This is where past results from the automatic
parallelization community are useful.

• More generally, a VHDL specification is too low level to allow the designer to perform, easily,
higher-level code optimizations, especially on multi-dimensional loops and arrays, which are of
paramount importance to exploit parallelism, pipelining, and perform communication and memory
optimizations.
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Some intermediate tools were proposed that generate VHDL from a specification in restricted C, both in
academia (such as SPARK, Gaut, UGH, CloogVHDL), and in industry (such as C2H, CatapultC, Pico-Express,
Vivado HLS). All these tools use only the most elementary form of parallelization, equivalent to instruction-
level parallelism in ordinary compilers, with some limited form of block pipelining, and communication
through FIFOs. Targeting one of these tools for low-level code generation, while we concentrate on exploiting
loop parallelism, might be a more fruitful approach than directly generating VHDL. However, it may be that
the restrictions they impose preclude efficient use of the underlying hardware. Our first experiments with these
HLS tools reveal two important issues. First, they are, of course, limited to certain types of input programs so
as to make their design flows successful, even if, over the years, they become more and more mature. But it
remains a painful and tricky task for the user to transform the program so that it fits these constraints and to
tune it to get good results. Automatic or semi-automatic program transformations can help the user achieve
this task. Second, users, even expert users, have only a very limited understanding of what back-end compilers
do and why they do not lead to the expected results. An effort must be done to analyze the different design
flows of HLS tools, to explain what to expect from them, and how to use them to get a good quality of results.
Our first goal was thus to develop high-level techniques that, used in front of existing HLS tools, improve their
utilization. This should also give us directions on how to modify them or to design new tools from scratch.

More generally, HLS has to be considered as a more global parallelization process. So far, no HLS tools is
capable of generating designs with communicating parallel accelerators, even if, in theory, at least for the
scheduling part, a tool such as Pico-Express could have such capabilities. The reason is that it is, for example,
very hard to automatically design parallel memories and to decide the distribution of array elements in memory
banks to get the desired performances with parallel accesses. Also, how to express communicating processes
at the language level? How to express constraints, pipeline behavior, communication media, etc.? To better
exploit parallelism, a first solution is to extend the source language with parallel constructs, as in all derivations
of the Kahn process networks model, including communicating regular processes (CRP). The other solution
is a form of automatic parallelization. However, classical methods, which are mostly based on scheduling,
need to be revisited, to pay more attention to locality, process streaming, and low-level pipelining, which are
of paramount importance in hardware. Besides, classical methods mostly rely on the runtime system to tailor
the parallelism degree to the available resources. Obviously, there is no runtime system in hardware. The real
challenge is thus to invent new scheduling algorithms that take resource, locality, and pipelining into account,
and then to infer the necessary hardware from the schedule. This is probably possible only for programs that
fit into the polyhedral model, or in an incrementally-extended model.

Our research activities on polyhedral code analysis and optimizations directly targeted these HLS challenges.
But they are not limited to the automatic generation of hardware as can be seen from our different contributions
on X10, OpenStream, parametric tiling, etc. The same underlying concepts also arise when optimizing codes
for GPUs and multicores. In this context of polyhedral analysis and optimizations, we focused on three aspects:

• developing high-level transformations, especially for loops and memory/communication optimiza-
tions, that can be used in front of HLS tools so as to improve their use, as well as for hardware
accelerators;

• developing concepts and techniques in a more global view of high-level synthesis and high-level
parallel programming, starting from specification languages down to hardware implementation;

• developing more general code analysis so as to extract more information from codes as well as to
extend the programs that can be handled.

3.2. Code Analysis, Code Transformations, Code Optimizations
Embedded systems, as we recalled earlier, generated new problems in code analysis and optimization both for
optimizing embedded software (compilation) and hardware (HLS). We now give a bit more details on some
general challenges for program analysis, optimizations, and transformations, induced by this context, and on
our methodology, in particular our development and use of polyhedral optimizations and its extensions.
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3.2.1. Processes, Scheduling, Mapping, Communications, etc.
Before mapping an application to an architecture, one has to decide which execution model is targeted and
where to intervene in the design flow. Then one has to solve scheduling, placement, and memory management
problems. These three aspects should be handled as a whole, but present state of the art dictates that they
be treated separately. One of our aims was to develop more comprehensive solutions. The last task is code
generation, both for the processing elements and the interfaces processors/accelerators.

There are basically two execution models for embedded systems: one is the classical accelerator model, in
which data is deposited in the memory of the accelerator, which then does its job, and returns the results.
In the streaming model, computations are done on the fly, as data items flow from an input channel to the
output. Here, the data are never stored in (addressable) memory. Other models are special cases, or sometimes
compositions of the basic models. For instance, a systolic array follows the streaming model, and sometimes
extends it to higher dimensions. Software radio modems follow the streaming model in the large, and the
accelerator model in detail. The use of first-in first-out queues (FIFO) in hardware design is an application of
the streaming model. Experience shows that designs based on the streaming model are more efficient that those
based on memory, for such applications. One of the point to be investigated is whether it is general enough
to handle arbitrary (regular) programs. The answer is probably negative. One possible implementation of the
streaming model is as a network of communicating processes either as Kahn process networks (FIFO based)
or as our more recent model of communicating regular processes (memory based, such as CRP mentioned
hereafter). It is an interesting fact that several researchers have investigated the translation from process
networks [12] and to process networks [20], [21]. Streaming languages such as StreamIt and OpenStream
are also interesting solutions to explore.

Kahn process networks (KPN) were introduced 30 years ago as a notation for representing parallel programs.
Such a network is built from processes that communicate via perfect FIFO channels. Because the channel
histories are deterministic, one can define a semantics and talk meaningfully about the equivalence of two
implementations. As a bonus, the dataflow diagrams used by signal processing specialists can be translated
on-the-fly into process networks. The problem with KPNs is that they rely on an asynchronous execution
model, while VLIW processors and FPGAs are synchronous or partially synchronous. Thus, there is a need for
a tool for synchronizing KPNs. This can be done by computing a schedule that has to satisfy data dependences
within each process, a causality condition for each channel (a message cannot be received before it is sent),
and real-time constraints. However, there is a difficulty in writing the channel constraints because one has to
count messages in order to establish the send/receive correspondence and, in multi-dimensional loop nests, the
counting functions may not be affine. The same situation arises for the OpenStream language (see Section 7.2.
Recent developments on the theory of polynomials (see Section 7.1) may offer a solution to this problem. One
can also define another model, communicating regular processes (CRP), in which channels are represented as
write-once/read-many arrays. One can then dispense with counting functions and prove that the determinacy
property still holds. As an added benefit, a communication system in which the receive operation is not
destructive is closer to the expectations of system designers.

The main difficulty with this approach is that ordinary programs are usually not constructed as process
networks. One needs automatic or semi-automatic tools for converting sequential programs into process
networks. One possibility is to start from array dataflow analysis [15] or variants. Another approach attempts
to construct threads, i.e., pieces of sequential code with the smallest possible interactions. In favorable cases,
one may even find outermost parallelism, i.e., threads with no interactions whatsoever. Tiling mechanisms can
also be used to define atomic processes that can be pipelined as we proposed initially for FPGA [9].

Whatever the chosen solution (FIFO or addressable memory) for communicating between two accelerators or
between the host processor and an accelerator, the problems of optimizing communication between processes
and of optimizing buffers have to be addressed. Many local memory optimization problems have already been
solved theoretically. Some examples are loop fusion and loop alignment for array contraction, techniques for
data allocation in scratch-pad memory, or techniques for folding multi-dimensional arrays [11]. Nevertheless,
the problem is still largely open. Some questions are: how to schedule a loop sequence (or even a process
network) for minimal scratch-pad memory size? How is the problem modified when one introduces unlimited
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and/or bounded parallelism (same questions for analyzing explicitly-parallel programs)? How does one take
into account latency or throughput constraints, bandwidth constraints for input and output channels, memory
hierarchies? All loop transformations are useful in this context, in particular loop tiling, and may be applied
either as source-to-source transformations (when used in front of HLS or C-level compilers) or to generate
directly VHDL or lower-level C-dialects such as OpenCL. One should keep in mind that theory will not be
sufficient to solve these problems. Experiments are required to check the relevance of the various models
(computation model, memory model, power consumption model) and to select the most important factors
according to the architecture. Besides, optimizations do interact: for instance, reducing memory size and
increasing parallelism are often antagonistic. Experiments will be needed to find a global compromise between
local optimizations. In particular, the design of cost models remain a fundamental challenge.

Finally, there remains the problem of code generation for accelerators. It is a well-known fact that methods
for program optimization and parallelization do not generate a new program, but just deliver blueprints for
program generation, in the form, e.g., of schedules, placement functions, or new array subscripting functions.
A separate code generation phase must be crafted with care, as a too naive implementation may destroy
the benefits of high-level optimization. There are two possibilities here as suggested before; one may target
another high-level synthesis or compilation tool, or one may target directly VHDL or low-level code. Each
approach has its advantages and drawbacks. However, both situations require that the input program respects
some strong constraints on the code shape, array accesses, memory accesses, communication protocols, etc.
Furthermore, to get the compilers do what the user wants requires a lot of program tuning, i.e., of program
rewriting or of program annotations. What can be automated in this rewriting process? Semi-automated?

In other words, we still need to address scheduling, memory, communication, and code generation issues, in
the light of the developments of new languages and architectures, pushing the limits of such an automation of
program analysis, program optimizations, and code generation.

3.2.2. Beyond Static Control Programs
With the advent of parallelism in supercomputers, the bulk of research in code transformation resulted in
(semi-)automatic parallelization, with many techniques (analysis, scheduling, code generation, etc.) based on
the description and manipulation of nested loops with polyhedra. Compsys has always taken an active part
in the development of these so-called “polyhedral techniques”. Historically, these analysis were (wrongly)
understood to be limited to static control programs.

Actually, the polyhedral model is neither a programming language nor an execution model, rather an
intermediate representation. As such, it can be generated from imperative sequential languages like C or
Fortran, streaming languages like CRP, or equational languages like Alpha. While the structure of the model
is the same in all three cases, it may enjoy different properties, e.g., a schedule always exists in the first case,
not in the two others. The import of the polyhedral model is that many questions relative to the analysis
of a program and the applicability of transformations can be answered precisely and efficiently by applying
well-known mathematical results to the model.

For irregular programs, the basic idea is to construct a polyhedral over-approximation, i.e., a program
which has more operations, a larger memory footprint, and more dependences than the original. One can
then parallelize the approximated program using polyhedral tools, and then return to the original, either by
introducing guards, or by insuring that approximations are harmless. This technique is the standard way of
dealing with approximated dependences. We already started to study the impact of approximations in our
kernel offloading technique, for optimizing remote communications [10]. It is clear however that this extension
method based on over-approximation will apply only to mildly non-polyhedral programs. The restriction to
arrays as the only data structure is still present. Its advantage is that it will be able to subsume in a coherent
framework many disparate tricks: the extraction of SCoPs, induction variable detection, the omission of non-
affine subscripts, or the conversion of control dependences into data dependences. The link with the techniques
developed in the PIPS compiler (based on array region analysis) is strong and will have to be explored.

Such over-approximations can be found by mean of abstract interpretation, a general framework to develop
static analysis on real-life programs. However, they were designed mainly for verification purposes, thus
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precision was the main issue before scalability. Although many efforts were made in designing specialized
analyses (pointers, data structures, arrays), these approaches still suffer from a lack of experimental evidence
concerning their applicability for code optimization. Following our experience and work on termination
analysis (that connects the work on back-end CFG-like and front-end polyhedral-like optimizations), and our
work on range analysis of numerical variables and on the memory footprint on real-world C programs [18],
one of our objectives for the future was to bridge the gap between abstract interpretation and compilation, by
designing cheaper analyses that scale well, mainly based on compact representations derived from variants of
static single assignment (SSA), with a special focus on complex control, and complex data structures (pointers,
lists) that still suffer from complexity issues in the area of optimization.

Another possibility is to rely on application specific knowledge to guide compiler decisions, as it is impossible
for a compiler alone to fully exploit such pieces of information. A possible approach to better utilize such
knowledge is to put the programmers “in the loop”. Expert parallel programmers often have a good idea
about coarse-grain parallelism and locality that they want to use for an application. On the other hand,
fine-grain parallelism (e.g., ILP, SIMD) is tedious and specific to each underlying architecture, and is best
left to the compiler. Furthermore, approximations will have opportunities to be refined using programmer
knowledge. The key challenge is to create a programming environment where compiler techniques and
programmer knowledge can be combined effectively. One of the difficulties is to design a common language
between the compiler and the programmer. The first step towards this objective is to establish inter-disciplinary
collaborations with users, and take the time to analyze and optimize their applications together.M

3.3. Mathematical Tools
All compilers have to deal with sets and relations. In classical compilers, these sets are finite: the set of
statements of a program, the set of its variables, its abstract syntax tree (AST), its control-flow graph (CFG),
and many others. It is only in the first phase of compilation, parsing, that one has to deal with infinite objects,
regular and context-free languages, and those are represented by finite grammars, and are processed by a
symbolic algorithm, yacc or one of its clones.

When tackling parallel programs and parallel compilation, it was soon realized that this position was no longer
tenable. Since it makes no sense to ask whether a statement can be executed in parallel with itself, one has to
consider sets of operations, which may be so large as to forbid an extensive representation, or even be infinite.
The same is true for dependence sets, for memory cells, for communication sets, and for many other objects
a parallel compiler has to consider. The representation is to be symbolic, and all necessary algorithms have to
be promoted to symbolic versions.

Such symbolic representations have to be efficient – the formula representing a set has to be much smaller than
the set itself – and effective – the operations one needs, union, intersection, emptiness tests and many others –
have to be feasible and fast. As an aside, note that progress in algorithm design has blurred the distinction be-
tween polynomially-solvable and NP-complete problems, and between decidable and undecidable questions.
For instance SAT, SMT, and ILP software tools solve efficiently many NP-complete problems, and the Z3 tool
is able to “solve” many instances of the undecidable Hilbert’s 10th problem.

Since the times of Pip and of the Polylib, Compsys has been active in the implementation of basic mathematical
tools for program analysis and synthesis. Pip is still developed by Paul Feautrier and Cédric Bastoul, while
the Polylib is now taken care of by the Inria Camus project, which introduced Ehrhart polynomials. These
tools are still in use world-wide and they also have been reimplemented many times with (sometimes slight)
improvements, e.g., as part of the Parma Polylib, of Sven Verdoolaege’s Isl and Barvinok libraries, or of the
Jollylib of Reservoir Labs. Other groups also made a lot of efforts towards the democratization of the use of
polyhedral techniques, in particular the Alchemy Inria project, with Cloog and the development of Graphite
in GCC, and Sadayappan’s group in the USA, with the development of U. Bondhugula’s Pluto prototype
compiler. The same effort is made through the PPCG prototype compiler (for GPU) and Pencil (directives-
based language on top of PPCG).
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After 2009, Compsys continued to focus on the introduction of concepts and techniques to extend the polytope
model, with a shift toward tools that may prepare the future. For instance, PoCo and C2fsm are able to parse
general programs, not just SCoPs (static control programs), while the efficient handling of Boolean affine
formulas [13] is a prerequisite for the construction of non-convex approximations. Euclidean lattices provide
an efficient abstraction for the representation of spatial phenomena, and the construction of critical lattices as
embedded in the tool Cl@k is a first step towards memory optimization in stream languages and may be useful
in other situations. Our work on Chuba introduced a new element-wise array reuse analysis and the possibility
of handling approximations. Our work on the analysis of while loops is both an extension of the polytope
model itself (i.e., beyond SCoPs) and of its applications, here links with program termination and worst-case
execution time (WCET) tools.

A recent example of this extension idea is the proposal by Paul Feautrier to use polynomials for program
analysis and optimization [14]. The associated tools are based on Handelman and Schweighofer theorems,
the polynomial analogue of Farkas lemma. While this is definitely work in progress, with many unsolved
questions, it has the potential of greatly enlarging the set of tractable programs.

As a last remark, observe that a common motif of these developments is the transformation of finite algorithms
into symbolic algorithms, able to solve very large or even infinite instances. For instance, PIP is a symbolic
extension of the Simplex; our work on memory allocation is a symbolic extension of the familiar register
allocation problem; loop scheduling extends DAG scheduling. Many other algorithms await their symbolic
transformation: a case in point is resource-constrained scheduling.

4. Application Domains

4.1. Compilers for Embedded Computing Systems
The previous sections described our main activities in terms of research directions, but also placed Compsys
within the embedded computing systems domain, especially in Europe. We will therefore not come back here
to the importance, for industry, of compilation and embedded computing systems design.

In terms of application domain, the embedded computing systems we considered are mostly used for
multimedia: phones, TV sets, game platforms, etc. But, more than the final applications developed as programs,
our main application has always been the computer itself: how the system is organized (architecture) and
designed, how it is programmed (software), how programs are mapped to it (compilation and high-level
synthesis).

The industry that can be impacted by our research is thus all the companies that develop embedded processors,
hardware accelerators (programmable or not), embedded systems, and those (the same plus other) that need
software tools to map applications to these platforms, i.e., that need to use or even develop programming
languages, program optimization techniques, compilers, operating systems. Compsys did not focus on all
these critical parts, but our activities were connected to them.

4.2. Users of HPC Platforms and Scientific Computing
The convergence between embedded computing systems and high-performance computing (HPC) technolo-
gies offers new computing platforms and tools for the users of scientific computing (e.g., people working
in numerical analysis, in simulation, modeling, etc.). The proliferation of “cheap” hardware accelerators and
multicores makes the “small HPC” (as opposed to computing centers with more powerful computers, grid
computing, and exascale computing) accessible to a larger number of users, even though it is still difficult to
exploit, due to the complexity of parallel programming, code tuning, interaction with compilers, which result
from the multiple levels of parallelism and of memories in the recent architectures. The link between compiler
and code optimization research (as in Compsys) and such users are still to be reinforced, both to guarantee the
relevance of compiler research efforts with respect to application needs, and to help users better interact with
compiler choices and understand performance issues.
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The support of Labex MILYON (through its thematic quarters, such as the thematic quarter on compilation
we organized in 2013 3, or the 2016 thematic quarter on high-performance computing, with a dedicated inter-
disciplinary spring school between numerical simulation and polyhedral compilation, see hereafter) and the
activities of the LyonCalcul initiative 4 are means to get closer to users of scientific computing, even if it is too
early to know if Compsys will indeed be directly helpful to them.

5. Highlights of the Year

5.1. Highlights of the Year
Scientific Results and Dissemination
Despite the approaching end of Compsys, we continued the objectives we fixed for Compsys III, i.e., pushing
static compilation beyond its present limits, both in terms of techniques and applications. Our most important
efforts in 2016 were to extend static analysis from sequential codes to parallel specifications and languages,
to develop polynomial techniques, and to increase inter-disciplinary collaborations and dissemination towards
HPC users and their applications. The most important results in 2016 are the following:

• Publications Well recognized in the polyhedral community, we got three papers at IMPACT’16, the
central event of this community, one paper at the main compiler conference (CC’16), and a last one in
the field of FPGA, which remains an important target for polyhedral optimizations. See Sections 7.1
to 7.7 for more details.

• Interdisciplinary spring school With colleagues from HPC numerical simulation, we organized
a very successful inter-disciplinary event in May 2016, to bridge the gap between polyhedral
compilation and HPC users. See details in Section 10.1.

• Move towards HPC users In addition to the spring school we organized, we increased our activity
towards HPC users and their applications through the supervision of the internship of J. Versaci
(quantum physics), the reviewing of T. Gasc’s PhD thesis (fluid dynamics), and the regular contacts
with the LMGC lab (mechanics).

• PhD theses The end of Compsys coincided also with the end of two PhD theses, the PhD thesis of
Guillaume Iooss [16] and the PhD thesis of Alexandre Isoard [17], see Section 10.2.2.

• Final evaluation The team was evaluated in March 2016, this was also its final evaluation.

Final Evaluation and End of Compsys
Compsys has been created in 2002 as an Inria team, then in 2004 as an Inria project-team, and evaluated by
Inria first in 2007, then in 2012. It was evaluated again in March 2016, which was its final evaluation because
an Inria project-team is limited to 12 years. The construction of a new project was planned in early 2015,
following the shift in the research directions that started in the second half of Compsys III. A few tentative
research directions were:

• Shift the application domain from embedded systems to high performance computing (HPC) but
at small scale (desktop HPC: FPGA, GPU, multicores). In fact, the two ecosystems are nowadays
slowly converging.

• A stronger attention to real HPC users and real HPC applications may lead to better programming
models (“putting the programmer in the loop”).

• Design new models of programs. The polynomial model is but an example.

• Explore the synergy between parallel programming and program verification and certification; in
particular, import approximation methods from one field to the other. Abstract interpretation is a
case in point.

3Thematic quarter on compilation: http://labexcompilation.ens-lyon.fr/
4Lyon Calcul federation: http://lyoncalcul.univ-lyon1.fr

http://labexcompilation.ens-lyon.fr/
http://lyoncalcul.univ-lyon1.fr
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However, while its field of expertise, compilation for parallel and heterogeneous systems, is still of crucial
importance, the unexpected departure in Sep. 2015 of two of its staff members made this future impossible.
We nevertheless continued in 2016, in particular to present our activities in this last evaluation, until the three
last members had to split in three different cities (Lyon, Paris, Rennes). We report here some of the comments
made by the external reviewers that, we think, summarize well some aspects of our efforts, successes, and
difficulties during 15 years:

• Compsys established and matured the polyhedral optimization approach, which is the state of the art
for locality and parallelism optimization in optimizing compilers. The project has had world-wide
impact.

• We strongly recommend that the members of the team are accommodated in Camus, Cairn, Parkas,
or another complementary Inria team, irrespective of the geographical location. Otherwise, Inria
will lose one of its peaks of research excellence in Computer Science.

• This team is a prime example where Inria requirements on teams are damaging science and
collaboration.

• This team has produced many impactful results and is considered as the Polyhedral center of
excellence. It is globally recognized for its research in both front-end (polyhedral optimizations) and
back-end (graph optimizations) compiler optimization techniques integrating elegant foundational
theory with real implementation on various architectures (multi-core, FPGAs, DSP, GPU etc.).

• In back-end optimizations, the team had developed the state-of-the-art SSA and decoupled register
allocation techniques that are important to achieving peak performance.

• They have internationally visible and impactful research in compilers, technology transfer to
companies through collaborations and through start-ups. They raised the global awareness of
polyhedral analysis through creation of workshops, summer schools etc., essentially reviving interest
in the topic about a decade ago, and finally educating next-generation of researchers in this area,
who are now contributing to both academic and industrial research landscape in France and beyond.

• The start-up company (XtremLogic on HLS) is an excellent concrete evidence of technology transfer
from the team. [...] In the future, a more careful analysis of the trade-off between technology transfer
and academic research is necessary for small project teams so that a promising research direction
does not get jeopardized in Inria.

• The Compsys team has truly achieved research excellence in compilation techniques. Unfortunately,
the future of the team remains uncertain due to administrative policies. Inria should enable the team
to continue with their research strengths in polyhedral analysis and graph-theory based SSA-type
optimizations.

6. New Software and Platforms

6.1. Lattifold
Lattice-based Memory Folding
KEYWORDS: Polyhedral compilation - Euclidean Lattices
FUNCTIONAL DESCRIPTION

Implements advanced lattice-based memory folding techniques. The idea is to reduce memory footprint
of multidimensional arrays by reducing the size of each dimension. Given a relation denoting conflicting
array cells, it produces a new mapping based on affine functions bounded by moduli. The moduli induces
memory reuse and bound memory accesses to a tighter area, allowing to reduce the array size without loss of
correctness. Status: proof of concept, see related paper [2].

• Partner: ENS Lyon
• Contact: Alexandre Isoard
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6.2. PolyOrdo
Polynomial Scheduler
FUNCTIONAL DESCRIPTION

Computes a polynomial schedule for a sequential polyhedral program having no affine schedule, in lieu of
multidimensional schedules. Uses algorithms for finding positive polynomials in semi-algebraic sets. Status:
proof of concept software, see related paper [14].

• Contact: Paul Feautrier

6.3. OpenOrdo
OpenStream scheduler
FUNCTIONAL DESCRIPTION

Finds polynomial schedules for the streaming language OpenStream. Main use: detecting deadlocks. The
scheduler has been extended to bound the size of stream buffers, either directly or as a side-effect of
constructing bounded delay schedules. An effort for bounding the number of in-flight tasks is under way.

Status: proof of concept, see related paper [1].

• Contact: Paul Feautrier

6.4. ppcg-paramtiling
Parametric Tiling Extension for PPCG
KEYWORDS: Source-to-source compiler - Polyhedral compilation
FUNCTIONAL DESCRIPTION

PPCG is a source-to-source compiler, based on polyhedral techniques, targeting GPU architectures. It involves
automatic parallelization and tiling using polyhedral techniques. This version replaces the static tiling of PPCG
by a fully parametric tiling and code generator. It allows to choose tile sizes at run time when the memory size
is known. It also provides a symbolic expression of memory usage depending on the problem size and the tile
sizes.

Status: proof of concept, unfinished, see Alexandre Isoard’s thesis [17].

• Partner: ENS Lyon

• Contact: Alexandre Isoard

7. New Results

7.1. Handling Polynomials for Program Analysis and Transformation
Participant: Paul Feautrier.

As is well known in natural language processing, the first step in translating a text from one language to another
is to understand it. The situation is the same for formal languages. A language processor has to “understand” a
program before translating or optimizing or verifying it. Such understanding takes the form of a model, usually
a mathematical representation whose natural operations mimic the behavior of its program. The polyhedral
model is such a representation. However, the set of programs it can represent is too restricted, and the hunt for
more powerful models has been under way since the millennium.
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An obvious ideas is to replace affine formulas by polynomials, and hence polyhedra by semi-algebraic
sets. Polynomials are ubiquitous in HPC and embedded system programming. For instance, the so-called
“linearizations” (replacing a multi-dimensional object by a one-dimensional one) generate polynomial access
functions. These polynomials then reappear in dependence testing, scheduling, and invariant construction.
It may also happen that polynomials are absent from the source program, but are created either by an
enabling analysis, as for OpenStream (see Section 7.2), or are imposed by complexity consideration. Lastly,
polynomials may be native to the underlying algorithm, as when distances are computed by the usual Euclidean
formula. What is needed here is a replacement for the familiar emptiness tests and for Farkas lemma (deciding
whether an affine form is positive inside a polyhedron). Recent mathematical results by Handelman and
Schweighofer on the Positivstellensatz allow one to devise algorithms that are able to solve these problems.
The difference is that one gets only sufficient conditions, and that complexity is much higher than in the affine
cases.

A paper presenting applications of these ideas to three use cases – dependence testing, scheduling, and transi-
tive closure approximation – was presented at (IMPACT’15) [14]. A tool to manipulate polynomials, polyno-
mial constraints and objective functions, needed for the derivation of polynomial schedules, complements this
work (see Section 6.2). It implements Farkas lemma and its generalization with Handelman & Schweighofer
formulations, and is in constant development, including improvements on the objective functions, in particular
to make schedule selection more stable, independently on the degree of the polynomial schedule.

7.2. Static Analysis of OpenStream Programs
Participants: Albert Cohen [Inria Parkas team], Alain Darte, Paul Feautrier.

In the context of the ManycoreLabs project, we started to study the applicability of polyhedral techniques
to the parallel language OpenStream [19]. When applicable, polyhedral techniques are indeed invaluable for
compile-time debugging and for generating efficient code well suited to a target architecture. OpenStream
is a two-level language in which a control program directs the initialization of parallel task instances that
communicate through streams, with possibly multiple writers and readers. It has a fairly complex semantics in
its most general setting, but we restricted ourselves to the case where the control program is sequential, which
is representative of the majority of the OpenStream applications.

In contrast to the language X10, which we studied in previous years, this restriction offers deterministic
concurrency by construction, but deadlocks are still possible. We showed that, if the control program is
polyhedral, one may statically compute, for each task instance, the read and write indices to each of its streams,
and thus reason statically about the dependences among task instances (the only scheduling constraints
in this polyhedral subset). If the control program has nested loops, communications use one-dimensional
channels in a form of linearization, and these indices may be polynomials of arbitrary degree, thus requiring to
extend to polynomials the standard polyhedral techniques for dependence analysis, scheduling, and deadlock
detection. Modern SMT allow to solve polynomial problems, albeit with no guarantee of success; the approach
previously developed by P. Feautrier [14], and recalled in Section 7.1, offers an alternative solution.

The usual way of disproving deadlocks is by exhibiting a schedule for the program operations, a well-known
problem for polyhedral programs where dependences can be described by affine constraints. In the case of
OpenStream, we established two important results related to deadlocks: 1) a characterization of deadlocks in
terms of dependence paths, which implies that streams can be safely bounded as soon as a schedule exists with
such sizes, 2) the proof that deadlock detection is undecidable, even for polyhedral OpenStream. Details of
this work have been published at the international workshop IMPACT’16 [1].

Some further developments are in progress for scheduling OpenStream programs using polynomial techniques
(with a corresponding prototype scheduling tool, specific to OpenStream, see Section 6.3). In particular, we
made some progress for parsing a simplified version of OpenStream, exhibiting the relevant structure, and on
the properties and construction of schedules with bounded streams and bounded delays, and on the analysis
of the “foot bath”, i.e., the pool of tasks that are created (already requiring some resources) but not activated
yet (because they need to wait for the termination of other tasks due to dataflow semantics). This work should
have interesting connections with the way runtime systems of tasks are managed.



Team COMPSYS 19

7.3. Liveness Analysis in Explicitly-Parallel Programs
Participants: Alain Darte, Alexandre Isoard, Tomofumi Yuki.

In the light of the parallel specifications encountered in our other work – kernel offloading with pipelined com-
munications [10], automatic parallelization, analysis of X10 [22], [23] and of OpenStream (see Section 7.2),
intra-array reuse (see Section 7.4) – we revisited scalar and array element-wise liveness analysis for programs
with parallel specifications. In earlier work on memory allocation/contraction (register allocation or intra- and
inter-array reuse in the polyhedral model), a notion of “time” or a total order among the iteration points was
used to compute the liveness of values. In general, the execution of parallel programs is not a total order, and
hence the notion of time is not applicable.

We first revised how conflicts are computed by using ideas from liveness analysis for register allocation,
studying the structure of the corresponding conflict/interference graphs. Instead of considering the conflict
between two pairs of live ranges, we only consider the conflict between a live range and a write. This simplifies
the formulation from having four instances involved in the test down to three, and also improves the precision
of the analysis in the general case. Then we extended the liveness analysis to work with partial orders so
that it can be applied to many different parallel languages/specifications with different forms of parallelism.
An important result is that the complement of the conflict graph with partial orders is directly connected to
memory reuse, even in presence of races. However, programs with conditionals do not even have a partial
order, and our next step will be to handle such cases with more accuracy. Details of this work have been
published at the international workshop IMPACT’16 [3].

Some new developments are in progress to explore even further the properties of such liveness analysis and
the construction of conflict sets, in the general case (with connections with the concept of trace monoid) or for
some common situations such as series-parallel graphs, appearing in languages such as X10 or OpenMP.

7.4. Extended Lattice-Based Memory Allocation
Participants: Alain Darte, Alexandre Isoard, Tomofumi Yuki.

We extended lattice-based memory allocation [11], an earlier work on memory (array) reuse analysis. The
main motivation is to handle in a better way the more general forms of specifications we see today, e.g., with
loop tiling, pipelining, and other forms of parallelism available in explicitly parallel languages. Our extension
has two complementary aspects. We showed how to handle more general specifications where conflicting
constraints (those that describe the array indices that cannot share the same location) are specified as a (non-
convex) union of polyhedra. Unlike convex specifications, this also requires to be able to choose suitable
directions (or basis) of array reuse. For that, we extended two dual approaches, previously proposed for a fixed
basis, into optimization schemes to select suitable basis. Our final approach relies on a combination of the two,
also revealing their links with, on one hand, the construction of multi-dimensional schedules for parallelism
and tiling (but with a fundamental difference that we identify) and, on the other hand, the construction of
universal reuse vectors (UOV), which was only used so far in a specific context, for schedule-independent
mapping.

This algorithmic work, connected to our previous work on parametric tiling [10] and the liveness analysis
results of Section 7.3, is complemented by a set of prototype scripting tools, see Section 6.1. Details of this
work have been published at the 2016 International Conference on Compiler Construction [2].

7.5. Stencil Accelerators
Participants: Steven Derrien [University of Rennes 1, Inria/CAIRN], Sanjay Rajopadhye [Colorado State
University], Tomofumi Yuki.

Stencil computations have been known to be an important class of programs for scientific calculations. Re-
cently, various architectures (mostly targeting FPGAs) for stencils are being proposed as hardware accelerators
with high throughput and/or high energy efficiency. There are many different challenges for such design: How
to maximize compute-I/O ratio? How to partition the problem so that the data fits on the on-chip memory?
How to efficiently pipeline? How to control the area usage? We seek to address these challenges by combining
techniques from compilers and high-level synthesis tools.
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One project in collaboration with the CAIRN team and Colorado State University targets stencils with regular
dependence patterns. Although many architectures have been proposed for this type of stencils, most of
them use a large number of small processing elements (PE) to achieve high throughput. We are exploring
an alternative design that aims for a single, large, deeply-pipelined PE. The hypothesis is that the pipelined
parallelism is more area-efficient compared to replicating small PEs. We have published a work-in-progress
paper on this topic at IMPACT’16 [4].

7.6. Efficient Mapping of Irregular Memory Accesses on FPGA
Participants: Xinyu Niu [Imperial College London], Tomofumi Yuki.

In a collaboration with Imperial College, we looked at efficiently implementing dynamic dependences on
FPGAs. The collaboration is in the context of the EURECA project 5 where the dynamic reconfigurability of
modern FPGAs is used to efficiently handle dynamic access patterns. We worked on analyzing data dependent
array accesses to identify regularities within irregular memory accesses to reduce the cost of a dynamic
memory reconfiguration module.

One part of this work has been published at the 2016 International Conference on Field Programmable Logic
and Applications [5].

7.7. PolyApps
Participant: Tomofumi Yuki.

Loop transformation frameworks using the polyhedral model have gained increased attention since the rise
of the multi-core era. We now have several research tools that have demonstrated their power on important
kernels found in scientific computations. However, there remains a large gap between the typical kernels used
to evaluate these tools and the actual applications used by the scientists.

PolyApps is an effort to collect applications from other domains of science to better establish the link between
the compiler tools and “real” applications. The applications are modified to bypass some of the front-end
issues of research tools, while keeping the ability to produce the original output. The goal is to assess how
the state-of-the-art automatic parallelizers perform on full applications, and to identify new opportunities that
only arise in larger pieces of code.

We showed that, with a few enhancements, the current tools will be able to reach and/or exceed the
performance of existing parallelizations of the applications. One of the most critical element missing in current
tools is the ability to modify the memory mappings.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
Since the team was going to be stopped, Compsys did not try to establish any long-term contract with industry.

8.2. Bilateral Grants with Industry
Same situation.

5http://www.doc.ic.ac.uk/~nx210/2015/09/01/eureca.html

http://www.doc.ic.ac.uk/~nx210/2015/09/01/eureca.html


Team COMPSYS 21

9. Partnerships and Cooperations

9.1. Regional Initiatives
Compsys followed or participated to the activities of LyonCalcul (http://lyoncalcul.univ-lyon1.fr/), a network
to federate activities on high-performance computing in Lyon. In this context, and with the support of the
Labex MILYON (http://milyon.universite-lyon.fr/), Compsys had organized in 2013 a thematic quarter on
compilation (http://labexcompilation.ens-lyon.fr). A second thematic quarter on high performance computing
(HPC) was organized in 2016, initiated by Violaine Louvet (Institute Camille Jordan), with the participation of
the LIP teams Aric, Avalon, Compsys, and Roma. Among other events, it included a CNRS inter-disciplinary
spring school (https://mathsinfohpc.sciencesconf.org) co-organized by Compsys, connecting mathematics
(HPC numerical analysis) and computer science (polyhedral optimizations for HPC) that can be seen as a
follow-up of the first polyhedral school organized by Compsys in 2013. See details in Section 10.1.

Alain Darte, Alexandre Isoard, and Tomofumi Yuki had also some exchanges with Violaine Louvet and
Thierry Dumont on tiling code optimizations, advising (in an informal way) some of their students during
their internships, for implementations on multicore machines and GPUs.

9.2. National Initiatives
9.2.1. French Compiler Community

In 2010, Laure Gonnord and Fabrice Rastello created the french community of compilation, which had no
organized venue in the past. All groups with activities related to compilation were contacted and the first
“compilation day” was organized in Lyon. This effort has been quickly a success: the community (http://
compilfr.ens-lyon.fr/) is now well identified and 3-days workshops now occur at least once a year (the 11th
event has been organized in Sep. 2016). The community is animated by Laure Gonnord and Fabrice Rastello
since 2010, and now also by Florian Brandner (ex-Compsys too). Alain Darte and Tomofumi Yuki participated
to the 11th edition.

Recognized as a sub-group of the CNRS GDR GPL (Software Engineering and Programming), the community
is also in charge, since 2014, of organizing one day of the research school “Ecole des jeunes chercheurs en
Algorithmique et Programmation” (EJCP). Tomofumi Yuki, in this context, gave a half-day lecture at the 2016
edition (http://ejcp2016.univ-lille1.fr/), following his 2015 course.

9.2.2. Collaboration with Parkas group, in Paris
Alain Darte and Paul Feautrier have regular meetings with Albert Cohen, from the Parkas team at ENS
Paris. The current discussions are mostly related to the analysis and compilation of the OpenStream language
developed by Parkas, a research topic that started though the ManycoreLabs project (see previous reports).
The results of Sections 7.2 and 7.1 are related to this collaboration. Now that Compsys has been stopped, Paul
Feautrier is affiliated to Parkas, in addition to his emeritus position at ENS-Lyon.

9.2.3. Collaboration with Cairn group, in Rennes
Tomofumi Yuki continues to work with the Cairn group through regular meetings and occasional visits. The
topic of the collaboration is in applying compiler techniques for hardware design using high-level synthesis.
Section 7.5 presents the results through this collaboration.

9.2.4. Collaboration with Camus group, in Strasbourg
Paul Feautrier and Tomofumi Yuki have an ongoing cooperation with Alain Ketterlin and Eric Violard (Camus
group, Strasbourg). The main result has been the determination of the happens before relation of clocked X10,
a prerequisite for the detection of races in clocked programs. The resulting formula has been proved correct
using the Coq proof assistant. Publishing formal proofs is known to be difficult, but we will give it a try soon.

http://lyoncalcul.univ-lyon1.fr/
http://milyon.universite-lyon.fr/
http://labexcompilation.ens-lyon.fr
https://mathsinfohpc.sciencesconf.org
http://compilfr.ens-lyon.fr/
http://compilfr.ens-lyon.fr/
http://ejcp2016.univ-lille1.fr/
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9.3. European Initiatives
9.3.1. FP7 & H2020 Projects

After the participation to a (rejected) H2020 proposal in 2015, Compsys did not try any effort in this direction
as the team was going to be stopped.

9.3.2. Collaborations in European Programs, Except FP7 & H2020
Same situation.

9.3.3. Collaborations with Major European Organizations
Compsys members participate to the European Network of Excellence on High Performance and Embedded
Architecture and Compilation (HiPEAC, http://www.hipeac.net/), either as members or affiliate members. The
International Workshop on Polyhedral Compilation Techniques (IMPACT, see Section 9.4.2), co-created by
Christophe Alias in 2011, is now an annual event of the HIPEAC conference, as an official workshop. The 5th
edition, IMPACT’15, was co-chaired by Alain Darte (see http://impact.gforge.inria.fr/impact2015/), while the
6h edition, IMPACT’16, was co-chaired by Tomofumi Yuki (see http://impact.gforge.inria.fr/impact2016/).

9.4. International Initiatives
9.4.1. Collaboration with Colorado State University

Compsys had always kept strong connections with Colorado State University (CSU):
• In July 2016, Guillaume Iooss defended his joint ENS-Lyon/CSU PhD thesis [16]. He was co-

advised by both Sanjay Rajopadhye (CSU) and Christophe Alias (with supplementary support by
Alain Darte for administrative reason, as he has no HDR yet).

• Tomofumi Yuki, who did his PhD with Sanjay Rajopadhye, then a post-doc in the Cairn
team in Rennes, continued his collaboration with these two groups, as the results described in
Section 7.5 illustrate. He also participates regularly, over the net, to the reading group “Melange” of
S. Rajodapdhye’s group, with CSU students. Due to the stop of Compsys, Tomofumi Yuki has now
returned to the Cairn team.

• Waruna Ranasinghe, a PhD student from S. Rajopadhye’s team, visited Compsys, to work with
Tomofumi Yuki, for 2 months (see Section 9.5).

9.4.2. Polyhedral Community
In 2011, as part of the organization of the workshops at CGO’11, Christophe Alias (with Cédric Bastoul)
organized IMPACT’11 (international workshop on polyhedral compilation techniques, http://impact2011.
inrialpes.fr/). This workshop in Chamonix was the very first international event on this topic, although it
was introduced by Paul Feautrier in the late 80s. Alain Darte gave the introductory keynote talk. After
this successful edition (more than 60 people), IMPACT continued as a satellite workshop of the HIPEAC
conference, in Paris (2012), Berlin (2013), Vienna (2014). Alain Darte was program co-chair and co-organizer
of the 2015 edition in Amsterdam, and Tomofumi Yuki of the 2016 edition in Prague.

The creation of IMPACT, now the annual event of the polyhedral community, helped to identify this
community and to make it more visible. This effort was complemented by the organization by Alain Darte of
the first school on polyhedral code analysis and optimizations (http://labexcompilation.ens-lyon.fr/polyhedral-
school/). A second polyhedral school (https://mathsinfohpc.sciencesconf.org), more open, because involving
themes and researchers from numerical analysis (users of HPC), was organized in 2016 by Alain Darte (for
the compiler side) and Violaine Louvet (for the HPC side). See details in Section 10.1.

Alain Darte also manages two new mailing lists for news (polyhedral-news@listes.ens-lyon.fr) and discussions
(polyhedral-discuss@listes.ens-lyon.fr) on polyhedral code analysis and optimizations. Tomofumi Yuki is
involved in the development of PolyBench (http://sourceforge.net/projects/polybench), a suite of kernels used
for illustrating polyhedral optimizations. He is also developing PolyApps, a set of larger applications to
evaluate the gap between kernels and “real” applications, see more details in Section 7.7.

http://www.hipeac.net/
http://impact.gforge.inria.fr/impact2015/
http://impact.gforge.inria.fr/impact2016/
http://impact2011.inrialpes.fr/
http://impact2011.inrialpes.fr/
http://labexcompilation.ens-lyon.fr/polyhedral-school/
http://labexcompilation.ens-lyon.fr/polyhedral-school/
https://mathsinfohpc.sciencesconf.org
http://sourceforge.net/projects/polybench
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9.5. International Research Visitors
9.5.1. Visits of International Scientists
9.5.1.1. Visiting PhD students

• Emna Hammami (Tunis University, with Yosr Slama) visited Compsys from April to June 2016 to
refine her PhD topic with Compsys members. She also participated to the spring school on numerical
simulation and polyhedral compilation.

• Waruna Ranasinghe (Colorado State University, with Sanjay Rajopadhye) visited Compsys from end
of June to mid August 2016 to work with Tomofumi Yuki on extending cache oblivious techniques
to polyhedral programs.

9.5.1.2. Internships

• Julien Versaci, M2 student from Lyon 1 University, from both physics and computer science
departments, worked from April to June 2016 in Compsys, to work on the parallelization of a model
of quantum physics. Julien was co-supervised by Jean-Philippe Guillet (physicist) and Tomofumi
Yuki, the second part of his internship (until mid August) being done affiliated to Annecy physics
laboratory (LAPTH). Julien also participated to the spring school on numerical simulation and
polyhedral compilation.

9.5.2. Visits to International Teams
No long (more than one month) stay abroad in 2016.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. General Chair, Scientific Chair

Alain Darte is general chair of the steering committee of CPC (International Workshop on Compilers for
Parallel Computing), which regroups in Europe, every 18 months, a large community of researchers interested
in compilers for HPC. He participated to CPC’16 in Valladolid in July 2016.

10.1.1.2. Member of the Organizing Committees

Tomofumi Yuki was co-organizer of IMPACT’16 (International Workshop on Polyhedral Compilation Tech-
niques, http://impact.gforge.inria.fr/impact2016/) with Michelle Strout (University of Arizona).

10.1.1.3. Spring School on Numerical Simulation and Polyhedral Compilation

Alain Darte (with the help of Tomofumi Yuki for the program) co-organized with Violaine Louvet (Institute
Camille Jordan in Lyon, now lead of UMS Gricad in Grenoble) a second polyhedral spring school, May 9-13
2016, targeting both the polyhedral community and HPC users from numerical analysis. This spring school
has been labelled (and funded) as a CNRS interdisciplinary spring school (https://mathsinfohpc.sciencesconf.
org/), with a total budget of roughly 39 Keuros, including funding from Labex MILYON, CNRS, GDR Calcul,
ENS, LIP, and registrations fees, which were kept low to keep the spirit of the first spring school on polyhedral
code analysis and optimizations.

http://impact.gforge.inria.fr/impact2016/
https://mathsinfohpc.sciencesconf.org/
https://mathsinfohpc.sciencesconf.org/
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This second spring school was motivated by the need for a more global approach for HPC applications,
that combines the design of numerical methods with extensive hardware considerations, in interaction with
languages and compilers, so as to take into account both the complexity of architectures and the needs of
their non-expert users. Research communities in computer science (architecture, compilation) and applied
mathematcs (numerical simulation) are not always aware of this need; at least their work do not always
spread enough across the other discipline to lead to mutual influence. Automatic code optimizations and tools
also require a better evaluation of their applicability. The goal of this research school – or meeting place of
two communities – was to make the link between some of the most recent advances on automatic program
optimizations (in particular polyhedral techniques and tools) and applied mathematics (schemes for numerical
simulation), in relation with application needs. This school was therefore interdisciplinary, with a strong will
to bring communities together on the common theme of supercomputing.

We finally opted for a single track instead of parallel sessions, which helped federate the two communities.
The school included courses on architectures (M. Haefele, Maison de la simulation), on numerical schemes in
connection with stencils (T. Dumont, ICJ), on simulation methods (discontinuous Galerkin) in particular for
GPU (P. Helluy, Strasbourg), on polyhedral techniques and tiling (A. Darte, Compsys), on some polyhedral
compilers such as Pluto (U. Bondhugula, Bangalore) and PPCG (S. Verdoolaege, ENS), on the roofline model
for performance analysis (M. Püschel, ETH Zürich), on stencils and tensors optimizations (Ramanujam, Baton
Rouge), on numerical precision (C. Rubio-Gonzalez, UC Davis), plus some additional talks on reproducibility,
applications, the ECM model, etc. The school was a success, with 71 participants, roughly half from each
community, with 29 coming from abroad (Italy, Algeria, USA, India, Canada, Germany, Croatia, Switzerland,
Austria, Belgium), and a majority (37) being PhD students.

The future will tell if our objectives have been reached, i.e., if the two communities will interact more on
the long term and rethink their work with an interdisciplinary look, to invent new computing schemes and
compilers more suitable for the constraints of today’s architectures, in particular their memory hierarchy and
locality needs. In Compsys at least, one can already see some moves in this direction, with the interdisciplinary
internship of Julien Versaci co-advised by Tomofumi Yuki, the participation of Alain Darte as a referee to
the PhD jury of T. Gasc (CEA, Maison de la Simulation, ENS Cachan), a planned seminar by Alain Darte
at Maison de la Simulation in early 2017, starting exchanges with the LMGC lab (Montpellier) on their
applications, and a planned mini-symposium, following the line of this spring school, at SMAI 2017.

10.1.2. Scientific Events Selection
10.1.2.1. Chair of Conference Program Committees

In addition to the organization, Tomofumi Yuki was program co-chair of IMPACT’16, with Michelle Strout
(University of Arizona).

10.1.2.2. Member of the Conference Program Committees

Alain Darte was a member of the program committee of HPCS’16 (International Conference on High Perfor-
mance Computing & Simulation) and will be member of the program committee of PACT’17 (International
Conference on Parallel Architectures and Compilation Techniques).

Paul Feautrier was a member of the program committees of IMPACT’16 and IMPACT’17.

Tomofumi Yuki was a member of the program committees of SC’16, X10 Workshop’16, IMPACT’16, and
IMPACT’17.

10.1.2.3. Reviewer

Alain Darte, Paul Feautrier, and Tomofumi Yuki were reviewers for the different program committees to which
they participated.

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

No participation to journal editorial boards in 2016.
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10.1.3.2. Reviewer - Reviewing Activities

Alain Darte was a reviewer for the “Software, Practice, and Experience” journal.

Paul Feautrier was a reviewer for the “International Journal of Parallel Programming”.

Tomofumi Yuki was a reviewer for the TACO, TOPLAS, JPDC, and TPDS journals.

10.1.4. Invited Talks
Alain Darte was invited to give a talk on “Liveness Analysis in Explicitly-Parallel Programs” at ScalPerf’16
in Bertinoro (Italy), Sep. 2016.

Paul Feautrier was invited to give a talk (in two parts) “Toward A Polynomial Model with Application to the
OpenStream Language” at the second and third LCS (Language, Compilation, Semantics) LIP seminars, in
June and November 2016.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master:

• Paul Feautrier was invited to give a talk on “New Architectures, New Compilations
Problems”, at the student seminar for the IMAG M2 course, Grenoble, December 5, 2016.

Spring/Summer Schools:

• Alain Darte, as part of the spring school on numerical simulation and polyhedral compila-
tion, gave a half-day course on “Introduction to Automated Polyhedral Code Optimizations
and Tiling”, see https://mathsinfohpc.sciencesconf.org.

• Tomofumi Yuki, a part of the École Jeunes Chercheurs en Programmation 2016, gave a
half-day course on “Research in Compilers and Introduction to Loop Transformations”,
see http://ejcp2016.univ-lille1.fr/.

10.2.2. Supervision
PhD: Guillaume Iooss, “Detection of linear algebra operations in polyhedral programs” [16], joint
PhD ENS-Lyon/Colorado State University, started Sep. 2011, defended July 1st, 2016, advisors:
Christophe Alias and Alain Darte (ENS-Lyon) / Sanjay Rajopadhye (Colorado State University).

PhD: Alexandre Isoard, “Extending Polyhedral Techniques towards Parallel Specifications and
Approximations” [17], ENS-Lyon, started in Sep. 2012, defended July 5th, 2016, advisor: Alain
Darte.

Guillaume Iooss is now post-doc in the Parkas team, while Alexandre Isoard is R&D engineer at Xilinx
(Dublin, Ireland, then San Jose, Ca).

10.2.3. Juries
Alain Darte was one of the two reviewers of the PhD of Thibault Gasc (CEA DAM DIF, Maison de la
Simulation, November 2016), entitled “Modèles de performance pour l’adaptation des méthodes numériques
aux architectures multi-cœurs vectorielles. Application aux schémas Lagrange-Projection en hydrodynamique
compressible”. He was also member of the juries of the PhD of Alexandre Isoard, as adviser, and of Guillaume
Iooss as administrative co-adviser.

10.3. Popularization
The interdisciplinary spring school organized in May 2016 (see Section 10.1) is a form of popularization
of compiler technology (in particular polyhedral optimizations) towards HPC users from the numerical
simulation community.

https://mathsinfohpc.sciencesconf.org
http://ejcp2016.univ-lille1.fr/
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