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2. Overall Objectives

2.1. Overall Objectives
DataShape is a research project in Topological Data Analysis (TDA), a recent field whose aim is to uncover,
understand and exploit the topological and geometric structure underlying complex and possibly high di-
mensional data. The DATASHAPE project gathers a unique variety of expertise that allows it to embrace the
mathematical, statistical, algorithmic and applied aspects of the field in a common framework ranging from
fundamental theoretical studies to experimental research and software development.

The expected output of DATASHAPE is two-fold. First, we intend to set-up and develop the mathematical,
statistical and algorithmic foundations of Topological and Geometric Data Analysis. Second, we intend to
develop the Gudhi platform in order to provide an efficient state-of-the-art toolbox for the understanding of
the topology and geometry of data.
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3. Research Program

3.1. Algorithmic aspects of topological and geometric data analysis
TDA requires to construct and manipulate appropriate representations of complex and high dimensional
shapes. A major difficulty comes from the fact that the complexity of data structures and algorithms used
to approximate shapes rapidly grows as the dimensionality increases, which makes them intractable in high
dimensions. We focus our research on simplicial complexes which offer a convenient representation of general
shapes and generalize graphs and triangulations. Our work includes the study of simplicial complexes with
good approximation properties and the design of compact data structures to represent them.

In low dimensions, effective shape reconstruction techniques exist that can provide precise geometric approx-
imations very efficiently and under reasonable sampling conditions. Extending those techniques to higher
dimensions as is required in the context of TDA is problematic since almost all methods in low dimensions
rely on the computation of a subdivision of the ambient space. A direct extension of those methods would
immediately lead to algorithms whose complexities depend exponentially on the ambient dimension, which
is prohibitive in most applications. A first direction to by-pass the curse of dimensionality is to develop al-
gorithms whose complexities depend on the intrinsic dimension of the data (which most of the time is small
although unknown) rather than on the dimension of the ambient space. Another direction is to resort to cruder
approximations that only captures the homotopy type or the homology of the sampled shape. The recent the-
ory of persistent homology provides a powerful and robust tool to study the homology of sampled spaces in a
stable way.

3.2. Statistical aspects of topological and geometric data analysis
The wide variety of larger and larger available data - often corrupted by noise and outliers - requires to consider
the statistical properties of their topological and geometric features and to propose new relevant statistical
models for their study.

There exist various statistical and machine learning methods intending to uncover the geometric structure
of data. Beyond manifold learning and dimensionality reduction approaches that generally do not allow to
assert the relevance of the inferred topological and geometric features and are not well-suited for the analysis
of complex topological structures, set estimation methods intend to estimate, from random samples, a set
around which the data is concentrated. In these methods, that include support and manifold estimation,
principal curves/manifolds and their various generalizations to name a few, the estimation problems are usually
considered under losses, such as Hausdorff distance or symmetric difference, that are not sensitive to the
topology of the estimated sets, preventing these tools to directly infer topological or geometric information.

Regarding purely topological features, the statistical estimation of homology or homotopy type of compact
subsets of Euclidean spaces, has only been considered recently, most of the time under the quite restrictive
assumption that the data are randomly sampled from smooth manifolds.

In a more general setting, with the emergence of new geometric inference tools based on the study of distance
functions and algebraic topology tools such as persistent homology, computational topology has recently seen
an important development offering a new set of methods to infer relevant topological and geometric features
of data sampled in general metric spaces. The use of these tools remains widely heuristic and until recently
there were only a few preliminary results establishing connections between geometric inference, persistent
homology and statistics. However, this direction has attracted a lot of attention over the last three years. In
particular, stability properties and new representations of persistent homology information have led to very
promising results to which the DATASHAPE members have significantly contributed. These preliminary results
open many perspectives and research directions that need to be explored.

Our goal is to build on our first statistical results in TDA to develop the mathematical foundations of Statistical
Topological and Geometric Data Analysis. Combined with the other objectives, our ultimate goal is to provide
a well-founded and effective statistical toolbox for the understanding of topology and geometry of data.



4 Activity Report INRIA 2016

3.3. Topological approach for multimodal data processing
Due to their geometric nature, multimodal data (images, video, 3D shapes, etc.) are of particular interest for
the techniques we develop. Our goal is to establish a rigorous framework in which data having different
representations can all be processed, mapped and exploited jointly. This requires adapting our tools and
sometimes developing entirely new or specialized approaches.

The choice of multimedia data is motivated primarily by the fact that the amount of such data is steadily
growing (with e.g. video streaming accounting for nearly two thirds of peak North-American Internet traffic,
and almost half a billion images being posted on social networks each day), while at the same time it poses
significant challenges in designing informative notions of (dis)-similarity as standard metrics (e.g. Euclidean
distances between points) are not relevant.

3.4. Experimental research and software development
We develop a high quality open source software platform called GUDHI which is becoming a reference in
geometric and topological data analysis in high dimensions. The goal is not to provide code tailored to the
numerous potential applications but rather to provide the central data structures and algorithms that underly
applications in geometric and topological data analysis.

The development of the GUDHI platform also serves to benchmark and optimize new algorithmic solutions
resulting from our theoretical work. Such development necessitates a whole line of research on software
architecture and interface design, heuristics and fine-tuning optimization, robustness and arithmetic issues,
and visualization. We aim at providing a full programming environment following the same recipes that made
up the success story of the CGAL library, the reference library in computational geometry.

Some of the algorithms implemented on the platform will also be interfaced to other software platform, such
as the R software 1 for statistical computing, and languages such as Python in order to make them usable in
combination with other data analysis and machine learning tools. A first attempt in this direction has been
done with the creation of an R package called TDA in collaboration with the group of Larry Wasserman at
Carnegie Mellon University (Inria Associated team CATS) that already includes some functionalities of the
GUDHI library and implements some joint results between our team and the CMU team. A similar interface
with the Python language is also considered a priority. To go even further towards helping users, we will
provide utilities that perform the most common tasks without requiring any programming at all.

4. Application Domains
4.1. Main application domains

Our work is mostly of a fundamental mathematical and algorithmic nature but finds applications in a variety
of application in data analysis, more precisely in Topological Data Analysis (TDA). Although TDA is a quite
recent field, it already founds applications in material science, biology, sensor networks, 3D shapes analysis
and processing, to name a few.

More specifically, DATASHAPEhas recently started to work on the analysis of trajectories obtained from
inertial sensors (starting PhD thesis of Bertrand Beaufils) and is exploring some possible new applications
in material science.

5. Highlights of the Year
5.1. Highlights of the Year
5.1.1. Awards

Jean-Daniel Boissonnat has been elected a professor at the Collège de France, on the Chair Informatics and
Computational Sciences for the academic year 2016-2017.

1https://www.r-project.org/

https://www.r-project.org/
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5.1.2. Books
Publication of a book [29], providing a self-contained presentation of the theory of persistence modules over
the real line, the objects that are at the heart of the field of TDA.

6. New Software and Platforms

6.1. GUDHI
Geometric Understanding in Higher Dimensions
SCIENTIFIC DESCRIPTION

The current release of the GUDHI library includes:

• Data structures to represent, construct and manipulate simplicial and cubical complexes.

• Algorithms to compute simplicial complexes from point cloud data.

• Algorithms to compute persistent homology and multi-field persistent homology.

• Simplification methods via implicit representations.

FUNCTIONAL DESCRIPTION

The GUDHI open source library will provide the central data structures and algorithms that underlie appli-
cations in geometry understanding in higher dimensions. It is intended to both help the development of new
algorithmic solutions inside and outside the project, and to facilitate the transfer of results in applied fields.

• Participants: Jean-Daniel Boissonnat, Marc Glisse, Mariette Yvinec, Clément Maria, David Salinas,
Paweł Dłotko, Siargey Kachanovich and Vincent Rouvreau

• Contact: Jean-Daniel Boissonnat

• URL: http://gudhi.gforge.inria.fr/

7. New Results

7.1. Algorithmic aspects of topological and geometric data analysis
7.1.1. An Efficient Representation for Filtrations of Simplicial Complexes

Participant: Jean-Daniel Boissonnat.

In collaboration with Karthik C.S. (Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Israel)

A filtration over a simplicial complex K is an ordering of the simplices of K such that all prefixes in the
ordering are subcomplexes ofK. Filtrations are at the core of Persistent Homology, a major tool in Topological
Data Analysis. In order to represent the filtration of a simplicial complex, the entire filtration can be appended
to any data structure that explicitly stores all the simplices of the complex such as the Hasse diagram or the
recently introduced Simplex Tree by Boissonnat and Maria [Algorithmica ’14]. However, with the popularity
of various computational methods that need to handle simplicial complexes, and with the rapidly increasing
size of the complexes, the task of finding a compact data structure that can still support efficient queries is of
great interest.

This direction has been recently pursued for the case of maintaining simplicial complexes. For instance,
Boissonnat et al. [SoCG ’15] considered storing the simplices that are maximal for the inclusion and Attali
et al. [IJCGA ’12] considered storing the simplices that block the expansion of the complex. Nevertheless,
so far there has been no data structure that compactly stores the filtration of a simplicial complex, while also
allowing the efficient implementation of basic operations on the complex.

http://gudhi.gforge.inria.fr/
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In this work [22], we propose a new data structure called the Critical Simplex Diagram (CSD) which is a
variant of our work on the Simplex Array List (SAL) introduced in [SoCG ’15]. Our data structure allows to
store in a compact way the filtration of a simplicial complex, and allows for the efficient implementation of a
large range of basic operations. Moreover, we prove that our data structure is essentially optimal with respect
to the requisite storage space. Next, we show that the CSD representation admits the following construction
algorithms.
• A new edge-deletion algorithm for the fast construction of Flag complexes, which only depends on

the number of critical simplices and the number of vertices.
• A new matrix-parsing algorithm to quickly construct the relaxed strong Delaunay complexes,

depending only on the number of witnesses and the dimension of the complex.

7.1.2. Discretized Riemannian Delaunay triangulations
Participants: Mael Rouxel-Labbé, Mathijs Wintraecken, Jean-Daniel Boissonnat.

Anisotropic meshes are desirable for various applications, such as the numerical solving of partial differential
equations and graphics. In [27], we introduce an algorithm to compute discrete approximations of Riemannian
Voronoi diagrams on 2-manifolds. This is not straightforward because geodesics, shortest paths between
points, and therefore distances cannot in general be computed exactly. Our implementation employs recent
developments in the numerical computation of geodesic distances and is accelerated through the use of
an underlying anisotropic graph structure. We give conditions that guarantee that our discrete Riemannian
Voronoi diagram is combinatorially equivalent to the Riemannian Voronoi diagram and that its dual is an
embedded triangulation, using both approximate geodesics and straight edges. Both the theoretical guarantees
on the approximation of the Voronoi diagram and the implementation are new and provide a step towards the
practical application of Riemannian Delaunay triangulations.

7.1.3. Efficient and Robust Persistent Homology for Measures
Participants: Frédéric Chazal, Steve Oudot.

In collaboration with M. Buchet (Tohoku University), D. Sheehy (Univ. Connecticut).

A new paradigm for point cloud data analysis has emerged recently, where point clouds are no longer treated
as mere compact sets but rather as empirical measures. A notion of distance to such measures has been defined
and shown to be stable with respect to perturbations of the measure. This distance can easily be computed
pointwise in the case of a point cloud, but its sublevel-sets, which carry the geometric information about
the measure, remain hard to compute or approximate. This makes it challenging to adapt many powerful
techniques based on the Euclidean distance to a point cloud to the more general setting of the distance to
a measure on a metric space. We propose an efficient and reliable scheme to approximate the topological
structure of the family of sublevel-sets of the distance to a measure. We obtain an algorithm for approximating
the persistent homology of the distance to an empirical measure that works in arbitrary metric spaces. Precise
quality and complexity guarantees are given with a discussion on the behavior of our approach in practice
[17].

7.1.4. Shallow Packings in Geometry
Participants: Kunal Dutta, Arijit Ghosh.

A merged paper with Ezra, Esther (School of Mathematics, Georgia Institute of Technology, Atlanta, U.S.A.)

We refine the bound on the packing number, originally shown by Haussler, for shallow geometric set systems.
Specifically, let V be a finite set system defined over an n-point set X; we view V as a set of indicator vectors
over the n-dimensional unit cube. A delta-separated set of V is a subcollection W , such that the Hamming
distance between each pair u, v ∈W is greater than δ, where δ > 0 is an integer parameter. The δ-packing
number is then defined as the cardinality of the largest δ-separated subcollection of V . Haussler showed an
asymptotically tight bound of Θ((n/delta)

d
) on the δ-packing number if V has VC-dimension (or primal

shatter dimension) d. We refine this bound for the scenario where, for any subset, X ′ ⊂ X of size m ≤ n and
for any parameter 1 ≤ k ≤ m, the number of vectors of length at most k in the restriction of V to X ′ is only
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O(md1kd−d1), for a fixed integer d > 0 and a real parameter 1 ≤ d1 ≤ d (this generalizes the standard notion
of bounded primal shatter dimension when d1 = d). In this case when V is "k-shallow" (all vector lengths are
at most k), we show that its δ-packing number is O(nd1kd−d1/δd), matching Haussler’s bound for the special
cases where d1 = d or k = n. We present two proofs, the first is an extension of Haussler’s approach, and the
second extends the proof of Chazelle, originally presented as a simplification for Haussler’s proof. [21]
• A new tight upper bound for shallow-packings in δ-separated set systems of bounded primal shatter

dimension.

7.1.5. On Subgraphs of Bounded Degeneracy in Hypergraphs
Participants: Kunal Dutta, Arijit Ghosh.

A k-uniform hypergraph has degeneracy bounded by d if every induced subgraph has a vertex of degree at
most d. Given a k-uniform hypergraph H = (V (H), E(H)), we show there exists an induced subgraph of
size at least

∑
v∈V (H)

min 1, ck

(
d+ 1

dH(v) + 1

)1/(k−1)

,

where ck = 2−(1+
1

k−1 )
(
1− 1

k

)
and dH(v) denotes the degree of vertex v in the hypergraph H . This extends

and generalizes a result of Alon-Kahn-Seymour (Graphs and Combinatorics, 1987) for graphs, as well as a
result of Dutta-Mubayi-Subramanian (SIAM Journal on Discrete Mathematics, 2012) for linear hypergraphs,
to general k-uniform hypergraphs. We also generalize the results of Srinivasan and Shachnai (SIAM Journal on
Discrete Mathematics, 2004) from independent sets (0-degenerate subgraphs) to d-degenerate subgraphs. We
further give a simple non-probabilistic proof of the Dutta-Mubayi-Subramanian bound for linear k-uniform
hypergraphs, which extends the Alon-Kahn-Seymour proof technique to hypergraphs. Our proof combines the
random permutation technique of Bopanna-Caro-Wei (see e.g. The Probabilistic Method, N. Alon and J. H.
Spencer; Dutta-Mubayi-Subramanian) and also Beame-Luby (SODA, 1990) together with a new local density
argument which may be of independent interest. We also provide some applications in discrete geometry, and
address some natural algorithmic questions. [28]
• A new algorithmic lower bound for largest d-degenerate subgraphs in k-uniform hypergraphs.

7.1.6. A Simple Proof of Optimal Epsilon Nets
Participants: Kunal Dutta, Arijit Ghosh.

In collaboration with Nabil Mustafa (Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,
ESIEE Paris, France.)

Showing the existence of ε-nets of small size has been the subject of investigation for almost 30 years, starting
from the initial breakthrough of Haussler and Welzl (1987). Following a long line of successive improvements,
recent results have settled the question of the size of the smallest ε-nets for set systems as a function of their
so-called shallow-cell complexity.

In this paper we give a short proof of this theorem in the space of a few elementary paragraphs, showing that
it follows by combining the ε-net bound of Haussler and Welzl (1987) with a variant of Haussler’s packing
lemma (1991).

This implies all known cases of results on unweighted ε-nets studied for the past 30 years, starting from the
result of Matoušek, Seidel and Welzl (1990) to that of Clarkson and Varadajan (2007) to that of Varadarajan
(2010) and Chan, Grant, Könemann and Sharpe (2012) for the unweighted case, as well as the technical and
intricate paper of Aronov, Ezra and Sharir (2010). [40]
• A new unified proof for all known bounds on unweighted ε-nets studied in the last 30 years.

7.1.7. Combinatorics of Set Systems with Small Shallow Cell Complexity: Optimal Bounds via
Packings
Participants: Kunal Dutta, Arijit Ghosh.
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In collaboration with Bruno Jartoux and Nabil Mustafa (Université Paris-Est Marne-la-Vallée, Laboratoire
d’Informatique Gaspard-Monge, ESIEE Paris, France.)

The packing lemma of Haussler states that given a set system (X,R) with bounded VC dimension, if every
pair of sets in R are ‘far apart’ (i.e., have large symmetric difference), then R cannot contain too many sets.
This has turned out to be the technical foundation for many results in geometric discrepancy using the entropy
method as well as recent work on set systems with bounded VC dimension. Recently it was generalized to
the shallow packing lemma [Dutta-Ezra-Ghosh SoCG 2015, Mustafa DCG 2016], applying to set systems as a
function of their shallow cell complexity. In this paper we present several new results and applications related
to packings:

1. an optimal lower bound for shallow packings, thus settling the open question in Ezra (SODA 2014)
and Dutta et al. (SoCG 2015),

2. improved bounds on Mnets, providing a combinatorial analogue to Macbeath regions in convex
geometry (Annals of Mathematics, 1952),

3. simplifying and generalizing the main technical tool in Fox et al. (J. of the EMS, 2016).

Besides using the packing lemma and a combinatorial construction, our proofs combine tools from polynomial
partitioning and the probabilistic method. [37]
• A new optimal lower bound for shallow packings.
• New improved bounds for M-nets - combinatorial analogs of Macbeath regions in convex geometry.

7.1.8. A new asymmetric correlation inequality for Gaussian measure
Participants: Kunal Dutta, Arijit Ghosh.

In collaboration with Nabil Mustafa (Université Paris-Est Marne-la-Vallée, Laboratoire d’Informatique
Gaspard-Monge, ESIEE Paris, France.)

The Khatri-Šidák lemma says that for any Gaussian measure µ over Rn , given a convex set K and a slab
L, both symmetric about the origin, one has µ(K ∩ L) ≥ µ(K)µ(L). We state and prove a new asymmetric
version of the Khatri-Šidák lemma when K is a symmetric convex body and L is a slab (not necessarily
symmetric about the barycenter of K). Our result also extends that of Szarek and Werner (1999), in a special
case.
• A new asymmetric inequality for gaussian measure. [38].

7.2. Statistical aspects of topological and geometric data analysis
7.2.1. Stability and Minimax Optimality of Tangential Delaunay Complexes for Manifold

Reconstruction
Participant: Eddie Aamari.

In collaboration with C. Levrard (Univ. Paris Diderot).

we consider the problem of optimality in manifold reconstruction. A random sample
Xn = {X1, . . ., Xn} ⊂ RD composed of points lying on a d-dimensional submanifold M , with or
without outliers drawn in the ambient space, is observed. Based on the tangential Delaunay complex, we
construct an estimatorM̂ that is ambient isotopic and Hausdorff-close to M with high probability. M̂ is built
from existing algorithms. In a model without outliers, we show that this estimator is asymptotically minimax
optimal for the Hausdorff distance over a class of submanifolds with reach condition. Therefore, even with
no a priori information on the tangent spaces of M , our estimator based on tangential Delaunay complexes
is optimal. This shows that the optimal rate of convergence can be achieved through existing algorithms. A
similar result is also derived in a model with outliers. A geometric interpolation result is derived, showing
that the tangential Delaunay complex is stable with respect to noise and perturbations of the tangent spaces.
In the process, a denoising procedure and a tangent space estimator both based on local principal component
analysis (PCA) are studied [32].
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7.2.2. Rates in the Central Limit Theorem and diffusion approximation via Stein’s Method
Participant: Thomas Bonis.

We present a way to apply Stein’s method in order to bound the Wasserstein distance between a, possibly
discrete, measure and another measure assumed to be the invariant measure of a diffusion operator. We apply
this construction to obtain convergence rates, in terms of p-Wasserstein distance for p ≥ 2, in the Central
Limit Theorem in dimension 1 under precise moment conditions. We also establish a similar result for the
Wasserstein distance of order 2 in the multidimensional setting. In a second time, we study the convergence
of stationary distributions of Markov chains in the context of diffusion approximation, with applications to
density estimation from geometric random graphs and to sampling using the Langevin Monte Carlo algorithm
[33].

7.2.3. Rates of Convergence for Robust Geometric Inference
Participants: Frédéric Chazal, Bertrand Michel.

In collaboration with P. Massart (Univ. Paris Sud et Inria Select team).

Distances to compact sets are widely used in the field of Topological Data Analysis for inferring geometric and
topological features from point clouds. In this context, the distance to a probability measure (DTM) has been
introduced by Chazal et al. as a robust alternative to the distance a compact set. In practice, the DTM can be
estimated by its empirical counterpart, that is the distance to the empirical measure (DTEM). In this paper we
give a tight control of the deviation of the DTEM. Our analysis relies on a local analysis of empirical processes.
In particular, we show that the rate of convergence of the DTEM directly depends on the regularity at zero of
a particular quantile function which contains some local information about the geometry of the support. This
quantile function is the relevant quantity to describe precisely how difficult is a geometric inference problem.
Several numerical experiments illustrate the convergence of the DTEM and also confirm that our bounds are
tight [19].

7.2.4. Data driven estimation of Laplace-Beltrami operator
Participants: Frédéric Chazal, Bertrand Michel, Ilaria Giulini.

Approximations of Laplace-Beltrami operators on manifolds through graph Laplacians have become popular
tools in data analysis and machine learning. These discretized operators usually depend on bandwidth
parameters whose tuning remains a theoretical and practical problem. In this paper, we address this problem
for the unnormalized graph Laplacian by establishing an oracle inequality that opens the door to a well-
founded data-driven procedure for the bandwidth selection. Our approach relies on recent results by Lacour
and Massart on the so-called Lepski’s method [26].

7.3. Topological approach for multimodal data processing
7.3.1. Persistence-based Pooling for Shape Pose Recognition

Participants: Thomas Bonis, Frédéric Chazal, Steve Oudot, Maksim Ovsjanikov.

We propose a novel pooling approach for shape classification and recognition using the bag-of-words pipeline,
based on topological persistence, a recent tool from Topological Data Analysis. Our technique extends
the standard max-pooling, which summarizes the distribution of a visual feature with a single number,
thereby losing any notion of spatiality. Instead, we propose to use topological persistence, and the derived
persistence diagrams, to provide significantly more informative and spatially sensitive characterizations of the
feature functions, which can lead to better recognition performance. Unfortunately, despite their conceptual
appeal, persistence diagrams are difficult to handle, since they are not naturally represented as vectors in
Euclidean space and even the standard metric, the bottleneck distance is not easy to compute. Furthermore,
classical distances between diagrams, such as the bottleneck and Wasserstein distances, do not allow to build
positive definite kernels that can be used for learning. To handle this issue, we provide a novel way to
transform persistence diagrams into vectors, in which comparisons are trivial. Finally, we demonstrate the
performance of our construction on the Non-Rigid 3D Human Models SHREC 2014 dataset, where we show
that topological pooling can provide significant improvements over the standard pooling methods for the shape
pose recognition within the bag-of-words pipeline [23].
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7.3.2. Structure and Stability of the 1-Dimensional Mapper
Participants: Steve Oudot, Mathieu Carrière.

Given a continuous function f : X → R and a cover I of its image by intervals, the Mapper is the nerve
of a refinement of the pullback cover f−1(I). Despite its success in applications, little is known about the
structure and stability of this construction from a theoretical point of view. As a pixelized version of the
Reeb graph of f , it is expected to capture a subset of its features (branches, holes), depending on how the
interval cover is positioned with respect to the critical values of the function. Its stability should also depend
on this positioning. We propose a theoretical framework that relates the structure of the Mapper to the one of
the Reeb graph, making it possible to predict which features will be present and which will be absent in the
Mapper given the function and the cover, and for each feature, to quantify its degree of (in-)stability. Using this
framework, we can derive guarantees on the structure of the Mapper, on its stability, and on its convergence to
the Reeb graph as the granularity of the cover I goes to zero [25].

7.3.3. Decomposition of exact pfd persistence bimodules
Participants: Steve Oudot, Jérémy Cochoy.

We characterize the class of persistence modules indexed over R2 that are decomposable into summands
whose support have the shape of a block—i.e. a horizontal band, a vertical band, an upper-right quadrant, or
a lower-left quadrant. Assuming the modules are pointwise finite-dimensional (pfd), we show that they are
decomposable into block summands if and only if they satisfy a certain local property called exactness. Our
proof follows the same scheme as the proof of decomposition for pfd persistence modules indexed over R, yet it
departs from it at key stages due to the product order not being a total order on R2, which leaves some important
gaps open. These gaps are filled in using more direct arguments. Our work is motivated primarily by the
stability theory for zigzags and interlevel-sets persistence modules, in which block-decomposable bimodules
play a key part. Our results allow us to drop some of the conditions under which that theory holds, in particular
the Morse-type conditions [39].

7.4. Experimental research and software development
7.4.1. Topological Microstructure Analysis Using Persistence Landscapes

Participant: Paweł Dłotko.

In collaboration with T. Wanner (George Mason University).

Phase separation mechanisms can produce a variety of complicated and intricate microstructures, which often
can be difficult to characterize in a quantitative way. In recent years, a number of novel topological metrics
for microstructures have been proposed, which measure essential connectivity information and are based on
techniques from algebraic topology. Such metrics are inherently computable using computational homology,
provided the microstructures are discretized using a thresholding process. However, while in many cases
the thresholding is straightforward, noise and measurement errors can lead to misleading metric values. In
such situations, persistence landscapes have been proposed as a natural topology metric. Common to all
of these approaches is the enormous data reduction, which passes from complicated patterns to discrete
information. It is therefore natural to wonder what type of information is actually retained by the topology.
In the present paper, we demonstrate that averaged persistence landscapes can be used to recover central
system information in the Cahn-Hilliard theory of phase separation. More precisely, we show that topological
information of evolving microstructures alone suffices to accurately detect both concentration information
and the actual decomposition stage of a data snapshot. Considering that persistent homology only measures
discrete connectivity information, regardless of the size of the topological features, these results indicate that
the system parameters in a phase separation process affect the topology considerably more than anticipated.
We believe that the methods discussed in this paper could provide a valuable tool for relating experimental
data to model simulations [36].



Team DATASHAPE 11

7.4.2. Topological analysis of the connectome of digital reconstructions of neural microcircuits
Participant: Paweł Dłotko.

In collaboration with K. Hess, L. Ran, H. Markram, E. Muller, M. Nolte, M. Reimann, M. Scolamiero, K.
Turner (Univ. of Aberden, EPFL, Brain and Mind Institute).

A first draft digital reconstruction and simulation of a microcircuit of neurons in the neocortex of a two-
week-old rat was recently published. Since graph-theoretical methods may not be sufficient to understand
the immense complexity of the network formed by the neurons and their connections, we explored whether
application of methods from algebraic topology can provide a novel and useful perspective on the structural
and functional organization of the microcircuit. Structural topological analysis revealed that directed graphs
representing the connectivity between neurons are significantly different from random graphs and that there
exist an enormous number of simplicial complexes of different dimensions representing all-to-all connections
within different sets of neurons, the most extreme motif of neuronal clustering reported so far in the brain.
Functional topological analysis based on data from simulations confirmed the interest of a new approach to
studying the relationship between the structure of the connectome and its emergent functions. In particular,
functional responses to different stimuli can readily be distinguished by topological methods. This study
represents the first algebraic topological analysis of connectomics data from neural microcircuits and shows
promise for general applications in network science.

7.4.3. A persistence landscapes toolbox for topological statistics
Participant: Paweł Dłotko.

In collaboration with P. Bubenik (University of Florida).

Topological data analysis provides a multiscale description of the geometry and topology of quantitative data.
The persistence landscape is a topological summary that can be easily combined with tools from statistics
and machine learning. We give efficient algorithms for calculating persistence landscapes, their averages,
and distances between such averages. We discuss an implementation of these algorithms and some related
procedures. These are intended to facilitate the combination of statistics and machine learning with topological
data analysis. We present an experiment showing that the low-dimensional persistence landscapes of points
sampled from spheres (and boxes) of varying dimensions differ.

7.5. Miscellaneous
7.5.1. Monotone Simultaneous Paths Embeddings in Rd

Participant: Marc Glisse.

In collaboration with O. Devillers and S. Lazard (Inria Nancy), David Bremner (University of New Brunswick,
Canada), Giuseppe Liotta (University of Perugia, Italy), Tamara Mchedlidze (KIT, Germany), Sue Whitesides
(University of Victoria, Canada), Stephen Wismath (University of Lethbridge, Canada).

We study[24] the following problem: Given k paths that share the same vertex set, is there a simultaneous
geometric embedding of these paths such that each individual drawing is monotone in some direction? We
prove that for any dimension d ≥ 2, there is a set of d+ 1 paths that does not admit a monotone simultaneous
geometric embedding.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
Research contract with GeometryFactory in the context of Mael Rouxel-Labbé’s Ph.D. thesis on anisotropic
mesh generation [12].
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9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR
9.1.1.1. ANR TOPDATA

Participants: Jean-Daniel Boissonnat, Frédéric Chazal, David Cohen-Steiner, Mariette Yvinec, Steve Oudot,
Marc Glisse.

- Acronym : TopData.

- Type : ANR blanc.

- Title : Topological Data Analysis: Statistical Methods and Inference.

- Coordinator : Frédéric Chazal (DATASHAPE).

- Duration : 4 years starting October 2013.

- Others Partners: Département de Mathématiques (Université Paris Sud), Institut de Mathématiques (Univer-
sité de Bourgogne), LPMA (Université Paris Diderot), LSTA (Université Pierre et Marie Curie).

- Abstract: TopData aims at designing new mathematical frameworks, models and algorithmic tools to infer
and analyze the topological and geometric structure of data in different statistical settings. Its goal is to set up
the mathematical and algorithmic foundations of Statistical Topological and Geometric Data Analysis and to
provide robust and efficient tools to explore, infer and exploit the underlying geometric structure of various
data.

Our conviction, at the root of this project, is that there is a real need to combine statistical and topologi-
cal/geometric approaches in a common framework, in order to face the challenges raised by the inference and
the study of topological and geometric properties of the wide variety of larger and larger available data. We are
also convinced that these challenges need to be addressed both from the mathematical side and the algorithmic
and application sides. Our project brings together in a unique way experts in Statistics, Geometric Inference
and Computational Topology and Geometry. Our common objective is to design new theoretical frameworks
and algorithmic tools and thus to contribute to the emergence of a new field at the crossroads of these domains.
Beyond the purely scientific aspects we hope this project will help to give birth to an active interdisciplinary
community. With these goals in mind we intend to promote, disseminate and make our tools available and
useful for a broad audience, including people from other fields.

- See also: http://geometrica.saclay.inria.fr/collaborations/TopData/Home.html

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. ERC GUDHI

Title: Algorithmic Foundations of Geometry Understanding in Higher Dimensions.

Program: FP7.

Type: ERC.

Duration: February 2014 - January 2019.

Coordinator: Inria.

PI: Jean-Daniel Boissonnat.

http://geometrica.saclay.inria.fr/collaborations/TopData/Home.html


Team DATASHAPE 13

The central goal of this proposal is to settle the algorithmic foundations of geometry understanding
in dimensions higher than 3. We coin the term geometry understanding to encompass a collection
of tasks including the computer representation and the approximation of geometric structures, and
the inference of geometric or topological properties of sampled shapes. The need to understand
geometric structures is ubiquitous in science and has become an essential part of scientific computing
and data analysis. Geometry understanding is by no means limited to three dimensions. Many
applications in physics, biology, and engineering require a keen understanding of the geometry of
a variety of higher dimensional spaces to capture concise information from the underlying often
highly nonlinear structure of data. Our approach is complementary to manifold learning techniques
and aims at developing an effective theory for geometric and topological data analysis. To reach
these objectives, the guiding principle will be to foster a symbiotic relationship between theory
and practice, and to address fundamental research issues along three parallel advancing fronts. We
will simultaneously develop mathematical approaches providing theoretical guarantees, effective
algorithms that are amenable to theoretical analysis and rigorous experimental validation, and
perennial software development. We will undertake the development of a high-quality open source
software platform to implement the most important geometric data structures and algorithms at the
heart of geometry understanding in higher dimensions. The platform will be a unique vehicle towards
researchers from other fields and will serve as a basis for groundbreaking advances in scientific
computing and data analysis.

9.3. International Initiatives
9.3.1. Inria Associate Teams Not Involved in an Inria International Labs
9.3.1.1. CATS

Title: Computations And Topological Statistics

International Partner (Institution - Laboratory - Researcher):

Carnegie Mellon University (United States) - Department of Statistics - Larry Wasserman

Start year: 2015

See also: http://geometrica.saclay.inria.fr/collaborations/CATS/CATS.html

Topological Data Analysis (TDA) is an emergent field attracting interest from various communities,
that has recently known academic and industrial successes. Its aim is to identify and infer geomet-
ric and topological features of data to develop new methods and tools for data exploration and data
analysis. TDA results mostly rely on deterministic assumptions which are not satisfactory from a
statistical viewpoint and which lead to a heuristic use of TDA tools in practice. Bringing together
the strong expertise of two groups in Statistics (L. Wasserman’s group at CMU) and Computational
Topology and Geometry (Inria Geometrica), the main objective of CATS is to set-up the mathe-
matical foundations of Statistical TDA to design new TDA methods and to develop efficient and
easy-to-use software tools for TDA.

9.4. International Research Visitors
9.4.1. Visits of International Scientists

Ramsay Dyer (April and November 2016)

Arijit Ghosh, Indian Statistical Institute, Kolkata (April and November 2016)

Jose Carlos Gomez Larranaga, CIMAT, Guanajuato, Mexico (September 2016)

Kim Jisu, CMU, Pittsburgh, USA (May and December 2016).

Antony Bak, Palantir company, USA (October 2016)

9.4.1.1. Internships

http://geometrica.saclay.inria.fr/collaborations/CATS/CATS.html
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Uday Kusupati, Indian Institute of Technology, Bombay (May-July 2016)
Sandip Banerjee (bourse Charpak), Indian Statistical Institute, Kolkata (March-August 2016)
Sameer Desai, Indian Statistical Institute, Kolkata (October-December 2016)

9.4.2. Visits to International Teams
9.4.2.1. Research Stays Abroad

Steve Oudot and Jérémy Cochoy spent 3 months (Sept.-Nov.) at the Institute for Computational and Exper-
imental Research in Mathematics (ICERM) at Brown University. They were invited there for the semester
program entitled Topology in Motion (see https://icerm.brown.edu/programs/sp-f16/).

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. General Chair, Scientific Chair

Jean-Daniel Boissonnat and Frédéric Chazal co-organized the joint GUDHI-TOPDATA workshop
in Porquerolles, October 17-20.
Frédéric Chazal co-organized the SMAI-SIGMA Conference 2016 at Luminy (CIRM) in November.

10.1.2. Scientific Events Selection
10.1.2.1. Chair of Conference Program Committees

Maks Ovsjanikov: Paper co-chair of the Symposium on Geometry Processing 2016 (SGP 2016).

10.1.2.2. Member of the Conference Program Committees
Frédéric Chazal: Symposium on Geometry Processing 2016 (SGP 2016).
Steve Oudot: Symposium on Geometry Processing 2016 (SGP 2016).
Marc Glisse: Symposium on Computational Geometry (SoCG 2016).

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

Jean-Daniel Boissonnat is a member of the Editorial Board of Journal of the ACM, Discrete and
Computational Geometry, International Journal on Computational Geometry and Applications.
Frédéric Chazal is a member of the Editorial Board of SIAM Journal on Imaging Sciences, Discrete
and Computational Geometry (Springer), Graphical Models (Elsevier), and Journal of Applied and
Computational Topology (Springer).
Steve Oudot is a member of the Editorial Board of Journal of Computational Geometry.

10.1.4. Invited Talks
Frédéric Chazal, ACCAPT conference, Aalborg, Danmark, April 2016.
Frédéric Chazal, Joint Mathematical Meetings, Seattle, USA, January 2016.
Frédéric Chazal, Séminaire Parisien de Géométrie Algorithmique, Paris, October 2016.
Frédéric Chazal, 9th International Conference of theERCIM WG on Computational and Method-
ological Statistics, December 2016.
Steve Oudot, ACCAPT conference, Aalborg, Danmark, April 2016.
Steve Oudot, Workshop SIGMA 2016, CIRM, France, November 2016.
Steve Oudot, Applied Topology Seminar, Brown University, USA, November 2016.

https://icerm.brown.edu/programs/sp-f16/
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Steve Oudot, Topology and Neuroscience Seminar, Princeton University, USA, November 2016.

10.1.5. Scientific Expertise
Frédéric Chazal was a member of the ANR committee, CES 40 (Mathematics and Computer
Science).

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master : Frédéric Chazal, Analyse Topologique des Données, 30h eq-TD, Université Paris-Sud,
France.

Master : Jean-Daniel Boissonnat and Marc Glisse, Computational Geometry Learning, 36h eq-TD,
M2, MPRI, France.

Doctorat : Frédéric Chazal and Bertrand Michel, An introduction to Topological Data Analysis, 18h
eq-TD, Universitad Autonoma de Barcelona, Spain.

Master : Steve Oudot, Topological Data Analysis, 45h eq-TD, M1, École Polytechnique, France.

Master : Steve Oudot and Frédéric Cazals, Geometric Methods for Data Analysis, 30h eq-TD, M1,
École Centrale Paris, France.

Master : Jean-Daniel Boissonnat, Winter School on Computational geometry and Topology, Inria
Sophia Antipolis Méditerrannée, January 2016.

Doctorat : Steve Oudot, École Mathématique en Afrique on Topologie différentielle, géométrie
algébrique et applications, La Marsa, Tunisia, March-April 2016.

Doctorat : Steve Oudot, Summer School on Mathematical Methods for High-Dimensional Data
Analysis, Technical University of Munich, Germany, July 2016.

10.2.2. Supervision
PhD: Thomas Bonis, Statistical Learning Algorithms for Geometric and Topological Data Analysis,
December 1st, 2016, Frédéric Chazal.

PhD : Mael Rouxel-Labbé, Génération de maillages anisotropes, december 16, 2016, Jean-Daniel
Boissonnat.

PhD: Ruqi Huang, Algorithms for topological inference in metric spaces, December 14, 2016,
Frédéric Chazal.

PhD in progress: Eddie Aamari, A Statistical Approach of Topological Data Analysis, started
September 1st, 2014, Frédéric Chazal (co-advised by Pascal Massart).

PhD in progress: Claire Brécheteau, Statistical aspects of distance-like functions , started September
1st, 2015, Frédéric Chazal (co-advised by Pascal Massart).

PhD in progress: Bertrand Beaufils, Méthodes topologiques et apprentissage statistique pour
l’actimétrie du piéton à partir de données de mouvement, started November 2016, Frédéric Chazal
(co-advised by Bertrand Michel).

PhD in progress: Mathieu Carrière, Topological signatures for geometric data, started November 1st,
2014, Steve Oudot.

PhD in progress: Jérémy Cochoy, Decomposition and stability of multidimensional persistence
modules, started September 1st, 2015, Steve Oudot.

PhD in progress: Nicolas Berkouk, Categorification of topological graph structures, started Novem-
ber 1st, 2016, Steve Oudot.

PhD in progress: Alba Chiara de Vitis, Concentration of measure and clustering.

PhD in progress: Siargey Kachanovich, Approximate algorithms in higher dimensional geometry.
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PhD in progress: François Godi, Data structures and algorithms for topological data analysis and
high dimensional geometry.

10.2.3. Juries
Frédéric Chazal was a member (and reviewer) of the PhD defense committee of Mariia Fodetenkova
(Inria Nancy).
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