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2. Overall Objectives
2.1. Overall Objectives

Ubiquitous Computing refers to the situation in which computing facilities are embedded or integrated into
everyday objects and activities. Networks are large-scale, including both hardware devices and software
agents. The systems are highly mobile and dynamic: programs or devices may move and often execute
in networks owned and operated by others; new devices or software pieces may be added; the operating
environment or the software requirements may change. The systems are also heterogeneous and open: the
pieces that form a system may be quite different from each other, built by different people or industries, even
using different infrastructures or programming languages; the constituents of a system only have a partial
knowledge of the overall system, and may only know, or be aware of, a subset of the entities that operate on
the system.

A prominent recent phenomenon in Computer Science is the emerging of interaction and communication
as key architectural and programming concepts. This is especially visible in ubiquitous systems. Complex
distributed systems are being thought of and designed as structured composition of computational units,
usually referred to as components. These components are supposed to interact with each other and such
interactions are supposed to be orchestrated into conversations and dialogues. In the remainder, we will write
CBUS for Component-Based Ubiquitous Systems.

In CBUS, the systems are complex. In the same way as for complex systems in other disciplines, such as
physics, economics, biology, so in CBUS theories are needed that allow us to understand the systems, design
or program them, analyze them.

Focus investigates the semantic foundations for CBUS. The foundations are intended as instrumental to
formalizing and verifying important computational properties of the systems, as well as to proposing linguistic
constructs for them. Prototypes are developed to test the implementability and usability of the models and the
techniques. Throughout our work, ‘interaction’ and ’component’ are central concepts.

The members of the project have a solid experience in algebraic and logical models of computation, and related
techniques, and this is the basis for our study of ubiquitous systems. The use of foundational models inevitably
leads to opportunities for developing the foundational models themselves, with particular interest for issues of
expressiveness and for the transplant of concepts or techniques from a model to another one.

3. Research Program
3.1. Models

The objective of Focus is to develop concepts, techniques, and possibly also tools, that may contribute to the
analysis and synthesis of CBUS. Fundamental to these activities is modeling. Therefore designing, developing
and studying computational models appropriate for CBUS is a central activity of the project. The models are
used to formalise and verify important computational properties of the systems, as well as to propose new
linguistic constructs.



Project-Team FOCUS 3

The models we study are in the process calculi (e.g., the π-calculus) and λ-calculus tradition. Such models,
with their emphasis on algebra, well address compositionality—a central property in our approach to problems.
Accordingly, the techniques we employ are mainly operational techniques based on notions of behavioural
equivalence, and techniques based on algebra, mathematical logics, and type theory.

4. Application Domains

4.1. Ubiquitous Systems
The main application domain for Focus are ubiquitous systems, broadly systems whose distinctive features
are: mobility, high dynamicity, heterogeneity, variable availability (the availability of services offered by the
constituent parts of a system may fluctuate, and similarly the guarantees offered by single components may not
be the same all the time), open-endedness, complexity (the systems are made by a large number of components,
with sophisticated architectural structures). In Focus we are particularly interested in the following aspects.

• Linguistic primitives for programming dialogues among components.

• Contracts expressing the functionalities offered by components.

• Adaptability and evolvability of the behaviour of components.

• Verification of properties of component systems.

• Bounds on component resource consumption (e.g., time and space consumed).

4.2. Service Oriented Computing and Cloud Computing
Today the component-based methodology often refers to Service Oriented Computing. This is a specialized
form of component-based approach. According to W3C, a service-oriented architecture is “a set of components
which can be invoked, and whose interface descriptions can be published and discovered”. In the early days of
Service Oriented Computing, the term services was strictly related to that of Web Services. Nowadays, it has
a much broader meaning as exemplified by the XaaS (everything as a service) paradigm: for example, based
on modern virtualization technologies, cloud computing offers the possibility to build sophisticated service
systems on virtualized infrastructures accessible from everywhere and from any kind of computing device.
Such infrastructures are usually examples of sophisticated service oriented architectures that, differently from
traditional service systems, should also be capable to elastically adapt on demand to the user requests.

5. Highlights of the Year

5.1. Highlights of the Year
• Valeria Vignudelli has won the “Outstanding Master Thesis Award”, for best master thesis in logic

in computer science. Awarded by the Vienna Center for Logic and Algorithms, as part of the VCLA
International Student Awards (http://logic-cs.at/award/)

6. New Software and Platforms

6.1. AIOCJ
Adaptive Interaction-Oriented Choreographies in Jolie
SCIENTIFIC DESCRIPTION

http://logic-cs.at/award/
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AIOCJ is a framework for programming adaptive distributed systems based on message passing. AIOCJ
comes as a plugin for Eclipse, AIOCJ-ecl, allowing one to edit descriptions of distributed systems as adap-
tive interaction-oriented choreographies (AIOC). From interaction-oriented choreographies the description of
single participants can be automatically derived. Adaptation is specified by rules allowing to replace predeter-
mined parts of the AIOC with a new behaviour. A suitable protocol ensures that all the participants are updated
in a coordinated way. As a result, the distributed system follows the specification given by the AIOC under
all changing sets of adaptation rules and environment conditions. In particular, the system is always deadlock-
free. AIOCJ can interact with external services, seen as functions, by specifying their URL and the protocol
they support (HTTP, SOAP, ...). Deadlock-freedom guarantees of the application are preserved provided that
those services do not block.
FUNCTIONAL DESCRIPTION

AIOCJ is an open-source choreography programming language for developing adaptive systems.

• Participants: Saverio Giallorenzo, Mila Dalla Preda, Maurizio Gabbrielli, Ivan Lanese and Jacopo
Mauro

• Contact: Saverio Giallorenzo

• URL: http://www.cs.unibo.it/projects/jolie/aiocj.html

6.2. DF4ABS
Deadlock Framework for ABS
SCIENTIFIC DESCRIPTION

We have prototyped a framework for statically detecting deadlocks in a concurrent object-oriented language
with asynchronous method calls and cooperative scheduling of method activations (the language is ABS,
which has been developed in the EU project HATS and is currently extended with primitives for cloud-
computing in the EU project ENVISAGE. ABS is very similar to ASP, developed by the former OASIS
team.). Since this language features recursion and dynamic resource creation, deadlock detection is extremely
complex and state-of-the-art solutions either give imprecise answers or do not scale. In order to augment
precision and scalability we propose a modular framework that allows several techniques to be combined.
The basic component of the framework is a front-end inference algorithm that extracts abstract behavioural
descriptions of methods that retain resource dependency information. Then these behavioural descriptions
are analyzed by a back-end that uses a fix-point technique to derive in a deterministic way the deadlock
information.

• Contact: Cosimo Laneve

• URL: http://df4abs.nws.cs.unibo.it/

6.3. HoCA
Higher-Order Complexity Analysis
SCIENTIFIC DESCRIPTION

Over the last decade, various tools for the static analysis of resource properties of programs have emerged.
In particular, the rewriting community has recently developed several tools for the time complexity analysis
of term rewrite systems. These tools have matured and are nowadays able to treat non-trivial programs, in a
fully automatic setting. However, none of these automatic complexity analysers can deal with higher-order
functions, a pervasive feature of functional programs. HoCA (Higher-Order Complexity Analyser) overcomes
this limitation by translating higher-order programs – in the form of side-effect free OCaml programs
- into equivalent first-order rewrite systems. At the heart of our tool lies Reynold’s defunctionalization
technique. Defunctionalization however is not enough. Resulting programs have a recursive structure too
complicated to be analyzed automatically in all but trivial cases. To overcome this issue, HoCA integrates
a handful of well-established program transformation techniques, noteworthy dead-code elimination, inlining,
instantiation and uncurrying. All these techniques have been specifically suited to the methods integrated in

http://www.cs.unibo.it/projects/jolie/aiocj.html
http://df4abs.nws.cs.unibo.it/
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modern first-order complexity analyzers. A complexity bound on the resulting first-order program can be
relayed back reliably to the higher-order program of interest. A detailed description of HoCA is available on
http://arxiv.org/abs/1506.05043
FUNCTIONAL DESCRIPTION

HOCA is an abbreviation for Higher-Order Complexity Analysis, and is meant as a laboratory for the auto-
mated complexity analysis of higher-order functional programs. Currently, HOCA consists of one executable
pcf2trs which translates a pure subset of OCaml to term rewrite systems, in a complexity-reflecting manner.
As a first step, HOCA desugars the given program to a variation of Plotkin’s PCF with data-constructors.
Via Reynold’s defunctionalization, the PCF program is turned into an applicative term rewrite system (ATRS
for short), and call-by-value reductions of the PCF program are simulated by the ATRS step-by-step. On the
ATRS, various complexity reflecting transformations are performed: inlining, dead-code-elimination, instanti-
ation of higher-order variables through a call-flow-analysis and finally uncurrying. This results in a first-order
rewrite system, whose runtime-complexity asymptotically reflects the complexity of the initial program.

• Participants: Ugo Dal Lago and Martin Avanzini

• Contact: Ugo Dal Lago

• URL: http://cbr.uibk.ac.at/tools/hoca/

6.4. JOLIE
Java Orchestration Language Interpreter Engine
KEYWORD: Microservices
SCIENTIFIC DESCRIPTION

Jolie is a service-oriented programming language. Jolie can be used to program services that interact over the
Internet using different communication protocols.

Differently from other Web Services programming languages such as WS-BPEL, Jolie is based on a user-
friendly C/Java-like syntax (more readable than the verbose XML syntax of WS-BPEL) and, moreover,
the language is equipped with a formal operational semantics. This language is used for the proof of
concepts developed around Focus activities. For instance, contract theories can be exploited for checking
the conformance of a Jolie program with respect to a given contract.
DEVELOPMENTS IN 2016

Jolie has transitioned from version 1.4.1 to version 1.6. The last version of Jolie that supports Java 1.6 is Jolie
1.5. Jolie 1.6 transitions from Java 1.6 to Java 1.8 and makes use of the new features and libraries found in the
new version of Java. Version 1.6 of Jolie features:

• general performance improvements and bug fixes, in particular regarding concurrent data structures
using Java lambdas,

• improvements of the standard library of the language,

• better error messages and improved compatibility with the main operating systems,

• support for type choices (AKA type sums),

• support of for-loop construct to iterate over arrays without explicit indexes,

• improved support for the HTTP protocol (and, by extension, web applications).

• Participants: Claudio Guidi, Fabrizio Montesi, Saverio Giallorenzo and Maurizio Gabbrielli

• Contact: Fabrizio Montesi

• URL: http://www.jolie-lang.org/

6.5. SRA
Static Resource Analyzer for ABS
SCIENTIFIC DESCRIPTION

http://cbr.uibk.ac.at/tools/hoca/
http://www.jolie-lang.org/
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We prototype a static analysis technique that computes upper bounds of virtual machine usages in a concurrent
language with explicit acquire and release operations of virtual machines. In our language it is possible to del-
egate other (ad-hoc or third party) concurrent code to release virtual machines (by passing them as arguments
of invocations, a feature that is used by Amazon Elastic Cloud Computing or by the Docker FiWare). Our
technique is modular and consists of (i) a type system associating programs with behavioural descriptions that
record relevant information for resource usage (creations, releases, and concurrent operations), (ii) a transla-
tion function that takes behavioural types and returns cost equations, and (iii) an automatic off-the-shelf solver
for the cost equations.

• Contact: Cosimo Laneve
• URL: http://sra.cs.unibo.it/

6.6. SUNNY-CP
SCIENTIFIC DESCRIPTION

Within the Constraint Programming paradigm, a portfolio solver combines different constraint solvers in order
to create a globally better solver. Sunny-cp is a parallel portfolio solver that allows one to solve a Constraint
(Satisfaction/Optimization) Problem defined in the MiniZinc language. It essentially implements the SUNNY
algorithm introduced in the team. Sunny-cp is built on top of state-of-the-art constraint solvers, including:
Choco, Chuffed, CPX, G12/LazyFD, G12/FD, G12/Gurobi, G12/CBC, Gecode, HaifaCSP, iZplus, MinisatID,
Opturion, OR-Tools.

FUNCTIONAL DESCRIPTION

SUNNY-CP is a portfolio solver for solving both Constraint Satisfaction Problems and Constraint Optimiza-
tion Problems. The goal of SUNNY-CP is to provide a flexible, configurable, and usable CP portfolio solver
that can be set up and executed just like a regular individual CP solver.

• Contact: Maurizio Gabbrielli
• URL: https://github.com/CP-Unibo/sunny-cp

6.7. Blender
Aeolus Blender
KEYWORDS: Automatic deployment - Cloud applications management
SCIENTIFIC DESCRIPTION

The various tools developed in the Aeolus project (Zephyrus, Metis, Armonic) have been combined in this
software which represents an integrated solution for the declarative specification of cloud applications, and
its subsequent automatic deployment on an OpenStack cloud system. In particular, a web-based interface is
used to specify the basic software artifacts to include in the application, indicate their level of replication, and
specify co-installability conflicts (i.e. when two components cannot be installed on the same virtual machines).
The tool Zephyrus is then used to synthesize the final architecture of the application, the tool Metis indicates
the plan of configuration actions, and the Armonic platform provides the library of components and the low-
level scripts to actually install and configure the entire application.

• Partners: IRILL - Mandriva
• Contact: Gianluigi Zavattaro
• URL: https://github.com/aeolus-project/blender

7. New Results
7.1. Service-oriented computing

Participants: Maurizio Gabbrielli, Elena Giachino, Saverio Giallorenzo, Claudio Guidi, Mario Bravetti,
Cosimo Laneve, Ivan Lanese, Fabrizio Montesi, Gianluigi Zavattaro.

http://sra.cs.unibo.it/
https://github.com/CP-Unibo/sunny-cp
https://github.com/aeolus-project/blender
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7.1.1. Microservices
Microservices is an emerging paradigm for the development of distributed systems that, originating from
Service-Oriented Architecture, fosters the creation of an ecosystem of reusable components by focusing on
the small dimension, the loose coupling, and the dynamic topology of services. Their dynamic nature calls for
suitable techniques that support automatic deployment. In [40] we address this problem and we propose JRO
(Jolie Redeployment Optimiser), a tool for the automatic and optimised deployment of microservices written
in the Jolie language. The flexibility of microservices is their key advantage, yet it poses many security issues.
In [39] we classify the most relevant vulnerabilities related to data reliability, integrity, and authenticity, and
we investigate directions for their mitigation.

7.1.2. Orchestrations and choreographies
The practice of programming distributed systems is one of the most error-prone, due to the complexity in
correctly implementing separate components that, put together, enact an agreed protocol. Theoretical and
applied research is, therefore, fundamental, to explore new tools to assist the development of such systems.
In particular, choreographies can be compiled to obtain projected systems that enjoy freedom from deadlocks
and races by construction. In [10] we studied how to make choreographies, and extensions of them that allow
one to perform dynamic updates, a suitable tool for real-world programming.

7.2. Models for reliability
Participants: Elena Giachino, Ivan Lanese.

7.2.1. Reversibility
We have continued the study of causal-consistent reversibility started in the past years. In particular, we
concentrated on uncontrolled reversibility, where one specifies how a concurrent computation can go back
to past states, without giving policies about when to do that. In [25] we thoroughly studied the problem for
higher-order pi-calculus. In particular, we studied the causality structures needed to enable reversibility, and we
related them with the causal semantics of Boreale and Sangiorgi. In [30] we proposed a modular approach that,
given a formal model equipped with both an LTS semantics and an independence relation capturing causality,
defines a causal-consistent reversible semantics for it. The approach is very general, capturing models as
different as CCS and concurrent X-machines, but it is not fully automatic.

7.3. Cloud Computing and Deployment
Participants: Elena Giachino, Saverio Giallorenzo, Claudio Guidi, Cosimo Laneve, Gianluigi Zavattaro.

7.3.1. Static deployment
We have continued our foundational investigation of the Aeolus component model for the automatic deploy-
ment of a component-based application in a cloud environment. In [42] we have refined a previous Turing
completeness result for the Aeolus model. In fact, a previous proof of undecidability of the deployment prob-
lem assumes the possibility of performing in a synchronized way atomic configuration actions on a set of
interdependent components: this feature is usually not supported by actual deployment frameworks. To make
the theoretical model used for our undecidability result closer to the real deployment infrastructures, in [42]
we have proved that even without synchronized configuration actions the Aeolus component model is still
Turing complete.

7.3.2. Dynamic deployment
We have analyzed linguistic mechanisms for expressing and managing dynamic aspects of deployment, in
particular the possibility to dynamically modify the architecture of an application.
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In [17] we propose a new mechanism for Dynamic Rebinding, a particular kind of Dynamic Software Updating
that focuses on modifying the workflow of a program. This mechanism is built upon the model of Concurrent
Object Groups, which is adopted in programming languages like Coboxes, Creol or ABS. Using this model,
which extends and solves some of the limitations of Active Objects, it becomes possible for an update to wait
for the program to reach a local quiescent state and then perform the update without creating any inconsistency
in the program’s state.

In [34] we show how deployment can be added as a first-class citizen in the object-oriented modeling language
ABS. We follow a declarative approach: programmers specify deployment constraints and a solver synthesizes
ABS classes exposing methods like deploy (resp. undeploy) that executes (resp. cancels) configuration actions
changing the current deployment towards a new one satisfying the programmer’s desiderata. Differently from
previous works, this novel approach supports the specification of incremental modifications, thus supporting
the declarative modeling of elastic applications.

7.4. Probabilistic Systems and Resource Control
Participants: Martin Avanzini, Flavien Breuvart, Alberto Cappai, Raphaelle Crubillé, Ugo Dal Lago,
Francesco Gavazzo, Charles Grellois, Simone Martini, Alessandro Rioli, Davide Sangiorgi, Marco Solieri,
Valeria Vignudelli.

7.4.1. Probabilistic Systems
7.4.1.1. Behavioural Equivalences and Metrics

Finding effective methodologies to check program equivalence is one of the oldest problems in the theory
of programming languages, and has been studied also in the realm of probabilistic programming idioms.
One particularly fruitful research direction consists in characterising context equivalence, the most natural
way to define equivalence in higher-order languages, by way of coinductive notions of equivalence akin
to bisimulation. In 2016, Focus has been involved in defining notions of environmental bisimulation for
probabilistic lambda-calculi [37], proving them not only adequate, but also fully-abstract. Environmental
bisimulation, contrarily to applicative bisimulation, is robust enough to be applicable to languages with
local store. Moreover, the proof of adequacy of environmental bisimulation turns out to be simpler than
that of applicative bisimulation, the latter requiring sophisticated arguments from linear programming. In a
probabilistic setting, programs are more naturally compared through metrics rather than through equivalences,
due to their intrinsic quantitative nature. Nicely, coinductive methodologies for program equivalence can
be generalised to metrics by way of so-called behavioural metrics. This year, we have studied behavioural
metrics in the context of concurrent processes, and defined enhancements of the proof method based on
bisimulation metrics, by extending the theory of up-to techniques to premetrics on discrete probabilistic
concurrent processes [32].

7.4.1.2. Programming Languages for Machine Learning

In recent years, higher-order functional programming languages like Church, Anglican, and Venture, have
proved to be extremely effective as ways to specify not algorithms but rather bayesian models in the context
of machine learning. The operational semantics of these languages, and learning algorithms when applied to
programs in these languages, have been so far defined only informally. In 2016, we developed the operational
semantics of an untyped probabilistic lambda-calculus with continuous distributions, as a foundation for
universal probabilistic programming languages like those cited above [31]. Our first contribution was to adapt
the classic operational semantics of lambda-calculus to a continuous setting. Our second contribution was to
formalise the implementation technique of trace Markov chain Monte Carlo (MCMC) for our calculus and to
show its correctness.
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7.4.2. Resource Control
7.4.2.1. Complexity Analysis of Higher-Order Functional Programs

Complexity analysis of higher-order programs have been one of the main research themes inside Focus
since its inception. It remains so today, although the emphasis is progressively shifting towards problems
related to the implementation of complexity analysis methodologies rather than on their foundations. One
issue with most existing complexity analysis methodologies is that they are insensitive to the sharing of
computations among subprograms. We have studied how the interpretation method and dependency tuples,
two prominent complexity analysis techniques can be adapted to graph-rewriting, thus accounting for the
possible performance gains due to sharing [38]. We have also collaborated to the development of TCT, the
Tyrolean Complexity Tool [29], a state-of-the-art complexity analyzer for term rewrite systems, making it
capable to efficiently apply not one but many methodologies to the input program. Finally, we studied how the
geometry of interaction can provide effective ways to compile higher-order functional programs into circuits,
thus guaranteeing space efficiency [21].

7.4.2.2. On the Foundations of Complexity Analysis

One of the main foundational issues in complexity analysis is whether simple time cost models can be proved
invariant, i.e., polynomially related to low-level models like those traditionally defined on Turing machines.
We have solved a long-standing open problem, and proved that the unitary cost model, namely that attributing
unitary cost to each beta-reduction step, is invariant for the pure lambda-calculus when evaluated leftmost-
outermost [12]. We have also studied to which extent traditional methodologies like the interpretation method
and light logics can be adapted to higher-order languages [16] and processes [20], respectively.

7.5. Verification techniques
Participants: Daniel Hirschkoff, Elena Giachino, Cosimo Laneve, Davide Sangiorgi.

7.5.1. Deadlock detection
In [22] we present a framework for statically detecting deadlocks in a concurrent object-oriented language
with asynchronous method calls and cooperative scheduling of method activations. Since this language
features recursion and dynamic resource creation, deadlock detection is extremely complex and state-of-the-
art solutions either give imprecise answers or do not scale. In order to augment precision and scalability we
propose a modular framework that allows several techniques to be combined. The basic component of the
framework is a front-end inference algorithm that extracts abstract behavioural descriptions of methods, called
contracts, which retain resource dependency information. This component is integrated with a number of
possible different back-ends that analyze contracts and derive deadlock information. As a proof-of-concept,
we discuss two such back-ends: (i) an evaluator that computes a fixpoint semantics and (ii) an evaluator using
abstract model checking.

In [36] we study deadlock detection in an actor model with wait-by-necessity synchronizations, a lightweight
technique that synchronizes invocations when the corresponding values are strictly needed. This approach
relies on the use of futures that are not given an explicit Future type. The approach we adopt allows for the
implicit synchronization on the availability of some value (where the producer of the value might be decided at
runtime), whereas previous work allowed only explicit synchronization on the termination of a well-identified
request. This way we are able to analyze the data-flow synchronization inherent to languages that feature wait-
by-necessity. We provide a type-system and a solver inferring the type of a program so that deadlocks can be
identified statically. As a consequence we can automatically verify the absence of deadlocks in actor programs
with wait-by-necessity synchronizations.

7.5.2. Service Level Agreement
There is a gap between run-time service behaviours and the contracted quality expectations with the customers
that is due to the informal nature of service level agreements. In [41] we explain how to bridge the gap by
formalizing service level agreements with metric functions. We therefore discuss an end-to-end analysis flow
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that can either statically verify if a service code complies with a metric function or use run-time monitoring
systems to report possible misbehaviours. In both cases, our approach provides a feedback loop to fix and
improve the metrics and eventually the resource configurations of the service itself.

7.6. Type Systems
Participants: Daniel Hirschkoff, Simone Martini, Davide Sangiorgi.

7.6.1. Surveys
In [27], Martini elaborates the history of type systems, focusing on that fundamental period covering the
seventies and the early eighties. It was then that types became the cornerstone of the programming language
design, passing first from the abstract data type (ADT) movement and blossoming then into the object-
oriented paradigm. The paper also discusses how it has been possible that a concept like ADTs, with its clear
mathematical semantics, neat syntax, and straightforward implementation, can have given way to objects, a
lot dirtier from any perspective the language theorist may take.

In another paper [45], the same author compares the notion of “type” as found in programming languages
with that found in mathematical logic, pointing out also some important historical remarks such as the
role of the Curry-Howard isomorphism. It is argued that there are three different characters at play in
programming languages, all of them now called types: the technical concept used in language design to guide
implementation; the general abstraction mechanism used as a modelling tool; the classifying tool inherited
from mathematical logic.

Two further surveys concerns behavioural types. The successful application of behavioural types requires
a solid understanding of several practical aspects, from their representation in a concrete programming
language, to their integration with other programming constructs such as methods and functions, to design
and monitoring methodologies that take behaviours into account. The survey [15] provides an overview of the
state of the art of these aspects.

The behavioural type of a software component specifies its expected patterns of interaction using expressive
type languages, so that types can be used to determine automatically whether the component interacts correctly
with other components. Two related important notions of behavioural types are those of session types and
behavioural contracts. The paper [24] surveys the main accomplishments of the last twenty years within these
two approaches.

7.6.2. Subtyping and dualities in name-passing concurrency
The fusion calculi are simplifications of the π-calculus in which input and output are symmetric and restriction
is the only binder. In [23], Hirschkoff et al. highlight a major difference between these calculi and the π-
calculus from the point of view of types, proving some impossibility results for subtyping in fusion calculi. A
modification of fusion calculi is then proposed that allows one to import subtype systems, and related results,
from the π-calculus, and examine the consequences of such modifications on theory and expressiveness of the
languages.

8. Partnerships and Cooperations
8.1. National Initiatives

• REVER (Programming Reversible Recoverable Systems) is an ANR project with a 4-year duration.
REVER aims to study the possibility of defining semantically well-founded and composable abstrac-
tions for dependable computing on the basis of a reversible programming language substrate, where
reversibility means the ability to undo any distributed program execution, possibly step by step. The
critical assumption behind REVER is that by adopting a reversible model of computation, and by
combining it with appropriate notions of compensation and modularity, one can develop system-
atic and composable abstractions for recoverable and dependable systems. Main persons involved:
Giachino, Lanese, Laneve, Zavattaro.
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• PACE (Processus non-standard: Analyse, Coinduction, et Expressivité) is an ANR project with a 4-
year duration. The project targets three fundamental ingredients in theories of concurrent processes,
namely coinduction, expressiveness, and analysis techniques. The project targets processes that are
beyond the realm of "traditional" processes. Specifically, the models studied exhibit one or more of
the following features: probabilities, higher-order, quantum, constraints, knowledge, and confiden-
tiality. These models are becoming increasingly important for today’s applications. Coinduction is
intended to play a pivotal role. Indeed, the approaches to expressiveness and the analysis techniques
considered in the project are based on coinductive equalities. Main persons involved: Hirschkoff
(project coordinator), Dal Lago, Lanese, Sangiorgi, Zavattaro.

• ELICA (Expanding Logical Ideas for Complexity Analysis) is an ANR project that started on
October 2014 and that will finish on September 2018. ELICA focuses on methodologies for the
static analysis of programs and their resource consumption. The project’s aim is to further improve on
logical methodologies for complexity analysis (type systems, rewriting, etc.). More specifically, one
would like to have more powerful techniques with less false negatives, being able at the same time
to deal with nonstandard programming paradigms (concurrent, probabilistic, etc.). Main persons
involved: Avanzini, Cappai, Dal Lago, Hirschkoff, Martini, Sangiorgi.

• REPAS (Reliable and Privacy-Aware Software Systems via Bisimulation Metrics) is an ANR Project
that started on October 2016 and that will finish on October 2020. The project aims at investigating
quantitative notions and tools for proving program correctness and protecting privacy. In particular,
the focus will be put on bisimulation metrics, which are the natural extension of bisimulation to
quantitative systems. As a key application, we will develop a mechanism to protect the privacy of
users when their location traces are collected. Main persons involved: Dal Lago, Martini, Sangiorgi.

• COCAHOLA (Cost models for Complexity Analyses of Higher-Order Languages) is an ANR
Project that started on October 2016 and that will finish on October 2019. The project aims at
developing complexity analyses of higher-order computations. The focus is not on analyzing fixed
programs, but whole programming languages. The aim is the identification of adequate units of
measurement for time and space, i.e. what are called reasonable cost models. Main persons involved:
Dal Lago, Martini.

8.2. European Initiatives
8.2.1. FP7 & H2020 Projects

• ENVISAGE (Engineering Virtualized Services) is a EU FP7 project, with starting date October
1st, 2013, and with a 3-year duration. The project is about model-based development of virtualized
services, including tool support for resource analysis. Most Focus members are involved.

8.2.2. Collaborations in European Programs, Except FP7 & H2020
• The ICT COST Action BETTY (Behavioural Types for Reliable Large-Scale Software Systems).

initiated in October 2012 and with a 4-year duration, uses behavioural type theory as the basis for
new foundations, programming languages, and software development methods for communication-
intensive distributed systems. Behavioural type theory encompasses concepts such as interfaces,
communication protocols, contracts, and choreographies. Main persons involved: Bravetti, Giachino,
Hirschkoff, Lanese, Laneve, Mauro, Sangiorgi, Zavattaro.

• ICT COST Action IC1405 (Reversible computation - extending horizons of computing). Initiated at
the end of April 2015 and with a 4-year duration, this COST Action studies reversible computation
and its potential applications, which include circuits, low-power computing, simulation, biological
modeling, reliability and debugging. Reversible computation is an emerging paradigm that extends
the standard forwards-only mode of computation with the ability to execute in reverse, so that
computation can run backwards as naturally as it can go forwards.

Main persons involved: Giachino, Lanese (vice-chair of the action).
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• ICT COST Action IC1402 ARVI (Runtime Verification beyond Monitoring) Initiated in December
2014 and with a 4-year duration, this COST Action studies runtime verification, a computing analysis
paradigm based on observing a system at runtime to check its expected behaviour.

Main persons involved: Bravetti, Lanese.

• SMAll (Smart Mobility for All) SMAll is an EIT project that runs during 2016.

The aim of the project is to develop a service-oriented platform, called the SMAll platform 1, to
support the creation of a liquid market for transportation, facilitating the publication, retrieval, and
orchestration of functionalities for transportation, owned by different operators.

Jolie plays a prominent part in the development of the SMAll platform: it is the main language
for the development of both the platform — the architecture of services that support publishing,
organisation, and interaction among the functionalities for transportation — and of the services for
mobility.

8.2.3. Collaborations with Major European Organizations
Simone Martini is a member of the Executive Board of EQANIE (European Quality Assurance Network for
Informatics Education), from October 2014.

We list here the cooperations and contacts with other groups, without repeating those already listed in previous
sections.

• ENS Lyon (on concurrency models and resource control). Contact person(s) in Focus: Dal Lago,
Martini, Sangiorgi, Vignudelli. Some visit exchanges during the year, in both directions. A new joint
PhD started in september 2016 (Adrien Durier).

• Inria EPI Spades (on models and languages for components, reversibility). Contact person(s) in
Focus: Lanese. Some visit exchanges during the year, in both directions.

• Laboratoire d’Informatique, Université Paris Nord, Villetaneuse (on implicit computational com-
plexity). Contact person(s) in Focus: Dal Lago, Martini. An Italian PhD student (Marco Solieri) is
working on his PhD thesis with joint supervision (Martini, Guerrini).

• Institut de Mathématiques de Luminy, Marseille (on lambda-calculi, linear logic and semantics).
Contact person(s) in Focus: Dal Lago, Martini.

• Team PPS, IRIF Lab, University of Paris-Diderot Paris 7 (on logics for processes, resource control).
Contact person(s) in Focus: Dal Lago, Martini, Sangiorgi. Some short visits in both directions during
the year.

• IRILL Lab, Paris (on models for the representation of dependencies in distributed package based
software distributions). Contact person(s) in Focus: Mauro, Zavattaro. Some short visits in both
directions during the year.

• EPI Carte, Inria-Nancy Grand Est and LORIA (on implicit computational complexity). Contact
person(s) in Focus: Dal Lago.

• LMU Munich (M. Hofmann) (on implicit computational complexity and IntML). Contact person(s)
in Focus: Dal Lago.

• IMDEA Software, Madrid (G. Barthe) (on implicit computational complexity for cryptography).
Contact person(s) in Focus: Dal Lago,Sangiorgi. Some visits during the year.

• Facultad de Informatica, Universidad Complutense de Madrid (on web services). Contact person(s)
in Focus: Bravetti. Bravetti is an external collaborator in the project “Desarrollo y Análisis formal
de sistemas complejos en contextos DistribuidOS: fundamentos, herramientas y aplicaciones (DAr-
DOS)” (Development and formal analysis of complex systems in distributed contexts: foundations,
tools and applications) January 2016 - December 2018, funded by the Spanish Ministerio de Econo-
mia y Competitividad.

1https://github.com/small-dev/SMAll.Wiki/wiki

https://github.com/small-dev/SMAll.Wiki/wiki
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8.3. International Initiatives
8.3.1. Inria Associate Teams Not Involved in an Inria International Labs
8.3.1.1. CRECOGI

Title: Concurrent, Resourceful and Effectful Computation, by Geometry of Interaction

International Partner (Institution - Laboratory - Researcher):

Tokyo (Japan) - Department of Computer Science, Graduate School of Information Sci-
ence and Technology - Ichiro HASUO

Start year: 2015

See also: http://crecogi.cs.unibo.it

Game semantics and geometry of interaction (GoI) are two closely related frameworks whose
strength is to have the characters of both a denotational and an operational semantics. They
offer a high-level, mathematical (denotational) interpretation, but are interactive in nature. The
formalization in terms of movements of tokens through which programs communicate with each
other can actually be seen as a low-level program. The current limit of GoI is that the vast majority of
the literature and of the software tools designed around it have a pure, sequential functional language
as their source language. This project aims at investigating the application of GoI to concurrent,
resourceful, and effectful computation, thus paving the way to the deployment of GoI-based correct-
by-construction compilers in real-world software developments in fields like (massively parallel)
high-performance computing, embedded and cyberphysical systems, and big data. The presence of
both the japanese GoI community (whose skills are centered around effects and coalgebras) and the
french GoI community (more focused on linear logic and complexity analysis) will bring essential,
complementary, ingredients.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

The following researchers have visited Focus for short periods; we list them together with the title of the talk
they have given during their stay, or the topic discussed during their stay.

• Marco Bernardo: "Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive
Probabilistic Systems."

• Guillermo Roman Diez: "Resource Analysis."

• Lukasz Mikulski: "On Concurrency Paradigms."

• Jean-Pierre Jouannaud: "Coq modulo theory."

• Paul Blain Levy: "Trace semantics of well-founded processes via commutativity."

• Akihisa Yamada: "Certifying Safety and Termination Proofs for Integer Transition Systems" (long
visit).

• Ryo Tanaka: semantics of higher-order functional languages (long visit).

• Antonio Ravara: “Behavioural Type Inference for Object-Oriented Languages”.

• Lukasz Mikulski: "On concurrency paradigms".

• Ludovic Henrio, “Deadlock analysis in distributed object systems”.

http://crecogi.cs.unibo.it
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8.4.2. Visits to International Teams
• Ugo Dal Lago: has spent two weeks in April at ENS Lyon, and 1 month at IRIF, Université Paris 7,

in May/June.

• Charles Grellois has taken part in the programme "Automata, Logic and Games", 5 weeks (August-
September), Singapore.

• Valeria Vignudelli has spent six months in the Inria Comète team, Inria Saclay/Ecole Polytechnique,
Paris.

• Abel Garcia has spent 6 months at the Department of Computer Science, TUD Darmstadt.

8.4.2.1. Sabbatical programme

Maurizio Gabbrielli is, since 15 September 2014, Head of the EIT ICT Labs Doctoral School with Paris as his
principal location.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. General Chair, Scientific Chair

I. Lanese: Co-chair and local organizer for the 8th Conference on Reversible Computation (RC 2016),
Bologna, July 7th-8th, 2016.

9.1.1.2. Chair of Conference Program Committees

I. Lanese: 36th IFIP International Conference on Formal Techniques for Distributed Objects, Components
and Systems (FORTE 2016)

D. Sangiorgi: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016),
Rome, July 2016

9.1.1.3. Member of the Conference Program Committees

M. Bravetti: 5th European Conference on Service-Oriented and Cloud Computing (ESOCC 2016); 14th In-
ternational Conference on Software Engineering and Formal Methods (SEFM 2016); 10th IEEE International
Conference on Big Data Science and Engineering (IEEE BigDataSE 2016); 2016 IEEE International Confer-
ence on Big Data (IEEE BigData 2016) 32nd Symposium on Applied Computing, track on Software Verifi-
cation and Testing (SAC-SVT 2016); 7th International Conference on Fundamentals of Software Engineering
(FSEN 2017).

U. Dal Lago: 13th IFIP WG 1.3 International Workshop on Coalgebraic Methods in Computer Science
(CMCS 2016); 1st International Conference on Formal Structures for Computation and Deduction (FSCD
2016); 15th International Workshop on Termination (WST 2016); 17th International Workshop on Logic and
Computational Complexity (LCC 2016, Chair).

I. Lanese: 1st International Workshop on Pre- and Post-Deployment Verification Techniques (PrePost 2016);
9th Interaction and Concurrency Experience (ICE 2016); 25th European Symposium on Programming (ESOP
2016); Special Track on Microservices: Science and Engineering of the 9th IEEE International Conference on
Service-Oriented Computing and Applications (MSE @ SOCA 2016).

S. Martini: DIDAMATICA - Informatica per la Didattica (DIDAMATICA 2016).

D. Sangiorgi: 10th International Conference on Language and Automata Theory and Applications (LATA’16).

V. Vignudelli: 9th Interaction and Concurrency Experience (ICE 2016).
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G. Zavattaro: 21st International Symposium on Formal Methods (FM2016); 5th European Conference on
Service-oriented and Cloud Computing (ESOCC’16); 27th International Conference on Concurrency Theory
(CONCUR’16); 31st ACM/SIGAPP Symposium On Applied Computing - track on Software Verification and
Testing (ACM-SAC 2016).

9.1.1.4. Member of the Editorial Boards

U. Dal Lago: Logical Methods in Computer Science.

M. Gabbrielli: Int. Journal Theory and Practice of Logic Programming.

C. Laneve: Frontiers in ICT (Section Formal Methods).

I. Lanese: Editor in chief of the Open Journal of Communications and Software (Scientific Online).

The Scientific World Journal (Hindawi Publishing Corporation): editor till August 3, 2016

F. Montesi: Guest editor for "Special issue on Service-Oriented Architecture and Programming (SOAP
2013)". Science of Computer Programming.

D. Sangiorgi: Acta Informatica, Distributed Computing, RAIRO Theoretical Informatics and Applications.

9.1.2. Invited Talks

U. Dal Lago: gave an invited course “Implicit Complexity and the Curry-Howard Correspondence” at ‘Days
in Logic 2016’, Lisboa, Portugal.

D. Hirschkoff: gave an invited course “Mechanised Coinductive Proofs” at East China Normal University
(Shanghai, China), in november 2016 (a course mainly targeted towards master students).

S. Martini: gave the invited talk “Types in programming languages, between modelling, abstraction and cor-
rectness” at ‘Computability in Europe’ (Cie 2016), special session on History and Philosophy of Computing,
Paris, June 2016.

G. Zavattaro: gave an invited course on cloud computing management at the ‘Bertinoro International Spring
School 2016’ (BISS’16), Bertinoro, Italy, 6-11 March, 2016.
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9.2. Teaching - Supervision - Juries
9.2.1. Teaching

• Mario Bravetti
Master: “Linguaggi, Compilatori e Modelli Computazionali”, 120 hours, 1st year, Univer-
sity of Bologna, Italy.

• Ugo Dal Lago
Undergraduate: “Introduction to Programming in Python”, 20 hours, 1st year, University
of Bologna, Italy.
Undergraduate: “Optimization”, 36 hours, 2nd year, University of Bologna, Italy.
Master: “Cryptography”, 36 Hours, 2nd Year, University of Bologna, Italy.

• Daniel Hirschkoff
Master: “Coinductive Methods in Computer Science”, 2nd year, Ecole Normale Supérieure
de Lyon.

• Maurizio Gabbrielli
Undergraduate: “Programming languages”, 40 hours, 2nd year, University of Bologna,
Italy.
Master: “Artificial Intelligence”, 60 hours, 2nd year, University of Bologna, Italy.

• Elena Giachino
Undergraduate: “Programmazione”, 40 hours, 1st year, University of Bologna, Italy.

• Saverio Giallorenzo
Undergraduate: “Laboratorio di Operating Systems”, 40 hours, 2nd year, University of
Bologna, Italy.

• Ivan Lanese
Undergraduate: “Programmazione”, 32 hours, 1st year, University of Bologna, Italy.
Undergraduate: “Algoritmi e Strutture Dati”, 45 hours, 2nd year, University of Bologna,
Italy.
Master: “Ingegneria del Software Orientata ai Servizi”, 22 hours, 2nd year, University of
Bologna, Italy.

• Cosimo Laneve
Undergraduate: “Programmazione”, 70 hours, 1st year, University of Bologna, Italy.
Master: “Analisi di Programmi”, 42 hours, 1st year, University of Bologna, Italy.

• Simone Martini
Undergraduate: “Introduction to programming in Python”, 58 hours, 1st year, University
of Bologna, Italy.
Undergraduate: “Computer abilities for biologists”, 8 hours, 1st year, University of
Bologna, Italy.
Master: “Logical Foundations of Computer Science”, 48 hours, 2nd year, University of
Bologna, Italy.

• Davide Sangiorgi
Undergraduate: “Operating Systems”, 110 hours, 2nd year, University of Bologna, Italy.
Master: “Models for concurrency”, 15 hours, 2nd year, University of Bologna, Italy.

• Marco Solieri
Undergraduate: “UNIX system programming”, 48 hours, 3rd year, Université Paris
Diderot
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Undergraduate: “Network programming”, 48 hours, 3rd year, Université Paris Diderot

• Gianluigi Zavattaro

Undergraduate: “Computer Architectures”, 60 hours, 1st year, University of Bologna, Italy

Undergraduate: “Programming Languages”, 60 hours, 2nd year, University of Bologna,
Italy

9.2.2. Supervision
PhD thesis completed in 2016:

• Alberto Cappai, " On Equivalences, Metrics, and Computational Indistinguishability", University of
Bologna, April 2016.

• Alessandro Rioli, " Coinductive Techniques on a Linear Quantum λ-calculus", University of
Bologna, April 2016.

• Marco Solieri, “Sharing, Superposition and Expansion — Geometrical Studies on the Semantics and
Implementation of λ-calculi and Proof-Nets”, S. Guerrini (Paris Nord) and S. Martini. [11].

• Saverio Giallorenzo, “Real-World Choreographies”, University of Bologna, April 2016 [10].

Below are the details on the PhD students in Focus: starting date, topic or provisional title of the thesis,
supervisor(s). These are all PhDs in progress.

• Adrien Durier, september 2016, "Proving behavioural properties of higher-order concurrent lan-
guages", ENS de Lyon and University of Bologna. Supervisors Daniel Hirschkoff and Davide San-
giorgi.

• Abel Garcia, January 2014, “Analysis of Cloud Computing Systems”. Supervisor C. Laneve.

• Francesco Gavazzo, October 2015, “Coinductive Techniques for Effectful Lambda Calculi”. Super-
visors U. Dal Lago and D. Sangiorgi.

• Raphaelle Crubillé, October 2015, “Bisimulation Metrics and Probabilistic Lambda Calculi”, Uni-
versité Denis Diderot and University of Bologna. Supervisors Thomas Ehrhard and Ugo Dal Lago.

• Vincenzo Mastandrea, October 2015, “Deadlock analysis in ASP”. Supervisors Cosimo Laneve and
Ludovic Henrio (CNRS Sophia Antipolis).

• Valeria Vignudelli, January 2014, “Probabilities in Higher-Order languages”. Supervisor D. San-
giorgi.

9.2.3. Juries
U. Dal Lago has been member of the PhD evaluation committee for Charles Grellois (April 2016, Université
Paris 7), and Thomas Leventis (December 2016, Université Aix-Marseille).

D. Hirschkoff has been referee (rapporteur) for the Habilitation à Diriger les Recherches of Nicolas Tabareau,
Université de Nantes), November 2016, and member of the PhD committee of Martin Bodin (Université
Rennes 1), Nov. 25, 2016.

S. Martini has been supervisor and member of the PhD evaluation committee for Marco Solieri (Université
Paris 13 and Università di Bologna).

G. Zavattaro: has been member of the PhD jury of Laura Nenzi and Andrea Morichetta, IMT Lucca, Italy, July
2016.
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9.3. Popularization
Simone Martini has carried out extended work of scientific divulgation, including

• member of the technical committee of Olimpiadi del Problem Solving (at Italian Ministry of
Education), http://www.olimpiadiproblemsolving.com;

• invited talks (“Il pensiero computazionale spiegato ai manager”, given at ‘Il codice del futuro’,
Teatro anatomico dell’Archiginnasio, Bologna, May 2016, and “Pensare computazionale: una quarta
competenza dopo scrivere, leggere e far di conto”, given at ‘Trasformazioni sociali e trasmissione
delle conoscenze nell’Università italiana’, Bologna, November 2016);

• various talks at institutes and workshops on the teaching methods for Computer Science;
• coordinator of some initiatives for the ‘Hour of Code’, see https://italia.code.org/ and http://www.

programmailfuturo.it.

D. Hirschkoff takes part in several popularization activities in schools, in Lyon (association "Maths en Jeans").

9.3.1. Other duties
S. Martini is a member of the Board of CINI (Italian National Interuniversity Consortium for Informatics),
designated by the Ministry for Semplificazione e Pubblica Amministrazione, from 2015.

S. Martini has been elected Head of the Department of Computer Science and Engineering, University of
Bologna, for the term 2015-2018.

D. Sangiorgi has been coordinator of undergraduate studies at the Department of Computer Science and
Engineering, University of Bologna (Informatica per il Management), till October 2016, when G. Zavattaro
has taken over from him.
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