
Activity Report 2016

Project-Team GALLIUM

Programming languages, types, compilation
and proofs

RESEARCH CENTER
Paris

THEME
Proofs and Verification

Table of contents

1. Members . 1
2. Overall Objectives . 2
3. Research Program . 2

3.1. Programming languages: design, formalization, implementation 2
3.2. Type systems 3

3.2.1. Type systems and language design. 3
3.2.2. Polymorphism in type systems. 4
3.2.3. Type inference. 4

3.3. Compilation 5
3.4. Interface with formal methods 5

3.4.1. Software-proof codesign 5
3.4.2. Mechanized specifications and proofs for programming languages components 6

4. Application Domains .6
4.1. High-assurance software 6
4.2. Software security 6
4.3. Processing of complex structured data 6
4.4. Rapid development 7
4.5. Teaching programming 7

5. Highlights of the Year . 7
6. New Software and Platforms . 7

6.1. CompCert 7
6.2. Diy 7
6.3. Menhir 8
6.4. OCaml 8
6.5. OPAM Builder 8
6.6. PASL 8
6.7. TLAPS 8
6.8. Zenon 9

7. New Results . 9
7.1. Formal verification of compilers and static analyzers 9

7.1.1. The CompCert formally-verified compiler 9
7.1.2. Separate compilation and linking in CompCert 10
7.1.3. Separation logic assertions for compiler verification 10
7.1.4. Formal verification of static analyzers based on abstract interpretation 11
7.1.5. Correct parsing of C using LR(1) 11
7.1.6. A SPARK front-end for CompCert 11

7.2. Language design and type systems 11
7.2.1. Types with unique inhabitants for code inference 11
7.2.2. Refactoring with ornaments in ML 12

7.3. Shared-memory parallelism 12
7.3.1. Weak memory models 12
7.3.2. Algorithms and data structures for parallel computing 13

7.4. The OCaml language and system 14
7.4.1. OCaml 14
7.4.2. Infrastructure for OCaml 14
7.4.3. Continuous integration of OCaml packages 15
7.4.4. Global analyses of OCaml programs 15
7.4.5. Type-checking the OCaml intermediate languages 15
7.4.6. Optimizing OCaml for satisfiability problems 16

2 Activity Report INRIA 2016

7.4.7. Type compatibility checking for dynamically loaded OCaml data 16
7.4.8. Pattern matching 16
7.4.9. Error diagnosis in Menhir parsers 16

7.5. Software specification and verification 16
7.5.1. Step-indexing in program logics 16
7.5.2. TLA+ 17
7.5.3. Hash tables and iterators: a case study in program verification 17
7.5.4. Read-only permissions in separation logic 17
7.5.5. Formal reasoning about asymptotic complexity 17
7.5.6. Certified distributed algorithms for autonomous mobile robots 17

8. Bilateral Contracts and Grants with Industry . 18
8.1.1. The Caml Consortium 18
8.1.2. Scientific Advisory for OCamlPro 18

9. Partnerships and Cooperations . 19
9.1. National Initiatives 19

9.1.1. ANR projects 19
9.1.1.1. BWare 19
9.1.1.2. Verasco 19
9.1.1.3. Vocal 19

9.1.2. FSN projects 19
9.1.3. FUI Projects 19

9.2. European Initiatives 20
9.2.1. FP7 & H2020 Projects 20
9.2.2. ITEA3 Projects 20

9.3. International Initiatives 20
10. Dissemination . 20

10.1. Promoting Scientific Activities 20
10.1.1. Scientific Events Organisation 20
10.1.2. Scientific Events Selection 20

10.1.2.1. Member of the Conference Program Committees 20
10.1.2.2. Reviewer 20

10.1.3. Journal 21
10.1.4. Invited Talks 21
10.1.5. Research Administration 21

10.2. Teaching - Supervision - Juries 21
10.2.1. Teaching 21
10.2.2. Supervision 22
10.2.3. Juries 22

10.3. Popularization 22
11. Bibliography .22

Project-Team GALLIUM

Creation of the Project-Team: 2006 May 01
Keywords:

Computer Science and Digital Science:
1.1.3. - Memory models
2.1.1. - Semantics of programming languages
2.1.2. - Object-oriented programming
2.1.3. - Functional programming
2.1.6. - Concurrent programming
2.1.11. - Proof languages
2.2.1. - Static analysis
2.2.2. - Memory models
2.2.3. - Run-time systems
2.2.4. - Parallel architectures
2.4.1. - Analysis
2.4.3. - Proofs
2.5.4. - Software Maintenance & Evolution
4.5. - Formal methods for security
7.1. - Parallel and distributed algorithms
7.4. - Logic in Computer Science

Other Research Topics and Application Domains:
5.2.3. - Aviation
6.1. - Software industry
6.3.1. - Web
6.5. - Information systems
6.6. - Embedded systems
9.4.1. - Computer science

1. Members
Research Scientists

Xavier Leroy [Team leader, Senior Researcher, Inria]
Umut Acar [Advanced Research position, Carnegie Mellon University]
Arthur Charguéraud [Researcher, Inria, 40%]
Damien Doligez [Researcher, Inria]
Fabrice Le Fessant [Researcher, Inria]
Luc Maranget [Researcher, Inria]
Michel Mauny [Senior Researcher, Inria]
François Pottier [Senior Researcher, Inria, HDR]
Michael Rainey [Starting Research position, Inria]
Didier Rémy [Senior Researcher, Inria, HDR]

Faculty Member
Pierre Courtieu [Associate Professor on délégation, CNAM, until Aug 2016]

https://raweb.inria.fr/rapportsactivite/RA2016/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2016/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2016

Engineer
Sébastien Hinderer [Research Engineer, Inria, 70%, from Apr 2016]

PhD Students
Vitalii Aksenov [Inria]
Armaël Guéneau [ENS Lyon, from Sep 2016]
Jacques-Henri Jourdan [Inria, until Mar 2016, granted by ANR VERASCO project]
Gabriel Scherer [ENS Paris and Inria, until Jan 2016]
Thomas Williams [ENS Paris]

Post-Doctoral Fellows
Adrien Guatto [Inria, until Sep 2016]
Filip Sieczkowski [Inria, until Sep 2016]

Visiting Scientist
Andrea Parri [Sant’Anna School of Advanced Studies, Pisa, Italy, from May 2016 until Nov 2016]

Administrative Assistant
Laurence Bourcier [Inria]

Others
Jacques-Pascal Deplaix [Student Intern, Epitech, from Mar 2016 until Aug 2016]
Felipe Garay [Student Intern, Universidad de Santiago de Chile, from Feb 2016 until Apr 2016]
Ambroise Lafont [Student Intern, École Polytechnique, from Apr 2016 until August 2016]

2. Overall Objectives

2.1. Research at Gallium
The research conducted in the Gallium group aims at improving the safety, reliability and security of software
through advances in programming languages and formal verification of programs. Our work is centered on the
design, formalization and implementation of functional programming languages, with particular emphasis on
type systems and type inference, formal verification of compilers, and interactions between programming and
program proof. The OCaml language and the CompCert verified C compiler embody many of our research
results. Our work spans the whole spectrum from theoretical foundations and formal semantics to applications
to real-world problems.

3. Research Program

3.1. Programming languages: design, formalization, implementation
Like all languages, programming languages are the media by which thoughts (software designs) are communi-
cated (development), acted upon (program execution), and reasoned upon (validation). The choice of adequate
programming languages has a tremendous impact on software quality. By “adequate”, we mean in particular
the following four aspects of programming languages:

• Safety. The programming language must not expose error-prone low-level operations (explicit
memory deallocation, unchecked array access, etc) to programmers. Further, it should provide
constructs for describing data structures, inserting assertions, and expressing invariants within
programs. The consistency of these declarations and assertions should be verified through compile-
time verification (e.g. static type-checking) and run-time checks.

Project-Team GALLIUM 3

• Expressiveness. A programming language should manipulate as directly as possible the concepts
and entities of the application domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A typical example of a language
feature that increases expressiveness is pattern matching for examination of structured data (as
in symbolic programming) and of semi-structured data (as in XML processing). Carried to the
extreme, the search for expressiveness leads to domain-specific languages, customized for a specific
application area.

• Modularity and compositionality. The complexity of large software systems makes it impossi-
ble to design and develop them as one, monolithic program. Software decomposition (into semi-
independent components) and software composition (of existing or independently-developed com-
ponents) are therefore crucial. Again, this modular approach can be applied to any programming
language, given sufficient fortitude by the programmers, but is much facilitated by adequate linguis-
tic support. In particular, reflecting notions of modularity and software components in the program-
ming language enables compile-time checking of correctness conditions such as type correctness at
component boundaries.

• Formal semantics. A programming language should fully and formally specify the behaviours of
programs using mathematical semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods (program proof, model
checking) to programs.

Our research work in language design and implementation centers on the statically-typed functional program-
ming paradigm, which scores high on safety, expressiveness and formal semantics, complemented with full
imperative features and objects for additional expressiveness, and modules and classes for compositionality.
The OCaml language and system embodies many of our earlier results in this area [49]. Through collabora-
tions, we also gained experience with several domain-specific languages based on a functional core, including
distributed programming (JoCaml), XML processing (XDuce, CDuce), reactive functional programming, and
hardware modeling.

3.2. Type systems
Type systems [52] are a very effective way to improve programming language reliability. By grouping the
data manipulated by the program into classes called types, and ensuring that operations are never applied to
types over which they are not defined (e.g. accessing an integer as if it were an array, or calling a string as if it
were a function), a tremendous number of programming errors can be detected and avoided, ranging from the
trivial (misspelled identifier) to the fairly subtle (violation of data structure invariants). These restrictions are
also very effective at thwarting basic attacks on security vulnerabilities such as buffer overflows.

The enforcement of such typing restrictions is called type-checking, and can be performed either dynamically
(through run-time type tests) or statically (at compile-time, through static program analysis). We favor static
type-checking, as it catches bugs earlier and even in rarely-executed parts of the program, but note that not
all type constraints can be checked statically if static type-checking is to remain decidable (i.e. not degenerate
into full program proof). Therefore, all typed languages combine static and dynamic type-checking in various
proportions.

Static type-checking amounts to an automatic proof of partial correctness of the programs that pass the
compiler. The two key words here are partial, since only type safety guarantees are established, not full
correctness; and automatic, since the proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source). Static type-checking can therefore be
viewed as the poor man’s formal methods: the guarantees it gives are much weaker than full formal verification,
but it is much more acceptable to the general population of programmers.

3.2.1. Type systems and language design.
Unlike most other uses of static program analysis, static type-checking rejects programs that it cannot prove
safe. Consequently, the type system is an integral part of the language design, as it determines which programs

4 Activity Report INRIA 2016

are acceptable and which are not. Modern typed languages go one step further: most of the language design is
determined by the type structure (type algebra and typing rules) of the language and intended application area.
This is apparent, for instance, in the XDuce and CDuce domain-specific languages for XML transformations
[46], [43], whose design is driven by the idea of regular expression types that enforce DTDs at compile-time.
For this reason, research on type systems – their design, their proof of semantic correctness (type safety), the
development and proof of associated type-checking and inference algorithms – plays a large and central role
in the field of programming language research, as evidenced by the huge number of type systems papers in
conferences such as Principles of Programming Languages.

3.2.2. Polymorphism in type systems.
There exists a fundamental tension in the field of type systems that drives much of the research in this area.
On the one hand, the desire to catch as many programming errors as possible leads to type systems that
reject more programs, by enforcing fine distinctions between related data structures (say, sorted arrays and
general arrays). The downside is that code reuse becomes harder: conceptually identical operations must be
implemented several times (say, copying a general array and a sorted array). On the other hand, the desire
to support code reuse and to increase expressiveness leads to type systems that accept more programs, by
assigning a common type to broadly similar objects (for instance, the Object type of all class instances in
Java). The downside is a loss of precision in static typing, requiring more dynamic type checks (downcasts in
Java) and catching fewer bugs at compile-time.

Polymorphic type systems offer a way out of this dilemma by combining precise, descriptive types (to catch
more errors statically) with the ability to abstract over their differences in pieces of reusable, generic code
that is concerned only with their commonalities. The paradigmatic example is parametric polymorphism,
which is at the heart of all typed functional programming languages. Many forms of polymorphic typing
have been studied since then. Taking examples from our group, the work of Rémy, Vouillon and Garrigue on
row polymorphism [55], integrated in OCaml, extended the benefits of this approach (reusable code with no
loss of typing precision) to object-oriented programming, extensible records and extensible variants. Another
example is the work by Pottier on subtype polymorphism, using a constraint-based formulation of the type
system [53]. Finally, the notion of “coercion polymorphism” proposed by Cretin and Rémy[3] combines and
generalizes both parametric and subtyping polymorphism.

3.2.3. Type inference.
Another crucial issue in type systems research is the issue of type inference: how many type annotations
must be provided by the programmer, and how many can be inferred (reconstructed) automatically by the
type-checker? Too many annotations make the language more verbose and bother the programmer with
unnecessary details. Too few annotations make type-checking undecidable, possibly requiring heuristics,
which is unsatisfactory. OCaml requires explicit type information at data type declarations and at component
interfaces, but infers all other types.

In order to be predictable, a type inference algorithm must be complete. That is, it must not find one, but all
ways of filling in the missing type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances of a single, principal solution.

Maybe surprisingly, the strong requirements – such as the existence of principal types – that are imposed
on type systems by the desire to perform type inference sometimes lead to better designs. An illustration of
this is row variables. The development of row variables was prompted by type inference for operations on
records. Indeed, previous approaches were based on subtyping and did not easily support type inference. Row
variables have proved simpler than structural subtyping and more adequate for type-checking record update,
record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer’s understanding of his own program
is often initially limited to a particular context, where types are more specific than strictly required. Type
inference can reveal the additional generality, which allows making the code more abstract and thus more
reuseable.

Project-Team GALLIUM 5

3.3. Compilation
Compilation is the automatic translation of high-level programming languages, understandable by humans, to
lower-level languages, often executable directly by hardware. It is an essential step in the efficient execution,
and therefore in the adoption, of high-level languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has had considerable influence on the
design of both. Compilers have also attracted considerable research interest as the oldest instance of symbolic
processing on computers.

Compilation has been the topic of much research work in the last 40 years, focusing mostly on high-
performance execution (“optimization”) of low-level languages such as Fortran and C. Two major results
came out of these efforts: one is a superb body of performance optimization algorithms, techniques and
methodologies; the other is the whole field of static program analysis, which now serves not only to increase
performance but also to increase reliability, through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group focuses on a less investigated topic:
compiler certification.

3.3.1. Formal verification of compiler correctness.
While the algorithmic aspects of compilation (termination and complexity) have been well studied, its semantic
correctness – the fact that the compiler preserves the meaning of programs – is generally taken for granted.
In other terms, the correctness of compilers is generally established only through testing. This is adequate
for compiling low-assurance software, themselves validated only by testing: what is tested is the executable
code produced by the compiler, therefore compiler bugs are detected along with application bugs. This is
not adequate for high-assurance, critical software which must be validated using formal methods: what is
formally verified is the source code of the application; bugs in the compiler used to turn the source into the
final executable can invalidate the guarantees so painfully obtained by formal verification of the source.

To establish strong guarantees that the compiler can be trusted not to change the behavior of the program,
it is necessary to apply formal methods to the compiler itself. Several approaches in this direction have
been investigated, including translation validation, proof-carrying code, and type-preserving compilation. The
approach that we currently investigate, called compiler verification, applies program proof techniques to the
compiler itself, seen as a program in particular, and use a theorem prover (the Coq system) to prove that the
generated code is observationally equivalent to the source code. Besides its potential impact on the critical
software industry, this line of work is also scientifically fertile: it improves our semantic understanding of
compiler intermediate languages, static analyses and code transformations.

3.4. Interface with formal methods
Formal methods collectively refer to the mathematical specification of software or hardware systems and to the
verification of these systems against these specifications using computer assistance: model checkers, theorem
provers, program analyzers, etc. Despite their costs, formal methods are gaining acceptance in the critical
software industry, as they are the only way to reach the required levels of software assurance.

In contrast with several other Inria projects, our research objectives are not fully centered around formal
methods. However, our research intersects formal methods in the following two areas, mostly related to
program proofs using proof assistants and theorem provers.

3.4.1. Software-proof codesign
The current industrial practice is to write programs first, then formally verify them later, often at huge costs.
In contrast, we advocate a codesign approach where the program and its proof of correctness are developed
in interaction, and we are interested in developing ways and means to facilitate this approach. One possibility
that we currently investigate is to extend functional programming languages such as OCaml with the ability
to state logical invariants over data structures and pre- and post-conditions over functions, and interface with
automatic or interactive provers to verify that these specifications are satisfied. Another approach that we

6 Activity Report INRIA 2016

practice is to start with a proof assistant such as Coq and improve its capabilities for programming directly
within Coq.

3.4.2. Mechanized specifications and proofs for programming languages components
We emphasize mathematical specifications and proofs of correctness for key language components such as
semantics, type systems, type inference algorithms, compilers and static analyzers. These components are
getting so large that machine assistance becomes necessary to conduct these mathematical investigations.
We have already mentioned using proof assistants to verify compiler correctness. We are also interested in
using them to specify and reason about semantics and type systems. These efforts are part of a more general
research topic that is gaining importance: the formal verification of the tools that participate in the construction
and certification of high-assurance software.

4. Application Domains

4.1. High-assurance software
A large part of our work on programming languages and tools focuses on improving the reliability of software.
Functional programming, program proof, and static type-checking contribute significantly to this goal.

Because of its proximity with mathematical specifications, pure functional programming is well suited to
program proof. Moreover, functional programming languages such as OCaml are eminently suitable to
develop the code generators and verification tools that participate in the construction and qualification of high-
assurance software. Examples include Esterel Technologies’s KCG 6 code generator, the Astrée static analyzer,
the Caduceus/Jessie program prover, and the Frama-C platform. Our own work on compiler verification
combines these two aspects of functional programming: writing a compiler in a pure functional language
and mechanically proving its correctness.

Static typing detects programming errors early, prevents a number of common sources of program crashes
(null dereferences, out-of bound array accesses, etc), and helps tremendously to enforce the integrity of data
structures. Judicious uses of generalized abstract data types (GADTs), phantom types, type abstraction and
other encapsulation mechanisms also allow static type checking to enforce program invariants.

4.2. Software security
Static typing is also highly effective at preventing a number of common security attacks, such as buffer
overflows, stack smashing, and executing network data as if it were code. Applications developed in a language
such as OCaml are therefore inherently more secure than those developed in unsafe languages such as C.

The methods used in designing type systems and establishing their soundness can also deliver static analyses
that automatically verify some security policies. Two examples from our past work include Java bytecode
verification [50] and enforcement of data confidentiality through type-based inference of information flow and
noninterference properties [54].

4.3. Processing of complex structured data
Like most functional languages, OCaml is very well suited to expressing processing and transformations of
complex, structured data. It provides concise, high-level declarations for data structures; a very expressive
pattern-matching mechanism to destructure data; and compile-time exhaustiveness tests. Therefore, OCaml is
an excellent match for applications involving significant amounts of symbolic processing: compilers, program
analyzers and theorem provers, but also (and less obviously) distributed collaborative applications, advanced
Web applications, financial modeling tools, etc.

Project-Team GALLIUM 7

4.4. Rapid development
Static typing is often criticized as being verbose (due to the additional type declarations required) and
inflexible (due to, for instance, class hierarchies that must be fixed in advance). Its combination with type
inference, as in the OCaml language, substantially diminishes the importance of these problems: type inference
allows programs to be initially written with few or no type declarations; moreover, the OCaml approach to
object-oriented programming completely separates the class inheritance hierarchy from the type compatibility
relation. Therefore, the OCaml language is highly suitable for fast prototyping and the gradual evolution of
software prototypes into final applications, as advocated by the popular “extreme programming” methodology.

4.5. Teaching programming
Our work on the Caml language family has an impact on the teaching of programming. Caml Light is one of
the programming languages selected by the French Ministry of Education for teaching Computer Science
in classes préparatoires scientifiques. OCaml is also widely used for teaching advanced programming in
engineering schools, colleges and universities in France, the USA, and Japan.

5. Highlights of the Year

5.1. Highlights of the Year
Xavier Leroy received the 2016 Royal Society Milner Award “in recognition of his exceptional achievements
in computer programming which includes the design and implementation of the OCaml programming
language”.

Xavier Leroy received one of the two 2016 Van Wijngaarden Awards from Centrum Wiskunde & Informatica
(Amsterdam).

Xavier Leroy received the ACM SIGPLAN Most Influential POPL Paper Award for his POPL 2006 paper,
Formal certification of a compiler back-end or: programming a compiler with a proof assistant [51].

6. New Software and Platforms

6.1. CompCert
Participants: Xavier Leroy [contact], Sandrine Blazy [team Celtique], Jacques-Henri Jourdan, Bernhard
Schommer [AbsInt GmbH].

The CompCert project investigates the formal verification of realistic compilers usable for critical embedded
software. Such verified compilers come with a mathematical, machine-checked proof that the generated
executable code behaves exactly as prescribed by the semantics of the source program. By ruling out the
possibility of compiler-introduced bugs, verified compilers strengthen the guarantees that can be obtained
by applying formal methods to source programs. AbsInt Angewandte Informatik GmbH sells a commercial
version of CompCert with long-term maintenance.

• URL: http://compcert.inria.fr/ (academic), http://www.absint.com/compcert/ (commercial).

6.2. Diy
Participants: Luc Maranget [contact], Jade Alglave [Microsoft Research, Cambridge].

https://royalsociety.org/science-events-and-lectures/2016/11/milner-award-lecture/
http://www.absint.com
http://compcert.inria.fr/
http://www.absint.com/compcert/

8 Activity Report INRIA 2016

The diy suite (for “Do It Yourself”) provides a set of tools for testing shared memory models: the litmus
tool for running tests on hardware, various generators for producing tests from concise specifications, and
herd, a memory model simulator. Tests are small programs written in x86, Power, ARM or generic (LISA)
assembler that can thus be generated from concise specifications, run on hardware, or simulated on top of
memory models. Test results can be handled and compared using additional tools. Recent versions also take a
subset of the C language as input, so as to test and simulate the C11 model. Recent releases (“Seven”) provide
a new license (Cecill-B), a simplified build process and numerous features, including a simple macro system
that connects the C input language and LISA annotations.

• URL: http://diy.inria.fr/

6.3. Menhir
Participants: François Pottier [contact], Yann Régis-Gianas [Université Paris Diderot].

Menhir is a LR(1) parser generator for the OCaml programming language. That is, Menhir compiles LR(1)
grammar specifications down to OCaml code.

• URL: http://gallium.inria.fr/~fpottier/menhir/

6.4. OCaml
Participants: Damien Doligez [contact], Alain Frisch [LexiFi], Jacques Garrigue [Nagoya University],
Fabrice Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane Street], Leo White
[Jane Street], Jeremy Yallop [OCaml Labs, Cambridge University].

The OCaml language is a functional programming language that combines safety with expressiveness through
the use of a precise and flexible type system with automatic type inference. The OCaml system is a
comprehensive implementation of this language, featuring two compilers (a bytecode compiler, for fast
prototyping and interactive use, and a native-code compiler producing efficient machine code for x86, ARM,
PowerPC and SPARC), a debugger, a documentation generator, a compilation manager, a package manager,
and many libraries contributed by the user community.

• URL: http://ocaml.org/

6.5. OPAM Builder
Participant: Fabrice Le Fessant.

OPAM Builder checks in real time the installability on a computer of all packages after any modification of
the OPAM repository. To achieve this result, it uses smart mechanisms to compute incremental differences
between package updates, to be able to reuse cached compilations, and go down from quadratic complexity to
linear complexity.

• URL: http://github.com/OCamlPro/opam-builder

6.6. PASL
Participants: Michael Rainey [contact], Arthur Charguéraud, Umut Acar.

PASL is a C++ library for writing parallel programs targeting the broadly available multicore computers. The
library provides a high level interface and can still guarantee very good efficiency and performance, primarily
due to its scheduling and automatic granularity control mechanisms.

• URL: http://deepsea.inria.fr/pasl/

6.7. TLAPS
Participants: Damien Doligez [contact], Stefan Merz [team Veridis], Martin Riener [team Veridis].

http://diy.inria.fr/
http://gallium.inria.fr/~fpottier/menhir/
http://ocaml.org/
http://github.com/OCamlPro/opam-builder
http://deepsea.inria.fr/pasl/

Project-Team GALLIUM 9

TLAPS is a platform for developing and mechanically verifying proofs about TLA+ specifications. The TLA+
proof language is hierarchical and explicit, allowing a user to decompose the overall proof into independent
proof steps. TLAPS consists of a proof manager that interprets the proof language and generates a collection
of proof obligations that are sent to backend verifiers. The current backends include the tableau-based prover
Zenon for first-order logic, Isabelle/TLA+, an encoding of TLA+ as an object logic in the logical framework
Isabelle, an SMT backend designed for use with any SMT-lib compatible solver, and an interface to a decision
procedure for propositional temporal logic.

• URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html

6.8. Zenon
Participants: Damien Doligez [contact], Guillaume Bury [CNAM], David Delahaye [CNAM], Pierre
Halmagrand [team Deducteam], Olivier Hermant [MINES ParisTech].

Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input,
it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling
of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying
results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof
assistant), and also to be easily retargeted to output scripts for different frameworks (for example, Isabelle and
Dedukti).

• URL: http://zenon-prover.org/

7. New Results
7.1. Formal verification of compilers and static analyzers
7.1.1. The CompCert formally-verified compiler

Participants: Xavier Leroy, Bernhard Schommer [AbsInt GmbH], Jacques-Henri Jourdan.

In the context of our work on compiler verification (§3.3.1), since 2005 we have been developing and formally
verifying a moderately-optimizing compiler for a large subset of the C programming language, generating
assembly code for the PowerPC, ARM, and x86 architectures [7]. This compiler comprises a back-end, which
translates the Cminor intermediate language to PowerPC assembly, and is reusable for source languages other
than C [6]; and a front-end, which translates the CompCert C subset of C to Cminor. The compiler is mostly
written within the specification language of the Coq proof assistant, out of which Coq’s extraction facility
generates executable OCaml code. The compiler comes with a 50000-line, machine-checked Coq proof of
semantic preservation, establishing that the generated assembly code executes exactly as prescribed by the
semantics of the source C program.

This year, the CompCert C compiler was improved in several directions:
• The proof of semantic preservation was extended to account for separate compilation and linking.

(See section 7.1.2.)
• Support for 64-bit target processors was added, while keeping the original support for 32-bit

processors. The x86 code generator, initially 32-bit only, was extended to handle x86 64-bit as well.
• The generation of DWARF debugging information in -g mode, developed last year for PowerPC, is

now available for ARM and x86 as well.
• The semantics of conversions from pointer types to the _Bool type is fully defined again. (It was

made temporarily undefined while addressing issues with comparisons between the null pointer and
out-of-bound pointers.)

• More features of ISO C 2011 are supported, such as the _Noreturn attribute, or anonymous
members of struct and union types.

• As a result of his research on implementing a correct parser for the C language (§7.1.5), Jacques-
Henri Jourdan improved the implementation of the parser.

https://tla.msr-inria.inria.fr/tlaps/content/Home.html
http://zenon-prover.org/

10 Activity Report INRIA 2016

Version 2.7 of CompCert was released in June 2016, incorporating most of these enhancements, with the
exception of 64-bit processor support and anonymous members, which will be released Q1 2017.

7.1.2. Separate compilation and linking in CompCert
Participants: Xavier Leroy, Chung-Kil Hur [KAIST, Seoul], Jeehoon Kang [KAIST, Seoul].

Separate compilation (of multiple C source files into multiple object files, followed by linking of the object files
to produce the final executable program) has been supported for a long time by the CompCert implementation,
but it was not accounted for by CompCert’s correctness proof. That proof established semantic preservation
in the case of a single, monolithic C source file which is compiled at once to produce the final executable, but
not in the more general case of separate compilation and linking.

Version 2.7 of CompCert, released this year, extends the proof of semantic preservation in order to account for
separate compilation and linking. It follows the approach described by Kang, Kim, Hur, Dreyer and Vafeiadis
in their POPL 2016 paper [47] and prototyped by Kang on CompCert 2.4. In this approach, the proof considers
a set of C compilation units, separately compiled to assembly then linked, and shows that the resulting
assembly program preserves the semantics of the C program that would be obtained by syntactic linking of the
source C compilation units. The simplicity of this approach follows from the fact that semantic preservation
is still shown between whole programs (after linking); there is no need to give semantics to individual
compilation units. Xavier Leroy integrated the approach of Kang et al. into the CompCert development, and
extended it to several new optimization passes that were not present in Kang’s prototype implementation.

7.1.3. Separation logic assertions for compiler verification
Participants: Xavier Leroy, Timothy Bourke [EPI Parkas], Lélio Brun [EPI Parkas], Maxime Dénès [EPI
Marelle].

Separation logic is a powerful tool to reason about imperative programs. It is a Hoare-style program logic
where preconditions and postconditions are assertions about the contents of mutable state. Those assertions
are built in a compositional manner using a separating conjunction operator.

While effective to prove the correctness of a given program, separation logic and program logics in general are
less effective to prove the correctness of a compiler or of a program transformation, in particular because it is
difficult to show preservation of termination. The alternative approach that we investigated this year consists in
using the assertion language of separation logic, and in particular its separating conjunction, in the context of a
conventional, CompCert-style proof of semantic preservation based on simulation diagrams. Assertions from
separation logic make it possible to state the invariant that relates the memory states of the program before
and after the transformation in a compositional manner, simplifying the proof that this invariant is preserved
through execution steps.

This approach was developed and experimentally evaluated in in three case studies.

The first case study was part of project CEEC and consisted in verifying a code generator from a domain-
specific, purely-functional intermediate language down to the Clight language of CompCert. Xavier Leroy
and Maxime Dénès used ad-hoc separation logic assertions to describe the memory states of the generated
Clight programs, and in particular the use of pointers to return multiple function results via “out” parameters.

The second case study was a complete rewrite of the Stacking pass of the CompCert back-end and of its
correctness proof, as part of the new support for 64-bit architectures (§7.1.2). For this new proof, Xavier
Leroy reused and improved the separation logic assertions of the previous project, using a shallow embedding
into Coq instead of a deep embedding. Separating conjunctions are used to specify the layout and current
contents of the stack frames for every compiled function, in a way that accommodates 32- and 64-bit registers
and pointer values equally well.

Project-Team GALLIUM 11

The third use takes place in the context of the verified Lustre-to-C compiler in development at team Parkas (see
their activity report). The final pass of this compiler translates a simple object-oriented intermediate language,
Obc, to CompCert’s Clight. Timothy Bourke and Lélio Brun used the separation logic assertions from the
second project to specify and reason about the Clight memory layout of the Obc nested objects. Timothy
Bourke and Xavier Leroy also extended the separation logic with a “magic wand” operator. A paper on this
compiler verification project is under review.

7.1.4. Formal verification of static analyzers based on abstract interpretation
Participants: Jacques-Henri Jourdan, Xavier Leroy, Sandrine Blazy [team Celtique], David Pichardie
[team Celtique], Sylvain Boulmé [Grenoble INP, VERIMAG], Alexis Fouilhé [Université Joseph Fourier de
Grenoble, VERIMAG], Michaël Périn [Université Joseph Fourier de Grenoble, VERIMAG].

In the context of the Verasco ANR project, we are investigating the formal specification and verification in Coq
of a realistic static analyzer based on abstract interpretation. This static analyzer handles a large subset of the
C language (the same subset as the CompCert compiler, minus recursion and dynamic allocation); supports a
combination of abstract domains, including relational domains; and should produce usable alarms. The long-
term goal is to obtain a static analyzer that can be used to prove safety properties of real-world embedded C
code.

This year, Jacques-Henri Jourdan published in his PhD thesis [11] an in-depth description of the mode of
operation of the current version of the Verasco static analyzer. He also presented at the NSAD workshop [24]
the new algorithms used in Verasco for the abstract domain of Octagons that he developed in 2015.

7.1.5. Correct parsing of C using LR(1)
Participants: Jacques-Henri Jourdan, François Pottier.

The C programming language cannot be parsed directly using LR technology. Indeed, the grammar described
in the C standard exhibits ambiguities which are addressed in English prose. On the implementation side, it is
known from the folklore that one can in fact use an LALR(1) parser to parse C, provided one sets up a so-called
“lexer hack” to perform on-the-fly disambiguation of tokens, guided by the current state of the parser.

However, Jacques-Henri Jourdan and François Pottier found that a correct implementation of the “lexer hack”
is, surprisingly, difficult. To clarify this situation, they implemented a reference C11 parser using Menhir. They
invented new techniques that improve and simplify the “lexer hack”, so as to write correct yet reasonably
simple C11 parsers. They also created a test suite of C programs that exhibit particularly challenging corner
cases. This work is described in a paper that is currently under review.

7.1.6. A SPARK front-end for CompCert
Participants: Pierre Courtieu, Zhi Zang [Kansas University].

SPARK is a language, and a platform, dedicated to developing and verifying critical software. It is a subset of
the Ada language. It shares with Ada a strict typing discipline and gives strict guarantees in terms of safety.
SPARK goes one step further by disallowing certain “dangerous” features, that is, those that are too difficult
to statically analyze (aliasing, references, etc). Given its dedication to safety critical software, we think that
the SPARK platform can benefit from a certified compiler. We are working on adding a SPARK front-end to
the CompCert verified compiler.

Defining a semantics for SPARK in Coq is previous joint work with Zhi Zang. The current front-end is based on
this semantics. The compiler has been written and tested and the proofs of correctness are nearing completion.

7.2. Language design and type systems
7.2.1. Types with unique inhabitants for code inference

Participants: Gabriel Scherer [Northeastern University], Didier Rémy.

12 Activity Report INRIA 2016

Some programming language features (coercions, type-classes, implicits) rely on inferring a part of the code
that is determined by its usage context. In order to better understand the theoretical underpinnings of this
mechanism, we ask: when is it the case that there is a unique program that could have been guessed, or in
other words, that all possible guesses result in equivalent program fragments? Which types have a unique
inhabitant?

To approach the question of uniqueness, we build on work in proof theory on canonical representations of
proofs. Using the proofs-as-programs correspondence, we adapt the logical technique of focusing to obtain
canonical program representations.

In the setting of simply-typed lambda-calculus with sums, equipped with the strong βη-equivalence, we show
that uniqueness is decidable. We present a saturating focused logic that introduces irreducible cuts on positive
types “as soon as possible”. Goal-directed proof search in this logic gives an effective algorithm that returns
either zero, one or two distinct inhabitants for any given type.

This work, which was previously presented at a conference [56] and was the main part of Scherer’s PhD
dissertation [12], has been submitted for journal publication.

7.2.2. Refactoring with ornaments in ML
Participants: Thomas Williams, Didier Rémy.

Thomas Williams and Didier Rémy continued working on ornaments for program refactoring and program
transformation in ML. Ornaments have been introduced as a way to describe some changes in data type
definitions that preserve their recursive structure, reorganizing, adding, or dropping some pieces of data. After
a new data structure has been described as an ornament of an older one, some functions operating on the bare
structure can be partially or sometimes totally lifted into functions operating on the ornamented structure.

We have continued working on the decomposition of the algorithm in several steps. Using ornament inference,
we first elaborate an ML program into a generic program, which can be seen as a template for all possible
liftings of the original program. The generic program is defined in a superset of ML. It can then be
instantiated with specific ornaments, and simplified back into an ML program. We studied the semantics of this
intermediate language and used them to prove the correctness of the lifting, using logical relations techniques.
A paper describing this process was submitted to PLDI.

On the practical side, we updated our prototype implementation to match our theoretical presentation: we
create the generic program, then instantiate it. We then simplify the resulting term so that it remains readable
to the programmer, and output an ML program. In the case of refactoring (the representation of a data type is
modified without adding any data), the transformation is still fully automatic.

7.3. Shared-memory parallelism
7.3.1. Weak memory models

Participants: Luc Maranget, Jade Alglave [University College London–Microsoft Research, UK], Patrick
Cousot [New York University], Andrea Parri [Sant’Anna School of Advanced Studies, Pisa, Italy].

Modern multi-core and multi-processor computers do not follow the intuitive “Sequential Consistency” model
that would define a concurrent execution as the interleaving of the executions of its constituent threads and that
would command instantaneous writes to the shared memory. This situation is due both to in-core optimisations
such as speculative and out-of-order execution of instructions, and to the presence of sophisticated (and
cooperating) caching devices between processors and memory. Luc Maranget took part in an international
research effort to define the semantics of the computers of the multi-core era, and more generally of shared-
memory parallel devices or languages, with a clear focus on devices.

Project-Team GALLIUM 13

More precisely, in 2016, Luc Maranget pursued his collaboration with Jade Alglave and Patrick Cousot to
extend “Cats”, a domain-specific language for defining and executing weak memory models. Last year, a long
article that presents a precise semantics for “Cats” and a study and formalisation of the HSA memory model
was submitted. (The Heterogeneous System Architecture foundation is an industry standards body targeting
heterogeneous computing devices.) As this article was rejected, a new paper, focused on the “Cats” semantics,
was submitted this year, while the definition of the HSA memory model was made available on the web site
of the HSA foundation (http://www.hsafoundation.com/standards/).

This year, our team hosted Andrea Parri, a Ph.D. student (supervised by Mauro Marinoni at Sant’Anna School
of Advanced Studies, Pisa, Italy), for six months. Luc Maranget and Andrea Parri collaborated with Paul
McKenney (IBM), Alan Stern (Harvard University) and Jade Alglave on the definition of a memory model
for the Linux kernel. A preliminary version of this work was presented by Paul McKenney at the 2016 Linux
Conference Europe. While invited at the Dagstuhl seminar “Concurrency with Weak Memory Models...”, Luc
Maranget demonstrated the Diy toolsuite and the “Cats” language. It is worth noting that Cats models are
being used independently of us by other researchers, most notably by Yatin Manerkar and Caroline J. Trippel
(Princeton University) who discovered an anomaly in the published compilation scheme of the C11 language
down to the Power architecture.

Luc Maranget also co-authored a paper that will be presented at POPL 2017 [23]. This work describes
memory-model-aware “mixed-size” semantics for the ARMv8 architecture and for the C11 and Sequential
Consistency models. A mixed-size semantics accounts for the behaviour of systems that access memory at
different granularity levels (bytes, words, etc.) This is joint work with many researchers, including Shaked Flur
and other members of Peter Sewell’s team (University of Cambridge) as well as Mark Batty (University of
Kent).

7.3.2. Algorithms and data structures for parallel computing
Participants: Umut Acar, Vitalii Aksenov, Arthur Charguéraud, Adrien Guatto, Michael Rainey, Filip
Sieczkowski.

The ERC Deepsea project, with principal investigator Umut Acar, started in June 2013 and is hosted by the
Gallium team. This project aims at developing techniques for parallel and self-adjusting computation in the
context of shared-memory multiprocessors (i.e., multicore platforms). The project is continuing work that
began at Max Planck Institute for Software Systems between 2010 and 2013. As part of this project, we are
developing a C++ library, called PASL, for programming parallel computations at a high level of abstraction.
We use this library to evaluate new algorithms and data structures. We obtained four main results this year.

Our first result is a calculus for parallel computing on hardware shared-memory computers such as modern
multicores. Many languages for writing parallel programs have been developed. These languages offer several
distinct abstractions for parallelism, such as fork-join, async-finish, futures, etc. While they may seem similar,
these abstractions lead to different semantics, language design and implementation decisions. In this project,
we consider the question of whether it would be possible to unify these approaches to parallelism. To this end,
we propose a calculus, called the DAG-calculus, which can encode existing approaches to parallelism based
on fork-join, async-finish, and futures, and possibly others. We have shown that the approach is realistic by
presenting an implementation in C++ and by performing an empirical evaluation. This work was presented at
ICFP 2016 [18].

Our second result is a concurrent data structure that may be used to efficiently determine when a concurrently-
updated counter reaches the value zero. Our data structure extends an existing data structure called SNZI [44].
While the latter imposes a fixed number of threads, our structure is able to dynamically grow in response to
the increasing degree of concurrency in the system. We use our dynamic non-zero indicator data structure to
derive an efficient runtime representation of async/finish programs. The async/finish paradigm for expressing
parallelism is one that, in the past decade, has become a part of many research-language implementations (e.g.
X10) and is now gaining traction in a number of mainstream languages, most notably Java. The implementation
of async/finish is challenging because the finish-block mechanism permits, and even encourages, computations
in which a large number of threads are required to synchronize on shared barriers, and this number is not

http://www.hsafoundation.com/standards/

14 Activity Report INRIA 2016

statically known. We present an implementation of async/finish and prove that, in a model that takes contention
into account, the cost of synchronization of the async-ed threads is amortized constant time, regardless of the
number of threads. We also present experimental evaluation suggesting that the approach performs well in
practice. This work has been accepted for publication at PPoPP [17].

Our third result is an extended, polished presentation of our prior work on granularity control for parallel
algorithms using user-provided complexity functions. Granularity control denotes the problem of controlling
the size of parallel threads created in implicitly parallel programs. If small threads are executed in parallel,
the overheads due to thread creation can overwhelm the benefits of parallelism. If large threads are executed
sequentially, processors may spin idle. In our work, we show that, if we have an oracle able to approxi-
mately predict the execution time of every sub-task, then there exists a strategy that delivers provably good
performance. Moreover, we present empirical results showing that, for simple recursive divide-and-conquer
programs, we are able to implement such an oracle simply by requiring the user to annotate functions with
their asymptotic complexity. The idea is to estimate the constant factors that apply by conducting measures
at runtime. This work is described in depth in an article published in the Journal of Functional Programming
(JFP) [13].

Our fourth result is an extension of our aforementioned granularity control approach, with three major
additions. First, we have developed an algorithm that ensures convergence of the estimators associated with
the constant factors for all fork-join programs, and not just for a small class of programs. Second, we have
built a theoretical analysis establishing bounds for the overall overheads of the convergence phase. Third, we
have developed a C++ implementation accompanied with an extensive experimental study covering several
benchmarks from the Problem Based Benchmark Suite (PBBS), a collection of high-quality parallel algorithms
that delivers state-of-the-art performance. Even though our approach does not leverage a specific compiler and
does not require any magic constant to be hard-coded in the source programs, our code either matches or
exceeds the performance of the authors’ original, hand-tuned codes. An article describing this work is in
preparation.

7.4. The OCaml language and system
7.4.1. OCaml

Participants: Damien Doligez, Alain Frisch [Lexifi SAS], Jacques Garrigue [University of Nagoya],
Sébastien Hinderer, Fabrice Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane
Street], Leo White [Jane Street], Jeremy Yallop [OCaml Labs, Cambridge University].

This year, we released versions 4.03.0 and 4.04.0 of the OCaml system. These are major releases that introduce
a large number of new features. The most important features are:

• A new optimization subsystem called flambda, which does inlining and specialization of functions
as well as static allocation of some data structures, etc.

• ephemerons: a generalization of weak pointers that is better suited for memoization of mutually-
recursive functions.

• A fine-grained memory profiler to help programmers understand the allocation behavior of their
programs.

• unboxed types: a user-controlled optimized representation for some simple data types.

7.4.2. Infrastructure for OCaml
Participant: Sébastien Hinderer.

Sébastien Hinderer worked on improving the test infrastructure of the OCaml compiler. These tests aim at
verifying that the compiler works as expected. Currently, they are driven by a set of Makefiles which are hard
to maintain and extend and make it difficult to add new tests. Sébastien developed the ocamltest driver,
which parses test descriptions written in a domain-specific language and runs the appropriate tests.

Project-Team GALLIUM 15

Sébastien Hinderer also worked on merging the Makefiles used for building the compiler under Unix and
Windows. The existence of separate sets of Makefiles, which is the result of a long development history,
makes it especially hard to maintain and extend the compiler’s build system. Sébastien worked on eliminating
this redundancy, so that a single build system can be used on every platform. This is a prerequisite for using the
GNU autoconf tools and for building easy-to-use cross-compilers for OCaml. A cross-compiler is required,
for instance, to build iOS apps using OCaml.

7.4.3. Continuous integration of OCaml packages
Participant: Fabrice Le Fessant.

OPAM is a repository of OCaml source packages. It is now advertised as the official way of installing the
OCaml distribution. To maintain a high level of quality for the thousands of source packages distributed in
the repository, it is crucial to provide feedback to the developers on the impact of their modifications to the
repository, in real-time, despite the high churn and the cascading costs of package recompilations.

We have designed and prototyped a simple modular architecture for a service that monitors the OPAM
repository, and triggers recompilation of packages that are impacted by the latest modifications to the
repository, for all major and minor OCaml versions since 3.12.1. Previous attempts to design such a system
have failed to scale, although they targeted cloud systems of thousands of virtual machines. On the contrary,
the new prototype has been deployed on a single quadcore server, and has been able to follow the OPAM
repository for eight months, providing feedback in almost real-time. To achieve such a result, it uses many
optimizations and caching techniques, to make recompilations as incremental as possible [37].

7.4.4. Global analyses of OCaml programs
Participants: Thomas Blanc [ENSTA-ParisTech & OCamlPro], Pierre Chambart [OCamlPro], Vincent Lavi-
ron [OCamlPro], Fabrice Le Fessant, Michel Mauny.

Exception handling in OCaml can be used for managing and reporting errors, as well as to express complex
control flow constructs. As such, exceptions can be the source of errors, when, for instance, a function that
may raise an exception is called in a context where this exception cannot be handled. In such situations, the
program may fail unexpectedly, and the source of the error can be difficult to identify.

This work aims at performing global static analyses of OCaml programs using abstract interpretation tech-
niques, with a particular focus on the detection of uncaught exceptions. Starting from one of the OCaml
intermediate languages, we produce a hypergraph that represents the program to be analyzed. Each node of
this hypergraph is a program state and each edge is an operation. Operations that may or may not raise an
exception (such as function calls) have one or two successors. A fixpoint iteration is then performed on the
graph, where function application edges are dynamically replaced by the corresponding subgraphs. In essence,
environment information is propagated through the graph, adding at each node a superset of all possible values
of each variable, until no additional information can be found. A description of the framework was presented
at the 2015 OCaml workshop. We expect concrete results as well as Thomas Blanc’s thesis manuscript during
2017.

7.4.5. Type-checking the OCaml intermediate languages
Participants: Pierrick Couderc [ENSTA-ParisTech & OCamlPro], Grégoire Henry [OCamlPro], Fabrice
Le fessant, Michel Mauny.

This work aims at propagating type information through the intermediate languages used by the OCaml
compiler. We started by the design and implementation of a consistency checker of the type-annotated abstract
syntax trees (TASTs) produced by the OCaml compiler. It appears that, when presented as inference rules,
the different cases of this TAST checker can be read as the rules of the OCaml type system. Proving the
correctness of (part of) the checker would prove the soundness of the corresponding part of the OCaml type
system. A preliminary report on this work has been presented at the 17th Symposium on Trends in Functional
Programming (TFP 2016).

16 Activity Report INRIA 2016

7.4.6. Optimizing OCaml for satisfiability problems
Participants: Sylvain Conchon [LRI, Univ. Paris Sud], Albin Coquereau [ENSTA-ParisTech], Fabrice
Le fessant, Michel Mauny.

This work aims at improving the performance of the Alt-Ergo SMT solver, implemented in OCaml. For
safety reasons, the implementation of Alt-Ergo uses as much as possible a functional programming style
and persistent data structures, which are sometimes less efficient that the imperative style and mutable data
structures. We would like to first obtain a better understanding of the OCaml memory and cache behavior, so as
to understand where efficiency could be gained, and then design dedicated data structures (for instance, semi-
persistent data structures) and compare their efficiency to the current ones. This work is still at a preliminary
stage: we have selected benchmarks and profiled their execution in order to discover sources of inefficiency.

7.4.7. Type compatibility checking for dynamically loaded OCaml data
Participants: Florent Balestrieri [ENSTA-ParisTech], Michel Mauny.

The SecurOCaml project (FUI 18) aims at enhancing the OCaml language and environment in order to make
it more suitable for building secure applications, following recommendations published by the French ANSSI
in 2013. Michel Mauny and Florent Balistrieri (ENSTA-ParisTech) represent ENSTA-Paristech in this project
for the two-year period 2016-2017.

The goal of this first year was to design and produce an effective OCaml implementation that checks whether a
memory graph – typically the result obtained by un-marshalling some data – is compatible with a given OCaml
type, following the algorithm designed by Henry et al. in 2012. As the algorithm needs a runtime representation
of OCaml types, Florent Balestrieri implemented a library for generic programming in OCaml [21]. He also
implemented a type-checker which, when given a type and a memory graph, checks whether the former could
be the type of the latter. The algorithm handles sharing and polymorphism, but currently supports neither
functional values nor existential types.

7.4.8. Pattern matching
Participants: Luc Maranget, Gabriel Scherer [Northeastern University, Boston], Thomas Réfis [Jane Street
LLC].

A new pattern matching diagnostic message, which should help OCaml programmers to detect rare but vicious
programming errors, was integrated in the yearly release of the OCaml compiler, and was presented at the
OCaml Users and Developers Workshop [39].

7.4.9. Error diagnosis in Menhir parsers
Participant: François Pottier.

In 2015, François Pottier proposed a reachability algorithm for LR automata, which he implemented in the
Menhir parser generator. He applied this approach to the C grammar in the front-end of the CompCert
compiler, therefore allowing CompCert to produce better syntax error messages. This work has been presented
at the conferences JFLA 2016 [31] and CC 2016 [26].

7.5. Software specification and verification
7.5.1. Step-indexing in program logics

Participant: Filip Sieczkowski.

Filip Sieczkowski pursued a line of work focused on techniques for formal reasoning about programs, in
joint work with Lars Birkedal (Aarhus University) and Kasper Svendsen (Cambridge University). A modern
and successful approach to grounding programs logics is to rely on so-called step-indexed models. Filip and
his co-authors solved a problem that arises in most step-indexed models, due to a tight coupling between
the unfoldings of a recursive domain equation and evaluation steps. Their approach is based on the use of
transfinite step-indexing. This work appeared at ESOP 2016 [29].

Project-Team GALLIUM 17

7.5.2. TLA+
Participants: Damien Doligez, Leslie Lamport [Microsoft Research], Martin Riener [team VeriDis], Stephan
Merz [team VeriDis].

Damien Doligez is head of the “Tools for Proofs” team in the Microsoft-Inria Joint Centre. The aim of this
project is to extend the TLA+ language with a formal language for hierarchical proofs, formalizing Lamport’s
ideas [48], and to build tools for writing TLA+ specifications and mechanically checking the proofs.

Our rewrite of the TLAPS tools is almost done and we hope to do a first release in the first quarter of 2017.

7.5.3. Hash tables and iterators: a case study in program verification
Participant: François Pottier.

In the setting of the Vocal ANR project, François Pottier developed the the specification and proof of an
(imperative, sequential) hash table implementation, as found in the module Hashtbl of OCaml’s standard
library. This data structure supports the usual dictionary operations (insertion, lookup, and so on), as well as
iteration via folds and iterators. The code was verified using higher-order separation logic, embedded in Coq,
via Charguéraud’s CFML tool and library. This work was presented at CPP 2017 [27]. It can be viewed as a
case study that should help prepare the way for verifying other modules in the Vocal library.

7.5.4. Read-only permissions in separation logic
Participants: Arthur Charguéraud, François Pottier.

Separation Logic, as currently implemented in Charguéraud’s CFML tool and library, imposes a simple
ownership discipline on mutable heap-allocated data structures: a thread either has full read-write access to
a data structure, or has no access at all. This implies, for instance, that two threads cannot temporarily share
read-only access to a data structure. There exist more flexible disciplines in the literature, such as “fractional
permissions” and “share algebras”, but they are much more complex.

In the setting of the Vocal ANR project, Arthur Charguéraud and François Pottier noted that it would be
desirable to define an extension of Separation Logic that allows temporary shared read-only access, yet remains
very simple. They proposed a general mechanism for temporarily converting any assertion (or “permission”)
to a read-only form. The metatheory of this proposal has been verified in Coq. This work will be presented at
ESOP 2017 [42].

Charguéraud and Pottier believe that this mechanism should allow more concise specifications and proofs.
This remains to be confirmed, in future work, via an implementation in CFML and case studies in the Vocal
project.

7.5.5. Formal reasoning about asymptotic complexity
Participants: Armaël Guéneau, Arthur Charguéraud, François Pottier.

Armaël Guéneau started his Ph.D. at Gallium in September 2016, supervised by Arthur Charguéraud and
François Pottier. In the line of his previous M2 internship at Gallium, he continued his work on asymptotic
reasoning in Coq. The challenge is to give a formal definition of the well-known big-O notation, covering both
single-variable and multiple-variable scenarios, to establish its fundamental properties, and to define tactics
that make asymptotic reasoning as convenient in Coq as it seemingly is on paper. The ultimate goal is to apply
these techniques to machine-checked proofs of the asymptotic time complexity of programs.

7.5.6. Certified distributed algorithms for autonomous mobile robots
Participant: Pierre Courtieu.

The variety and complexity of the tasks that can be performed by autonomous robots are increasing. Many
applications envision groups of mobile robots that self-organise and cooperate toward the resolution of
common objectives, in the absence of any central coordinating authority.

18 Activity Report INRIA 2016

Pierre Courtieu is elaborating a verification platform, based on Coq, for distributed algorithms for autonomous
robots. (This is joint work with Xavier Urbain, Sebastien Tixeuil and Lionel Rieg.) As part of this effort, Pierre
Courtieu designed and verified a protocol for mobile robots that achieves the “gathering” task in all cases where
it has not been proved impossible [34], [35].

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. The Caml Consortium

Participants: Xavier Leroy [contact], Damien Doligez, Didier Rémy.

The Caml Consortium is a formal structure where industrial and academic users of OCaml can support the
development of the language and associated tools, express their specific needs, and contribute to the long-term
stability of Caml. Membership fees are used to fund specific developments targeted towards industrial users.
Members of the Consortium automatically benefit from very liberal licensing conditions on the OCaml system,
allowing for instance the OCaml compiler to be embedded within proprietary applications.

The Consortium currently has 14 member companies:

• Aesthetic Integration

• Ahrefs

• Bloomberg

• CEA

• Citrix

• Dassault Aviation

• Esterel Technologies

• Facebook

• Jane Street

• Kernelyze

• LexiFi

• Microsoft

• OCamlPro

• SimCorp

For a complete description of this structure, refer to http://caml.inria.fr/consortium/. Xavier Leroy chairs the
scientific committee of the Consortium.

8.1.2. Scientific Advisory for OCamlPro
Participant: Fabrice Le Fessant.

OCamlPro is a startup company founded in 2011 by Fabrice Le Fessant to promote the use of OCaml in the
industry, by providing support, services and tools for OCaml to software companies. OCamlPro performs a lot
of research and development, in close partnership with academic institutions such as IRILL, Inria and Univ.
Paris Sud, and is involved in several collaborative projects with Gallium, such as the Bware ANR, the Vocal
ANR and the Secur-OCaml FUI.

Since 2011, Fabrice Le Fessant is a scientific advisor at OCamlPro, as part of a collaboration contract for Inria,
to transfer his knowledge on the internals of the OCaml runtime and the OCaml compilers.

http://caml.inria.fr/consortium/

Project-Team GALLIUM 19

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR projects
9.1.1.1. BWare

Participants: Damien Doligez, Fabrice Le Fessant.

The “BWare” project (2012–2016) is coordinated by David Delahaye at Conservatoire National des Arts et
Métiers and funded by the Ingénierie Numérique et Sécurité programme of Agence Nationale de la Recherche.
BWare is an industrial research project that aims to provide a mechanized framework to support the automated
verification of proof obligations coming from the development of industrial applications using the B method
and requiring high guarantees of confidence.

9.1.1.2. Verasco
Participants: Jacques-Henri Jourdan, Xavier Leroy.

The “Verasco” project (2012–2016) is coordinated by Xavier Leroy and funded by the Ingéniérie Numérique et
Sécurité programme of Agence Nationale de la Recherche. The objective of this 4.5-year project is to develop
and formally verify a static analyzer based on abstract interpretation, and interface it with the CompCert C
verified compiler.

9.1.1.3. Vocal
Participants: Xavier Leroy, François Pottier.

The “Vocal” project (2015–2020) aims at developing the first mechanically verified library of efficient general-
purpose data structures and algorithms. It is funded by Agence Nationale de la Recherche under its “appel à
projets générique 2015”.

The library will be made available to all OCaml programmers and will be of particular interest to implementors
of safety-critical OCaml programs, such as Coq, Astrée, Frama-C, CompCert, Alt-Ergo, as well as new
projects. By offering verified program components, our work will provide the essential building blocks that
are needed to significantly decrease the cost of developing new formally verified programs.

9.1.2. FSN projects
9.1.2.1. ADN4SE

Participants: Damien Doligez, Martin Riener.

The “ADN4SE” project (2012–2016) is coordinated by the Sherpa Engineering company and funded by the
Briques Génériques du Logiciel Embarqué programme of Fonds national pour la Société Numérique. The
aim of this project is to develop a process and a set of tools to support the rapid development of embedded
software with strong safety constraints. Gallium is involved in this project to provide tools and help for the
formal verification in TLA+ of some important aspects of the PharOS real-time kernel, on which the whole
project is based.

9.1.3. FUI Projects
9.1.3.1. Secur-OCaml

Participants: Damien Doligez, Fabrice Le Fessant.

The “Secur-OCaml” project (2015–2018) is coordinated by the OCamlPro company, with a consortium
focusing on the use of OCaml in security-critical contexts, while OCaml is currently mostly used in safety-
critical contexts. Gallium is invoved in this project to integrate security features in the OCaml language, to
build a new independant interpreter for the language, and to update the recommendations for developers issued
by the former LaFoSec project of ANSSI.

20 Activity Report INRIA 2016

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. Deepsea

Participants: Umut Acar, Vitalii Aksenov, Arthur Charguéraud, Michael Rainey, Filip Sieczkowski.

The Deepsea project (2013–2018) is coordinated by Umut Acar and funded by FP7 as an ERC Starting Grant.
Its objective is to develop abstractions, algorithms and languages for parallelism and dynamic parallelism,
with applications to problems on large data sets.

9.2.2. ITEA3 Projects
9.2.2.1. Assume

Participants: Xavier Leroy, Luc Maranget.

ASSUME (2015–2018) is an ITEA3 project involving France, Germany, Netherlands, Turkey and Sweden.
The French participants are coordinated by Jean Souyris (Airbus) and include Airbus, Kalray, Sagem, ENS
Paris, and Inria Paris. The goal of the project is to investigate the usability of multicore and manycore
processors for critical embedded systems. Our involvement in this project focuses on the formalisation and
verification of memory models and of automatic code generators from reactive languages.

9.3. International Initiatives
9.3.1. Inria International Partners
9.3.1.1. Informal International Partners

• Princeton University: interactions between the CompCert verified C compiler and the Verified
Software Toolchain developed at Princeton.

• Cambridge University and Microsoft Research Cambridge: formal modeling and testing of weak
memory models.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. Member of the Organizing Committees

Michel Mauny is a member of the steering committee of the OCaml workshop.

Didier Rémy was a member of the steering committee of the OCaml workshop until September 2017. He is a
member of the steering committee of the ML Family workshop.

10.1.2. Scientific Events Selection
10.1.2.1. Member of the Conference Program Committees

Xavier Leroy was a member of the program committees of the Compiler Construction conference (CC 2016),
of the conference on Interactive Theorem Proving (ITP 2016), and on the external review committee of the
symposium on Principles of Programming Languages (POPL 2017).

François Pottier was a member of the program committees of the conferences Journées Francophones des
Langages Applicatifs (JFLA 2017) and Compiler Construction (CC 2017).

10.1.2.2. Reviewer

In 2016, the members of Gallium reviewed at least 30 conference submissions.

Project-Team GALLIUM 21

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

Xavier Leroy is area editor (programming languages) for the Journal of the ACM. He is on the editorial board
for the Research Highlights column of Communications of the ACM. He is a member of the editorial board of
the Journal of Automated Reasoning.

François Pottier is an editor for the Journal of Functional Programming.

10.1.4. Invited Talks
Xavier Leroy was an invited speaker at the ICALP conference (Rome, July 2016).

10.1.5. Research Administration
Xavier Leroy is délégué scientifique adjoint of Inria Paris and appointed member of Inria’s Commission
d’Évaluation. He participated in the following Inria hiring and promotion committees: jury d’admissibilité
DR2, promotions CR1, and promotions DR1.

Xavier Leroy was a member of the hiring committee for a professor position at Université de Lorraine.

Xavier Leroy was a member of the HCERES evaluation panel for the LORIA laboratory.

François Pottier is a member of the Commission de Développement Technologique and (as of January 2016)
chairs the Comité de Suivi Doctoral of Inria Paris.

Didier Rémy is Deputy Scientific Director (ADS) in change of Algorithmics, Programming, Software and
Architecture.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master: Xavier Leroy and Didier Rémy, “Functional programming languages”, 15+18h, M2 (MPRI),
Université Paris Diderot, France.

Master: Luc Maranget, “Semantics, languages and algorithms for multi-core programming”, 13.5h,
M2 (MPRI), Université Paris Diderot, France.

Master: “Principles of Programming Languages”, 32h, M1, ENSTA-ParisTech, France.

Licence: François Pottier, “Programmation avancée” (INF441), 20h, L3, École Polytechnique,
France.

Master: François Pottier, “Compilation” (INF564), 20h, M1, École Polytechnique, France.

Licence: Michael Rainey and Umut Acar, “Theory and practice of parallel computing” (part of a
longer course entitled 15-210, “Parallel and Sequential Data Structures and Algorithms”), 9h, L3,
Carnegie Mellon University, USA.

Michel Mauny has been a Professor at ENSTA-ParisTech from August 1st, 2005 to July 31st, 2016. While
at ENSTA-ParisTech, Michel Mauny was in charge of the specialization “Architecture and Security of
Information Systems” (MSc. 2nd year).

François Pottier has been a Professeur Chargé de Cours at École Polytechnique from September 1st, 2004 to
August 31st, 2016.

Didier Rémy is Inria’s delegate in the pedagogical team of the MPRI.

Fabrice Le Fessant has been involved in the second edition of the OCaml MOOC on the FUN platform, in
coordination with the OCamlPro team in charge of the development of the exercise platform [33].

22 Activity Report INRIA 2016

10.2.2. Supervision
M2 (Master Pro): Jacques-Pascal Deplaix, Epitech, supervised by François Pottier.
M2 (MPRI): Ambroise Lafont, École Polytechnique, supervised by Xavier Leroy.
PhD: Pierre Halmagrand, “Automated Deduction and Proof Certification for the B Method” [45],
Conservatoire National des Arts et Métiers, defended December 10, 2016, supervised by David
Delahaye, Damien Doligez and Olivier Hermant.
PhD: Jacques-Henri Jourdan, “Verasco: a formally verified C static analyzer” [11], Université Paris
Diderot, defended May 2016, supervised by Xavier Leroy.
PhD: Gabriel Scherer, “Which types have a unique inhabitant?” [12], Université Paris Diderot,
defended March 2016, supervised by Didier Rémy.
PhD in progress: Vitalii Aksenov, “Parallel Dynamic Algorithms”, Université Paris Diderot, since
September 2015, supervised by Umut Acar (co-advised with Anatoly Shalyto, ITMO University of
Saint Petersburg, Russia).
PhD in progress: Thomas Blanc (ENSTA-ParisTech & OCamlPro), “Analyses de programmes
complets, application à OCaml”, Université Paris-Saclay, since February 2014, supervised by Michel
Mauny and Pierre Chambart (OCamlPro).
PhD in progress: Pierrick Couderc (ENSTA-ParisTech & OCamlPro), “Typage modulaire du langage
intermédiaire du compilateur OCaml,” Université Paris-Saclay, since December 2014, supervised by
Michel Mauny, Grégoire Henry (OCamlPro) and Fabrice Le Fessant.
PhD in progress: Albin Coquereau (ENSTA-ParisTech), “Amélioration de performances pour le
solveur SMT Alt-Ergo: conception d’outils d’analyse, optimisations et structures de données ef-
ficaces pour OCaml,” Université Paris-Saclay, since October 2015, supervised by Michel Mauny,
Sylvain Conchon (LRI, Université Paris-Sud) and Fabrice Le Fessant.
PhD in progress: Armaël Guéneau, “Towards Machine-Checked Time Complexity Analyses”,
Université Paris Diderot, since September 2016, supervised by Arthur Charguéraud and François
Pottier.
PhD in progress: Thomas Williams, “Putting Ornaments into practice”, Université Paris Diderot,
since September 2014, supervised by Didier Rémy.

10.2.3. Juries
François Pottier was a reviewer for the Ph.D. thesis of Benoît Vaugon, Université Paris-Saclay, March 2016.
He was a reviewer for the Habilitation of Damien Pous, ENS Lyon, September 2016. He was a member of the
jury for the Ph.D. thesis of Léon Gondelman, Université Paris-Saclay, December 2016.

Xavier Leroy was on the Ph.D. committee of Pierre Wilke, Université Rennes 1, November 2016.

Didier Rémy was chair of the Ph.D. committee of Raphaël Cauderlier, Conservatoire National des Arts et
Métiers (CNAM), October 2016.

10.3. Popularization
Xavier Leroy gave a popularization talk on formal methods at the plenary days of Inria’s DGD-T (may 2016)
and another on critical avionics software for first-year students at École Polytechnique (june 2016).

11. Bibliography
Major publications by the team in recent years

[1] J. ALGLAVE, L. MARANGET, M. TAUTSCHNIG. Herding cats: modelling, simulation, testing, and data-mining
for weak memory, in "ACM Transactions on Programming Languages and Systems", 2014, vol. 36, no 2,
article no 7 p. , http://dx.doi.org/10.1145/2627752

http://dx.doi.org/10.1145/2627752

Project-Team GALLIUM 23

[2] K. CHAUDHURI, D. DOLIGEZ, L. LAMPORT, S. MERZ. Verifying Safety Properties With the TLA+ Proof
System, in "Automated Reasoning, 5th International Joint Conference, IJCAR 2010", Lecture Notes in
Computer Science, Springer, 2010, vol. 6173, pp. 142–148, http://dx.doi.org/10.1007/978-3-642-14203-1_12

[3] J. CRETIN, D. RÉMY. System F with Coercion Constraints, in "CSL-LICS 2014: Computer Science Logic /
Logic In Computer Science", ACM, 2014, article no 34 p. , http://dx.doi.org/10.1145/2603088.2603128

[4] J.-H. JOURDAN, V. LAPORTE, S. BLAZY, X. LEROY, D. PICHARDIE. A Formally-Verified C Static Analyzer,
in "POPL’15: 42nd ACM Symposium on Principles of Programming Languages", ACM Press, January 2015,
pp. 247-259, http://dx.doi.org/10.1145/2676726.2676966

[5] D. LE BOTLAN, D. RÉMY. Recasting MLF, in "Information and Computation", 2009, vol. 207, no 6, pp.
726–785, http://dx.doi.org/10.1016/j.ic.2008.12.006

[6] X. LEROY. A formally verified compiler back-end, in "Journal of Automated Reasoning", 2009, vol. 43, no 4,
pp. 363–446, http://dx.doi.org/10.1007/s10817-009-9155-4

[7] X. LEROY. Formal verification of a realistic compiler, in "Communications of the ACM", 2009, vol. 52, no 7,
pp. 107–115, http://doi.acm.org/10.1145/1538788.1538814

[8] F. POTTIER. Hiding local state in direct style: a higher-order anti-frame rule, in "Proceedings of the 23rd
Annual IEEE Symposium on Logic In Computer Science (LICS’08)", IEEE Computer Society Press, June
2008, pp. 331-340, http://dx.doi.org/10.1109/LICS.2008.16

[9] F. POTTIER, J. PROTZENKO. Programming with permissions in Mezzo, in "Proceedings of the 18th Interna-
tional Conference on Functional Programming (ICFP 2013)", ACM Press, 2013, pp. 173–184, http://dx.doi.
org/10.1145/2500365.2500598

[10] N. POUILLARD, F. POTTIER. A unified treatment of syntax with binders, in "Journal of Functional Program-
ming", 2012, vol. 22, no 4–5, pp. 614–704, http://dx.doi.org/10.1017/S0956796812000251

Publications of the year
Doctoral Dissertations and Habilitation Theses

[11] J.-H. JOURDAN. Verasco: a Formally Verified C Static Analyzer, Universite Paris Diderot-Paris VII, May
2016, https://hal.archives-ouvertes.fr/tel-01327023

[12] G. SCHERER. Which types have a unique inhabitant?: Focusing on pure program equivalence, Université
Paris-Diderot, March 2016, https://hal.inria.fr/tel-01309712

Articles in International Peer-Reviewed Journals

[13] U. A. ACAR, A. CHARGUÉRAUD, M. RAINEY. Oracle-Guided Scheduling for Controlling Granular-
ity in Implicitly Parallel Languages, in "Journal of Functional Programming", November 2016, vol. 26
[DOI : 10.1017/S0956796816000101], https://hal.inria.fr/hal-01409069

http://dx.doi.org/10.1007/978-3-642-14203-1_12
http://dx.doi.org/10.1145/2603088.2603128
http://dx.doi.org/10.1145/2676726.2676966
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://dx.doi.org/10.1007/s10817-009-9155-4
http://doi.acm.org/10.1145/1538788.1538814
http://dx.doi.org/10.1109/LICS.2008.16
http://dx.doi.org/10.1145/2500365.2500598
http://dx.doi.org/10.1145/2500365.2500598
http://dx.doi.org/10.1017/S0956796812000251
https://hal.archives-ouvertes.fr/tel-01327023
https://hal.inria.fr/tel-01309712
https://hal.inria.fr/hal-01409069

24 Activity Report INRIA 2016

[14] T. BALABONSKI, F. POTTIER, J. PROTZENKO. The Design and Formalization of Mezzo, a Permission-
Based Programming Language, in "ACM Transactions on Programming Languages and Systems (TOPLAS)",
August 2016, vol. 38, no 4, 94 p. [DOI : 10.1145/2837022], https://hal.inria.fr/hal-01246534

[15] M.-K. RIVIERE, J.-H. JOURDAN, S. ZOHAR. dfcomb: An R-package for phase I/II trials of drug
combinations, in "Computer Methods and Programs in Biomedicine", 2016, vol. 125, pp. 117–133
[DOI : 10.1016/J.CMPB.2015.10.018], http://hal.upmc.fr/hal-01297367

[16] M.-K. RIVIERE, Y. YUAN, J.-H. JOURDAN, F. DUBOIS, S. ZOHAR. Phase I/II dose-finding design for
molecularly targeted agent: Plateau determination using adaptive randomization, in "Statistical Methods in
Medical Research", March 2016 [DOI : 10.1177/0962280216631763], http://hal.upmc.fr/hal-01298681

International Conferences with Proceedings

[17] U. A. ACAR, N. BEN-DAVID, M. RAINEY. Contention in Structured Concurrency: Provably Ef-
ficient Dynamic Non-Zero Indicators for Nested Parallelism, in "22nd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming", Austin, United States, February 2017
[DOI : 10.1145/3018743.3018762], https://hal.inria.fr/hal-01416531

[18] U. A. ACAR, A. CHARGUÉRAUD, M. RAINEY, F. SIECZKOWSKI. Dag-calculus: a calculus for parallel com-
putation, in "Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming
(ICFP)", Nara, Japan, September 2016, pp. 18 - 32 [DOI : 10.1145/2951913.2951946], https://hal.inria.fr/
hal-01409022

[19] D. AHMAN, C. HRIŢCU, K. MAILLARD, G. MARTÍNEZ, G. PLOTKIN, J. PROTZENKO, A. RASTOGI, N.
SWAMY. Dijkstra Monads for Free, in "44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL)", Unknown, Unknown or Invalid Region, ACM, 2017, pp. 515-529, https://hal.archives-
ouvertes.fr/hal-01424794

[20] S. AZAIEZ, D. DOLIGEZ, M. LEMERRE, T. LIBAL, S. MERZ. Proving Determinacy of the PharOS Real-Time
Operating System, in "Abstract State Machines, Alloy, B, TLA, VDM, and Z - 5th International Conference,
ABZ 2016", Linz, Austria, M. J. BUTLER, K.-D. SCHEWE, A. MASHKOOR, M. BIRÓ (editors), LNCS -
Lecture Notes in Computer Science, Springer, May 2016, vol. 9675, pp. 70-85 [DOI : 10.1007/978-3-319-
33600-8_4], https://hal.inria.fr/hal-01322335

[21] F. BALESTRIERI, M. MAUNY. Generic Programming in OCaml, in "OCaml 2016 - The OCaml Users and
Developers Workshop", Nara, Japan, September 2016, https://hal.inria.fr/hal-01413061

[22] S. FLUR, K. E. GRAY, C. PULTE, S. SARKAR, A. SEZGIN, L. MARANGET, W. DEACON, P. SEWELL.
Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA, in "Principles of Programming Lan-
guages 2016 (POPL 2016)", Saint Petersburg, United States, January 2016, https://hal.inria.fr/hal-01244776

[23] S. FLUR, S. SARKAR, C. PULTE, K. NIENHUIS, L. MARANGET, K. E. GRAY, A. SEZGIN, M. BATTY, P.
SEWELL. Mixed-size Concurrency: ARM, POWER, C/C++11, and SC, in "44th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL 2017)", Paris, France, ACM, January 2017, https://hal.inria.
fr/hal-01413221

https://hal.inria.fr/hal-01246534
http://hal.upmc.fr/hal-01297367
http://hal.upmc.fr/hal-01298681
https://hal.inria.fr/hal-01416531
https://hal.inria.fr/hal-01409022
https://hal.inria.fr/hal-01409022
https://hal.archives-ouvertes.fr/hal-01424794
https://hal.archives-ouvertes.fr/hal-01424794
https://hal.inria.fr/hal-01322335
https://hal.inria.fr/hal-01413061
https://hal.inria.fr/hal-01244776
https://hal.inria.fr/hal-01413221
https://hal.inria.fr/hal-01413221

Project-Team GALLIUM 25

[24] J.-H. JOURDAN. Sparsity Preserving Algorithms for Octagons, in "NSAD 2016 - Numerical and symbolic
abstract domains workshop", Edinburgh, United Kingdom, I. MASTROENI (editor), Elsevier, September 2016,
14 p. , https://hal.inria.fr/hal-01406795

[25] D. KÄSTNER, X. LEROY, S. BLAZY, B. SCHOMMER, M. SCHMIDT, C. FERDINAND. Closing the Gap – The
Formally Verified Optimizing Compiler CompCert, in "SSS’17: Safety-critical Systems Symposium 2017",
Bristol, United Kingdom, Proceedings of the Twenty-fifth Safety-Critical Systems Symposium, February
2017, https://hal.inria.fr/hal-01399482

[26] F. POTTIER. Reachability and Error Diagnosis in LR(1) Parsers, in "CC 2016 - 25th International Conference
on Compiler Construction", Barcelone, Spain, Proceedings of the 25th International Conference on Compiler
Construction (CC 2016), March 2016, 11 p. [DOI : 10.1145/2892208.2892224], https://hal.inria.fr/hal-
01417004

[27] F. POTTIER. Verifying a Hash Table and Its Iterators in Higher-Order Separation Logic, in "Certified Programs
and Proofs", Paris, France, Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and
Proofs (CPP 2017), January 2017, https://hal.inria.fr/hal-01417102

[28] R. A. RAGHUNATHAN, S. A. MULLER, U. A. ACAR, G. A. BLELLOCH. Hierarchical Memory Management
for Parallel Programs, in "Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming", Nara, Japan, September 2016 [DOI : 10.1145/3022670.2951935], https://hal.inria.fr/hal-
01416237

[29] K. SVENDSEN, F. SIECZKOWSKI, L. BIRKEDAL. Transfinite Step-Indexing: Decoupling Concrete and Logi-
cal Steps, in "25th European Symposium on Programming Languages and Systems", Eindhoven, Netherlands,
December 2016, vol. 9632, pp. 727 - 751 [DOI : 10.1007/978-3-662-49498-1_28], https://hal.inria.fr/hal-
01408649

[30] B. VAUGON, M. MAUNY. A Type Inference System Based on Saturation of Subtyping Constraints, in "Trends
in Functional Programming", College Park (MD), United States, June 2016, https://hal.inria.fr/hal-01413043

National Conferences with Proceedings

[31] F. POTTIER. Reachability and error diagnosis in LR(1) automata, in "Journées Francophones des Langages
Applicatifs", Saint-Malo, France, January 2016, https://hal.inria.fr/hal-01248101

Conferences without Proceedings

[32] Ç. BOZMAN, T. HUFFSCHMITT, M. LAPORTE, F. LE FESSANT. ocp-lint, A Plugin-based Style-Checker
with Semantic Patches, in "OCaml Users and Developers Workshop 2016", Nara, Japan, September 2016,
https://hal.inria.fr/hal-01352013

[33] B. CANOU, G. HENRY, Ç. BOZMAN, F. LE FESSANT. Learn OCaml, An Online Learning Center for OCaml,
in "OCaml Users and Developers Workshop 2016", Nara, Japan, September 2016, https://hal.inria.fr/hal-
01352015

[34] P. COURTIEU, L. RIEG, S. TIXEUIL, X. URBAIN. A Certified Universal Gathering Algorithm for Oblivious
Mobile Robots, in "Distributed Computing (DISC)", Paris, France, September 2016, http://hal.upmc.fr/hal-
01349061

https://hal.inria.fr/hal-01406795
https://hal.inria.fr/hal-01399482
https://hal.inria.fr/hal-01417004
https://hal.inria.fr/hal-01417004
https://hal.inria.fr/hal-01417102
https://hal.inria.fr/hal-01416237
https://hal.inria.fr/hal-01416237
https://hal.inria.fr/hal-01408649
https://hal.inria.fr/hal-01408649
https://hal.inria.fr/hal-01413043
https://hal.inria.fr/hal-01248101
https://hal.inria.fr/hal-01352013
https://hal.inria.fr/hal-01352015
https://hal.inria.fr/hal-01352015
http://hal.upmc.fr/hal-01349061
http://hal.upmc.fr/hal-01349061

26 Activity Report INRIA 2016

[35] P. COURTIEU, L. RIEG, S. TIXEUIL, X. URBAIN. Certified Universal Gathering in R2 for Oblivious Mobile
Robots, in "ACM Conference on Principles of Distributed Computing (PODC)", Chicago, United States,
ACM, July 2016, http://hal.upmc.fr/hal-01349084

[36] J.-H. JOURDAN. Statistically profiling memory in OCaml, in "OCaml 2016", Nara, Japan, September 2016,
https://hal.inria.fr/hal-01406809

[37] F. LE FESSANT. OPAM-builder: Continuous Monitoring of OPAM Repositories, in "OCaml Users and
Developers Workshop 2016", Nara, Japan, September 2016, https://hal.inria.fr/hal-01352008

[38] X. LEROY, S. BLAZY, D. KÄSTNER, B. SCHOMMER, M. PISTER, C. FERDINAND. CompCert - A Formally
Verified Optimizing Compiler, in "ERTS 2016: Embedded Real Time Software and Systems, 8th European
Congress", Toulouse, France, SEE, January 2016, https://hal.inria.fr/hal-01238879

[39] G. SCHERER, L. MARANGET, T. RÉFIS. Ambiguous pattern variables, in "OCaml 2016: The OCaml Users
and Developers Workshop", Nara, Japan, September 2016, 2 p. , https://hal.inria.fr/hal-01413241

Research Reports

[40] X. LEROY, D. DOLIGEZ, A. FRISCH, J. GARRIGUE, D. RÉMY, J. VOUILLON. The OCaml system release
4.04: Documentation and user’s manual, Inria, November 2016, https://hal.inria.fr/hal-00930213

[41] X. LEROY. The CompCert C verified compiler: Documentation and user’s manual: Version 2.7, Inria, June
2016, https://hal.inria.fr/hal-01091802

Other Publications

[42] A. CHARGUÉRAUD, F. POTTIER. Temporary Read-Only Permissions for Separation Logic, October 2016,
working paper or preprint, https://hal.inria.fr/hal-01408657

References in notes

[43] V. BENZAKEN, G. CASTAGNA, A. FRISCH. CDuce: an XML-centric general-purpose language, in "Proceed-
ings of the Eighth ACM SIGPLAN International Conference on Functional Programming", C. RUNCIMAN,
O. SHIVERS (editors), ACM, 2003, pp. 51–63, https://www.lri.fr/~benzaken/papers/icfp03.ps

[44] F. ELLEN, Y. LEV, V. LUCHANGCO, M. MOIR. SNZI: Scalable NonZero Indicators, in "Proceedings of the
Twenty-sixth Annual ACM Symposium on Principles of Distributed Computing", 2007, pp. 13–22, http://dl.
acm.org/citation.cfm?id=1281106

[45] P. HALMAGRAND. Automated Deduction and Proof Certification for the B Method, Conservatoire National
des Arts et Métiers, December 2016

[46] H. HOSOYA, B. C. PIERCE. XDuce: A Statically Typed XML Processing Language, in "ACM Transactions on
Internet Technology", 2003, vol. 3, no 2, pp. 117–148, http://doi.acm.org/10.1145/767193.767195

[47] J. KANG, Y. KIM, C. HUR, D. DREYER, V. VAFEIADIS. Lightweight verification of separate compilation,
in "Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages", 2016, pp. 178–190, http://doi.acm.org/10.1145/2837614.2837642

http://hal.upmc.fr/hal-01349084
https://hal.inria.fr/hal-01406809
https://hal.inria.fr/hal-01352008
https://hal.inria.fr/hal-01238879
https://hal.inria.fr/hal-01413241
https://hal.inria.fr/hal-00930213
https://hal.inria.fr/hal-01091802
https://hal.inria.fr/hal-01408657
https://www.lri.fr/~benzaken/papers/icfp03.ps
http://dl.acm.org/citation.cfm?id=1281106
http://dl.acm.org/citation.cfm?id=1281106
http://doi.acm.org/10.1145/767193.767195
http://doi.acm.org/10.1145/2837614.2837642

Project-Team GALLIUM 27

[48] L. LAMPORT. How to write a 21st century proof, in "Journal of Fixed Point Theory and Applications", 2012,
vol. 11, pp. 43–63, http://dx.doi.org/10.1007/s11784-012-0071-6

[49] X. LEROY, D. DOLIGEZ, J. GARRIGUE, D. RÉMY, J. VOUILLON. The Objective Caml system, documenta-
tion and user’s manual – release 4.02, Inria, August 2014, http://caml.inria.fr/pub/docs/manual-ocaml-4.02/

[50] X. LEROY. Java bytecode verification: algorithms and formalizations, in "Journal of Automated Reasoning",
2003, vol. 30, no 3–4, pp. 235–269, http://dx.doi.org/10.1023/A:1025055424017

[51] X. LEROY. Formal certification of a compiler back-end, or: programming a compiler with a proof assistant,
in "33rd ACM symposium on Principles of Programming Languages", ACM Press, 2006, pp. 42–54, http://
doi.acm.org/10.1145/1111037.1111042

[52] B. C. PIERCE. Types and Programming Languages, MIT Press, 2002

[53] F. POTTIER. Simplifying subtyping constraints: a theory, in "Information and Computation", 2001, vol. 170,
no 2, pp. 153–183, http://gallium.inria.fr/~fpottier/publis/fpottier-ic01.ps.gz

[54] F. POTTIER, V. SIMONET. Information Flow Inference for ML, in "ACM Transactions on Programming
Languages and Systems", January 2003, vol. 25, no 1, pp. 117–158, http://dx.doi.org/10.1145/596980.596983

[55] D. RÉMY, J. VOUILLON. Objective ML: A simple object-oriented extension to ML, in "24th ACM Conference
on Principles of Programming Languages", ACM Press, 1997, pp. 40–53, http://gallium.inria.fr/~remy/ftp/
objective-ml!popl97.pdf

[56] G. SCHERER, D. RÉMY. Which simple types have a unique inhabitant?, in "ICFP’15: 20th International Con-
ference on Functional Programming", ACM Press, 2015, pp. 243–255, http://dx.doi.org/10.1145/2784731.
2784757

http://dx.doi.org/10.1007/s11784-012-0071-6
http://caml.inria.fr/pub/docs/manual-ocaml-4.02/
http://dx.doi.org/10.1023/A:1025055424017
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://gallium.inria.fr/~fpottier/publis/fpottier-ic01.ps.gz
http://dx.doi.org/10.1145/596980.596983
http://gallium.inria.fr/~remy/ftp/objective-ml!popl97.pdf
http://gallium.inria.fr/~remy/ftp/objective-ml!popl97.pdf
http://dx.doi.org/10.1145/2784731.2784757
http://dx.doi.org/10.1145/2784731.2784757

