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2. Overall Objectives

2.1. Presentation

Algorithmic number theory dates back to the dawn of mathematics itself, ¢f. Eratosthenes’s sieve to enumerate
consecutive prime numbers. With the arrival of computers, previously unsolvable problems have come into
reach, which has boosted the development of more or less practical algorithms for essentially all number
theoretic problems. The field is now mature enough for a more computer science driven approach, taking into
account the theoretical complexities and practical running times of the algorithms.

Concerning the lower level multiprecision arithmetic, folklore has asserted for a long time that asymptotically
fast algorithms such as SchA{nhage—Strassen multiplication are impractical; nowadays, however, they are used
routinely. On a higher level, symbolic computation provides numerous asymptotically fast algorithms (such as
for the simultaneous evaluation of a polynomial in many arguments or linear algebra on sparse matrices),
which have only partially been exploited in computational number theory. Moreover, precise complexity
analyses do not always exist, nor do sound studies to choose between different algorithms (an exponential
algorithm may be preferable to a polynomial one for a large range of inputs); folklore cannot be trusted in a
fast moving area such as computer science.

Another problem is the reliability of the computations; many number theoretic algorithms err with a small
probability, depend on unknown constants or rely on a Riemann hypothesis. The correctness of their output
can either be ensured by a special design of the algorithm itself (slowing it down) or by an a posteriori
verification. Ideally, the algorithm outputs a certificate, providing an independent fast correctness proof. An
example is integer factorisation, where factors are hard to obtain but trivial to check; primality proofs have
initiated sophisticated generalisations.

One of the long term goals of the LFANT project team is to make an inventory of the major number theoretic
algorithms, with an emphasis on algebraic number theory and arithmetic geometry, and to carry out complexity
analyses. So far, most of these algorithms have been designed and tested over number fields of small degree
and scale badly. A complexity analysis should naturally lead to improvements by identifying bottlenecks,
systematically redesigning and incorporating modern asymptotically fast methods.

Reliability of the developed algorithms is a second long term goal of our project team. Short of proving the
Riemann hypothesis, this could be achieved through the design of specialised, slower algorithms not relying
on any unproven assumptions. We would prefer, however, to augment the fastest unproven algorithms with the
creation of independently verifiable certificates. Ideally, it should not take longer to check the certificate than
to generate it.

All theoretical results are complemented by concrete reference implementations in PARI/GP, which allow to
determine and tune the thresholds where the asymptotic complexity kicks in and help to evaluate practical
performances on problem instances provided by the research community. Another important source for
algorithmic problems treated by the LFANT project team is modern cryptology. Indeed, the security of all
practically relevant public key cryptosystems relies on the difficulty of some number theoretic problem; on the
other hand, implementing the systems and finding secure parameters require efficient algorithmic solutions to
number theoretic problems.

3. Research Program

3.1. Number fields, class groups and other invariants

Participants: Bill Allombert, Karim Belabas, Cyril Bouvier, Jean-Paul Cerri, Iuliana Ciocanea-Teodorescu,
Henri Cohen, Jean-Marc Couveignes, Andreas Enge, Fredrik Johansson, Pinar Kiliger.
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Modern number theory has been introduced in the second half of the 19th century by Dedekind, Kummer,
Kronecker, Weber and others, motivated by Fermat’s conjecture: There is no non-trivial solution in integers
to the equation ™ + y" = 2" for n > 3. For recent textbooks, see [5]. Kummer’s idea for solving Fermat’s
problem was to rewrite the equation as (x + y)(z + Cy)(x + (2y) - -+ (z + (" 'y) = 2" for a primitive n-th
root of unity ¢, which seems to imply that each factor on the left hand side is an n-th power, from which a
contradiction can be derived.

The solution requires to augment the integers by algebraic numbers, that are roots of polynomials in Z[X].

For instance, ¢ is a root of X™ — 1, /2 is a root of X3 — 2 and ? is a root of 25X2 — 3. A number field
consists of the rationals to which have been added finitely many algebraic numbers together with their sums,
differences, products and quotients. It turns out that actually one generator suffices, and any number field K
is isomorphic to Q[X]/(f(X)), where f(X) is the minimal polynomial of the generator. Of special interest
are algebraic integers, “numbers without denominators”, that are roots of a monic polynomial. For instance,
¢ and /2 are integers, while @ is not. The ring of integers of K is denoted by Of; it plays the same role in
K as Zin Q.

Unfortunately, elements in Ox may factor in different ways, which invalidates Kummer’s argumentation.
Unique factorisation may be recovered by switching to ideals, subsets of O that are closed under addition
and under multiplication by elements of O . In Z, for instance, any ideal is principal, that is, generated by
one element, so that ideals and numbers are essentially the same. In particular, the unique factorisation of
ideals then implies the unique factorisation of numbers. In general, this is not the case, and the class group
Clk of ideals of O g modulo principal ideals and its class number hx = | Clk | measure how far O is from
behaving like Z.

Using ideals introduces the additional difficulty of having to deal with units, the invertible elements of O
Even when h i = 1, a factorisation of ideals does not immediately yield a factorisation of numbers, since ideal
generators are only defined up to units. For instance, the ideal factorisation (6) = (2) - (3) corresponds to the
two factorisations 6 = 2 - 3 and 6 = (—2) - (—3). While in Z, the only units are 1 and —1, the unit structure
in general is that of a finitely generated Z-module, whose generators are the fundamental units. The regulator
Ry measures the “size” of the fundamental units as the volume of an associated lattice.

One of the main concerns of algorithmic algebraic number theory is to explicitly compute these invariants
(Clg and hg, fundamental units and R ), as well as to provide the data allowing to efficiently compute with
numbers and ideals of O g ; see [28] for a recent account.

The analytic class number formula links the invariants hx and Ry (unfortunately, only their product) to the (-
function of K, Ck (s) := [, prime ideal of 0, (1 =N p‘s)_l, which is meaningful when 93(s) > 1, but which
may be extended to arbitrary complex s # 1. Introducing characters on the class group yields a generalisation
of (- to L-functions. The generalised Riemann hypothesis (GRH), which remains unproved even over the
rationals, states that any such L-function does not vanish in the right half-plane 2R(s) > 1/2. The validity of
the GRH has a dramatic impact on the performance of number theoretic algorithms. For instance, under GRH,
the class group admits a system of generators of polynomial size; without GRH, only exponential bounds are
known. Consequently, an algorithm to compute Clg via generators and relations (currently the only viable
practical approach) either has to assume that GRH is true or immediately becomes exponential.

When h g = 1 the number field K may be norm-Euclidean, endowing O i with a Euclidean division algorithm.
This question leads to the notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper part of this spectrum, yielding
for instance generalised Euclidean gcd algorithms.

3.2. Function fields, algebraic curves and cryptology

Participants: Karim Belabas, Guilhem Castagnos, Jean-Marc Couveignes, Andreas Enge, Enea Milio,
Damien Robert, Emmanouil Tzortzakis.
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Algebraic curves over finite fields are used to build the currently most competitive public key cryptosystems.
Such a curve is given by a bivariate equation C(X,Y) =0 with coefficients in a finite field F,. The
main classes of curves that are interesting from a cryptographic perspective are elliptic curves of equation
€ =Y? — (X34 aX + b) and hyperelliptic curves of equation € = Y2 — (X29+1 4 ...) with g > 2.

The cryptosystem is implemented in an associated finite abelian group, the Jacobian Jace. Using the language
of function fields exhibits a close analogy to the number fields discussed in the previous section. Let F,(X)
(the analogue of Q) be the rational function field with subring F,[X] (which is principal just as Z). The
function field of C is Ke = F,(X)[Y]/(C); it contains the coordinate ring Oc = F,[X,Y]/(C). Definitions
and properties carry over from the number field case K/Q to the function field extension Ke/F,(X).
The Jacobian Jace is the divisor class group of K¢, which is an extension of (and for the curves used in
cryptography usually equals) the ideal class group of Oe.

The size of the Jacobian group, the main security parameter of the cryptosystem, is given by an L-
function. The GRH for function fields, which has been proved by Weil, yields the Hasse—Weil bound
(Va— 1)% < |Jace | < (Va+ 1), or | Jace | ~q“, where the genus g is an invariant of the curve that cor-
relates with the degree of its equation. For instance, the genus of an elliptic curve is 1, that of a hyperelliptic

degy C—1
2

one is . An important algorithmic question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the discrete logarithm problem (DLP) be difficult
in the underlying group; that is, given elements Dy and Dy = x D1 of Jace, it must be difficult to determine x.
Computing x corresponds in fact to computing Jace explicitly with an isomorphism to an abstract product of
finite cyclic groups; in this sense, the DLP amounts to computing the class group in the function field setting.

For any integer n, the Weil pairing e,, on € is a function that takes as input two elements of order n of Jace
and maps them into the multiplicative group of a finite field extension F « with & = k(n) depending on n. It
is bilinear in both its arguments, which allows to transport the DLP from a curve into a finite field, where it is
potentially easier to solve. The Tate-Lichtenbaum pairing, that is more difficult to define, but more efficient to
implement, has similar properties. From a constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k& usually becomes so big that the result of a pairing cannot even be output
any more. One of the major algorithmic problems related to pairings is thus the construction of curves with a
given, smallish %.

3.3. Complex multiplication

Participants: Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge, Fredrik Johansson, Chlog
Martindale, Enea Milio, Damien Robert.

Complex multiplication provides a link between number fields and algebraic curves; for a concise introduction
in the elliptic curve case, see [30], for more background material, [29]. In fact, for most curves C over a finite
field, the endomorphism ring of Jace, which determines its L-function and thus its cardinality, is an order in
a special kind of number field K, called CM field. The CM field of an elliptic curve is an imaginary-quadratic
field Q(v/D) with D < 0, that of a hyperelliptic curve of genus g is an imaginary-quadratic extension of a
totally real number field of degree g. Deuring’s lifting theorem ensures that € is the reduction modulo some
prime of a curve with the same endomorphism ring, but defined over the Hilbert class field H i of K.

Algebraically, H is defined as the maximal unramified abelian extension of K; the Galois group of H /K
is then precisely the class group Clg. A number field extension H/K is called Galois if H ~ K[X]/(f) and
H contains all complex roots of f. For instance, @(\/?) is Galois since it contains not only \/2, but also the
second root —/2 of X2 — 2, whereas Q(+/2) is not Galois, since it does not contain the root €27"/3</2 of
X3 — 2. The Galois group Galy /K 18 the group of automorphisms of H that fix K’; it permutes the roots of f.
Finally, an abelian extension is a Galois extension with abelian Galois group.
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Analytically, in the elliptic case Hx may be obtained by adjoining to K the singular value j(7) for a
complex valued, so-called modular function j in some 7 € O g ; the correspondence between Gal i /i and Clg
allows to obtain the different roots of the minimal polynomial f of j(7) and finally f itself. A similar, more
involved construction can be used for hyperelliptic curves. This direct application of complex multiplication
yields algebraic curves whose L-functions are known beforehand; in particular, it is the only possible way of
obtaining ordinary curves for pairing-based cryptosystems.

The same theory can be used to develop algorithms that, given an arbitrary curve over a finite field, compute
its L-function.

A generalisation is provided by ray class fields; these are still abelian, but allow for some well-controlled
ramification. The tools for explicitly constructing such class fields are similar to those used for Hilbert class
fields.

4. Highlights of the Year

4.1. Highlights of the Year

Release of Pari 2.9 after two years of development. This stable releases includes three brand new modules (L-
functions, Associative and Central Simple Algebras, and Modular Symbols), a major overhaul of the Elliptic
Curves and Number Fields modules.

Tuliana Ciocanea-Teodorescu has defended her PhD thesis on Algorithms for finite rings in June 2016 http://
www.theses.fr/2016BORDO0121.

Pinar Kilicer has defended her PhD thesis on The class number one problem for genus-2 curves in July 2016

[11].
5. New Software and Platforms

5.1. APIP

Another Pairing Implementation in PARI
SCIENTIFIC DESCRIPTION

Apip , Another Pairing Implementation in PARI, is a library for computing standard and optimised variants of
most cryptographic pairings.

The following pairings are available: Weil, Tate, ate and twisted ate, optimised versions (a la Ver-
cauteren—Hess) of ate and twisted ate for selected curve families.

The following methods to compute the Miller part are implemented: standard Miller double-and-add method,
standard Miller using a non-adjacent form, Boxall et al. version, Boxall et al. version using a non-adjacent
form.

The final exponentiation part can be computed using one of the following variants: naive exponentiation,
interleaved method, Avanzi—Mihailescu’s method, Kato et al.’s method, Scott et al.’s method.

Part of the library has been included into Pari/Gp proper.
FUNCTIONAL DESCRIPTION

APIP is a library for computing standard and optimised variants of most cryptographic pairings.
e Participant: Jérdme Milan
e Contact: Jérdbme Milan

e URL: http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml


http://www.theses.fr/2016BORD0121
http://www.theses.fr/2016BORD0121
http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml
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5.2. Arb

FUNCTIONAL DESCRIPTION

Arb is a C library for arbitrary-precision floating-point ball arithmetic. It supports real and complex numbers,
polynomials, power series, matrices, and evaluation of many transcendental functions. All is done with
automatic, rigorous error bounds. It has been accepted for inclusion in SageMath.

e Participant: Fredrik Johansson
e Contact: Fredrik Johansson
e  URL: http://fredrikj.net/arb/

5.3. AVIsogenies
Abelian Varieties and Isogenies
FUNCTIONAL DESCRIPTION

AVIsogenies is a Magma package for working with abelian varieties, with a particular emphasis on explicit
isogeny computation.

Its prominent feature is the computation of (1,1)-isogenies between Jacobian varieties of genus-two hyperellip-
tic curves over finite fields of characteristic coprime to 1, practical runs have used values of 1 in the hundreds.

It can also be used to compute endomorphism rings of abelian surfaces, and find complete addition laws on
them.

e Participants: Gaétan Bisson, Romain Cosset and Damien Robert
e Contact: Damien Robert
e  URL: http://avisogenies.gforge.inria.fr/

5.4.CM

FUNCTIONAL DESCRIPTION

The Cm software implements the construction of ring class fields of imaginary quadratic number fields and of
elliptic curves with complex multiplication via floating point approximations. It consists of libraries that can
be called from within a C program and of executable command line applications.

e Participant: Andreas Enge
e Contact: Andreas Enge

e URL: http://www.multiprecision.org/index.php ?prog=cmé&page=home

5.5. CMH

Computation of Igusa Class Polynomials
KEYWORDS: Mathematics - Cryptography - Number theory
FUNCTIONAL DESCRIPTION

Cmh computes Igusa class polynomials, parameterising two-dimensional abelian varieties (or, equivalently,
Jacobians of hyperelliptic curves of genus 2) with given complex multiplication.

e Participants: Emmanuel Thomé, Andreas Enge and Regis Dupont
e Contact: Emmanuel Thomé
e URL: http://cmh.gforge.inria.fr

5.6. CUBIC

FUNCTIONAL DESCRIPTION


http://fredrikj.net/arb/
http://avisogenies.gforge.inria.fr/
http://www.multiprecision.org/index.php?prog=cm&page=home
http://cmh.gforge.inria.fr
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Cubic is a stand-alone program that prints out generating equations for cubic fields of either signature and
bounded discriminant. It depends on the Pari library. The algorithm has quasi-linear time complexity in the
size of the output.

e Participant: Karim Belabas
o Contact: Karim Belabas
e URL: http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.3.tgz

5.7. Euclid

FUNCTIONAL DESCRIPTION

Euclid is a program to compute the Euclidean minimum of a number field. It is the practical implementation of
the algorithm described in [38] . Some corresponding tables built with the algorithm are also available. Euclid
is a stand-alone program depending on the PARI library.

e Participants: Pierre Lezowski and Jean-Paul Cerri
e Contact: Pierre Lezowski
e URL: http://www.math.u-bordeaux 1.fr/~plezowsk/euclid/index.php

5.8. FLINT

FUNCTIONAL DESCRIPTION FLINT is a C library for number theory and basic computer algebra, maintained
by William Hart with code by William Hart, Sebastian Pancratz, Andy Novocin, Fredrik Johansson, Tom
Bachmann, Mike Hansen, Martin Lee, David Harvey, and a large number of other authors.

FLINT is used as a back end library for polynomial arithmetic and number theory functionality in a large
number of applications, including SageMath and Singular.

e Participant: Fredrik Johansson

e Contact: William Hart

e URL: http://flintlib.org/

5.9. GNU MPC

FUNCTIONAL DESCRIPTION

Mpc is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding
of the result. It is built upon and follows the same principles as Mpfr. The library is written by Andreas Enge,
Philippe Théveny and Paul Zimmermann.

e Participants: Andreas Enge, Paul Zimmermann, Philippe Theveny and Mickaél Gastineau
e Contact: Andreas Enge
e URL: http://www.multiprecision.org/

5.10. KleinianGroups

FUNCTIONAL DESCRIPTION

KleinianGroups is a Magma package that computes fundamental domains of arithmetic Kleinian groups.
e  Participant: Aurel Page
e Contact: Aurel Page
e URL: http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html

5.11. mpmath

FUNCTIONAL DESCRIPTION mpmath is a Python library for real and complex floating-point arithmetic with
arbitrary precision. It has been developed by Fredrik Johansson since 2007, with help from many contributors.


http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.3.tgz
http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php
http://flintlib.org/
http://www.multiprecision.org/
http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html
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As a dependency of the SymPy computer algebra system as well as SageMath, mpmath is a core component
of the Python scientific software ecosystem.

e Participant: Fredrik Johansson

e Contact: Fredrik Johansson

e URL: http://mpmath.org/

5.12. MPFRCX

FUNCTIONAL DESCRIPTION

Mpfrcx is a library for the arithmetic of univariate polynomials over arbitrary precision real (Mpfr ) or complex
(Mpc ) numbers, without control on the rounding. For the time being, only the few functions needed to
implement the floating point approach to complex multiplication are implemented. On the other hand, these
comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

e Participant: Andreas Enge

e Contact: Andreas Enge

e URL: http://www.multiprecision.org/index.php?prog=mpfrcx

5.13. Nemo

FUNCTIONAL DESCRIPTION Nemo is a computer algebra package for the Julia programming language
maintained by William Hart with code by William Hart, Tommy Hofmann, Claus Fieker, Fredrik Johansson,
Oleksandr Motsak).

The features of Nemo include multiprecision integers and rationals, integers modulo n, p-adic numbers, finite
fields (prime and non-prime order), number field arithmetic, maximal orders of number fields, arithmetic
of ideals in maximal orders, arbitrary precision real and complex balls, generic polynomials, power series,
fraction fields, residue rings and matrices.

e  Participant: Fredrik Johansson

e Contact: William Hart

e  URL: http://nemocas.org/

5.14. PARI/GP

FUNCTIONAL DESCRIPTION

Pari/Gp is a widely used computer algebra system designed for fast computations in number theory (factorisa-
tion, algebraic number theory, elliptic curves, ...), but it also contains a large number of other useful functions
to compute with mathematical entities such as matrices, polynomials, power series, algebraic numbers, etc.,
and many transcendental functions.

e Participants: Karim Belabas, Bill Allombert, Henri Cohen and Andreas Enge

e Contact: Karim Belabas

e URL: http://pari.math.u-bordeaux.fr/

6. New Results

6.1. Class invariants in genus 2

Abelian surfaces, or equivalently, Jacobian varieties of genus 2 hyperelliptic curves, offer the same security as
elliptic curves in a cryptographic setting and often better efficiency, and could thus be an attractive alternative.
The theory of complex multiplication can be used to obtain cryptographically secure curves. Relying on
Shimura reciprocity for Siegel modular forms, we have developed the necessary mathematical theory in [24].
It requires deeper algebraic reasoning than for elliptic curves: Ideals of the endomorphism rings of the abelian
varieties are no more two-dimensional modules over the integers, but two-dimensional projective modules
over quadratic number rings. We succeed in proving results adapted from the elliptic curve case by suitably
normalising quadratic forms over number rings and using strong approximation. The result is an elegant theory
that leads to clearly formulated and practical algorithms, which we illustrate by examples.


http://mpmath.org/
http://www.multiprecision.org/index.php?prog=mpfrcx
http://nemocas.org/
http://pari.math.u-bordeaux.fr/
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6.2. Elliptic curve and Abelian varieties cryptology

Participant: Damien Robert.

The paper [15] in which David Lubicz and Damien Robert explain how to improve the arithmetic of Abelian
and Kummer varieties has been published in the journal Finite Fields and Their Applications. The speed of the
arithmetic is a crucial factor in the performance of cryptosystems based on abelian varieties. Depending on the
cryptographic application, the speed record holders are elliptic curves (in the Edwards model) or the Kummer
surface of an hyperelliptic curves of genus 2 (in the level 2 theta model). One drawback of the Kummer surface
is that only scalar multiplications are available, which may be a problem in certain cryptographic protocols.
The previous known models to work on the Jacobian rather than the Kummer surface (Mumford coordinates or
the theta model of level 4) are too slow and not competitive with elliptic curves. This paper explains how to use
geometric properties (like projective normality) to speed up the arithmetic. In particular it introduces a novel
addition algorithm on Kummer varieties (compatible addition), and uses it to speed up multi-exponentiations
in Kummer varieties and to obtain new models of abelian surfaces in which the scalar multiplication is as fast
as on the Kummer surface.

Theta functions, and in particular the Dedekind eta function, are at the heart of complex multiplication
constructions of curves. They can be written as sparse power series with coefficients 1. In [23] we devise
optimised addition sequences for the occurring exponents, with a proof relying on classical number theory,
which help us gain a factor of 2 compared to the standard approach and which is validated in practice by our
two independent implementations. Using an approach from computer algebra and a proof relying on analytic
number theory, we obtain another factor of 2.

6.3. Symbolic computation

The article [27], of which F. Johansson is a coauthor, was published. The article describes SymPy, an open
source computer algebra system written in pure Python. It is built with a focus on extensibility and ease
of use, through both interactive and programmatic applications. These characteristics have led SymPy to
become a popular symbolic library for the scientific Python ecosystem. This paper presents the architecture
of SymPy, a description of its features, and a discussion of select submodules. The supplementary material
provide additional examples and further outline details of the architecture and features of SymPy.

Hypergeometric functions are among the most important mathematical functions, with a wide range of
applications in everything from physics to number theory. The practical computation of such functions is a
challenging problem. The preprint [26]. presents an efficient implementation of hypergeometric functions in
arbitrary-precision interval arithmetic. The functions o F}, 1 Fi, oF) and o Fjy (or the Kummer U-function)
are supported for unrestricted complex parameters and argument, and by extension, we cover exponential
and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel
functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other
special functions. The output can be used directly for interval computations or to generate provably correct
floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision
software, and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric
function , Fj, and computation of high-order parameter derivatives.

The preprint [25] is the corresponding paper for the software Arb developed by F. Johansson. Arb is a C
library for arbitrary-precision interval arithmetic using the midpoint-radius representation, also known as ball
arithmetic. It supports real and complex numbers, polynomials, power series, matrices, and evaluation of
many special functions. The core number types are designed for versatility and speed in a range of scenarios,
allowing performance that is competitive with non-interval arbitrary-precision types such as MPFR and MPC
floating-point numbers. This paper discusses the low-level number representation, strategies for precision and
error bounds, and the implementation of efficient polynomial arithmetic with interval coefficients.
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6.4. Logarithmic Class Groups

Logarithmic class groups and units, introduced by Jaulent in 1994, are an intriguing ¢-adic variation on
the classical class and unit groups related to Iwasawa theory and the wild kernels of algebraic K-theory.
These Z,-modules of finite type provide direct access to invariants studied in standard conjectures about Z,-
extensions. In [12] we devised a new algorithm to explicitly compute them in subexponential time under
standard conjectures (GRH and Gross-Kuz’min) and to validate unconditionaly the computed results (now in
exponential time). The algorithm has been implementated in the PARI/GP system.

6.5. Class groups and other invariants of number fields

The article by H. Cohen and F. Thorne on Dirichlet series associated to quartic fields with given cubic resolvent
has been published. This article gives an explicit formula for the Dirichlet series >_ ;- |A(K)|™°, where the
sum is over isomorphism classes of all quartic fields whose resolvent field is isomorphic to a fixed cubic field
k.

The article [22] by H. Cohen and F. Thorne generalizes the work of A. Morra and the authors, on giving
explicit formulas for the Dirichlet series generating function of D, extensions of odd prime degree ¢ with given
quadratic resolvent. Over the course of the proof, the authors explain connections between their formulas and
the Ankeny-Artin-Chowla conjecture, the Ohno-Nakagawa relation for binary cubic forms, and other topics.

In her thesis, Iuliana Ciocanea-Teodorescu describes algorithms that answer questions arising in ring and
module theory. The first main result of this thesis concerns the module isomorphism problem, how to compute
a set of generators of minimal cardinality, and how to construct projective covers and injective hulls. The thesis
also describe tests for module simplicity, projectivity, and injectivity, and constructive tests for existence of
surjective module homomorphisms between two finite modules, one of which is projective. As a negative
result, the problem of testing for existence of injective module homomorphisms between two finite modules,
one of which is projective, is NP-complete. The last part of the thesis is concerned with finding a good
working approximation of the Jacobson radical of a finite ring, that is, a two-sided nilpotent ideal such that
the corresponding quotient ring is almost semisimple. The notion used to approximate semisimplicity is that
of separability.

In her thesis [11], Pinar Kiliger determines all CM curves of genus 2 defined over the reflex field. This extends
the previous CM class number one problem for elliptic curves which asked to find all elliptic curves defined
over the rationals with non-trivial endomorphism ring.

6.6. Number and function fields

The article [13] written by J. Brau and J. Nathan on “Elliptic curves with 2-torsion contained in the 3-torsion
field” has been published. This article study the modular curve X’(6) of level 6 defined over Q whose Q-
rational points correspond to j-invariants of elliptic curves E over Q for which Q(E[2]) is a subfield of
Q(FE[3]). The authors characterize the j-invariants of elliptic curves with this property by exhibiting an explicit
model of X’(6). X’(6)(Q) then gives an infinite family of examples of elliptic curves with non-abelian
"entanglement fields," which is relevant to the systematic study of correction factors of various conjectural
constants for elliptic curves over Q.

7. Partnerships and Cooperations

7.1. National Initiatives

7.1.1. ANR Simpatic — SIM and PAiring Theory for Information and Communications security
Participants: Guilhem Castagnos, Damien Robert.

http://simpatic.orange-labs.fr


http://simpatic.orange-labs.fr
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The SIMPATIC project is an industrial research project, formed by academic research teams and industrial
partners: Orange Labs, Ecole Normale Supérieure, INVIA, Oberthur Technologies, ST-Ericsson France,
Université de Bordeaux 1, Université de Caen Basse-Normandie, Université de Paris 8.

The aim of the SIMPATIC project is to provide the most efficient and secure hardware/software implementation
of a bilinear pairing in a SIM card. This implementation will then be used to improve and develop new
cryptographic algorithms and protocols in the context of mobile phones and SIM cards. The project will more
precisely focus on e-ticketing and e-cash, on cloud storage and on the security of contactless and of remote
payment systems.

D. Robert is a participant in the Task 2 whose role is to give state of the art algorithms for pairing computations,
adapted to the specific hardware requirements of the Simpatic Project.

G. Castagnos is a participant in the Task 4 whose role is to design new cryptographic primitives adapted to the
specific applications of the Simpatic Project.

The SIMPATIC project has ended in August 2016. The project has shown that pairings can now efficiently be
integrated into smart cards publicly deployed, by obtaining performances that outperform the state of the art.
Cryptographic tools designed by the project are moreover capable of combining complex functionalities and
efficiency in many areas such as digital signatures, minimization of personal data in contactless services, pay
TV, or protecting data stored in an untrusted cloud.

7.1.2. ANR Alambic — AppLicAtions of MalleaBllity in Cryptography

Participant: Guilhem Castagnos.

https://crypto.di.ens.fr/projects:alambic:main

The ALAMBIC project is a research project formed by members of the Inria Project-Team CASCADE of ENS
Paris, members of the AriC Inria project-team of ENS Lyon, and members of the CRYPTIS of the university
of Limoges. G. Castagnos is an external member of the team of Lyon for this project.

Non-malleability is a security notion for public key cryptographic encryption schemes that ensures that it
is infeasible for an adversary to modify ciphertexts into other ciphertexts of messages which are related to
the decryption of the first ones. On the other hand, it has been realized that, in specific settings, malleability
in cryptographic protocols can actually be a very useful feature. For example, the notion of homomorphic
encryption allows specific types of computations to be carried out on ciphertexts and generate an encrypted
result which, when decrypted, matches the result of operations performed on the plaintexts. The homomorphic
property can be used to create secure voting systems, collision-resistant hash functions, private information
retrieval schemes, and for fully homomorphic encryption enables widespread use of cloud computing by
ensuring the confidentiality of processed data.

The aim of the ALAMBIC project to investigate further theoretical and practical applications of malleability in
cryptography. More precisely, this project focuses on three different aspects: secure computation outsourcing
and server-aided cryptography, homomorphic encryption and applications and << paradoxical >> applications
of malleability.

7.2. European Initiatives

7.2.1. FP7 & H2020 Projects
7.2.1.1. ANTICS

Title: Algorithmic Number Theory in Computer Science
Program: FP7

Duration: January 2012 - December 2016

Coordinator: Inria

Inria contact: Andreas Enge


https://crypto.di.ens.fr/projects:alambic:main
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"During the past twenty years, we have witnessed profound technological changes, summarised
under the terms of digital revolution or entering the information age. It is evident that these
technological changes will have a deep societal impact, and questions of privacy and security are
primordial to ensure the survival of a free and open society. Cryptology is a main building block
of any security solution, and at the heart of projects such as electronic identity and health cards,
access control, digital content distribution or electronic voting, to mention only a few important
applications. During the past decades, public-key cryptology has established itself as a research topic
in computer science; tools of theoretical computer science are employed to “prove” the security of
cryptographic primitives such as encryption or digital signatures and of more complex protocols. It
is often forgotten, however, that all practically relevant public-key cryptosystems are rooted in pure
mathematics, in particular, number theory and arithmetic geometry. In fact, the socalled security
“proofs” are all conditional to the algorithmic untractability of certain number theoretic problems,
such as factorisation of large integers or discrete logarithms in algebraic curves. Unfortunately,
there is a large cultural gap between computer scientists using a black-box security reduction to
a supposedly hard problem in algorithmic number theory and number theorists, who are often
interested in solving small and easy instances of the same problem. The theoretical grounds on
which current algorithmic number theory operates are actually rather shaky, and cryptologists are
generally unaware of this fact. The central goal of ANTICS is to rebuild algorithmic number theory
on the firm grounds of theoretical computer science.’

Title: OpenDreamKit

Program: H2020

Duration: January 2016 - December 2020
Inria contact: Karim Belabas

Description http://cordis.europa.eu/project/rcn/198334_en.html, http://opendreamkit.org

7.3. International Initiatives

7.3.1. Inria International Labs

7.3.1.1. International Laboratory for Research in Computer Science and Applied Mathematics
MACISA
Title: Mathematics Applied to Cryptology and Information Security in Africa
International Partner (Institution - Laboratory - Researcher):

Université des Sciences et Techniques de Masuku (Gabon) - Faculté des Sciences - Dpt de
Mathématiques et Informatique - Tony Ezome

Duration: 2012 - 2016

The projects aims at understanding the role played by algebraic maps in public key cryptography.
Since this is a very broad topic, we will focus on objects of dimension zero (finite sets and rings)
and one (algebraic curves, their differentials and jacobians). The proposed project-team consists
of African and French researchers working in mathematical and statistical aspects of public-key
cryptology. The French researchers work in the Inria project-team LFANT in Bordeaux, and the
IRMAR (Institut de Recherche en Mathématiques et Applications de Rennes) in Rennes. The African
researchers already cooperate in the project PRMAIS (Pole of Research in Mathematics and their
Applications in Information Security in Sub-Saharan Africa) supported by the Simons’ foundation.

The project is managed by a team of five permanent researchers: G. Nkiet, J.-M. Couveignes,
T. Ezome, D. Robert and A. Enge. Since Sep. 2014 the coordinator is T. Ezome and the vice-
coordinator is D. Robert. The managing team organises the cooperation, schedules meetings,
prepares reports, controls expenses, reports to the LIRIMA managing team and administrative staff.

A non-exhaustive list of activities organised or sponsored by Macisa includes


http://cordis.europa.eu/project/rcn/198334_en.html
http://opendreamkit.org
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e  The Summer school (EMA) in Bamenda with the International Center for Pure and Applied
Mathematics (ICPAM/CIMPA), June 2016;

e The visit of Abdoulaye Maiga in Bordeaux to work with D. Robert on canonical lifts of
genus 2 curves.

2016 was the last year of Macisa. A new project FAST “(Harder Better) FAster STronger cryptogra-
phy” has been proposed as an associated team between LFANT and the PREMA (Pole of Research
in Mathematics and Applications in Africa) Simon’s foundation project.

7.3.2. Inria International Partners

7.3.2.1. Informal International Partners

The team is used to collaborate with Leiden University through the ALGANT program for PhD joint
supervision.

Eduardo Friedman (U. of Chile), long term collaborator of K. Belabas and H. Cohen is a regular visitor in
Bordeaux (about 1 month every year).

7.4. International Research Visitors

7.4.1. Visits of International Scientists

Researchers visiting the team to give a talk to the team seminar include Enea Milio (Inria Nancy Grand
Est), Gregor Seiler (ETH Zurich), Aurélien Focqué (Industry) and Razvan Barbulescu (University Paris 6).
Researchers visting the team for collaboration include Bernadette Perrin-Riou (Paris-Sud).

7.4.2. Visits to International Teams

F. Johansson visited during 1 week the PolSys team at LIP6, Pierre et Marie Curie University.

F. Johansson visited during 1 week (two times) with the Computer Algebra group, TU Kaiserslautern.

8. Dissemination

8.1. Promoting Scientific Activities

8.1.1. Scientific Events Selection

8.1.1.1. Member of the Conference Program Committees
A. Enge: 20th Workshop on Elliptic Curve Cryptography ECC 2016, izmir

D. Robert was a member of the scientific committee for the Ecole Mathematique Africaine organised by
Emmanuel Fouotsa at Bamenda.

F. Johansson organized the session: High-precision arithmetic, effective analysis and special functions. ICMS
2016, The 5th International Congress on Mathematical Software, ZIB Berlin.

8.1.2. Journal

8.1.2.1. Member of the Editorial Boards
K. Belabas acts on the editorial board of Journal de Théorie des Nombres de Bordeaux since 2005 and of
Archiv der Mathematik since 2006.
H. Cohen is an editorial board member of Journal de Théorie des Nombres de Bordeaux; he is an editor for
the Springer book series Algorithms and Computations in Mathematics (ACM).
J.-M. Couveignes is a member of the editorial board of the Publications mathématiques de Besangon since
2010.
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A. Enge is an editor of Designs, Codes and Cryptography since 2004.
8.1.2.2. Reviewer - Reviewing Activities

F. Johansson reviewed for IEEE Transactions on Circuits and Systems I, IEEE Transactions on Computers,
and ACM Transactions on Mathematical Software.

8.1.3. Invited Talks

e A. Enge: Mathematical Structures for Cryptography, Leiden: Short addition sequences for theta
functions

o F Johansson: talk at RAIM 2016, Banyuls-sur-mer on "Fast reversion of formal power series" and
at FastRelax meeting, LAAS-CNRS, Toulouse on "Hypergeometric functions in Arb".

8.1.4. Scientific Expertise
J.-M. Couveignes is a member of the scientific council of the labex "Fondation Sciences Mathématiques de
Paris", FSMP, Paris.
J.-M. Couveignes is a member of the *conseil d’orientation’ of the labex "Institut de Recherche en Mathéma-
tiques, Interactions et Applications", IRMIA, Strasbourg.

8.1.5. Research Administration
A. Enge: Head of COST-GTRI, responsible for the scientific evaluation of all international cooperations of
Inria
Since January 2015, K. Belabas is vice-head of the Math Institute (IMB). He also leads the computer science

support service (“cellule informatique”) of IMB and coordinates the participation of the institute in the regional
computation cluster PlaFRIM.

He is an elected member of “commission de la recherche” in the academic senate of Bordeaux University.
He is a member of the “Conseil National des Université” (25th section, pure mathematics).

J.-P. Cerri is an elected member of the scientific council of the Mathematics Institute of Bordeaux (IMB) and
responsible for the bachelor programme in mathematics and informatics.

Since January 2015, J.-M. Couveignes is the head of the Math Institute (IMB).

8.2. Teaching - Supervision - Juries

8.2.1. Teaching

Master : G. Castagnos, Cryptanalyse, 60h, M2, University of Bordeaux, France;
Master : G. Castagnos, Cryptologie avancée, 30h, M2, University of Bordeaux, France;
Master : G. Castagnos, Courbes elliptiques, 60h, M2, University of Bordeaux, France;
Master : D. Robert, Courbes elliptiques, 60h, M2, University of Bordeaux, France;
8.2.2. Supervision
Pinar Kiliger: The class number one problem for genus-2 curves, Universities of Bordeaux and
Leiden, supervised by A. Enge, M. Streng and P. Stevenhagen.

Tuliana Ciocanea-Teodorescu, Algorithms for finite rings, Universities of Bordeaux and Leiden,
supervised by K. Belabas and H. Lenstra.

PhD in progress: Abdoulaye Maiga, Computing canonical lift of genus 2 hyperelliptic curves,
University Dakar, supervised by Djiby Sow, Abdoul Aziz Ciss and D. Robert.

PhD in progress: Emmanouil Tzortzakis Algorithms for Q-curves, supervised by K. Belabas and P.
Bruin

PhD in progress: Pavel Solomatin Topics on L-functions, supervised by B. de Smit and K. Belabas
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Liu Zhengying: Height of class polynomials. Ecole Polytechnique third year internship, supervised
by D. Robert.

8.2.3. Juries

e PhD report by A. Enge on Loubna Ghammam: Utilisation des couplages en cryptographie
asymétrique pour la micro-électronique, University of Rennes

e PhD report and jury by D. Robert on Alina Dudeanu: Computational Aspects of Jacobians of
Hyperelliptic Curves, EPFL.

e D. Robert is a member of the jury of Agregations de Mathematiques. He is also the codirector with
Alain Couvreur of the option “calcul formel” of the Modelisation part of the oral examination.

8.3. Popularization

D. Robert wrote with Sorina Ionica the chapter “Pairings” of the book Guide to Pairing-Based Cryptography
[16] which will be published by CHAPMAN and HALL/CRC. This book aims to help Engineers understand
and implement pairing based cryptography. In the Chapter Pairings D. Robert give a self contained definition
and proof of the Weil and Tate pairing; including how to handle divisors with non disjoint support (this is often
skipped in scientific papers but is important for practical implementations).

H. Cohen wrote a vulgarisation article [17] on Fermat’s last theorem. This article explain (through the example
of congruent numbers) the role of elliptic curves and algebraic number theory in the solution of Fermat’s last
theorem.

During the last PARIatelier four talks [19], [18], [20], [21] have been filmed and are available under a creative
common licence. This will allow people from all the world to get started faster with PARI. The first two talks
focus on setting up personal computers for the atelier and the new features of PARI. The next two are more
technical and explain the new L-functions and modular forms features.
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