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2. Overall Objectives

2.1. Overall positioning
At the interface between audio modeling and mathematical signal processing, the global objective of
PANAMA is to develop mathematically founded and algorithmically efficient techniques to model, acquire
and process high-dimensional signals, with a strong emphasis on acoustic data.

Applications fuel the proposed mathematical and statistical frameworks with practical scenarii, and the
developed algorithms are extensively tested on targeted applications. PANAMA’s methodology relies on a
closed loop between theoretical investigations, algorithmic development and empirical studies.

2.2. Scientific foundations
The scientific foundations of PANAMA are focused on sparse representations and probabilistic modeling, and
its scientific scope is extended in three major directions:

• The extension of the sparse representation paradigm towards that of “sparse modeling”, with the
challenge of establishing, strengthening and clarifying connections between sparse representations
and machine learning.

• A focus on sophisticated probabilistic models and advanced statistical methods to account for
complex dependencies between multi-layered variables (such as in audio-visual streams, musical
contents, biomedical data ...).

• The investigation of graph-based representations, processing and transforms, with the goal to
describe, model and infer underlying structures within content streams or data sets.

2.3. Applications
The main industrial sectors in relation with the topics of the PANAMA research group are the telecommunica-
tion sector, the Internet and multimedia sector, the musical and audiovisual production sector and, marginally,
the sector of education and entertainment. Source separation is one of PANAMA’s major applicative focus
generating increasing industrial transfers. The models, methods and algorithms developed in the team have
many potential applications beyond audio processing and modeling – the central theme of the PANAMA
project-team – in particular to biomedical signals. Such applications are primarily investigated in partnership
with research groups with the relevant expertise (within or outside Inria).

On a regular basis, PANAMA is involved in bilateral or multilateral partnerships, within the framework of
consortia, networks, thematic groups, national and European research projects, as well as industrial contracts
with various local companies.

3. Research Program

3.1. Axis 1: Sparse Models and Representations
3.1.1. Efficient Sparse Models and Dictionary Design for Large-scale Data

Sparse models are at the core of many research domains where the large amount and high-dimensionality of
digital data requires concise data descriptions for efficient information processing. Recent breakthroughs have
demonstrated the ability of these models to provide concise descriptions of complex data collections, together
with algorithms of provable performance and bounded complexity.

A crucial prerequisite for the success of today’s methods is the knowledge of a “dictionary” characterizing how
to concisely describe the data of interest. Choosing a dictionary is currently something of an “art”, relying on
expert knowledge and heuristics.
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Pre-chosen dictionaries such as wavelets, curvelets or Gabor dictionaries, are based upon stylized signal
models and benefit from fast transform algorithms, but they fail to fully describe the content of natural signals
and their variability. They do not address the huge diversity underlying modern data much beyond time series
and images: data defined on graphs (social networks, internet routing, brain connectivity), vector valued data
(diffusion tensor imaging of the brain), multichannel or multi-stream data (audiovisual streams, surveillance
networks, multimodal biomedical monitoring).

The alternative to a pre-chosen dictionary is a trained dictionary learned from signal instances. While
such representations exhibit good performance on small-scale problems, they are currently limited to low-
dimensional signal processing due to the necessary training data, memory requirements and computational
complexity. Whether designed or learned from a training corpus, dictionary-based sparse models and the
associated methodology fail to scale up to the volume and resolution of modern digital data, for they
intrinsically involve difficult linear inverse problems. To overcome this bottleneck, a new generation of
efficient sparse models is needed, beyond dictionaries, encompassing the ability to provide sparse and
structured data representations as well as computational efficiency. For example, while dictionaries describe
low-dimensional signal models in terms of their “synthesis” using few elementary building blocks called
atoms, in “analysis” alternatives the low-dimensional structure of the signal is rather “carved out” by a set of
equations satisfied by the signal. Linear as well as nonlinear models can be envisioned.

3.1.2. Compressive Learning
A flagship emerging application of sparsity is the paradigm of compressive sensing, which exploits sparse
models at the analog and digital levels for the acquisition, compression and transmission of data using limited
resources (fewer/less expensive sensors, limited energy consumption and transmission bandwidth, etc.). Be-
sides sparsity, a key pillar of compressive sensing is the use of random low-dimensional projections. Through
compressive sensing, random projections have shown their potential to allow drastic dimension reduction with
controlled information loss, provided that the projected signal vector admits a sparse representation in some
transformed domain. A related scientific domain, where sparsity has been recognized as a key enabling factor,
is Machine Learning, where the overall goal is to design statistically founded principles and efficient algo-
rithms in order to infer general properties of large data collections through the observation of a limited number
of representative examples. Marrying sparsity and random low-dimensional projections with machine learning
shall allow the development of techniques able to efficiently capture and process the information content of
large data collections. The expected outcome is a dramatic increase of the impact of sparse models in ma-
chine learning, as well as an integrated framework from the signal level (signals and their acquisition) to the
semantic level (information and its manipulation), and applications to data sizes and volumes of collections
that cannot be handled by current technologies.

3.2. Axis 2: Robust Acoustic Scene Analysis
3.2.1. Compressive Acquisition and Processing of Acoustic Scenes

Acoustic imaging and scene analysis involve acquiring the information content from acoustic fields with a
limited number of acoustic sensors. A full 3D+t field at CD quality and Nyquist spatial sampling represents
roughly 106 microphones/m3. Dealing with such high-dimensional data requires to drastically reduce the data
flow by positioning appropriate sensors, and selecting from all spatial locations the few spots where acoustic
sources are active. The main goal is to develop a theoretical and practical understanding of the conditions
under which compressive acoustic sensing is both feasible and robust to inaccurate modeling, noisy measures,
and partially failing or uncalibrated sensing devices, in various acoustic sensing scenarii. This requires the
development of adequate algorithmic tools, numerical simulations, and experimental data in simple settings
where hardware prototypes can be implemented.

3.2.2. Robust Audio Source Separation
Audio signal separation consists in extracting the individual sound of different instruments or speakers that
were mixed on a recording. It is now successfully addressed in the academic setting of linear instantaneous
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mixtures. Yet, real-life recordings, generally associated to reverberant environments, remain an unsolved
difficult challenge, especially with many sources and few audio channels. Much of the difficulty comes from
the combination of (i) complex source characteristics, (ii) sophisticated underlying mixing model and (iii)
adverse recording environments. Moreover, as opposed to the “academic” blind source separation task, most
applicative contexts and new interaction paradigms offer a variety of situations in which prior knowledge
and adequate interfaces enable the design and the use of informed and/or manually assisted source separation
methods.

The former METISS team has developed a generic and flexible probabilistic audio source separation frame-
work that has the ability to combine various acoustic models such as spatial and spectral source models. Build-
ing on this existing framework, a first objective of PANAMA is to instantiate and validate specific instances
of this framework targeted to real-world industrial applications, such as 5.1 movie re-mastering, interactive
music soloist control and outdoor speech enhancement. Extensions of the framework are needed to achieve
real-time online processing, and advanced constraints or probabilistic priors for the sources at hand need to be
designed, while paying attention to computational scalability issues.

In parallel to these efforts, expected progress in sparse modeling for inverse problems shall bring new
approaches to source separation and modeling, as well as to source localization, which is often an important
first step in a source separation workflow.

3.2.3. Robust Audio Source Localization
Audio source localization consists in estimating the position of one or several sound sources given the signals
received by a microphone array. Knowing the geometry of an audio scene is often a pre-requisite to perform
higher-level tasks such as speaker identification and tracking, speech enhancement and recognition or audio
source separation. It can be decomposed into two sub-tasks : (i) compute spatial auditory features from raw
audio input and (ii) map these features to the desired spatial information. Robustly addressing both these
aspects with a limited number of microphones, in the presence of noise, reverberation, multiple and possibly
moving sources remains a key challenge in audio signal processing. The first aspect will be tackled by both
advanced statistical and acoustical modeling of spatial auditory features. The second one will be addressed
by two complementary approaches. Physics-driven approaches cast sound source localization as an inverse
problem given the known physics of sound propagation within the considered system. Data-driven approaches
aim at learning the desired feature-to-source-position mapping using real-world or synthetic training datasets
adapted to the problem at hand. Combining these approaches should allow a widening of the notion of source
localization, considering problems such as the identification of the directivity or diffuseness of the source as
well as some of the boundary conditions of the room. A general perspective is to investigate the relations
between the physical structure of the source and the particular structures that can be discovered or enforced in
the representations and models used for characterization, localization and separation.

3.3. Axis 3: Large-scale Audio Content Processing and Self-organization
3.3.1. Motif Discovery in Audio Data

Facing the ever-growing quantity of multimedia content, the topic of motif discovery and mining has become
an emerging trend in multimedia data processing with the ultimate goal of developing weakly supervised
paradigms for content-based analysis and indexing. In this context, speech, audio and music content, offers a
particularly relevant information stream from which meaningful information can be extracted to create some
form of “audio icons” (key-sounds, jingles, recurrent locutions, musical choruses, etc ...) without resorting to
comprehensive inventories of expected patterns.

This challenge raises several fundamental questions that will be among our core preoccupations over the
next few years. The first question is the deployment of motif discovery on a large scale, a task that requires
extending audio motif discovery approaches to incorporate efficient time series pattern matching methods
(fingerprinting, similarity search indexing algorithms, stochastic modeling, etc.). The second question is that of
the use and interpretation of the motifs discovered. Linking motif discovery and symbolic learning techniques,
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exploiting motif discovery in machine learning are key research directions to enable the interpretation of
recurring motifs.

On the application side, several use cases can be envisioned which will benefit from motif discovery deployed
on a large scale. For example, in spoken content, word-like repeating fragments can be used for several spoken
document-processing tasks such as language-independent topic segmentation or summarization. Recurring
motifs can also be used for audio summarization of audio content. More fundamentally, motif discovery paves
the way for a shift from supervised learning approaches for content description to unsupervised paradigms
where concepts emerge from the data.

3.3.2. Structure Modeling and Inference in Audio and Musical Contents
Structuring information is a key step for the efficient description and learning of all types of contents, and in
particular audio and musical contents. Indeed, structure modeling and inference can be understood as the task
of detecting dependencies (and thus establishing relationships) between different fragments, parts or sections
of information content.

A stake of structure modeling is to enable more robust descriptions of the properties of the content and better
model generalization abilities that can be inferred from a particular content, for instance via cache models,
trigger models or more general graphical models designed to render the information gained from structural
inference. Moreover, the structure itself can become a robust descriptor of the content, which is likely to be
more resistant than surface information to a number of operations such as transmission, transduction, copyright
infringement or illegal use.

In this context, information theory concepts need to be investigated to provide criteria and paradigms for
detecting and modeling structural properties of audio contents, covering potentially a wide range of application
domains in speech content mining, music modeling or audio scene monitoring.

4. Application Domains

4.1. Acoustic Scene Capture
Acoustic fields carry much information about audio sources (musical instruments, speakers, etc.) and their
environment (e.g., church acoustics differ much from office room acoustics). A particular challenge is to
capture as much information from a complete 3D+t acoustic field associated with an audio scene, using
as few sensors as possible. The feasibility of compressive sensing to address this challenge was shown in
certain scenarii, and the actual implementation of this framework will potentially impact practical scenarii
such as remote surveillance to detect abnormal events, e.g. for health care of the elderly or public transport
surveillance.

4.2. Audio Signal Separation in Reverberant Environments
Audio signal separation consists in extracting the individual sound of different instruments or speakers that
were mixed on a recording. It is now successfully addressed in the academic setting of linear instantaneous
mixtures. Yet, real-life recordings, generally associated to reverberant environments, remain an unsolved
difficult challenge, especially with many sources and few audio channels. Much of the difficulty comes
from the estimation of the unknown room impulse response associated to a matrix of mixing filters, which
can be expressed as a dictionary-learning problem. Solutions to this problem have the potential to impact,
for example, the music and game industry, through the development of new digital re-mastering techniques
and virtual reality tools, but also surveillance and monitoring applications, where localizing audio sources is
important.
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4.3. Multimedia Indexing
Audiovisual and multimedia content generate large data streams (audio, video, associated data such as text,
etc.). Manipulating large databases of such content requires efficient techniques to: segment the streams into
coherent sequences; label them according to words, language, speaker identity, and more generally to the type
of content; index them for easy querying and retrieval, etc. As the next generation of online search engines
will need to offer content-based means of searching, the need to drastically reduce the computational burden
of these tasks is becoming all the more important as we can envision the end of the era of wasteful datacenters
that can increase forever their energy consumption. Most of today’s techniques to deal with such large audio
streams involve extracting features such as Mel Frequency Cepstral Coefficients (MFCC) and learning high-
dimensional statistical models such as Gaussian Mixture Models, with several thousand parameters. The
exploration of a compressive learning framework is expected to contribute to new techniques to efficiently
process such streams and perform segmentation, classification, etc., in the compressed domain. A particular
challenge is to understand how this paradigm can help exploiting truly multimedia features, which combine
information from different associated streams such as audio and video, for joint audiovisual processing.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

Antoine Deleforge (new PANAMA team member), Florence Forbes (MISTIS team) and Radu Horaud
(PERCEPTION team) received the 2016 Hojjat Adeli Award for Outstanding Contributions in Neural Systems
for their paper [70].

A. Deleforge, F. Forbes, and R. Horaud, “Acoustic space learning for sound-source separation and localization
on binaural manifolds,” International journal of neural systems, vol. 25, no. 01, 2015, https://hal.archives-
ouvertes.fr/hal-00960796

The Award for Outstanding Contributions in Neural Systems established by World Scientific Publishing Co.
in 2010, is awarded annually to the most innovative paper published in the previous volume/year of the
International Journal of Neural Systems.

6. New Software and Platforms

6.1. Audio Activity Detector
KEYWORD: Audio activity estimation

• Authors: Frédéric Bimbot, Ewen Camberlein, Romain Lebarbenchon and Vincent Soupe

• Contact: Frédéric Bimbot

6.2. Audio Breath Rhythm Estimator
KEYWORD: Breath rhythm estimation

• Authors: Frédéric Bimbot, Ewen Camberlein and Romain Lebarbenchon

• Contact: Frédéric Bimbot

https://hal.archives-ouvertes.fr/hal-00960796
https://hal.archives-ouvertes.fr/hal-00960796
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6.3. Audio GMM Classifier
• Authors: Frédéric Bimbot, Vincent Soupe, Jérémy Paret, Ewen Camberlein and Romain Lebarben-

chon

• Contact: Frédéric Bimbot

6.4. CSCbox
Compressive Spectral Clustering Toolbox
KEYWORD: Clustering
SCIENTIFIC DESCRIPTION

The Compressive Spectral Clustering Toolbox is a Matlab toolbox implementing routines to reproduce
experiments from the paper "Compressive Spectral Clustering", by N. Tremblay, G. Puy, P. Vandergheynst
and R. Gribonval.
FUNCTIONAL DESCRIPTION

Matlab toolbox implementing routines to reproduce experiments from the paper "Compressive Spectral
Clustering"

• Authors: Nicolas Tremblay, Gilles Puy, Pierre Vandergheynst and Rémi Gribonval

• Partner: EPFL - Ecole Polytechnique Fédérale de Lausanne

• Contact: Rémi Gribonval

• URL: http://www.irisa.fr/panama/software

6.5. FASST2
Flexible Audio Source Separation Toolbox
KEYWORDS: Audio - Source Separation
SCIENTIFIC DESCRIPTION

Only source separation software publicly availble allowing to use both spacial and spectral source properties
with a generalised EM algorithm (expectation - maximisation). Fast specification of each use case by the
choice of suitable constraints in constraint libraries.
FUNCTIONAL DESCRIPTION

Toolbox for the fast design of audio source separation adapted to any use case.

• Participants: Emmanuel Vincent and Yann Salaun

• Contact: Emmanuel Vincent

• URL: http://fasst.gforge.inria.fr

6.6. FAuST
KEYWORDS: Learning - Sparsity - Fast transform - Multilayer sparse factorisation
FUNCTIONAL DESCRIPTION

C++ toolbox, designed to decompose a given dense matrix into a product of sparse matrices in order to reduce
its computational complexity (both for storage and manipulation).

• Authors: Luc Le Magoarou, Rémi Gribonval, Adrien Leman, Nicolas Bellot and Thomas Gautrais

• Contact: Rémi Gribonval

• URL: http://faust.gforge.inria.fr/

6.7. Multi-channel BSS Locate Basic
KEYWORDS: Audio - Localization - Signal processing - Multichannel signal

http://www.irisa.fr/panama/software
http://fasst.gforge.inria.fr
http://faust.gforge.inria.fr/
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SCIENTIFIC DESCRIPTION

Multi-Channel BSS Locate is a Matlab toolbox to estimate Direction Of Arrival (expressed both in azimuth
and elevation) of multiple sources in a multi-channel audio signal recorded by an array of microphones. This
toolbox implements the previous 8 angular spectrum methods presented in BSS Locate (GCC-PHAT, GCC-
NONLIN, MUSIC and several SNR-based spectra).

• Authors: Emmanuel Vincent, Charles Blandin, Alexey Ozerov, Ewen Camberlein, Romain Lebar-
benchon, Frédéric Bimbot and Nancy Bertin

• Contact: Emmanuel Vincent
• URL: http://bass-db.gforge.inria.fr/bss_locate/

6.8. SPADE
Sparse Audio Declipper
KEYWORDS: Audio - Sparse regularization - Declipping
SCIENTIFIC DESCRIPTION

Matlab routines to reproduce audio declipping experiments from the paper: - Srdan Kitic, Nancy Bertin, Remi
Gribonval. Audio Declipping by Cosparse Hard Thresholding. iTwist - 2nd international - Traveling Workshop
on Interactions between Sparse models and Technology, Aug 2014, Namur, Belgium. <hal-00922497v3> -
Srdan Kitic, Nancy Bertin, Remi Gribonval. Sparsity and cosparsity for audio declipping: a flexible non-
convex approach. LVA/ICA 2015 - The 12th International Conference on Latent Variable Analysis and Signal
Separation, Aug 2015, Liberec, Czech Republic. pp.8. <hal-01159700v2>

• Participants: Srdan Kitic, Nancy Bertin and Rémi Gribonval
• Contact: Rémi Gribonval
• URL: http://xspaad.gforge.inria.fr/

6.9. SPOD Audio
KEYWORDS: Audio source classification - Speaker verification - Breath rhythm estimation - Audio activity
estimation

• Authors: Frédéric Bimbot, Vincent Soupe, Ewen Camberlein and Romain Lebarbenchon
• Contact: Frédéric Bimbot
• URL: http://www.kerlink.fr/en/

6.10. SPOD Model Generation
KEYWORDS: Machine learning - Audio source classification - Statistical modeling - Speaker verification

• Authors: Frédéric Bimbot, Vincent Soupe, Jérémy Paret, Ewen Camberlein and Romain Lebarben-
chon

• Contact: Frédéric Bimbot

6.11. SRP-PHAT
KEYWORD: Source localization

• Authors: Frédéric Bimbot, Nancy Bertin, Ewen Camberlein, Romain Lebarbenchon, Emmanuel
Vincent, Charles Blandin and Alexey Ozerov

• Contact: Frédéric Bimbot

6.12. SketchMLBox
KEYWORD: Clustering

http://bass-db.gforge.inria.fr/bss_locate/
http://xspaad.gforge.inria.fr/
http://www.kerlink.fr/en/
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SCIENTIFIC DESCRIPTION

The SketchMLbox is a Matlab toolbox for fitting mixture models to large collections of training vectors using
sketching techniques. The collection is first compressed into a vector called sketch, then a mixture model (e.g.
a Gaussian Mixture Model) is estimated from this sketch using greedy algorithms typical of sparse recovery.
The size of the sketch does not depend on the number of elements in the collection, but rather on the complexity
of the problem at hand [2,3]. Its computation can be massively parallelized and distributed over several units. It
can also be maintained in an online setting at low cost. Mixtures of Diracs ("K-means") and Gaussian Mixture
Models with diagonal covariance are currently available, the toolbox is structured so that new mixture models
can be easily implemented.
FUNCTIONAL DESCRIPTION

Matlab toolbox for fitting mixture models to large collections of feature vectors using sketching techniques.
• Authors: Nicolas Keriven, Rémi Gribonval and Nicolas Tremblay
• Partner: Université de Rennes 1
• Contact: Rémi Gribonval
• URL: http://sketchml.gforge.inria.fr

6.13. VoiceHome Corpus
KEYWORDS: Audio - Source Separation
FUNCTIONAL DESCRIPTION

This corpus includes reverberated, noisy speech signals spoken by native French talkers in a lounge and
recorded by an 8-microphone device at various angles and distances and in various noise conditions. Room
impulse responses and noise-only signals recorded in various real rooms and homes and baseline speaker
localization and enhancement software are also provided.

• Contact: Nancy Bertin
• URL: http://voice-home.gforge.inria.fr/voiceHome_corpus.html

6.14. graphsamplingbox
• Authors: Nicolas Tremblay, Gilles Puy, Pierre Vandergheynst and Rémi Gribonval
• Partner: EPFL - Ecole Polytechnique Fédérale de Lausanne
• Contact: Rémi Gribonval
• URL: http://www.irisa.fr/panama/software

7. New Results

7.1. Recent results on Sparse Representations, Inverse Problems, and
Dimension Reduction
Sparsity, low-rank, dimension-reduction, inverse problem, sparse recovery, scalability, compressive sensing

The team has had a substantial activity ranging from theoretical results to algorithmic design and software
contributions in the fields of sparse representations, inverse problems, and dimension reduction, which is at
the core of the ERC project PLEASE (Projections, Learning and Sparsity for Efficient Data Processing, see
Section 9.2.1.1).

7.1.1. Theoretical results on Sparse Representations, Graph Signal Processing, and Dimension
Reduction
Participants: Rémi Gribonval, Yann Traonmilin, Gilles Puy, Nicolas Tremblay, Pierre Vandergheynst.

http://sketchml.gforge.inria.fr
http://voice-home.gforge.inria.fr/voiceHome_corpus.html
http://www.irisa.fr/panama/software
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Main collaboration: Mike Davies (University of Edinburgh), Pierre Borgnat (ENS Lyon), and members of the
LTS2 lab of Pierre Vandergheynst at EPFL

Stable recovery of low-dimensional cones in Hilbert spaces: Many inverse problems in signal processing
deal with the robust estimation of unknown data from underdetermined linear observations. Low dimensional
models, when combined with appropriate regularizers, have been shown to be efficient at performing this task.
Sparse models with the `1-norm or low rank models with the nuclear norm are examples of such successful
combinations. Stable recovery guarantees in these settings have been established using a common tool adapted
to each case: the notion of restricted isometry property (RIP). We established generic RIP-based guarantees for
the stable recovery of cones (positively homogeneous model sets) with arbitrary regularizers. These guarantees
were illustrated on selected examples. For block structured sparsity in the infinite dimensional setting, we used
the guarantees for a family of regularizers which efficiency in terms of RIP constant can be controlled, leading
to stronger and sharper guarantees than the state of the art. This has been published in a journal paper [21].

Recipes for stable linear embeddings from Hilbert spaces to Rm: We considered the problem of construct-
ing a linear map from a Hilbert space (possibly infinite dimensional) to Rm that satisfies a restricted isometry
property (RIP) on an arbitrary signal model set. We obtained a generic framework that handles a large class
of low-dimensional subsets but also unstructured and structured linear maps. We provided a simple recipe
to prove that a random linear map satisfies a general RIP on the model set with high probability. We also
described a generic technique to construct linear maps that satisfy the RIP. Finally, we detailed how to use our
results in several examples, which allow us to recover and extend many known compressive sampling results.
This has been presented at the conference EUSIPCO 2015 [90], and a journal paper is under revision [91].

Signal processing on graphs: from filtering to random sampling and robust PCA: Graph signal processing
is an emerging field aiming at extending classical tools from signal processing (1D time series) and image
processing (2D pixel grids, 3D voxel grids) to more loosely structured numerical data: collections of numerical
values each associated to a vertex of a graph, where the graph encodes the underlying “topology” of proximities
and distances. Since our pioneering contributions on this topic [4], the team regularly works on various aspects
of graph signal processing, in collaboration with the LTS2 lab of Pierre Vandergheynst at EPFL. This year, we
studied the problem of sampling k-bandlimited signals on graphs. We proposed two sampling strategies that
consist in selecting a small subset of nodes at random. The first strategy is non-adaptive, i.e., independent of
the graph structure, and its performance depends on a parameter called the graph coherence. On the contrary,
the second strategy is adaptive but yields optimal results. Indeed, no more than O(klog(k)) measurements
are sufficient to ensure an accurate and stable recovery of all k-bandlimited signals. This second strategy is
based on a careful choice of the sampling distribution, which can be estimated quickly. Then, we proposed a
computationally efficient decoder to reconstruct k-bandlimited signals from their samples. We proved that it
yields accurate reconstructions and that it is also stable to noise. Finally, we conducted several experiments
to test these techniques. A journal paper has been published [17] accompanied by a toolbox for reproducible
research (see Section 6.14). Other contributions from this year on the topic of graph signal processing include
new subgraph-based filterbanks for graph signals [22], and new accelerated and robustified techniques for
PCA on graphs [19], [20] (see also below our contributions in terms of new algorithms to obtain approximate
Fast Graph Fourier Transforms [32], [53]).

Accelerated spectral clustering: We leveraged the proposed random sampling technique to propose a faster
spectral clustering algorithm. Indeed, classical spectral clustering is based on the computation of the first k
eigenvectors of the similarity matrix’ Laplacian, whose computation cost, even for sparse matrices, becomes
prohibitive for large datasets. We showed that we can estimate the spectral clustering distance matrix without
computing these eigenvectors: by graph filtering random signals. Also, we took advantage of the stochasticity
of these random vectors to estimate the number of clusters k. We compared our method to classical spectral
clustering on synthetic data, and showed that it reaches equal performance while being faster by a factor at
least two for large datasets of real data. Two conference papers have been presented, at ICASSP 2016 [39] and
ICML 2016 [40] and a toolbox for reproducible research has been released (see Section 6.4).

7.1.2. An Alternative Framework for Sparse Representations: Sparse “Analysis” Models
Participants: Rémi Gribonval, Nancy Bertin, Srdan Kitic, Clément Gaultier.
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In the past decade there has been a great interest in a synthesis-based model for signals, based on sparse
and redundant representations. Such a model assumes that the signal of interest can be composed as a linear
combination of few columns from a given matrix (the dictionary). An alternative analysis-based model can be
envisioned, where an analysis operator multiplies the signal, leading to a cosparse outcome.

Building on our pioneering work on the cosparse model [7] [73], [87] successful applications of this approach
to sound source localization, audio declipping and brain imaging have been developed in 2015 and 2016. In
addition, new applications to audio denoising were also introduced this year.

Versatile cosparse regularization: Digging the groove of previous years’ results (comparison of the perfor-
mance of several cosparse recovery algorithms in the context of sound source localization [77], demonstration
of its efficiency in situations where usual methods fail ( [79], see paragraph 7.4.2), applicability to the hard
declipping problem [78], application to EEG brain imaging [56]), a journal paper embedding the latest algo-
rithms and results in sound source localization and brain source localization in a unified fashion was published
this year [5]. This framework was also exploited to extend results on audio inpainting (see Section 7.3.2).

New results include experimental confirmation of robustness and versatility of the proposed scheme, and of
its computational merits (convergence speed increasing with the amount of data). In a work presented in a
workshop [44], we also proposed a multiscale strategy that aims at exploiting computational advantages of
both sparse and cosparse regularization approaches, thanks to the simple yet effective all-zero initialization
which the synthesis-based optimization can benefit from, while retaining the computational properties of the
analysis-based approach for huge scale optimization problems arising in physics-driven settings.

Parametric operator learning for cosparse calibration: In many inverse problems, a key challenge is to cope
with unknown physical parameters of the problem such as the speed of sound or the boundary impedance.
In the sound source localization problem, we previously showed that the unknown speed of sound can be
learned jointly in the process of cosparse recovery, under mild conditions [58], [81]. This year, we extended
the formulation to the case of unknown boundary impedance, and showing that a similar biconvex formulation
and optimization could solve this new problem efficiently (conference paper published in ICASSP 2016 [29],
see also Section 7.3.3).

7.1.3. Algorithmic and Theoretical results on Computational Representation Learning
Participants: Rémi Gribonval, Luc Le Magoarou, Nicolas Bellot, Adrien Leman, Cassio Fraga Dantas, Igal
Rozenberg.

An important practical problem in sparse modeling is to choose the adequate dictionary to model a class
of signals or images of interest. While diverse heuristic techniques have been proposed in the literature to
learn a dictionary from a collection of training samples, classical dictionary learning is limited to small-
scale problems. Inspired by usual fast transforms, we proposed a general dictionary structure that allows
cheaper manipulation, and an algorithm to learn such dictionaries together with their fast implementation.
The principle and its application to image denoising appeared at ICASSP 2015 [84] and an application to
speedup linear inverse problems was published at EUSIPCO 2015 [83]. A Matlab library has been released
(see Section 6.6) to reproduce the experiments from the comprehensive journal paper published this year
[16], which additionally includes theoretical results on the improved sample complexity of learning such
dictionaries. Pioneering identifiability results have been obtained in the Ph.D. thesis of Luc Le Magoarou on
this topic [85].

We further explored the application of this technique to obtain fast approximations of Graph Fourier Trans-
forms. A conference paper on this latter topic appeared in ICASSP 2016 [32], and a journal paper has been
submitted [53] where we empirically show that O(n log n) approximate implementations of Graph Fourier
Transforms are possible for certain families of graphs. This opens the way to substantial accelerations for
Fourier Transforms on large graphs.

A C++ software library has been developed (see Section 6.6) to release the resulting algorithms.
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7.2. Activities on Waveform Design for Telecommunications
Peak to Average Power Ratio (PAPR), Orthogonal Frequency Division Multiplexing (OFDM), Generalized
Waveforms for Multi Carrier (GWMC), Adaptive Wavelet Packet Modulation (AWPM)

7.2.1. Characterizing and designing multi-carrier waveform systems with optimum PAPR
Participant: Rémi Gribonval.

Main collaboration: Marwa Chafii, Jacques Palicot, Carlos Bader (Equipe SCEE, Supelec, Rennes)

In the context of the TEPN (Towards Energy Proportional Networks) Comin Labs project (see Section 9.1.1.2),
in collaboration with the SCEE team at Supelec (thesis of Marwa Chafii [64], defended in October this year and
co-supervised by R. Gribonval), we investigated a problem related to dictionary design: the characterization of
waveforms with low Peak to Average Power Ratio (PAPR) for wireless communications. This is motivated by
the importance of a low PAPR for energy-efficient transmission systems. A first stage of the work consisted in
characterizing the statistical distribution of the PAPR for a general family of multi-carrier systems, leading to a
journal paper [67] and several conference communications [65], [66]. Our characterization of waveforms with
optimum PAPR [68] has been published in a journal this year [14]. The work this year has concentrated on
designing new adaptive multi-carrier waveform systems able to cope with frequency-selective channels while
minimizing PAPR. This has given rise to a patent [49] and a journal paper is in preparation.

7.3. Emerging activities on Compressive Learning and Nonlinear Inverse
Problems
Compressive sensing, compressive learning, audio inpainting, phase estimation

7.3.1. Phase Estimation in Multichannel Mixtures
Participants: Antoine Deleforge, Yann Traonmilin.

The problem of estimating source signals given an observed multichannel mixture is fundamentally ill-posed
when the mixing matrix is unknown or when the number of sources is larger that the number of microphones.
Hence, prior information on the desired source signals must be incorporated in order to tackle it. An important
line of research in audio source separation over the past decade consists in using a model of the source
signals’ magnitudes in the short-time Fourier domain [8]. Such models can be inferred through, e.g., non-
negative matrix factorization [89] or deep neural networks [88]. Magnitudes estimates are often interpreted
as instantaneous variances of Gaussian-process source signals, and are combined with Wiener filtering for
source separation. In [50], we introduced a shift of this paradigm by considering the Phase Unmixing problem:
how can one recover the instantaneous phases of complex mixed source signals when their magnitudes and
mixing matrix are known? This problem was showed to be NP-hard, and three approaches were proposed to
tackle it: a heuristic method, an alternate minimization method, and a convex relaxation into a semi-definite
program. The last two approaches were showed to outperform the oracle multichannel Wiener filter in under-
determined informed source separation tasks. The latter yielded best results, including the potential for exact
source separation in under-determined settings.

7.3.2. Audio Inpainting and Denoising
Participants: Rémi Gribonval, Nancy Bertin, Srdan Kitic.

Inpainting is a particular kind of inverse problems that has been extensively addressed in the recent years
in the field of image processing. Building upon our previous pioneering contributions (definition of the
audio inpainting problem as a general framework for many audio processing tasks, application to the audio
declipping or desaturation problem, formulation as a sparse recovery problem [55]), we proposed over the last
two years a series of algorithms leveraging the competitive cosparse approach, which offers a very appealing
trade-off between reconstruction performance and computational time [78], [80], [81]. The work on cosparse
audio declipping which was awarded the Conexant best paper award at the LVA/ICA 2015 conference [80],
together with the associated toolbox for reproducible research (see Section 6.8) draw the attention of a world
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leading company in professional audio signal processing, with which some transfer has been negotiated. In
2016, real-time implementation of the A-SPADE algorithm was obtained and demonstrated at various events
(HCERES evaluation, TechnofÃ©rence # 18 « Nouvelles expériences son et vidéo », ...).

Current and future works deal with developing advanced (co)sparse decomposition for audio inpainting,
including several forms of structured sparsity (e.g. temporal and multichannel joint-sparsity), dictionary
learning for inpainting, and several applicative scenarios (declipping, denoising, time-frequency inpainting,
joint source separation and declipping). In particular, we investigated the incorporation of the so-called
“social” structure constraint [82] into problems regularized by a cosparse prior, including declipping and
denoising. Publication of this work is currently under preparation.

7.3.3. Blind Calibration of Impedance and Geometry
Participants: Rémi Gribonval, Nancy Bertin, Srdan Kitic.

Main collaborations: Laurent Daudet, Thibault Nowakowski, Julien de Rosny (Institut Langevin)

Last year, we also investigated extended inverse problem scenarios where a “lack of calibration” may occur,
i.e., when some physical parameters are needed for reconstruction but apriori unknown: speed of sound,
impedance at the boundaries of the domain where the studied phenomenon propagates, or even the shape of
these boundaries. In a first approach, based on our physics-driven cosparse regularization of the sound source
localization problem [5] (see section 7.1.2), we managed to preserve the sound source localization performance
when the speed of sound is unknown, or, equally, when the impedance is unknown, provided the shape is and
under some smoothness assumptions. Unlike the previous case (gain calibration), the arising problems are not
convex but biconvex, and can be solved with proper biconvex formulation of ADMM algorithm. In a second
approach based on eigenmode decomposition (limited to a 2D membrane), we showed that impedance learning
with known shape, or shape learning with known impedance can be expressed as two facets of the same
problem, and solved by the same approach, from a small number of measurements. Two papers presenting
these two sets of results appeared at ICASSP 2016 [29], [37].

7.3.4. Sketching for Large-Scale Mixture Estimation
Participants: Rémi Gribonval, Nicolas Keriven.

Main collaborations: Patrick Perez (Technicolor R&I France) Anthony Bourrier (formerly Technicolor R&I
France, then GIPSA-Lab)

When fitting a probability model to voluminous data, memory and computational time can become prohibitive.
We proposed during the Ph.D. thesis of Anthony Bourrier [60] a framework aimed at fitting a mixture of
isotropic Gaussians to data vectors by computing a low-dimensional sketch of the data. The sketch represents
empirical moments of the underlying probability distribution. Deriving a reconstruction algorithm by analogy
with compressive sensing, we experimentally showed that it is possible to precisely estimate the mixture
parameters provided that the sketch is large enough. The proposed algorithm provided good reconstruction
and scaled to higher dimensions than previous probability mixture estimation algorithms, while consuming
less memory in the case of voluminous datasets. It also provided a potentially privacy-preserving data analysis
tool, since the sketch does not explicitly disclose information about individual datum it is based on [63], [61],
[62]. Last year, we consolidated our extensions to non-isotropic Gaussians, with new algorithms [76] and
conducted large-scale experiments demonstrating its potential for speaker verification. A conference paper
appeared at ICASSP 2016 [31] and a journal version has been submitted [52], accompanied by a toolbox for
reproducible research (see Section 6.12).

This year the work concentrated on extending the approach beyond the case of Gaussian Mixture Estimation.
First, we showed empirically that the algorithm can be adapted to sketch a training collection while still
allowing to compute clusters. The approach, called “Compressive K-means”, is described in a paper accepted
at ICASSP 2017 [27]. Then, we expressed a theoretical framework for sketched learning, encompassing
statistical learning guarantees as well as dimension reduction guarantees. The framework already covers
compressive K-means as well as compressive Principal Component Analysis (PCA), and a conference paper
has been submitted. A comprehensive journal paper is under preparation, and future work will include
expliciting the impact of the proposed framework on a wider set of concrete learning problems.
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7.4. Source Separation and Localization
Source separation, sparse representations, probabilistic model, source localization

Source separation is the task of retrieving the source signals underlying a multichannel mixture signal.

About a decade ago, state-of-the-art approaches consisted of representing the signals in the time-frequency
domain and estimating the source coefficients by sparse decomposition in that basis. These approaches rely
only on spatial cues, which are often not sufficient to discriminate the sources unambiguously. Over the last
years, we proposed a general probabilistic framework for the joint exploitation of spatial and spectral cues
[8], which generalizes a number of existing techniques including our former study on spectral GMMs [57].
We showed how it could be used to quickly design new models adapted to the data at hand and estimate its
parameters via the EM algorithm, and it became the basis of a large number of works in the field, including
our own. In the last years, improvements were obtained through the use of prior knowledge about the source
spatial covariance matrices [71], [75], [74], knowledge on the source positions and room characteristics [72],
or a better initialization of parameters thanks to specific source localization techniques [59].

This accumulated progress lead, in 2015, to two main achievements: a new version of the Flexible Audio
Source Separation Toolbox, fully reimplemented, was released [92] and we published an overview paper on
recent and going research along the path of guided separation in a special issue of IEEE Signal Processing
Magazine devoted to source separation and its applications [10]. This two achievements formed the basis of
our work in 2016, exploring intensively the concrete use of these tools and principles in real-world scenarios,
in particular within the voiceHome project (see Section 6.13).

7.4.1. Towards Real-world Separation and Remixing Applications
Participants: Nancy Bertin, Frédéric Bimbot, Ewen Camberlein, Romain Lebarbenchon.

In 2015, we began a new industrial collaboration, in the context of the VoiceHome project, aiming at
another challenging real-world application: natural language dialog in home applications, such as control
of domotic and multimedia devices. As a very noisy and reverberant environment, home is a particularly
challenging target for source separation, used here as a pre-processing for speech recognition (and possibly
with stronger interactions with voice activity detection or speaker identification tasks as well). In 2016, we
publicly released a realistic corpus of room impulse responses and utterances recorded in real homes, and
presented it during the Interspeech conference [28]. We also continued benchmarking and adapting existing
localization and separation tools to the particular context of this application, worked on a better interface
between source localization and source separations steps, and investigated new means to reduce the latency
and computational burden of the currently available tools (low-resolution source separation preserving speech
recognition improvement, automatic selection of the best microphones, joint localization and multichannel
speech / non speech classification prior to any separation).

In november 2016, we started investigating a new application of source separation to sound respatialization
from Higher Order Ambisonics (HOA) signals, in the context of free navigation in 3D audiovisual contents.
This work is conducted in a collaboration with the IRT b<>Com, through the Ph.D. of Mohammed Hafsati
(co-supervised by Nancy Bertin, RÃ©mi Gribonval).

7.4.2. Implicit Localization through Audio-based Control for Robotics
Participant: Nancy Bertin.

Main collaborations (audio-based control for robotics): Aly Magassouba and François Chaumette (Inria, EPI
LAGADIC, France)

Acoustic source localization is, in general, the problem of determining the spatial coordinates of one or several
sound sources based on microphone recordings. This problem arises in many different fields (speech and
sound enhancement, speech recognition, acoustic tomography, robotics, aeroacoustics...) and its resolution,
beyond an interest in itself, can also be the key preamble to efficient source separation. Common techniques,
including beamforming, only provides the direction of arrival of the sound, estimated from the Time Difference
of Arrival (TDOA) [59]. This year, we have particularly investigated alternative approaches, either where the
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explicit localization is not needed (audio-based control of a robot) or, on the contrary, where the exact location
of the source is needed and/or TDOA is irrelevant (cosparse modeling of the acoustic field, see Section 7.1.2).

In robotics, the use of aural perception has received recently a growing interest but still remains marginal in
comparison to vision. Yet audio sensing is a valid alternative or complement to vision in robotics, for instance
in homing tasks. Most existing works are based on the relative localization of a defined system with respect to
a sound source, and the control scheme is generally designed separately from the localization system.

In contrast, the approach that we investigate over the last three years focuses on a sensor-based control
approach. We proposed a new line of work, by considering the hearing sense as a direct and real-time input
of a closed loop control scheme for a robotic task. Thus, and unlike most previous works, this approach
does not necessitate any explicit source localization: instead of solving the localization problem, we focus on
developing an innovative modeling based on sound features. To address this objective, we placed ourselves in
the sensor-based control framework, especially visual servoing (VS) that has been widely studied in the past
[69].

Last year, we established an analytical model linking the Interaural Time Difference (ITD) sound features
and control input of the robot, defined and analyzed robotic homing tasks involving multiple sound sources,
and validated the proposed approach by simulations and experiments with an actual robot [86]. This year,
we consolidated these results and extended the range of applicative tasks [36] and obtained similar results
(including theoretical and experimental) for the Interaural Level Difference (ILD), in combination with
the absolute energy level [34]. Another set of experiments, presented during the IROS workshop [35] was
successfully carried with a humanoid robot, notably without any measurement nor modeling of the robot’s
Head Relative Transfer Functions (HRTF). This work was mainly lead by Aly Magassouba, who defended his
Ph.D. (co-supervised by Nancy Bertin and François Chaumette) in December 2016.

7.4.3. Emerging activities on Virtually-Supervised Sound Localization
Participants: Antoine Deleforge, Clément Gaultier, Saurabh Kataria.

Audio source localization consists in estimating the position of one or several sound sources given the signals
received by a microphone array. It can be decomposed into two sub-tasks : (i) computing spatial auditory
features from raw audio input and (ii) mapping these features to the desired spatial information.

Extracting spatial features from raw audio input: The most commonly used features in binaural (two
microphones) sound source localization are frequency-dependent phase and level differences between the
two microphones. To handle the presence of noise, several sources, or reverberation, most existing methods
rely on some kind of aggregation of these features in the time-frequency plane, often in a heuristic way. In
[25], we introduced the rectified binaural ratio as a new spatial feature. We showed that for Gaussian point-
source signals corrupted by stationary Gaussian noise, this ratio follows a complex t-distribution with explicit
parameters. This new formulation provides a principled, statistically sound and efficient method to aggregate
these features in the presence of noise. Experiments notably showed the higher robustness of these features
compared to traditional ones, in the task of localizing heavily corrupted speech signals.

Mapping features to spatial information: Existing methods to map auditory features to spatial properties
divide into two categories. Physics-driven methods attempt to estimate an explicit mapping based on an
approximate physical model of sound propagation in the considered system. Data-driven methods bypass
the use of a physical model by learning the mapping from a training set, obtained by manually annotating
features extracted from real data. We proposed a new paradigm that aims at making the best of physics-
driven and data-driven approaches, referred to as virtually-supervised acoustic space mapping [26], [51]. The
idea is to use a physics-based room-acoustic simulator to generate arbitrary large datasets of room-impulse
responses corresponding to various acoustic environments, adapted to the physical audio system at hand. We
demonstrated that mappings learned from these data could potentially be used to not only estimate the 3D
position of a source but also some acoustical properties of the room [51]. We also showed that a virtually-
learned mapping could robustly localize sound sources from real-world binaural input, which is the first result
of this kind in audio source localization [26].
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7.5. Music Content Processing and Information Retrieval
Music structure, music language modeling, System & Contrast model

Current work developed in our research group in the domain of music content processing and information
retrieval explore various information-theoretic frameworks for music structure analysis and description [24],
in particular the System & Contrast model [1].

7.5.1. Tensor-based Representation of Sectional Units in Music
Participants: Corentin Guichaoua, Frédéric Bimbot.

Following Kolmogorov’ÂÂs complexity paradigm, modeling the structure of a musical segment can be
addressed by searching for the compression program that describes as economically as possible the musical
content of that segment, within a given family of compression schemes.

In this general framework, packing the musical data in a tensor-derived representation enables to decompose
the structure into two components : (i) the shape of the tensor which characterizes the way in which the musical
elements are arranged in an n-dimensional space and (ii) the values within the tensor which reflect the content
of the musical segment and minimize the complexity of the relations between its elements.

This approach is currently developed and tested for the grouping of chord sequences into sectional units for
pop music songs, with very encouraging segmentation results on pop songs.

7.5.2. Minimal Transport Graphs for the Modeling of Chord Progressions
Participants: Corentin Louboutin, Frédéric Bimbot.

In this work, we model relations between chords by minimal transport and we investigate different types
of dependencies within chord sequences [33]. For this purpose we use the ÂÂSystem & Contrast (S&C)
model [1], designed for the description of music sectional units, to infer non-sequential structures called chord
progression graphs (CPG).

Minimal transport is defined as the shortest displacement of notes, in semitones, between a pair of chords. The
paper [33] present three algorithms to find CPGs for chords sequences: one is sequential, and two others are
based on the S& C model. The three methods are compared using the perplexity as an efficiency measure.

The experiments on a corpus of 45 segments taken from songs of multiple genres indicate that optimization
processes based on the S&C model outperform the sequential model with a decrease in perplexity over 1.0.

7.5.3. Regularity Constraints for the Fusion of Music Structure Segmentation System
Participant: Frédéric Bimbot.

Main collaborations Gabriel Sargent (EPI LinkMedia, Rennes, France)

Music structure estimation has recently emerged as a central topic within the field of Music Information
Retrieval. Indeed, as music is a highly structured information stream, knowledge of how a music piece is
organized represents a key challenge to enhance the management and exploitation of large music collections.

Former work carried out in our group [9] has illustrated the benefits that can be expected from a regularity
constraint on the structural segmentation of popular music pieces : a constraint which favors structural
segments of comparable size provides a better conditioning of the boundary estimation process.

As a further investigation, we have explored the benefits of the regularity constraint as an efficient way
for combining the outputs of a selection of systems presented at MIREX between 2010 and 2015. These
experiments have yielded a level of performance which is competitive to that of the state-of-the-art on the
”MIREX10" dataset (100 J-Pop songs from the RWC database) [18].
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8. Bilateral Contracts and Grants with Industry
8.1. Bilateral Contracts with Industry
8.1.1. Licensing agreement contract with Cedar Audio Limited

Participants: Nancy Bertin, Srdan Kitic, Rémi Gribonval.

This contract aimed at licensing an audio desaturation (declipping) software developed in the team.

8.2. Bilateral Grants with Industry
8.2.1. CIFRE contract with Technicolor R&I France on Very large scale visual comparison

Participants: Rémi Gribonval, Himalaya Jain.
Duration: 3 years (2015-2018)
Research axis: 3.1.2
Partners: Technicolor R&I France, Inria-Rennes
Funding: Technicolor R&I France, ANRT

The grand goal of this thesis is to design, analyze and test new tools to allow large-scale comparison of
high-dimensional visual signatures. Leveraging state of the art visual descriptors, the objective is to obtain
new compact codes for visual representations, exploiting sparsity and learning, so that they can be stored and
compared in an efficient, yet meaningful, way.

9. Partnerships and Cooperations
9.1. National Initiatives
9.1.1. Labex Comin Labs projects

CominLabs is a Laboratoire d’Excellence funded by the PIA (Programme Investissements d’Avenir) in the
broad area of telecommunications.

9.1.1.1. HEMISFER
Participant: Rémi Gribonval.

Acronym: HYBRID (Hybrid Eeg-MrI and Simultaneous neuro-feedback for brain Rehabilitation)
http://www.hemisfer.cominlabs.ueb.eu/
Research axis: 3.1
CominLabs partners : EPI VISAGES; EPI HYBRID; EPI PANAMA
External partners : EA 4712 team from University of Rennes I; EPI ATHENA, Sophia-Antipolis;
Coordinator: Christian Barillot, EPI VISAGES
Description: The goal of HEMISFER is to make full use of neurofeedback paradigm in the context
of rehabilitation and psychiatric disorders. The major breakthrough will come from the use of a cou-
pling model associating functional and metabolic information from Magnetic Resonance Imaging
(fMRI) to Electro-encephalography (EEG) to "enhance" the neurofeedback protocol. We propose to
combine advanced instrumental devices (Hybrid EEG and MRI platforms), with new man-machine
interface paradigms (Brain computer interface and serious gaming) and new computational models
(source separation, sparse representations and machine learning) to provide novel therapeutic and
neuro-rehabilitation paradigms in some of the major neurological and psychiatric disorders of the
developmental and the aging brain (stroke, attention-deficit disorder, language disorders, treatment-
resistant mood disorders, Ã¢ÂÂ¦).
Contribution of PANAMA: PANAMA, in close cooperation with the VISAGES team, contributes to
a coupling model between EEG and fMRI considered as a joint inverse problem addressed with
sparse regularization. By combining both modalities, one expects to achieve a good reconstruction
both in time and space. This new imaging technique will then be used for improving neurofeedback
paradigms in the context of rehabilitation and psychiatric disorders, which is the final purpose of the
HEMISFER project.

http://www.hemisfer.cominlabs.ueb.eu/
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9.1.1.2. TEPN
Participant: Rémi Gribonval.

Acronym: TEPN (Toward Energy Proportional Networks)
http://www.tepn.cominlabs.ueb.eu/
Research axis: 3.1
CominLabs partners : IRISA OCIF - Telecom Bretagne; IETR SCN; IETR SCEE; EPI PANAMA
Coordinator: Nicolas Montavont, IRISA OCIF - Telecom Bretagne
Description: As in almost all areas of engineering in the past several decades, the design of computer
and network systems has been aimed at delivering maximal performance without regarding to the
energy efficiency or the percentage of resource utilization. The only places where this tendency
was questioned were battery-operated devices (such as laptops and smartphones) for which the
users accept limited (but reasonable) performance in exchange for longer use periods. Even
though the end users make such decisions on a daily basis by checking their own devices, they
have no way of minimizing their energy footprint (or conversely, optimize the network resource
usage) in the supporting infrastructure. Thus, the current way of dimensioning and operating
the infrastructure supporting the user services, such as cellular networks and data centers, is to
dimension for peak usage. The problem with this approach is that usage is rarely at its peak. The
overprovisioned systems are also aimed at delivering maximal performance, with energy efficiency
being considered as something desired, but non-essential. This project aims at making the network
energy consumption proportional to the actual charge of this network (in terms of number of
served users, or requested bandwidth). An energy proportional network can be designed by taking
intelligent decisions (based on various constraints and metrics) into the network such as switching
on and off network components in order to adapt the energy consumption to the user needs. This
concept can be summarized under the general term of Green Cognitive Network Approach.
Contribution of PANAMA: PANAMA, in close cooperation with the SCEE team at IETR (thesis of
Marwa Chafii), focuses on the design of new waveforms for multi carrier systems with reduced Peak
to Average Power Ratio (PAPR).

9.1.2. ANR INVATE project with IRT b<>com France
Participants: Rémi Gribonval, Nancy Bertin, Mohamed Hafsati.

Thesis on 3D audio scene decomposition for interactive navigation
Duration: 3 years (2016-2019)
Research axis: 3.2.2
Partners: IRT b<>com, Inria-Rennes, IRISA
Funding: ANR INVATE project (PIA)

The objective of this thesis is to develop tools to analyze audio scenes in order to identify, locate, and extract
the sources present in the scene to re-spatialize them according to the user head orientation and the movement
of the user in the targeted virtual scene.

9.1.3. OSEO-FUI: voiceHome
Participants: Nancy Bertin, Frédéric Bimbot, Romain Lebarbenchon, Ewen Camberlein.

Duration: 3 years (2015-2017)
Research axis: 3.2
Partners: onMobile, Delta Dore, eSoftThings, Orange, Technicolor, LOUSTIC, Inria Nancy
Coordinator: onMobile
Description: The goal of the project is to design and implement a multi-channel voice interface for
smart home and multimedia (set-top-box) appliances.
Contributions of PANAMA are focused on (i) audio activity monitoring and wake-up word detection
and (ii) audio source localization and separation. In both cases, the issue of energy frugality is
central and strongly constrains the available resources. We expect from this cooperation to make
progress towards operational low-resource audio source separation schemes and we intend to
investigate compressive sensing for the characterization of audio and voice activity.

http://www.tepn.cominlabs.ueb.eu/
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9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. ERC-StG: PLEASE (Projections, Learning, and Sparsity for Efficient Data Processing)

Participants: Rémi Gribonval, Srdan Kitic, Luc Le Magoarou, Nancy Bertin, Nicolas Keriven, Yann Traon-
milin, Gilles Puy, Adrien Leman, Nicolas Bellot.

Duration: January 2012 - December 2016
Research axis: 3.1
Principal investigator: Rémi Gribonval
Program: ERC Starting Grant
Project acronym: PLEASE
Project title: Projections, Learning and Sparsity for Efficient data processing
Abstract: The Please ERC is focused on the extension of the sparse representation paradigm towards
that of sparse modeling, with the challenge of establishing, strengthening and clarifying connections
between sparse representations and machine learning
Web site: https://team.inria.fr/panama/projects/please/

9.3. International Initiatives
9.3.1. Inria International Partners
9.3.1.1. Informal International Partners

PANAMA has strong recurrent collaborations with the LTS2 lab at EPFL, the Center for Digital Music at
Queen Mary University of London, the Institute for Digital Communications at the University of Edimburgh,
and the Institute for Mathematics of the Postdam University.

9.4. International Research Visitors
9.4.1. Visits of International Scientists

• Pierre Vandergheynst, in June-July, Professor of Signal and Image Processing, EPFL (Chaire
Internationale Inria)

• Gilles Blanchard, in September, Professor, University of Potsdam
• Laurent Jacques, in October, Professor, Catholic University of Louvain
• Mike Davies, in November, Professor, University of Edimburgh

10. Dissemination

10.1. Promoting Scientific Activities
Rémi Gribonval is a member of the IEEE Technical Committee on Signal Processing Theory and Methods
(2012–2017), and a member of the Awards sub-committee.

Rémi Gribonval is a member of the program committee of the GRETSI.

Rémi Gribonval is a member of the Steering Committee of the SPARS international workshop (chairman until
2013).

Frédéric Bimbot is the Head of the "Digital Signals and Images, Robotics" department in IRISA (UMR 6074).

Frédéric Bimbot is a member of the International Advisory Council of ISCA (International Speech Commu-
nication Association).

https://team.inria.fr/panama/projects/please/
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Rémi Gribonval and Frédéric Bimbot are the scientific coordinators of the Science and Music Day (Journée
Science et Musique) organized by IRISA.

Antoine Deleforge organized and co-chaired with Prof. Sharon Gannot (Bar-Ilan University) a special
session on “Learning-Based Sound Source Localization and Spatial Information Retrieval” at ICASSP 2016,
Shanghai, China.

N. Bertin, A. Deleforge, and R. Gribonval co-organized a special session entitled “From Source Position
to Room Properties : Learning Methods for Audio Scene Geometry Estimation”, at the 2017 LVA/ICA
Conference, Grenoble, February 2017

R. Gribonval was the organizer of a special session on “Multiscale Factorizations and Learning”, at the 2016
IEEE Information Theory Workshop, Cambridge, UK, September 2016

R. Gribonval was guest editor of a special issue of IEEE Journal on Selected Topics in Signal Processing, on
Structured Matrices in Signal and Data Processing.

F. Bimbot was an invited speaker at the Dagstuhl Seminar 16092 on Computational Music Structure Analysis
(February 2016, Dagstuhl, Germany)

R. Gribonval was an invited speaker at the London Workshop on Sparse Signal Processing (Imperial College,
September 2016), the DALI (Data Learning and Inference) Workshop on Learning Theory (Sestri Levante,
March 2016), the Workshop on Computational and Statistical Trade-offs in Learning (IHES, Bures-sur-Yvette,
March 2016), and the Workshop on Low Complexity Models in Signal Processing (Hausdorff Institute, Bonn,
February 2016).

R. Gribonval is a member of the jury of the GDR ISIS / GRETSI / Club EAA thesis prize in signal and image
processing since 2014.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Bachelor : N. Bertin, "Discovery of selected topics in audio signal processing research", 6 hours, L3,
École Supérieure de Réalisation Audiovisuelle (ESRA), France.

Master : N. Bertin, "Audio rendering, coding and source separation", 6 hours, M2, Université Rennes
1, France.

Master : N. Bertin, "Audio indexing and classification", 6 hours, M2, Université Rennes 1, France.

Master : N. Bertin, "Fundamentals of Signal Processing", 24 hours, M1, Ecole Normale Supérieure
de Bretagne, Rennes, France.

Master : N. Bertin, "Sparse representations and compressive sensing", 15 hours, M2, Ecole Nationale
de la Statistique et de l’Analyse de l’Information, Rennes, France.

Master : N. Bertin, "Sparsity in Signal and Image Processing", 10 hours, M1, Ecole Normale
Supérieure de Bretagne, Rennes, France.

Master : N. Bertin, "Sparsity in Signal and Image Processing”, 12 hours, M2, Institut National des
Sciences Appliquées (INSA) de Rennes, France.

Master : R. Gribonval, "Signal and image representations", 8 hours, M2, Université Rennes 1,
France.

Master: R. Gribonval, coordination of the ARD module "Acquisition et Représensation de Données",
20hours, M2, Université Rennes 1, France.

Master : R. Gribonval, "Sparsity in Signal and Image Processing”, 6 hours, M2, Institut National des
Sciences Appliquées (INSA) de Rennes, France.

Master : R. Gribonval, coordination of the module "Sparsity in Signal and Image Processing”, 48
hours, M2, Institut National des Sciences Appliquées (INSA) de Rennes, France.
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Bachelor : A. Deleforge, "Discovery of selected topics in audio signal processing research”, 6 hours,
L3, École Supérieure de Réalisation Audiovisuelle (ESRA), France.

Master : A. Deleforge, "Sparsity in Signal and Image Processing”, 4 hours, M2, Institut National des
Sciences Appliquées (INSA) de Rennes, France.

10.3. Popularization
10.3.1. Journée Science et Musique

Participants: Antoine Deleforge, Rémi Gribonval, Frédéric Bimbot, Romain Lebarbenchon, Adrien Leman,
Nicolas Bellot, Clément Gaultier, Nancy Bertin, Nicolas Keriven, Ewen Camberlein, Luc Le Magoarou,
Armelle Mozziconacci, Stéphanie Lemaile, Corentin Louboutin, Nicolas Tremblay, Corentin Guichaoua,
Srdan Kitic.

with contributions and support from: Valérie Gouranton, Laurent Perraudeau, Nathalie Denis, Evelyne Orain,
Agnès Cottais, and many more.

PANAMA coordinated the organization of a public event called “JournÃ©e Science et Musique” (“Music and
Science Day”). This yearly event organized by the METISS/ PANAMA Team since 2011 aims at sharing with
the wide audience the latest innovations and research projects in music. The motivation for hosting this event
is to explain and promote the technology behind audio-processing that people face in their daily lives. The
event is free to everyone and people have the possibility to attend talks by selected speakers or meet numerous
experts that demonstrate current projects in which people can interactively participate. Edition 2016 hosted
more than 500 visitors and was the official opening event of the “Festival des Sciences” week in Rennes.
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