
Activity Report 2016

Project-Team TEA

Time, Events and Architectures

RESEARCH CENTER
Rennes - Bretagne-Atlantique

THEME
Embedded and Real-time Systems

Table of contents

1. Members . 2
2. Overall Objectives . 2

2.1. Introduction 2
2.2. Context 3
2.3. Motivations 3
2.4. Challenges 4

3. Research Program . 4
3.1. Previous Works 4
3.2. Modeling Times 5
3.3. Modeling Architectures 6
3.4. Scheduling Theory 6
3.5. Virtual Prototyping 7

4. Application Domains .8
4.1. Automotive and Avionics 8
4.2. Factory Automation 9

5. Highlights of the Year . 9
6. New Software and Platforms . 9

6.1. ADFG: Affine data-flow graphs scheduler synthesis 9
6.2. The Eclipse project POP 10
6.3. The Polychrony toolset 11

7. New Results . 12
7.1. Toward a distribution of ADFG 12
7.2. Modular verification of cyber-physical systems using contract theory 13
7.3. Runtime verification and trace analysis 14
7.4. Polychronous automata and formal validation of AADL models 14
7.5. Formal Semantics of Behavior Specifications in the Architecture Analysis and Design Lan-

guage Standard 15
7.6. Integration of Polychrony with QGen 16
7.7. Code generation for poly-endochronous processes 16

8. Bilateral Contracts and Grants with Industry . 17
8.1. Bilateral Contracts with Industry 17
8.2. Bilateral Grants with Industry 17

9. Partnerships and Cooperations . 18
9.1. National Initiatives 18

9.1.1. ANR 18
9.1.2. PAI CORAC 18

9.2. International Initiatives 18
9.2.1. International Project Grants 18

9.2.1.1. US Air Force Office for Scientific Research – Grant FA8655-13-1-3049 18
9.2.1.2. Applied Science & Technology Research Institute (ASTRI, Hong Kong) 19

9.2.2. Inria International Labs 19
9.2.3. Inria International Partners 19

9.2.3.1. POLYCORE 19
9.2.3.2. VESA 20
9.2.3.3. TIX 20

9.3. International Research Visitors 20
9.3.1. Visits of International Scientists 20
9.3.2. Visits to International Teams 21

10. Dissemination . 21

2 Activity Report INRIA 2016

10.1. Promoting Scientific Activities 21
10.1.1. Scientific events organisation 21

10.1.1.1. General chair, scientific chair 21
10.1.1.2. Member of the organizing committees 21

10.1.2. Scientific events selection 21
10.1.3. Journal 22

10.1.3.1. Member of the editorial boards 22
10.1.3.2. reviewer 22

10.2. Teaching - Supervision - Juries 22
10.2.1. Invited talks 22
10.2.2. Supervision 22
10.2.3. Juries 22

11. Bibliography .22

Project-Team TEA

Creation of the Team: 2014 January 01, updated into Project-Team: 2015 January 01

Keywords:

Computer Science and Digital Science:
1.2. - Networks
1.2.7. - Cyber-physical systems
1.2.8. - Network security
1.5. - Complex systems
1.5.1. - Systems of systems
1.5.2. - Communicating systems
2.1. - Programming Languages
2.1.1. - Semantics of programming languages
2.1.6. - Concurrent programming
2.1.8. - Synchronous languages
2.1.10. - Domain-specific languages
2.2. - Compilation
2.2.1. - Static analysis
2.2.3. - Run-time systems
2.3. - Embedded and cyber-physical systems
2.3.1. - Embedded systems
2.3.2. - Cyber-physical systems
2.3.3. - Real-time systems
2.4. - Verification, reliability, certification
2.4.1. - Analysis
2.4.2. - Model-checking
2.4.3. - Proofs
2.5. - Software engineering
4.4. - Security of equipment and software
4.5. - Formal methods for security
4.7. - Access control
5.7.2. - Music
6.1.1. - Continuous Modeling (PDE, ODE)
6.1.3. - Discrete Modeling (multi-agent, people centered)
6.2.1. - Numerical analysis of PDE and ODE
6.2.5. - Numerical Linear Algebra
6.2.6. - Optimization
7.4. - Logic in Computer Science
7.6. - Computer Algebra

Other Research Topics and Application Domains:
5.1. - Factory of the future
5.2. - Design and manufacturing

https://raweb.inria.fr/rapportsactivite/RA2016/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2016/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2016

6.1.1. - Software engineering
6.4. - Internet of things
6.6. - Embedded systems
9.2.1. - Music, sound
9.4.1. - Computer science

1. Members
Research Scientists

Jean-Pierre Talpin [Inria, Team leader, Senior Researcher, HDR]
Thierry Gautier [Inria, Senior Researcher]
Vania Joloboff [Inria, Senior Researcher]

Engineers
Loïc Besnard [CNRS SED, Senior Research Engineer, seconded at 60%]
Clément Guy [Inria, until Aug 2016]
Alexandre Honorat [Inria]
Hai Nam Tran [Inria, from Dec 2016]

PhD Student
Simon Lunel [Mitsubishi Electrics R&D, granted by CIFRE]

Visiting Scientists
Rajesh Gupta [UC San Diego, Jul 2016]
Brian Larson [FDA/KSU, Jul 2016]

Administrative Assistants
Stéphanie Lemaile [Inria]
Armelle Mozziconacci [CNRS, from May 2016]

Other
Daian Yue [Inria, Master Intern, from Feb 2016 until Jun 2016]

2. Overall Objectives

2.1. Introduction
An embedded architecture is an artifact of heterogeneous constituents and at the crossing of several design
viewpoints: software, embedded in hardware, interfaced with the physical world. Time takes different forms
when observed from each of these viewpoints: continuous or discrete, event-based or time-triggered. Unfor-
tunately, modeling and programming formalisms that represent software, hardware and physics significantly
alter this perception of time. Moreover, time reasoning in system design is usually isolated to a specific design
problem: simulation, profiling, performance, scheduling, parallelization, simulation. The aim of project-team
TEA is to define conceptually unified frameworks for reasoning on composition and integration in cyber-
physical system design, and to put this reasoning to practice by revisiting analysis and synthesis issues in
real-time system design with soundness and compositionality gained from formalization.

Project-Team TEA 3

2.2. Context
In the construction of complex systems, information technology (IT) has become a central force of revolution-
ary changes, driven by the exponential increase of computational power. In the field of telecommunication,
IT provides the necessary basis for systems of networked distributed applications. In the field of control engi-
neering, IT provides the necessary basis for embedded control applications. The combination of telecommu-
nication and embedded systems into networked embedded systems opens up a new range of systems, capable
of providing more intelligent functionality thank to information and communication (ICT). Networked em-
bedded systems have revolutionized several application domains: energy networks, industrial automation and
transport systems.

20th-century science and technology brought us effective methods and tools for designing both computational
and physical systems. But the design of cyber-physical systems (CPS) is much more than the union of
those two fields. Traditionally, information scientists only have a hazy notion of requirements imposed by
the physical environment of computers. Similarly, mechanical, civil, and chemical engineers view computers
strictly as devices executing algorithms. To the extent we have designed CPS, we have done so in an ad hoc,
on-off manner that is not repeatable. A new science of CPS design will allow us to create new machines with
complex dynamics and high reliability, to apply its principles to new industries and applications in a reliable
and economically efficient way. Progress requires nothing less than the construction of a new science and
technology foundation for CPS that is simultaneously physical and computational.

2.3. Motivations
Beyond the buzzword, a CPS is an ubiquitous object of our everyday life. CPSs have evolved from individual
independent units (e.g an ABS brake) to more and more integrated networks of units, which may be aggregated
into larger components or sub-systems. For example, a transportation monitoring network aggregates moni-
tored stations and trains through a large scale distributed system with relatively high latency. Each individual
train is being controlled by a train control network, each car in the train has its own real-time bus to control
embedded devices. More and more, CPSs are mixing real-time low latency technology with higher latency
distributed computing technology.

In the past 15 years, CPS development has moved towards Model Driven Engineering (MDE). With MDE
methodology, first all requirements are gathered together with use cases, then a model of the system is built
(sometimes several models) that satisfy the requirements. There are several modeling formalisms that have
appeared in the past ten years with more or less success. The most successful are the executable models 1 2 3,
i.e., models that can be simulated, exercised, tested and validated. This approach can be used for both software
and hardware.

A common feature found in CPSs is the ever presence of concurrency and parallelism in models. Large
systems are increasingly mixing both types of concurrency. They are structured hierarchically and comprise
multiple synchronous devices connected by buses or networks that communicate asynchronously. This led to
the advent of so-called GALS (Globally Asynchronous, Locally Synchronous) models, or PALS (Physically
Asynchronous, Logically Synchronous) systems, where reactive synchronous objects are communicating
asynchronously. Still, these infrastructures, together with their programming models, share some fundamental
concerns: parallelism and concurrency synchronization, determinism and functional correctness, scheduling
optimality and calculation time predictability.

Additionally, CPSs monitor and control real-world processes, the dynamics of which are usually governed
by physical laws. These laws are expressed by physicists as mathematical equations and formulas. Discrete
CPS models cannot ignore these dynamics, but whereas the equations express the continuous behavior usually
using real numbers (irrational) variables, the models usually have to work with discrete time and approximate
floating point variables.

1Matlab/Simulink, https://fr.mathworks.com/products/simulink.html
2Ptolemy, http://ptolemy.eecs.berkeley.edu
3SysML, http://www.uml-sysml.org

https://fr.mathworks.com/products/simulink.html
http://ptolemy.eecs.berkeley.edu
http://www.uml-sysml.org

4 Activity Report INRIA 2016

2.4. Challenges
A cyber-physical, or reactive, or embedded system is the integration of heterogeneous components originating
from several design viewpoints: reactive software, some of which is embedded in hardware, interfaced with the
physical environment through mechanical parts. Time takes different forms when observed from each of these
viewpoints: it is discrete and event-based in software, discrete and time-triggered in hardware, continuous in
mechanics or physics. Design of CPS often benefits from concepts of multiform and logical time(s) for their
natural description. High-level formalisms used to model software, hardware and physics additionally alter
this perception of time quite significantly.

In model-based system design, time is usually abstracted to serve the purpose of one of many design tasks:
verification, simulation, profiling, performance analysis, scheduling analysis, parallelization, distribution, or
virtual prototyping. For example in non-real-time commodity software, timing abstraction such as number of
instructions and algorithmic complexity is sufficient: software will run the same on different machines, except
slower or faster. Alternatively, in cyber-physical systems, multiple recurring instances of meaningful events
may create as many dedicated logical clocks, on which to ground modeling and design practices.

Time abstraction increases efficiency in event-driven simulation or execution (i.e SystemC simulation models
try to abstract time, from cycle-accurate to approximate-time, and to loosely-time), while attempting to retain
functionality, but without any actual guarantee of valid accuracy (responsibility is left to the model designer).
Functional determinism (a.k.a. conflict-freeness in Petri Nets, monotonicity in Kahn PNs, confluence in
Milner’s CCS, latency-insensitivity and elasticity in circuit design) allows for reducing to some amount the
problem to that of many schedules of a single self-timed behavior, and time in many systems studies is
partitioned into models of computation and communication (MoCCs). Multiple, multiform time(s) raises the
question of combination, abstraction or refinement between distinct time bases. The question of combining
continuous time with discrete logical time calls for proper discretization in simulation and implementation.
While timed reasoning takes multiple forms, there is no unified foundation to reasoning about multi-form time
in system design.

The objective of project-team TEA is henceforth to define formal models for timed quantitative reasoning,
composition, and integration in embedded system design. Formal time models and calculi should allow us
to revisit common domain problems in real-time system design, such as time predictability and determinism,
memory resources predictability, real-time scheduling, mixed-criticality and power management; yet from the
perspective gained from inter-domain timed and quantitative abstraction or refinement relations. A regained
focus on fundamentals will allow to deliver better tooled methodologies for virtual prototyping and integration
of embedded architectures.

3. Research Program

3.1. Previous Works
The challenges of team TEA support the claim that sound Cyber-Physical System design (including embedded,
reactive, and concurrent systems altogether) should consider multi-form time models as a central aspect. In
this aim, architectural specifications found in software engineering are a natural focal point to start from.
Architecture descriptions organize a system model into manageable components, establish clear interfaces
between them, collect domain-specific constraints and properties to help correct integration of components
during system design. The definition of a formal design methodology to support heterogeneous or multi-form
models of time in architecture descriptions demands the elaboration of sound mathematical foundations and
the development of formal calculi and methods to instrument them. This constitutes the research program of
team TEA.

Project-Team TEA 5

System design based on the “synchronous paradigm” has focused the attention of many academic and
industrial actors on abstracting non-functional implementation details from system design. This elegant design
abstraction focuses on the logic of interaction in reactive programs rather than their timed behavior, allowing
to secure functional correctness while remaining an intuitive programming model for embedded systems. Yet,
it corresponds to embedded technologies of single cores and synchronous buses from the 90s, and may hardly
cover the semantic diversity of distribution, parallelism, heterogeneity, of cyber-physical systems found in 21st
century Internet-connected, true-timeTM -synchronized clouds, of tomorrow’s grids.

By contrast with a synchronous hypothesis yet from the same era, the polychronous MoCC implemented
in the data-flow specification language Signal, available in the Eclipse project POP 4 and in the CCSL
standard. 5, are inherently capable of describing multi-clock abstractions of GALS systems. The POP and
TimeSquare projects provide tooled infrastructures to refine high-level specifications into real-time streaming
applications or locally synchronous and globally asynchronous systems, through a series of model analysis,
verification, and synthesis services. These tool-supported refinement and transformation techniques can assist
the system engineer from the earliest design stages of requirement specification to the latest stages of synthesis,
scheduling and deployment. These characteristics make polychrony much closer to the required semantic for
compositional, refinement-based, architecture-driven, system design.

While polychrony was a step ahead of the traditional synchronous hypothesis, CCSL is a leap forward from
synchrony and polychrony. The essence of CCSL is “multi-form time” toward addressing all of the domain-
specific physical, electronic and logical aspects of cyber-physical system design.

3.2. Modeling Times
To make a sense and eventually formalize the semantics of time in system design, we should most certainly rely
on algebraic representations of time found in previous works and introduce the paradigm of "time systems"
(type systems to represent time) in a way reminiscent to CCSL. Just as a type system abstracts data carried
along operations in a program, a time system abstracts the causal interaction of that program module or
hardware element with its environment, its pre and post conditions, its assumptions and guarantees, either
logical or numerical, discrete or continuous. Some fundamental concepts of the time systems we envision are
present in the clock calculi found in data-flow synchronous languages like Signal or Lustre, yet bound to a
particular model of concurrency, hence time.

In particular, the principle of refinement type systems 6, is to associate information (data-types) inferred from
programs and models with properties pertaining, for instance, to the algebraic domain on their value, or any
algebraic property related to its computation: effect, memory usage, pre-post condition, value-range, cost,
speed, time, temporal logic 7. Being grounded on type and domain theories, a time system should naturally
be equipped with program analysis techniques based on type inference (for data-type inference) or abstract
interpretation (for program properties inference) to help establish formal relations between heterogeneous
component “types”. Just as a time calculus may formally abstract timed concurrent behaviors of system
components, timed relations (abstraction and refinement) represent interaction among components.

Scalability and compositionality requires the use of assume-guarantee reasoning to represent them, and
to facilitate composition by behavioral sub-typing, in the spirit of the (static) contract-based formalism
proposed by Passerone et al. 8. Verification problems encompassing heterogeneously timed specifications
are common and of great variety: checking correctness between abstract and concrete time models relates
to desynchronisation (from synchrony to asynchrony) and scheduling analysis (from synchrony to hardware).
More generally, they can be perceived from heterogeneous timing viewpoints (e.g. mapping a synchronous-
time software on a real-time middle-ware or hardware).

4Polychrony on Polarsys, https://www.polarsys.org/projects/polarsys.pop
5Clock Constraints in UML/MARTE CCSL. C. André, F. Mallet. RR-6540. Inria, 2008. http://hal.inria.fr/inria-00280941
6Abstract Refinement Types. N. Vazou, P. Rondon, and R. Jhala. European Symposium on Programming. Springer, 2013.
7LTL types FRP. A. Jeffrey. Programming Languages meets Program Verification.
8A contract-based formalism for the specification of heterogeneous systems. L. Benvenistu, et al. FDL, 2008

https://www.polarsys.org/projects/polarsys.pop
http://hal.inria.fr/inria-00280941

6 Activity Report INRIA 2016

This perspective demands capabilities not only to inject time models one into the other (by abstract inter-
pretation, using refinement calculi), to compare time abstractions one another (using simulation, refinement,
bi-simulation, equivalence relations) but also to prove more specific properties (synchronization, determinism,
endochrony). All this formalization effort will allow to effectively perform the tooled validation of common
cross-domain properties (e.g. cost v.s. power v.s. performance v.s. software mapping) and tackle equally com-
mon yet though case studies such as these linking battery capacity, to on-board CPU performance, to static
software schedulability, to logical software correctness and plant controllability: the choice of the right sam-
pling period across the system components.

3.3. Modeling Architectures
To address the formalization of such cross-domain case studies, modeling the architecture formally plays an
essential role. An architectural model represents components in a distributed system as boxes with well-defined
interfaces, connections between ports on component interfaces, and specifies component properties that can be
used in analytical reasoning about the model. Several architectural modeling languages for embedded systems
have emerged in recent years, including the SAE AADL 9, SysML 10, UML MARTE 11.

In system design, an architectural specification serves several important purposes. First, it breaks down a
system model into manageable components to establish clear interfaces between components. In this way,
complexity becomes manageable by hiding details that are not relevant at a given level of abstraction. Clear,
formally defined, component interfaces allow us to avoid integration problems at the implementation phase.
Connections between components, which specify how components affect each other, help propagate the effects
of a change in one component to the linked components.

Most importantly, an architectural model is a repository to share knowledge about the system being designed.
This knowledge can be represented as requirements, design artifacts, component implementations, held
together by a structural backbone. Such a repository enables automatic generation of analytical models for
different aspects of the system, such as timing, reliability, security, performance, energy, etc. Since all the
models are generated from the same source, the consistency of assumptions w.r.t. guarantees, of abstractions
w.r.t. refinements, used for different analyses becomes easier, and can be properly ensured in a design
methodology based on formal verification and synthesis methods.

Related works in this aim, and closer in spirit to our approach (to focus on modeling time) are domain-
specific languages such as Prelude 12 to model the real-time characteristics of embedded software architectures.
Conversely, standard architecture description languages could be based on algebraic modeling tools, such as
interface theories with the ECDAR tool 13.

In project TEA, it takes form by the normalization of the AADL standard’s formal semantics and the proposal
of a time specification annex in the form of related standards, such as CCSL, to model concurrency time and
physical properties, and PSL, to model timed traces.

3.4. Scheduling Theory
Based on sound formalization of time and CPS architectures, real-time scheduling theory provides tools
for predicting the timing behavior of a CPS which consists of many interacting software and hardware
components. Expressing parallelism among software components is a crucial aspect of the design process
of a CPS. It allows for efficient partition and exploitation of available resources.

The literature about real-time scheduling 14 provides very mature schedulability tests regarding many schedul-
ing strategies, preemptive or non-preemptive scheduling, uniprocessor or multiprocessor scheduling, etc.
Scheduling of data-flow graphs has also been extensively studied in the past decades.

9Architecture Analysis and Design Language, AS-5506. SAE, 2004. http://standards.sae.org/as5506b
10System modeling Language. OMG, 2007. http://www.omg.org/spec/SysML
11UML Profile for MARTE. OMG, 2009. http://www.omg.org/spec/MARTE
12The Prelude language. LIFL and ONERA, 2012. http://www.lifl.fr/~forget/prelude.html
13PyECDAR, timed games for timed specifications. Inria, 2013. https://project.inria.fr/pyecdar
14A survey of hard real-time scheduling for multiprocessor systems. R. I. Davis and A. Burns. ACM Computing Survey 43(4), 2011.

http://standards.sae.org/as5506b
http://www.omg.org/spec/SysML
http://www.omg.org/spec/MARTE
http://www.lifl.fr/~forget/prelude.html
https://project.inria.fr/pyecdar

Project-Team TEA 7

A milestone in this prospect is the development of abstract affine scheduling techniques 15. It consists, first,
of approximating task communication patterns (here Safety-Critical Java threads) using cyclo-static data-
flow graphs and affine functions. Then, it uses state of the art ILP techniques to find optimal schedules and
concretize them as real-time schedules for Safety Critical Java programs 16 17.

Abstract scheduling, or the use of abstraction and refinement techniques in scheduling borrowed to the
theory of abstract interpretation 18 is a promising development toward tooled methodologies to orchestrate
thousands of heterogeneous hardware/software blocks on modern CPS architectures (just consider modern
cars or aircrafts). It is an issue that simply defies the state of the art and known bounds of complexity theory
in the field, and consequently requires a particular address.

To develop the underlying theory of this promising research topic, we first need to deepen the theoretical
foundation to establish links between scheduling analysis and abstract interpretation. A theory of time systems
would offer the ideal framework to pursue this development. It amounts to representing scheduling constraints,
inferred from programs, as types or contract properties. It allows to formalize the target time model of the
scheduler (the architecture, its middle-ware, its real-time system) and defines the basic concepts to verify
assumptions made in one with promises offered by the other: contract verification or, in this case, synthesis.

3.5. Virtual Prototyping
Virtual Prototyping is the technology of developing realistic simulators from models of a system under design;
that is, an emulated device that captures most, if not all, of the required properties of the real system, based on
its specifications. A virtual prototype should be run and tested like the real device. Ideally, the real application
software would be run on the virtual prototyping platform and produce the same results as the real device with
the same sequence of outputs and reported performance measurements. This may be true to some extent only.
Some trade-offs have often to be made between the accuracy of the virtual prototype, and time to develop
accurate models.

In order to speed-up simulation time, the virtual prototype must trade-off with something. Depending upon
the application designer’s goals, one may be interested in trading some loss of accuracy in exchange for
simulation speed, which leads to constructing simulation models that focus on some design aspects and
provide abstraction of others. A simulation model can provide an abstraction of the simulated hardware in
three directions:

• Computation abstraction. A hardware component computes a high level function by carrying out a
series of small steps executed by composing logical gates. In a virtual prototyping environment, it is
often possible to compute the high level function directly by using the available computing resources
on the simulation host machine, thus abstracting the hardware function.

• Communication abstraction. Hardware components communicate together using some wiring, and
some protocol to transmit the data. Simulation of the communication and the particular protocol may
be irrelevant for the purpose of virtual prototyping: communication can be abstracted into higher
level data transmission functions.

• Timing Abstraction. In a cycle accurate simulator, there are multiple simulation tasks, and each task
makes some progress on each clock cycle, but this slows down the simulation. In a virtual prototyping
experiment, one may not need such precise timing information: coarser time abstractions can be
defined allowing for faster simulation.

The cornerstone of a virtual prototyping platform is the component that simulates the processor(s) of the
platform, and its associated peripherals. Such simulation can be static or dynamic.

15Buffer minimization in EDF scheduling of data-flow graphs. A. Bouakaz and J.-P. Talpin. LCTES, ACM, 2013.
16ADFG for the synthesis of hard real-time applications. A. Bouakaz, J.-P. Talpin, J. Vitek. ACSD, IEEE, June 2012.
17Design of SCJ Level 1 Applications Using Affine Abstract Clocks. A. Bouakaz and J.-P. Talpin. SCOPES, ACM, 2013.
18La vérification de programmes par interprétation abstraite. P. Cousot. Séminaire au Collège de France, 2008.

8 Activity Report INRIA 2016

A solution usually adopted to handle time in virtual prototyping is to manage hierarchical time scales, use
component abstractions where possible to gain performance, use refinement to gain accuracy where needed.
Localized time abstraction may not only yield faster simulation, but facilitate also verification and synthesis
(e.g. synchronous abstractions of physically distributed systems). Such an approach requires computations and
communications to be harmoniously discretized and abstracted from originally heterogeneous viewpoints onto
a structuring, articulating, pivot model, for concerted reasoning about time and scheduling of events in a way
that ensures global system specification correctness.

In the short term these component models could be based on libraries of predefined models of different levels
of abstractions. Such abstractions are common in large programming workbench for hardware modeling, such
as SystemC, but less so, because of the engineering required, for virtual prototyping platforms.

The approach of team TEA provides an additional ingredient in the form of rich component interfaces. It
therefore dictates to further investigate the combined use of conventional virtual prototyping libraries, defined
as executable abstractions of real hardware, with executable component simulators synthesised from rich
interface specifications (using, e.g., conventional compiling techniques used for synchronous programs).

4. Application Domains
4.1. Automotive and Avionics

From our continuous collaboration with major academic and industrial partners through projects TOPCASED,
OPENEMBEDD, SPACIFY, CESAR, OPEES, P and CORAIL, our experience has primarily focused on the
aerospace domain. The topics of time and architecture of team TEA extend to both avionics and automotive.
Yet, the research focus on time in team TEA is central in any aspect of, cyber-physical, embedded system
design in factory automation, automotive, music synthesis, signal processing, software radio, circuit and
system on a chip design; many application domains which, should more collaborators join the team, would
definitely be worth investigating.

Multi-scale, multi-aspect time modeling, analysis and software synthesis will greatly contribute to architecture
modeling in these domains, with applications to optimized (distributed, parallel, multi-core) code generation
for avionics (project Corail with Thales avionics, section 8) as well as modeling standards, real-time simulation
and virtual integration in automotive (project with Toyota ITC, section 8).

Together with the importance of open-source software, one of these projects, the FUI Project P (section 8),
demonstrated that a centralized model for system design could not just be a domain-specific programming
language, such as discrete Simulink data-flows or a synchronous language. Synchronous languages implement
a fixed model of time using logical clocks that are abstraction of time as sensed by software. They correspond
to a fixed viewpoint in system design, and in a fixed hardware location in the system, which is not adequate to
our purpose and must be extended.

In project P, we first tried to define a centralized model for importing discrete-continuous models onto a
simplified implementation of SIMULINK: P models. Certified code generators would then be developed from
that format. Because this does not encompass all aspects being translated to P, the P meta-model is now being
extended to architecture description concepts (of the AADL) in order to become better suited for the purpose
of system design. Another example is the development of System modeler on top of SCADE, which uses the
more model-engineering flavored formalism SysML to try to unambiguously represent architectures around
SCADE modules.

An abstract specification formalism, capable of representing time, timing relations, with which heterogeneous
models can be abstracted, from which programs can be synthesized, naturally appears better suited for the
purpose of virtual prototyping. RT-Builder, based on Signal like Polychrony and developed by TNI, was
industrially proven and deployed for that purpose at Peugeot. It served to develop the virtual platform
simulating all on-board electronics of PSA cars. This ‘hardware in the loop” simulator was used to test
equipments supplied by other manufacturers with respect to virtual cars. In the advent of the related automotive
standard, RT-Builder then became AUTOSAR-Builder.

Project-Team TEA 9

4.2. Factory Automation
In collaboration with Mitsubishi R&D, we explore another application domain where time and domain het-
erogeneity are prime concerns: factory automation. In factory automation alone, a system is conventionally
built from generic computing modules: PLCs (Programmable Logic Controllers), connected to the environ-
ment with actuators and detectors, and linked to a distributed network. Each individual, physically distributed,
PLC module must be timely programmed to perform individually coherent actions and fulfill the global phys-
ical, chemical, safety, power efficiency, performance and latency requirements of the whole production chain.
Factory chains are subject to global and heterogeneous (physical, electronic, functional) requirements whose
enforcement must be orchestrated for all individual components.

Model-based analysis in factory automation emerges from different scientific domains and focus on different
CPS abstractions that interact in subtle ways: logic of PLC programs, real-time electromechanical processing,
physical and chemical environments. This yields domain communication problems that render individual
domain analysis useless. For instance, if one domain analysis (e.g. software) modifies a system model in a
way that violates assumptions made by another domain (e.g. chemistry) then the detection of its violation
may well be impossible to explain to either of the software and chemistry experts. As a consequence, cross-
domain analysis issues are discovered very late during system integration and lead to costly fixes. This
is particularly prevalent in multi-tier industries, such as avionic, automotive, factories, where systems are
prominently integrated from independently-developed parts.

5. Highlights of the Year

5.1. Highlights of the Year
In 2016, TEA was successfully evaluated, one year after its creation. The team started fruitful collaborations
with UC San Diego, with Mitsubishi R&D, with ASTRI, to elaborate our research program on system
composition, verification, and simulation toward novel applications perspectives in codesign, operating system
design, factory automation, robotics.

6. New Software and Platforms

6.1. ADFG: Affine data-flow graphs scheduler synthesis
Participants: Alexandre Honorat, Jean-Pierre Talpin, Thierry Gautier, Loïc Besnard.

We proposed [2], and implemented 19, a new data-flow design model: ADFG, initially to synthesize schedulers
for SCJ/L1 applications. The principle of ADFG is to perform a linear abstraction of complex cyclo-static
scheduling problems followed by the exploration of a concrete solution extracted from the abstract solution
space, hence the name: abstract affine data-flow scheduling. ADFG guarantees schedules that ordinary (e.g.
RTJ, SCJ) task-sets do not cause overflows or underflows. ADFG objectives are to maximize the throughput
(the processors utilization) while minimizing buffering storage space needed between actors. ADFG supports
EDF and fixed-priority scheduling policies for uni-, multi-processors and distributed systems.

The data-flow design model of ADFG comes with a development tool integrated in the Eclipse IDE for
easing the development of SCJ/L1 applications and enforcing the restrictions imposed by the design model.
It consists of a GMF editor where applications are designed graphically and timing and buffering parameters
can be synthesized. Abstract affine scheduling is first applied on the data-flow subgraph, that consists only of
periodic actors, to compute timeless scheduling constraints (e.g. relation between the speeds of two actors)
and buffering parameters. Then, symbolic fixed-priority schedulability analysis (i.e., synthesis of timing and
scheduling parameters of actors) considers both periodic and aperiodic actors.

19The ADFG tool, Adnan Bouakaz, http://people.irisa.fr/Adnan.Bouakaz/software.htm

http://people.irisa.fr/Adnan.Bouakaz/software.htm

10 Activity Report INRIA 2016

In the case of safety-critical Java, and through a model-to-text transformations using Acceleo, SCJ code
for missions, interfaces of handlers, and the mission sequencer is automatically generated in addition to
the annotations needed by the memory checker. Channels are implemented as cyclic arrays or cyclical
asynchronous buffers; and a fixed amount of memory is hence reused to store the infinite streams of tokens.

Figure 1. The ADFG tool

6.2. The Eclipse project POP
Participants: Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin.

The distribution of project POP is a major achievement of the ESPRESSO (and now TEA) project-team.
The Eclipse project POP is a model-driven engineering front-end to our open-source toolset Polychrony. It
was finalized in the frame of project OPEES, as a case study: by passing the POLARSYS qualification kit
as a computer aided simulation and verification tool. This qualification was implemented by CS Toulouse
in conformance with relevant generic (platform independent) qualification documents. Polychrony is now
distributed by the Eclipse project POP on the platform of the POLARSYS industrial working group. Project-
team TEA aims at continuing its dissemination to academic partners, as to its principles and features, and
industrial partners, as to the services it can offer.

Project POP is composed of the Polychrony tool set, under GPL license, and its Eclipse framework, under EPL
license. SSME (Syntactic Signal-Meta under Eclipse), is the meta-model of the Signal language implemented
with Eclipse/Ecore. It describes all syntactic elements specified in Signal Reference Manual 20: all Signal
operators (e.g. arithmetic, clock synchronization), model (e.g. process frame, module), and construction (e.g.
iteration, type declaration). The meta-model primarily aims at making the language and services of the
Polychrony environment available to inter-operation and composition with other components (e.g. AADL,
Simulink, GeneAuto, P) within an Eclipse-based development tool-chain. Polychrony now comprises the

20

SIGNAL V4-Inria version: Reference Manual. Besnard, L., Gautier, T. and Le Guernic, P.
http://www.irisa.fr/espresso/Polychrony, 2010

http://www.irisa.fr/espresso/Polychrony

Project-Team TEA 11

Figure 2. The Eclipse POP Environment

capability to directly import and export Ecore models instead of textual Signal programs, in order to facilitate
interaction between components within such a tool-chain. The download site for project POP has opened in
2015 at https://www.polarsys.org/projects/polarsys.pop. It should be noted that the Eclipse Foundation does
not host code under GPL license. So, the Signal toolbox useful to compile Signal code from Eclipse is hosted
on our web server.

6.3. The Polychrony toolset
Participants: Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin.

The Polychrony toolset is an Open Source development environment for critical/embedded systems. It is
based on Signal, a real-time polychronous data-flow language. It provides a unified model-driven environment
to perform design exploration by using top-down and bottom-up design methodologies formally supported
by design model transformations from specification to implementation and from synchrony to asynchrony.
It can be included in heterogeneous design systems with various input formalisms and output languages.
The Polychrony tool-set provides a formal framework to: validate a design at different levels, by the way of
formal verification and/or simulation; refine descriptions in a top-down approach; abstract properties needed
for black-box composition; compose heterogeneous components (bottom-up with COTS); generate executable
code for various architectures. The Polychrony tool-set contains three main components and an experimental
interface to GNU Compiler Collection (GCC):

• The Signal toolbox, a batch compiler for the Signal language, and a structured API that provides a
set of program transformations. Itcan be installed without other components and is distributed under
GPL V2 license.

• The Signal GUI, a Graphical User Interface to the Signal toolbox (editor + interactive access to
compiling functionalities). It can be used either as a specific tool or as a graphical view under Eclipse.
In 2015, it has been transformed and restructured, in order to get a more up-to-date interface allowing

https://www.polarsys.org/projects/polarsys.pop

12 Activity Report INRIA 2016

multi-window manipulation of programs. It is distributed under GPL V2 license.

• The SSME platform, a front-end to the Signal toolbox in the Eclipse environment. It is distributed
under EPL license.

Figure 3. The Polychrony toolset high-level architecture

As part of its open-source release, the Polychrony tool-set not only comprises source code libraries but also
an important corpus of structured documentation, whose aim is not only to document each functionality and
service, but also to help a potential developer to package a subset of these functionalities and services, and
adapt them to developing a new application-specific tool: a new language front-end, a new back-end compiler.
This multi-scale, multi-purpose documentation aims to provide different views of the software, from a high-
level structural view to low-level descriptions of basic modules. It supports a distribution of the software “by
apartment” (a functionality or a set of functionalities) intended for developers who would only be interested by
part of the services of the tool-set. The Polychrony tool-set also provides a large library of Signal programs and
examples, user documentations and developer-oriented implementation documents, and facilities to generate
new versions. The Polychrony tool-set can be freely downloaded from http://polychrony.inria.fr/. This site,
intended for users and for developers, contains executable and source versions of the software for different
platforms, user documentation, examples, libraries, scientific publications and implementation documentation.
In particular, this is the site for the open-source distribution of Polychrony. The Inria GForge https://gforge.
inria.fr contains the whole source of the environment and its documentation. It is intended for developers.

7. New Results

7.1. Toward a distribution of ADFG
Participants: Alexandre Honorat, Jean-Pierre Talpin, Thierry Gautier, Loïc Besnard.

http://polychrony.inria.fr/
https://gforge.inria.fr
https://gforge.inria.fr

Project-Team TEA 13

The ADFG tool is being developed in the context of the ADT "Opama" in order to serve both as scheduler
synthesis tool from AADL specifications and ordinary tasksets. ADFG has been partly rewritten in order
to target more users : it is now freely available online and comes with a complete documentation. These
improvements imply that ADFG does not anymore provide Safety Critical Java application generation; its
main purpose of scheduler synthesis is now available from an Eclipse plugin, as a command-line interface,
and also in Polychrony (as part of the AADL to Signal translation process). Moreover ADFG accepts and
exports several file formats with related scheduling tools: SDF3, Yartiss and soon Cheddar.

The Eclipse interface has changed significantly with a dialog window and a console to present the results (as
shown in the figure 4). Also the graphical data-flow graph editor is still present but has been simplified. An
other big change (not seen by the end-user) is the internal use of the free LpSolve linear programming software
instead of CPLEX. Finally, it will soon be possible to use this software not only as a scheduling synthesizer
but also as a scheduling checker (with timing properties given by the user).

Figure 4. ADFG under Eclipse

7.2. Modular verification of cyber-physical systems using contract theory
Participants: Jean-Pierre Talpin, Benoit Boyer, David Mentre, Simon Lunel.

The primary goal of our project, in collaboration with Mitsubishi Electronics Research Centre Europe
(MERCE), is to ensure correctness-by-design in realistic cyber-physical systems, i.e., systems that mix
software and hardware in a physical environment, e.g., Mitsubishi factory automation lines or water-plant
factory. To achieve that, we develop a verification methodology based on contract reasoning.

We have first performed a state of the art of the research and the work of A. Platzer with the Differential
Dynamic Logic (dL) retained our attention 21. This a formalism built on the Dynamic Logic of V. Pratt
augmented with the possibility of expressing Ordinary Differential Equations (ODEs). ODEs are the usual
way to model physical behaviors in physics and dL permits to accurately model cyber-physical systems. But
this logic can also express properties on real arithmetic and there is proof system associated, under the form
of a sequent calculus, which let us a mean to prove specifications. To finish, it is very natural to use contract

21Differential Dynamic Logic for Hybrid Systems, André Platzer, http://symbolaris.com/logic/dL.html

http://symbolaris.com/logic/dL.html

14 Activity Report INRIA 2016

to specify systems since it was the primary goal of the work of V. Pratt. To conclude, dL is particularly fit to
our purpose.

We have some preliminary results about a design-by-composition methodology: we have defined a syntactic
composition operator in dL, which enjoys associativity and commutativity. We have then characterized the
conditions under which we can derive automatically a proof of the contract of our composition. To exemplified
our ideas, we are currently studying a simplified water-tank system, which will serve as a basis for more
realistic case studies. We plan to provide refinement and abstraction mechanisms to ultimately allow a mix
between vertical and horizontal design.

7.3. Runtime verification and trace analysis
Participants: Vania Joloboff, Daian Yue, Frédéric Mallet.

When engineers design a new cyber physical system, there are well known requirements that can be translated
as system properties that must be verified. These properties can be expressed in some formalism and when the
model has been designed, the properties can be checked at the model level, using model checking techniques
or other model verification techniques.

This requires that the properties are well specified at the time the virtual prototype is assembled. However it
is also the case that many intrinsic properties are actually unforeseen when the virtual prototype is assembled,
for example that some hardware buffer overflow should not remain unnoticed by the software. In most cases,
during system design the simulation fails: the engineers then must investigate the cause of the failure.

A widely used technique for that consists in storing all of the trace data of simulation sessions into trace files,
which are analyzed later with specialized trace analyzer tools. Such trace files have become huge, possibly
hundred of Gigabytes as all data are stored into the trace files, and have become intractable by human manual
handling.

In order to better identify the reason for such failures and capture the missing properties that the system should
verify we have started to work on a new run time verification approach based on trace analysis. Approaches
like PSL requires that the properties to verify are known before hand. Our approach is attempting for the
engineers to experiment various property verification of failing simulations without re-building the virtual
prototype. We have established a technique that makes it possible to investigate properties either statically
working from a trace file or dynamically by introducing a dynamic verification component into the virtual
prototype, or actually the real system.

The Trace Runtime Analysis Platform (TRAP) provides a model-based framework and implements the
corresponding tool chain to support runtime analysis and verification of traces generated by virtual prototypes
or cyber-physical systems. The main goal is to make it easy for engineers to define system properties that
should be satisfied and verify them at system runtime (or from a recorded session). The property verification
tools proposed do not require a detailed knowledge of the system implementation, do not require any
modification or recompilation of the system to investigate different properties, and do not require the engineers
to be familiar with temporal logic. TRAP proposes Domain Specific Languages (DSL’s) integrated within the
Eclipse Modeling Framework to express the properties. The DSL tool-chain uses the concept of Logical Clock
defined by CCSL and takes advantage of CCSL clock algebra as the underlying formal support. The DSL’s
compilers eventually generate C++ code to verify the properties at run time, making usage of dynamically
loaded code.

This year we have investigated and implemented this approach, using Eclipse EMF. The STML and TPSL
compilers are implemented in Java and generate C++ code. Results of this work have been published at the
FDL’16 conference referenced on IEEE Explore. [17]

7.4. Polychronous automata and formal validation of AADL models
Participants: Loïc Besnard, Thierry Gautier, Alexandre Honorat, Clément Guy, Jean-Pierre Talpin.

Project-Team TEA 15

We have defined a model of polychronous automata based on clock relations [7]. A specificity of this model
is that an automaton is submitted to clock constraints: these finite-state automata define transition systems
to express explicit reactions together with properties, in the form of Boolean formulas over logical time, to
constrain their behavior. This allows one to specify a wide range of control-related configurations, either
reactive, or restrictive with respect to their control environment. A semantic model is defined for these
polychronous automata, that relies on a Boolean algebra of clocks. Polychronous automata integrate smoothly
with data-flow equations in the polychronous model of computation.

This polychronous MoC has been used previously as semantic model for systems described in the core AADL
standard. The core AADL is extended with annexes, such as the Behavior Annex, which allows to specify
more precisely architectural behaviors. The translation from AADL specifications into the polychronous model
should take into account these behavior specifications, which are based on description of automata.

For that purpose, the AADL state transition systems are translated as Signal automata (a slight extension of
the Signal language has been defined to support the model of polychronous automata). States are declared as
Signal labels. Transitions are expressed using a call to a specific Signal process Automaton_Transition
which takes as parameters the labels of the source and destination states, and the condition expression
corresponding to the AADL guard of the transition. The transition processes implicitly declare the equations
that are required to compute the firing instants of the transitions. These processes, viewed as macros, are
replaced during Signal compilation with a set of Signal equations handling current state and transition firing.

Once the AADL model of a system transformed into a Signal program, one can analyze the program using the
Polychrony framework in order to check if timing, scheduling and logical requirements over the whole system
are met.

We have implemented the translation and experimented it using a concrete case study, which is the AADL
modeling of an Adaptive Cruise Control (ACC) system, a highly safety-critical system embedded in recent
cars.

7.5. Formal Semantics of Behavior Specifications in the Architecture Analysis
and Design Language Standard
Participants: Loïc Besnard, Thierry Gautier, Clément Guy, Jean-Pierre Talpin.

In system design, an architecture specification or model serves, among other purposes, as a repository
to share knowledge about the system being designed. Such a repository enables automatic generation of
analytical models for different aspects relevant to system design (timing, reliability, security, etc.). The
Architecture Analysis and Design Language (AADL) is a standard proposed by SAE to express architecture
specifications and share knowledge between the different stakeholders about the system being designed. To
support unambiguous reasoning, formal verification, high-fidelity simulation of architecture specifications in a
model-based AADL design work-flow, we have defined a formal semantics for the behavior specification of the
AADL. Since it began being discussed in the AADL standard committee, our formal semantics evolved from a
synchronous model of computation and communication to a semantic framework for time and concurrency in
the standard: asynchronous, synchronous or timed, to serve as a reference for model checking, code generation
or simulation tools uses with the standard [14]. These semantics are simple, relying on the structure of
automata present in the standard already, yet provide tagged, trace semantics framework to establish formal
relations between (synchronous, asynchronous, timed) usages or interpretations of behavior.

We define the model of computation and communication of a behavior specification by the synchronous, timed
or asynchronous traces of automata with variables. These constrained automata are derived from polychronous
automata defined within the polychronous model of computation and communication [7].

States of a behavior annex transition system can be either observable from the outside (initial, final
or complete states), that is states in which the execution of the component is paused or stopped and its
outputs are available; or non observable execution states, that is internal states. We thus define two kinds
of steps in the transition system: small steps, that is non-observable steps from or to an internal state; and

16 Activity Report INRIA 2016

big steps, that is observable steps from a complete state to another, through a number of small steps). The
semantics of the AADL considers the observable states of the automaton. The set of states SA of automaton
A (used to interpret the behavior annex) thus only contains states corresponding to these observable states and
the set of transitions TA big-step transitions from an observable state to another (by opposition with small-
step transitions from or to an execution state). The action language of the behavior annex defines actions
performed during transitions. Actions associated with transitions are action blocks that are built from basic
actions and a minimal set of control structures (sequences, sets, conditionals and loops). Typically, a behavior
action sequence is represented by concatenating the transition systems of its elements; a behavior action set is
represented by composing the transition systems of its elements.

For our semantics, we considered a significant subset of the behavioral specification annex of the AADL. This
annex allows one to attach a behavior specification to any components of a system modeled using the AADL,
and can be then analyzed for different purposes which could be, for example, the verification of logical, timing
or scheduling requirements.

7.6. Integration of Polychrony with QGen
Participants: Loïc Besnard, Thierry Gautier, Christophe Junke, Jean-Pierre Talpin.

The FUI project P gave birth to the GGen qualifiable model compiler, developed by Adacore. The tool accepts
a discrete subset of Simulink expressed in a language called P and produces C or Ada code.

Our contribution was about providing a semantic bridge between Polychrony and QGen [15]. Our objective
was to use Polychrony to compute fined-grained static scheduling of computations and communications for P
models based on architectural properties. This work was twofold. First, we defined an alternative unambiguous
static block scheduler for QGen, which can compute both partial and total orders based on user preferences.
The purpose of this sequencer is to allow QGen to inter-operate with external sequencing tools while providing
guarantees about the compatibility of external block execution orders with respect to both QGen’s compilation
scheme and user expectations. On the other hand, we developed a transformation function from the P language,
more precisely, from the System Model subset of P, to the Signal meta-model, SSME. This work is based on
a high-level API designed on top of SSME and can be used to transform a subset of Simulink to Signal. We
validated our approach with the test suite used by QGen which is composed of over two-hundred small-sized
Simulink models. We tested both block sequencing and model transformations. We ran the conversion tool and
the set of models used by QGen for its regression tests and successfully converted medium to large models.
The P language is capable of representing a useful subset of Simulink. That is why it is an interesting tool to
help interpreting Simulink models and possibly architectural properties as executable Signal programs. The
programs currently produced with our transformation tool can be compiled by Polychrony and reorganized as
clusters of smaller processes.

7.7. Code generation for poly-endochronous processes
Participants: Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin.

The synchronous modeling paradigm provides strong correctness guarantees for embedded system design
while requiring minimal environmental assumptions. In most related frameworks, global execution correctness
is achieved by ensuring the insensitivity of (logical) time in the program from (real) time in the environment.
Tis property, called endochrony, can be statically checked, making it fast to ensure design correctness.
Unfortunately, it is not preserved by composition, which makes it difficult to exploit with component-based
design concepts in mind. It has been shown that compositionality can be achieved by weakening the objective
of endochrony: a weakly endochronous system is a deterministic system that can perform independent
computations and communications in any order as long as this does not alter its global state. Moreover, the non-
blocking composition of weakly endochronous processes is isochronous, which means that the synchronous
and asynchronous compositions of weakly endochronous processes accept the same behaviors. Unfortunately,
testing weak endochrony needs state-space exploration, which is very costly in the general case. Then, a
particular case of weak endochrony, called polyendochrony, was defined, which allows static checking thanks

Project-Team TEA 17

to the existing clock calculus. The clock hierarchy of a polyendochronous system may have several trees,
with synchronization relations between clocks placed in different trees, but the clock expressions of the
clock system must be such that there is no clock expression (especially, no root clock expression) defined
by symmetric difference: root clocks cannot refer to absence. In other words, the clock system must be in
disjunctive form [10].

We have now implemented code generation for poly-endochronous systems in Polychrony. This generation
reuses techniques of distributed code generation, with rendez-vous management for synchronization con-
straints on clocks which are not placed in the same tree of clocks. The approach has been validated on several
use cases running in parallel with time to time synchronization.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. Toyota Info-Technology Centre (2014-2016)

Title: Co-Modeling of Safety-Critical Multi-threaded Embedded Software for Multi-Core Embedded
Platforms
Inria principal investigator: Jean-Pierre Talpin
International Partner (Institution - Laboratory - Researcher):

Toyota Info-Technology Centre, Mountain View, California
Virginia Tech Research Laboratories, Arlington

Duration: renewed yearly since 2014
Abstract: We started a new project in April 2014 funded by Toyota ITC, California, to work with
Huafeng Yu (a former post-doctorate of team ESPRESSO) and with VTRL as US partner. The main
topic of our project is the semantic-based model integration of automotive architectures, virtual
integration, toward formal verification and automated code synthesis. This year, Toyota ITC is
sponsoring our submission for the standardization of a time annex in the SAE standard AADL.

In a second work-package, we aim at elaborating a standardized solution to virtually integrate and
simulate a car based on heterogeneous models of its components. This year, it will be exemplified by
the elaboration of a case study in collaboration with Virginia Tech. The second phase of the project
will consist of delivering an open-source, reference implementation, of the proposed AADL standard
and validate it with a real-scale model of the initial case-study.

8.2. Bilateral Grants with Industry
8.2.1. Mitsubishi Electric R&D Europe (2015-2018)

Title: Analysis and verification for correct by construction orchestration in automated factories
Inria principal investigator: Jean-Pierre Talpin, Simon Lunel
International Partner: Mitsubishi Electric R&D Europe
Duration: 2015 - 2018
Abstract: The primary goal of our project is to ensure correctness-by-design in cyber-physical
systems, i.e., systems that mix software and hardware in a physical environment, e.g., Mitsubishi
factory automation lines. We plan to explore a multi-sorted algebraic framework for static analysis
and formal verification starting from a simple use case extracted from Mitsubishi factory automation
documentations. This will serve as a basis to more ambitious research where we intend to leverage
recent advance in type theory, SMT solvers for nonlinear real arithmetic (dReal and δ-decidability)
and contracts theory (meta-theory of Benveniste et al., Ruchkin’s contracts) to provide a general
framework of reasoning about heterogeneous factory components.

18 Activity Report INRIA 2016

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR

Program: ANR
Project acronym: Feever
Project title: Faust Environment Everyware
Duration: 2014-2016
Coordinator: Pierre Jouvelot, Mines ParisTech
Other partners: Grame, Inria Rennes, CIEREC
URL: http://www.feever.fr
Abstract:

The aim of project FEEVER is to ready the Faust music synthesis language for the Web. In this
context, we collaborate with Mines ParisTech to define a type system suitable to model music signals
timed at multiple rates and to formally support playing music synthesized from different physical
locations.

9.1.2. PAI CORAC
Program: CORAC
Project acronym: CORAIL
Project title: Composants pour l’Avionique Modulaire Étendue
Duration: July 2013 - May 2017
Coordinator: Thales Avionics
Other partners: Airbus, Dassault Aviation, Eurocopter, Sagem...
Abstract:

The CORAIL project aims at defining components for Extended Modular Avionics. The contribution
of project-team TEA is to define a specification method and to provide a generator of multi-task
applications.

9.2. International Initiatives
9.2.1. International Project Grants
9.2.1.1. US Air Force Office for Scientific Research – Grant FA8655-13-1-3049

Title: Co-Modeling of Safety-Critical Multi-threaded Embedded Software for Multi-Core Embedded
Platforms
Inria principal investigator: Jean-Pierre Talpin
International Partner (Institution - Laboratory - Researcher):

Virginia Tech Research Laboratories, Arlington (United States)
Embedded Systems Group, Teschnische Universität Kaiserslautern (Germany)

Duration: 2013 - 2016
See also: http://www.irisa.fr/espresso/Polycore
Abstract: The aim of the USAF OSR Grant FA8655-13-1-3049 is to support collaborative research
entitled “Co-Modeling of safety-critical multi-threaded embedded software for multi-core embedded
platforms” between Inria project-team ESPRESSO, the VTRL Fermat Laboratory and the TUKL
embedded system research group, under the program of the Polycore associate-project.

http://www.feever.fr
http://www.irisa.fr/espresso/Polycore

Project-Team TEA 19

9.2.1.2. Applied Science & Technology Research Institute (ASTRI, Hong Kong)

Title: Virtual Prototyping of Embedded Software Architectures

Inria principal investigator: Jean-Pierre Talpin

International Partner: ASTRI, Hong Kong

Duration: 2015 - 2016

Abstract: the topics of our present collaboration is essentially on heterogeneous time modeling
for virtual prototyping in cyber-physical systems. Our project covers a wide spectrum of area of
experience developed since 2012 and comprising

• model-based design and analysis of cyber-physical systems;

• system-level virtual prototyping and validation;

• design space exploration and system synthesis;

9.2.2. Inria International Labs
9.2.2.1. SACCADES

Title: Saccades

International Partner:

LIAMA

East China Normal University

Inria project-teams Aoste and Tea

Duration: 2003 - now

The SACCADES project is a LIAMA project hosted by East China Normal University and jointly led
by Vania Joloboff (Inria) and Min Zhang (ECNU). The SACCADES project aims at improving the
development of reliable cyber physical systems and more generally of distributed systems combining
asynchronous with synchronous aspects, with different but complementary angles:

• develop the theoretical support for Models of Computations and Communications
(MoCCs) that are the fundamentals basis of the tools.

• develop software tools (a) to enable the development and verification of executable models
of the application software, which may be local or distributed and (b) to define and
optimize the mapping of software components over the available resources.

• develop virtual prototyping technology enabling the validation of the application software
on the target hardware platform.

The ambition of SACCADES project is to develop

• Theoretical Support for Cyber Physical Systems

• Software Tools for design and validation of CPS

• Virtual Prototyping of CPS

9.2.3. Inria International Partners
9.2.3.1. POLYCORE

Title: Models of computation for embedded software design

International Partner:

Virginia Tech Research Laboratories (USA)

University of Kanpur (India)

Duration: 2002 - now

20 Activity Report INRIA 2016

Team TEA collaborates with Sandeep Shukla (now with IIT Kanpur) and his team at Virginia Tech,
since 2002 (NSF-Inria BALBOA and Polycore projects, USAF OSR grant).

To date, our fruitful and sustained collaboration has yield the creation of the ACM-IEEE MEM-
OCODE conference series in 2003, of the ACM-SIGDA FMGALS workshop series, and of a full-
day tutorial at ACM-IEEE DATE’09 on formal methods in system design. We have jointly edited
two books with Springer 22 23, two special issues of the IEEE Transactions on Computers and one
of the IEEE Transactions on Industrial Informatics, and published more than 40 joint journal articles
and conference papers. We published a joint paper at the 52nd. Digital Automation Conference in
San Francisco [11].

9.2.3.2. VESA
Title: Virtual Prototyping of embedded software architectures
International Partner:

Applied Science & Technology Research Institute (ASTRI, Hong Kong)
The University of Hong Kong

Duration: 2012 - now
We collaborate with John Koo, now with ASTRI, and LIAMA since 2012 through visiting grants
of the Chinese Academy of Science and of the University of Rennes on the topics of heterogeneous
time modeling and virtual prototyping in cyber-physical systems.

In the context of project ITF ARD159 (System-Level Virtual Prototyping of Embedded Systems),
ASTRI has used Polychrony and AADL to collaboratively develop a platform for conducting
the design of an hardware-in-the-loop simulation of an UR5 robot arm, from its physical model
described using Matlab/Simulink and powered using an Opal-RT/RT-Lab workstation, structured
around an AADL system model, and using Polychrony to orchestrate real-time simulation down to
FPGA analog outputs.

9.2.3.3. TIX
Title: Time In Cybernetic Systems
International Partner:

Rajesh Gupta, UCSD
Mani Srivastava, UCLA

Start year: 2015
The first topic of our collaboration is the formal definition of cross-domains clock models in
system design and the formal verification of time stabilization and synchronization protocols used
in distributed systems (sensor networks, data-bases). In this prospect, the NSF project Roseline is
our basis of investigation (https://sites.google.com/site/roselineproject). Roseline aims at enabling
robust, secure and efficient knowledge of time across the system stack.

Our second topic of collaboration is the refoundation of time modeling in high-level reactive and
scripting languages, for application to the above using uni-kernels to cut through system stacks. We
aim at applying the concepts of refinement types to formally specify and infer timing properties
in CPS models from different system design view-point (physical, hardware, software) and using
different levels of abstraction into multi-sorted 1st order logic (delta-decidability, linear arithmetic,
Boolean logic, temporal logic).

9.3. International Research Visitors
9.3.1. Visits of International Scientists

Rajesh Gupta (UC San Diego) visited project TEA in July 2016 in the context of IIP TIX.

22Formal methods and models for system design, R. Gupta, S. Shukla, J.-P. Talpin, Eds. ISBN 1-4020-8051-4. Springer, 2004.
23Synthesis of embedded systems. S. Shukla, J.-P. Talpin, Eds. ISBN 978-1-4419-6399-4. Springer, 2010

https://sites.google.com/site/roselineproject

Project-Team TEA 21

Brian Larson (FDA) visited project TEA in January and July 2016.

9.3.1.1. Internships

Daian Yue that was selected in the joint program between ENS Rennes and ECNU and joined project TEA for
a six month internship in 2016.

9.3.2. Visits to International Teams
Vania Joloboff was invited for two short stays at University of East China Normal University in Shanghai and
UC San Diego.

Jean-Pierre Talpin visited ASTRI in May and December, in the context of IIP VESA.

Jean-Pierre Talpin visited UC San Diego in October, in the context of IIP TIX.

Jean-Pierre Talpin visited IIT Kanpur in February and November for the preparation and Chair of MEM-
OCODE’16.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific events organisation
10.1.1.1. General chair, scientific chair

Jean-Pierre Talpin served as General Chair and Finance Chair of the 14th. ACM-IEEE Conference on Methods
and Models for System Design (MEMOCODE’16, IIT Kanpur, October 18-20.).

10.1.1.2. Member of the organizing committees

Jean-Pierre Talpin and Vania Joloboff co-organized the Shonan workshop on “Architecture-Centric Modeling,
Analysis, and Verification of Cyber-Physical Systems” in collaboration with Toyota ITC and Denso, March
21-24.

Jean-Pierre Talpin is a member of the steering committee of the ACM-IEEE Conference on Methods and
Models for System Design (MEMOCODE).

10.1.2. Scientific events selection
10.1.2.1. Member of the conference program committees

Jean-Pierre Talpin served the program committee of:

• ACVI’16, 3rd. Workshop on Architecture Centric Virtual Integration

• HLDVT’16, 18th. IEEE International High-Level Design Validation and Test Workshop

• ICESS’16, 13th. IEEE International Conference on Embedded Software and Systems

• IDEA’16, 2nd. International Workshop Integrating Data-flow, Embedded computing and Architec-
ture

• LCTES’16, 19th. ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems

• MEMOCODE’16, 14th. ACM-IEEE Conference on Methods and Models for System Design

• SAC’16, 31st. ACM SIGAPP Symposium on Applied Computing

• SCOPES’16, 19th. International Workshop on Software and Compilers for Embedded Systems

• TASE’16, 10th. Theoretical Aspects of Software Engineering Conference

22 Activity Report INRIA 2016

10.1.3. Journal
10.1.3.1. Member of the editorial boards

Jean-Pierre Talpin is Associate Editor with the ACM Transactions for Embedded Computing Systems (TECS),
with the Springer journal on Frontiers of Computer Science (FCS) and with the EURASIP journal of embedded
systems (JES).

10.1.3.2. reviewer

Jean-Pierre Talpin reviewed articles for Acta Informatica.

Thierry Gautier reviewed for Frontiers of Computer Science.

10.2. Teaching - Supervision - Juries
10.2.1. Invited talks

Vania Joloboff gave a talk in the series of the Distinguished Lecturers of the Computer Science and
Engineering department at UC San Diego.

Jean-Pierre Talpin gave an invited presentation at the APAC 2016 Summit on Robotics at the HKSTP in Hong
Kong https://www.apacinnosummit.net.

10.2.2. Supervision
Vania Joloboff supervised work of Master student Daian Yue that was selected in the joint program between
ENS Rennes and ECNU.

Jean-Pierre Talpin is the supervisor of Simon Lunel’s thesis on "Timed contract algebras for correct by
construction real-time system design".

10.2.3. Juries
Jean-Pierre Talpin served as examiner for the Ph.D. Thesis defense of Fatma Jebali on “Formal Framework for
modeling and Verifying Globally Asynchronous Locally Synchronous Systems”, September 12., in Grenoble.

Jean-Pierre Talpin served as referee for the PhD. Thesis Defence of Amani Khecharem on “Une approche
de méta-modélisation pour la représentation multi-vues des architectures hétérogènes embarqués”, May 3., in
Sophia Antipolis.

11. Bibliography
Major publications by the team in recent years

[1] L. BESNARD, T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Compilation of Polychronous Data Flow
Equations, in "Synthesis of Embedded Software", S. K. SHUKLA, J.-P. TALPIN (editors), Springer, 2010,
pp. 1-40 [DOI : 10.1007/978-1-4419-6400-7_1], http://hal.inria.fr/inria-00540493

[2] A. BOUAKAZ, J.-P. TALPIN. Design of Safety-Critical Java Level 1 Applications Using Affine Abstract Clocks,
in "International Workshop on Software and Compilers for Embedded Systems", St. Goar, Germany, June
2013, pp. 58-67 [DOI : 10.1145/2463596.2463600], https://hal.inria.fr/hal-00916487

[3] C. BRUNETTE, J.-P. TALPIN, A. GAMATIÉ, T. GAUTIER. A metamodel for the design of polychronous
systems, in "The Journal of Logic and Algebraic Programming", 2009, vol. 78, no 4, pp. 233 - 259, IFIP
WG1.8 Workshop on Applying Concurrency Research in Industry [DOI : 10.1016/J.JLAP.2008.11.005],
http://www.sciencedirect.com/science/article/pii/S1567832608000957

https://www.apacinnosummit.net
http://hal.inria.fr/inria-00540493
https://hal.inria.fr/hal-00916487
http://www.sciencedirect.com/science/article/pii/S1567832608000957

Project-Team TEA 23

[4] A. GAMATIÉ, T. GAUTIER, P. LE GUERNIC, J.-P. TALPIN. Polychronous Design of Embedded Real-Time
Applications, in "ACM Transactions on Software Engineering and Methodology (TOSEM)", April 2007, vol.
16, no 2, http://doi.acm.org/10.1145/1217295.1217298

[5] A. GAMATIÉ, T. GAUTIER. The Signal Synchronous Multiclock Approach to the Design of Distributed
Embedded Systems, in "IEEE Transactions on Parallel and Distributed Systems", 2010, vol. 21, no 5, pp.
641-657 [DOI : 10.1109/TPDS.2009.125], http://hal.inria.fr/inria-00522794

[6] A. GAMATIÉ, T. GAUTIER, P. LE GUERNIC. Synchronous design of avionic applications based on model
refinements, in "Journal of Embedded Computing (IOS Press)", 2006, vol. 2, no 3-4, pp. 273-289, http://hal.
archives-ouvertes.fr/hal-00541523

[7] T. GAUTIER, C. GUY, A. HONORAT, P. LE GUERNIC, J.-P. TALPIN, L. BESNARD. Polychronous Automata
and their Use for Formal Validation of AADL Models, in "Frontiers of Computer Science -Springer-",
December 2016, https://hal.inria.fr/hal-01411257

[8] P. LE GUERNIC, J.-P. TALPIN, J.-C. LE LANN. Polychrony for system design, in "Journal of Circuits, Systems
and Computers, Special Issue on Application Specific Hardware Design", June 2003, vol. 12, no 03, http://
hal.inria.fr/docs/00/07/18/71/PDF/RR-4715.pdf

[9] D. POTOP-BUTUCARU, Y. SOREL, R. DE SIMONE, J.-P. TALPIN. From Concurrent Multi-clock Programs to
Deterministic Asynchronous Implementations, in "Fundamenta Informaticae", January 2011, vol. 108, no 1-2,
pp. 91–118, http://dl.acm.org/citation.cfm?id=2362088.2362094

[10] J.-P. TALPIN, J. OUY, T. GAUTIER, L. BESNARD, P. LE GUERNIC. Compositional design of
isochronous systems, in "Science of Computer Programming", February 2012, vol. 77, no 2, pp. 113-
128 [DOI : 10.1016/J.SCICO.2010.06.006], http://hal.archives-ouvertes.fr/hal-00768341

[11] H. YU, J. PRASHI, J.-P. TALPIN, S. K. SHUKLA, S. SHIRAISHI. Model-Based Integration for Automotive
Control Software, in "Digital Automation Conference", San Francisco, United States, ACM, June 2015, https://
hal.inria.fr/hal-01148905

Publications of the year
Articles in International Peer-Reviewed Journals

[12] T. GAUTIER, C. GUY, A. HONORAT, P. LE GUERNIC, J.-P. TALPIN, L. BESNARD. Polychronous Automata
and their Use for Formal Validation of AADL Models, in "Frontiers of Computer Science -Springer-",
December 2016, https://hal.inria.fr/hal-01411257

International Conferences with Proceedings

[13] D. BAELDE, S. LUNEL, S. SCHMITZ. A Sequent Calculus for a Modal Logic on Finite Data Trees, in
"CSL 2016", Marseille, France, J.-M. TALBOT, L. REGNIER (editors), Leibniz International Proceedings
in Informatics, LZI, September 2016, vol. 62, no 32, pp. 1–16 [DOI : 10.4230/LIPICS.CSL.2016.32],
https://hal.inria.fr/hal-01191172

[14] L. BESNARD, T. GAUTIER, C. GUY, P. LE GUERNIC, J.-P. TALPIN, B. R. LARSON, E. BORDE. Formal
semantics of behavior specifications in the architecture analysis and design language standard, in "18th IEEE
International High-Level Design Validation and Test Workshop", Santa Cruz, United States, High-level design,

http://doi.acm.org/10.1145/1217295.1217298
http://hal.inria.fr/inria-00522794
http://hal.archives-ouvertes.fr/hal-00541523
http://hal.archives-ouvertes.fr/hal-00541523
https://hal.inria.fr/hal-01411257
http://hal.inria.fr/docs/00/07/18/71/PDF/RR-4715.pdf
http://hal.inria.fr/docs/00/07/18/71/PDF/RR-4715.pdf
http://dl.acm.org/citation.cfm?id=2362088.2362094
http://hal.archives-ouvertes.fr/hal-00768341
https://hal.inria.fr/hal-01148905
https://hal.inria.fr/hal-01148905
https://hal.inria.fr/hal-01411257
https://hal.inria.fr/hal-01191172

24 Activity Report INRIA 2016

verification and test, IEEE, October 2016, pp. 30 - 39 [DOI : 10.1109/HLDVT.2016.7748252], https://hal.
inria.fr/hal-01419968

[15] C. JUNKE, T. GAUTIER, J.-P. TALPIN, L. BESNARD. Integration of polychrony and QGen model compiler,
in "ERTS’16 - European Congress on Embeddd Real-Rime Software and Systems", Toulouse, France, January
2016, https://hal.inria.fr/hal-01241808

[16] V. C. NGO, A. LEGAY, V. JOLOBOFF. PSCV: A Runtime Verification Tool for Probabilistic SystemC
Models, in "CAV 2016 - 28th International Conference on Computer Aided Verification", Toronto, Canada, S.
CHAUDHURI, A. FARZAN (editors), LNCS - Lecture Notes in Computer Science, Springer, July 2016, vol.
9779, pp. 84 - 91 [DOI : 10.1007/978-3-319-41528-4_5], https://hal.inria.fr/hal-01406488

[17] D. YUE, V. JOLOBOFF, F. MALLET. Flexible Runtime Verification Based On Logical Clock Constraints, in
"FDL 2016 - Forum on specification & Design Languages", Bremen, Germany, September 2016, https://hal.
inria.fr/hal-01421890

Conferences without Proceedings

[18] O. AUMAGE, D. BARTHOU, A. HONORAT. A Stencil DSEL for Single Code Accelerated Computing with
SYCL, in "SYCL 2016 1st SYCL Programming Workshop during the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming", Barcelone, Spain, March 2016, https://hal.archives-
ouvertes.fr/hal-01290099

[19] O. SANKUR, J.-P. TALPIN. An Abstraction Technique For Parameterized Model Checking of Leader Election
Protocols: Application to FTSP, in "23rd International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS)", Uppsala, Sweden, April 2017, https://hal.archives-ouvertes.fr/
hal-01431472

Research Reports

[20] L. BESNARD, T. GAUTIER, P. LE GUERNIC, C. GUY, J.-P. TALPIN, B. LARSON, E. BORDE. Formal
semantics of behavior specifications in the architecture analysis and design language standard, Inria, 2016,
no 8950, pp. 30 - 39 [DOI : 10.1109/HLDVT.2016.7748252], https://hal.inria.fr/hal-01419973

https://hal.inria.fr/hal-01419968
https://hal.inria.fr/hal-01419968
https://hal.inria.fr/hal-01241808
https://hal.inria.fr/hal-01406488
https://hal.inria.fr/hal-01421890
https://hal.inria.fr/hal-01421890
https://hal.archives-ouvertes.fr/hal-01290099
https://hal.archives-ouvertes.fr/hal-01290099
https://hal.archives-ouvertes.fr/hal-01431472
https://hal.archives-ouvertes.fr/hal-01431472
https://hal.inria.fr/hal-01419973

