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2. Overall Objectives

2.1. Overall Objectives
In 2018, it is expected that nearly 80% of the Internet traffic will be due to videos, and that it would take an
individual over 5 million years to watch the amount of video that will cross global IP networks each month by
then. Thus, there is a pressing and in fact increasing demand to annotate and index this visual content for home
and professional users alike. The available text and speech-transcript metadata is typically not sufficient by
itself for answering most queries, and visual data must come into play. On the other hand, it is not imaginable
to learn the models of visual content required to answer these queries by manually and precisely annotating
every relevant concept, object, scene, or action category in a representative sample of everyday conditions—if
only because it may be difficult, or even impossible to decide a priori what are the relevant categories and the
proper granularity level. This suggests reverting back to the original metadata as source of annotation, despite
the fact that the information it provides is typically sparse (e.g., the location and overall topic of newscasts
in a video archive) and noisy (e.g., a movie script may tell us that two persons kiss in some scene, but not
when, and the kiss may occur off screen or not have survived the final cut). On the other hand, this weak form
of “embedded annotation” is rich and diverse, and mining the corresponding visual data from the web, TV
or film archives guarantees that it is representative of the many different scene settings depicted in situations
typical of on-line content. Thus, leveraging this largely untapped source of information, rather than attempting
to hand label all possibly relevant visual data, is a key to the future use of on-line imagery.

Today’s object recognition and scene understanding technology operates in a very different setting; it mostly
relies on fully supervised classification engines, and visual models are essentially (piecewise) rigid templates
learned from hand labeled images. The sheer scale of on-line data and the nature of the embedded annotation
call for a departure from this fully supervised scenario. The main idea of the Thoth project-team is to develop
a new framework for learning the structure and parameters of visual models by actively exploring large digital
image and video sources (off-line archives as well as growing on-line content, with millions of images and
thousands of hours of video), and exploiting the weak supervisory signal provided by the accompanying
metadata. This huge volume of visual training data will allow us to learn complex non-linear models with
a large number of parameters, such as deep convolutional networks and higher-order graphical models. This is
an ambitious goal, given the sheer volume and intrinsic variability of the visual data available on-line, and the
lack of a universally accepted formalism for modeling it. Yet, the potential payoff is a breakthrough in visual
object recognition and scene understanding capabilities. Further, recent advances at a smaller scale suggest
that this is realistic. For example, it is already possible to determine the identity of multiple people from news
images and their captions, or to learn human action models from video scripts. There has also been recent
progress in adapting supervised machine learning technology to large-scale settings, where the training data
is very large and potentially infinite, and some of it may not be labeled. Methods that adapt the structure of
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visual models to the data are also emerging, and the growing computational power and storage capacity of
modern computers are enabling factors that should of course not be neglected.

One of the main objective of Thoth is to transforming massive visual data into trustworthy knowledge libraries.
For that, it addresses several challenges.

• designing and learning structured models capable of representing complex visual information.

• learning visual models from minimal supervision or unstructured meta-data.

• large-scale learning and optimization.

3. Research Program

3.1. Designing and learning structured models
The task of understanding image and video content has been interpreted in several ways over the past few
decades, namely image classification, detecting objects in a scene, recognizing objects and their spatial extents
in an image, estimating human poses, recovering scene geometry, recognizing activities performed by humans.
However, addressing all these problems individually provides us with a partial understanding of the scene at
best, leaving much of the visual data unexplained.

One of the main goals of this research axis is to go beyond the initial attempts that consider only a subset
of tasks jointly, by developing novel models for a more complete understanding of scenes to address all the
component tasks. We propose to incorporate the structure in image and video data explicitly into the models. In
other words, our models aim to satisfy the complex sets of constraints that exist in natural images and videos.
Examples of such constraints include: (i) relations between objects, like signs for shops indicate the presence
of buildings, people on a road are usually walking or standing, (ii) higher-level semantic relations involving
the type of scene, geographic location, and the plausible actions as a global constraint, e.g., an image taken
at a swimming pool is unlikely to contain cars, (iii) relating objects occluded in some of the video frames to
content in other frames, where they are more clearly visible as the camera or the object itself move, with the
use of long-term trajectories and video object proposals.

This research axis will focus on three topics. The first is developing deep features for video. This involves
designing rich features available in the form of long-range temporal interactions among pixels in a video
sequence to learn a representation that is truly spatio-temporal in nature. The focus of the second topic is
the challenging problem of modeling human activities in video, starting from human activity descriptors to
building intermediate spatio-temporal representations of videos, and then learning the interactions among
humans, objects and scenes temporally. The last topic is aimed at learning models that capture the relationships
among several objects and regions in a single image scene, and additionally, among scenes in the case of an
image collection or a video. The main scientific challenges in this topic stem from learning the structure of
the probabilistic graphical model as well as the parameters of the cost functions quantifying the relationships
among its entities. In the following we will present work related to all these three topics and then elaborate on
our research directions.

• Deep features for vision. Deep learning models provide a rich representation of complex objects
but in return have a large number of parameters. Thus, to work well on difficult tasks, a large amount
of data is required. In this context, video presents several advantages: objects are observed from a
large range of viewpoints, motion information allows the extraction of moving objects and parts, and
objects can be differentiated by their motion patterns. We initially plan to develop deep features for
videos that incorporate temporal information at multiple scales. We then plan to further exploit the
rich content in video by incorporating additional cues, such as the detection of people and their body-
joint locations in video, minimal prior knowledge of the object of interest, with the goal of learning a
representation that is more appropriate for video understanding. In other words, a representation that
is learned from video data and targeted at specific applications. For the application of recognizing
human activities, this involves learning deep features for humans and their body-parts with all their
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spatiotemporal variations, either directly from raw video data or “pre-processed” videos containing
human detections. For the application of object tracking, this task amounts to learning object-specific
deep representations, further exploiting the limited annotation provided to identify the object.

• Modeling human activities in videos. Humans and their activities are not only one of the most
frequent and interesting subjects in videos but also one of the hardest to analyze owing to the
complexity of the human form, clothing and movements. As part of this task, the Thoth project-
team plans to build on state-of-the-art approaches for spatio-temporal representation of videos. This
will involve using the dominant motion in the scene as well as the local motion of individual parts
undergoing a rigid motion. Such motion information also helps in reasoning occlusion relationships
among people and objects, and the state of the object. This novel spatio-temporal representation
ultimately provides the equivalent of object proposals for videos, and is an important component for
learning algorithms using minimal supervision. To take this representation even further, we aim to
integrate the proposals and the occlusion relationships with methods for estimating human pose in
videos, thus leveraging the interplay among body-joint locations, objects in the scene, and the activity
being performed. For example, the locations of shoulder, elbow and wrist of a person drinking coffee
are constrained to move in a certain way, which is completely different from the movement observed
when a person is typing. In essence, this step will model human activities by dynamics in terms of
both low-level movements of body-joint locations and global high-level motion in the scene.

• Structured models. The interactions among various elements in a scene, such as, the objects
and regions in it, the motion of object parts or entire objects themselves, form a key element for
understanding image or video content. These rich cues define the structure of visual data and how it
evolves spatio-temporally. We plan to develop a novel graphical model to exploit this structure. The
main components in this graphical model are spatio-temporal regions (in the case of video or simply
image regions), which can represent object parts or entire objects themselves, and the interactions
among several entities. The dependencies among the scene entities are defined with a higher order
or a global cost function. A higher order constraint is a generalization of the pairwise interaction
term, and is a cost function involving more than two components in the scene, e.g., several regions,
whereas a global constraint imposes a cost term over the entire image or video, e.g., a prior on
the number of people expected in the scene. The constraints we plan to include generalize several
existing methods, which are limited to pairwise interactions or a small restrictive set of higher-order
costs. In addition to learning the parameters of these novel functions, we will focus on learning the
structure of the graph itself—a challenging problem that is seldom addressed in current approaches.
This provides an elegant way to go beyond state-of-the-art deep learning methods, which are limited
to learning the high-level interaction among parts of an object, by learning the relationships among
objects.

3.2. Learning of visual models from minimal supervision
Today’s approaches to visual recognition learn models for a limited and fixed set of visual categories with
fully supervised classification techniques. This paradigm has been adopted in the early 2000’s, and within it
enormous progress has been made over the last decade.

The scale and diversity in today’s large and growing image and video collections (such as, e.g., broadcast
archives, and personal image/video collections) call for a departure from the current paradigm. This is the case
because to answer queries about such data, it is unfeasible to learn the models of visual content by manually
and precisely annotating every relevant concept, object, scene, or action category in a representative sample
of everyday conditions. For one, it will be difficult, or even impossible to decide a-priori what are the relevant
categories and the proper granularity level. Moreover, the cost of such annotations would be prohibitive in
most application scenarios. One of the main goals of the Thoth project-team is to develop a new framework
for learning visual recognition models by actively exploring large digital image and video sources (off-line
archives as well as growing on-line content), and exploiting the weak supervisory signal provided by the
accompanying metadata (such as captions, keywords, tags, subtitles, or scripts) and audio signal (from which
we can for example extract speech transcripts, or exploit speaker recognition models).
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Textual metadata has traditionally been used to index and search for visual content. The information in
metadata is, however, typically sparse (e.g., the location and overall topic of newscasts in a video archive 1)
and noisy (e.g., a movie script may tell us that two persons kiss in some scene, but not when, and the kiss may
occur off screen or not have survived the final cut). For this reason, metadata search should be complemented
by visual content based search, where visual recognition models are used to localize content of interest that
is not mentioned in the metadata, to increase the usability and value of image/video archives. The key insight
that we build on in this research axis is that while the metadata for a single image or video is too sparse and
noisy to rely on for search, the metadata associated with large video and image databases collectively provide
an extremely versatile source of information to learn visual recognition models. This form of “embedded
annotation” is rich, diverse and abundantly available. Mining these correspondences from the web, TV and
film archives, and online consumer generated content sites such as Flickr, Facebook, or YouTube, guarantees
that the learned models are representative for many different situations, unlike models learned from manually
collected fully supervised training data sets which are often biased.

The approach we propose to address the limitations of the fully supervised learning paradigm aligns with
“Big Data” approaches developed in other areas: we rely on the orders-of-magnitude-larger training sets that
have recently become available with metadata to compensate for less explicit forms of supervision. This will
form a sustainable approach to learn visual recognition models for a much larger set of categories with little
or no manual intervention. Reducing and ultimately removing the dependency on manual annotations will
dramatically reduce the cost of learning visual recognition models. This in turn will allow such models to be
used in many more applications, and enable new applications based on visual recognition beyond a fixed set
of categories, such as natural language based querying for visual content. This is an ambitious goal, given
the sheer volume and intrinsic variability of the every day visual content available on-line, and the lack of a
universally accepted formalism for modeling it. Yet, the potential payoff is a breakthrough in visual object
recognition and scene understanding capabilities.

This research axis is organized into the following three sub-tasks:

• Weakly supervised learning. For object localization we will go beyond current methods that
learn one category model at a time and develop methods that learn models for different categories
concurrently. This allows “explaining away” effects to be leveraged, i.e., if a certain region in an
image has been identified as an instance of one category, it cannot be an instance of another category
at the same time. For weakly supervised detection in video we will consider detection proposal
methods. While these are effective for still images, recent approaches for the spatio-temporal domain
need further improvements to be similarly effective. Furthermore, we will exploit appearance and
motion information jointly over a set of videos. In the video domain we will also continue to work on
learning recognition models from subtitle and script information. The basis of leveraging the script
data which does not have a temporal alignment with the video, is to use matches in the narrative in
the script and the subtitles (which do have a temporal alignment with the video). We will go beyond
simple correspondences between names and verbs relating to self-motion, and match more complex
sentences related to interaction with objects and other people. To deal with the limited amount of
occurrences of such actions in a single movie, we will consider approaches that learn action models
across a collection of movies.

• Online learning of visual models. As a larger number of visual category models is being learned,
online learning methods become important, since new training data and categories will arrive over
time. We will develop online learning methods that can incorporate new examples for existing
category models, and learn new category models from few examples by leveraging similarity to
related categories using multi-task learning methods. Here we will develop new distance-based
classifiers and attribute and label embedding techniques, and explore the use of NLP techniques
such as skipgram models to automatically determine between which classes transfer should occur.
Moreover, NLP will be useful in the context of learning models for many categories to identify

1For example at the Dutch national broadcast archive Netherlands Institute of Sound and Vision, with whom we collaborated in the EU
FP7 project AXES, typically one or two sentences are used in the metadata to describe a one hour long TV program.
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synonyms, and to determine cases of polysemy (e.g. jaguar car brand v.s. jaguar animal), and
merge or refine categories accordingly. Ultimately this will result in methods that are able to learn
an“encyclopedia” of visual models.

• Visual search from unstructured textual queries. We will build on recent approaches that learn
recognition models on-the-fly (as the query is issued) from generic image search engines such as
Google Images. While it is feasible to learn models in this manner in a matter of seconds, it is
challenging to use the model to retrieve relevant content in real-time from large video archives of
more than a few thousand hours. To achieve this requires feature compression techniques to store
visual representations in memory, and cascaded search techniques to avoid exhaustive search. This
approach, however, leaves untouched the core problem of how to associate visual material with the
textual query in the first place. The second approach we will explore is based on image annotation
models. In particular we will go beyond image-text retrieval methods by using recurrent neural
networks such as Elman networks or long short-term memory (LSTM) networks to generate natural
language sentences to describe images.

3.3. Large-scale learning and optimization
We have entered an era of massive data acquisition, leading to the revival of an old scientific utopia: it should
be possible to better understand the world by automatically converting data into knowledge. It is also leading
to a new economic paradigm, where data is a valuable asset and a source of activity. Therefore, developing
scalable technology to make sense of massive data has become a strategic issue. Computer vision has already
started to adapt to these changes.

In particular, very high dimensional models such as deep networks are becoming highly popular and successful
for visual recognition. This change is closely related to the advent of big data. On the one hand, these models
involve a huge number of parameters and are rich enough to represent well complex objects such as natural
images or text corpora. On the other hand, they are prone to overfitting (fitting too closely to training data
without being able to generalize to new unseen data) despite regularization; to work well on difficult tasks,
they require a large amount of labelled data that has been available only recently. Other cues may explain their
success: the deep learning community has made significant engineering efforts, making it possible to learn in
a day on a GPU large models that would have required weeks of computations on a traditional CPU, and it has
accumulated enough empirical experience to find good hyper-parameters for its networks.

To learn the huge number of parameters of deep hierarchical models requires scalable optimization techniques
and large amounts of data to prevent overfitting. This immediately raises two major challenges: how to learn
without large amounts of labeled data, or with weakly supervised annotations? How to efficiently learn such
huge-dimensional models? To answer the above challenges, we will concentrate on the design and theoretical
justifications of deep architectures including our recently proposed deep kernel machines, with a focus on
weakly supervised and unsupervised learning, and develop continuous and discrete optimization techniques
that push the state of the art in terms of speed and scalability.

This research axis will be developed into three sub-tasks:

• Deep kernel machines for structured data. Deep kernel machines combine advantages of kernel
methods and deep learning. Both approaches rely on high-dimensional models. Kernels implicitly
operate in a space of possibly infinite dimension, whereas deep networks explicitly construct high-
dimensional nonlinear data representations. Yet, these approaches are complementary: Kernels can
be built with deep learning principles such as hierarchies and convolutions, and approximated
by multilayer neural networks. Furthermore, kernels work with structured data and have well
understood theoretical principles. Thus, a goal of the Thoth project-team is to design and optimize
the training of such deep kernel machines.

• Large-scale parallel optimization. Deep kernel machines produce nonlinear representations of
input data points. After encoding these data points, a learning task is often formulated as a large-
scale convex optimization problem; for example, this is the case for linear support vector machines,
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logistic regression classifiers, or more generally many empirical risk minimization formulations.
We intend to pursue recent efforts for making convex optimization techniques that are dedicated to
machine learning more scalable. Most existing approaches address scalability issues either in model
size (meaning that the function to minimize is defined on a domain of very high dimension), or in
the amount of training data (typically, the objective is a large sum of elementary functions). There is
thus a large room for improvements for techniques that jointly take these two criteria into account.

• Large-scale graphical models. To represent structured data, we will also investigate graphical
models and their optimization. The challenge here is two-fold: designing an adequate cost function
and minimizing it. While several cost functions are possible, their utility will be largely determined
by the efficiency and the effectiveness of the optimization algorithms for solving them. It is a
combinatorial optimization problem involving billions of variables and is NP-hard in general,
requiring us to go beyond the classical approximate inference techniques. The main challenges
in minimizing cost functions stem from the large number of variables to be inferred, the inherent
structure of the graph induced by the interaction terms (e.g., pairwise terms), and the high-arity
terms which constrain multiple entities in a graph.

3.4. Datasets and evaluation
Standard benchmarks with associated evaluation measures are becoming increasingly important in computer
vision, as they enable an objective comparison of state-of-the-art approaches. Such datasets need to be relevant
for real-world application scenarios; challenging for state-of-the-art algorithms; and large enough to produce
statistically significant results.

A decade ago, small datasets were used to evaluate relatively simple tasks, such as for example interest
point matching and detection. Since then, the size of the datasets and the complexity of the tasks gradually
evolved. An example is the Pascal Visual Object Challenge with 20 classes and approximately 10,000 images,
which evaluates object classification and detection. Another example is the ImageNet challenge, including
thousands of classes and millions of images. In the context of video classification, the TrecVid Multimedia
Event Detection challenges, organized by NIST, evaluate activity classification on a dataset of over 200,000
video clips, representing more than 8,000 hours of video, which amounts to 11 months of continuous video.

Almost all of the existing image and video datasets are annotated by hand; it is the case for all of the above
cited examples. In some cases, they present limited and unrealistic viewing conditions. For example, many
images of the ImageNet dataset depict upright objects with virtually no background clutter, and they may not
capture particularly relevant visual concepts: most people would not know the majority of subcategories of
snakes cataloged in ImageNet. This holds true for video datasets as well, where in addition a taxonomy of
action and event categories is missing.

Our effort on data collection and evaluation will focus on two directions. First, we will design and assemble
video datasets, in particular for action and activity recognition. This includes defining relevant taxonomies
of actions and activities. Second, we will provide data and define evaluation protocols for weakly supervised
learning methods. This does not mean of course that we will forsake human supervision altogether: some
amount of ground-truth labeling is necessary for experimental validation and comparison to the state of the
art. Particular attention will be payed to the design of efficient annotation tools.

Not only do we plan to collect datasets, but also to provide them to the community, together with accompanying
evaluation protocols and software, to enable a comparison of competing approaches for action recognition and
large-scale weakly supervised learning. Furthermore, we plan to set up evaluation servers together with leader-
boards, to establish an unbiased state of the art on held out test data for which the ground-truth annotations
are not distributed. This is crucial to avoid tuning the parameters for a specific dataset and to guarantee a fair
evaluation.

• Action recognition. We will develop datasets for recognizing human actions and human-object
interactions (including multiple persons) with a significant number of actions. Almost all of today’s
action recognition datasets evaluate classification of short video clips into a number of predefined
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categories, in many cases a number of different sports, which are relatively easy to identify by their
characteristic motion and context. However, in many real-world applications the goal is to identify
and localize actions in entire videos, such as movies or surveillance videos of several hours. The
actions targeted here are “real-world” and will be defined by compositions of atomic actions into
higher-level activities. One essential component is the definition of relevant taxonomies of actions
and activities. We think that such a definition needs to rely on a decomposition of actions into poses,
objects and scenes, as determining all possible actions without such a decomposition is not feasible.
We plan to provide annotations for spatio-temporal localization of humans as well as relevant objects
and scene parts for a large number of actions and videos.

• Weakly supervised learning. We will collect weakly labeled images and videos for training. The
collection process will be semi-automatic. We will use image or video search engines such as Google
Image Search, Flickr or YouTube to find visual data corresponding to the labels. Initial datasets will
be obtained by manually correcting whole-image/video labels, i.e., the approach will evaluate how
well the object model can be learned if the entire image or video is labeled, but the object model has
to be extracted automatically. Subsequent datasets will features noisy and incorrect labels. Testing
will be performed on PASCAL VOC’07 and ImageNet, but also on more realistic datasets similar
to those used for training, which we develop and manually annotate for evaluation. Our dataset will
include both images and videos, the categories represented will include objects, scenes as well as
human activities, and the data will be presented in realistic conditions.

• Joint learning from visual information and text. Initially, we will use a selection from the large
number of movies and TV series for which scripts are available on-line, see for example http://
www.dailyscript.com and http://www.weeklyscript.com. These scripts can easily be aligned with
the videos by establishing correspondences between script words and (timestamped) spoken ones
obtained from the subtitles or audio track. The goal is to jointly learn from visual content and text.
To measure the quality of such a joint learning, we will manually annotate some of the videos.
Annotations will include the space-time locations of the actions as well as correct parsing of the
sentence. While DVDs will, initially, receive most attention, we will also investigate the use of data
obtained from web pages, for example images with captions, or images and videos surrounded by
text. This data is by nature more noisy than scripts.

4. Application Domains

4.1. Visual applications
Any solution to automatically understanding images and videos on a semantic level will have an immediate
impact on a wide range of applications. For example:

• Semantic-level image and video access is highly relevant for visual search on the Web, in profes-
sional archives and personal collections.

• Visual data organization is applicable to organizing family photo and video albums as well as to
large-scale information retrieval.

• Visual object recognition has potential applications ranging from surveillance, service robotics for
assistance in day-to-day activities as well as the medical domain.

• Action recognition is highly relevant to visual surveillance, assisted driving and video access.

• Real-time scene understanding is relevant for human interaction through devices such as HoloLens,
Oculus Rift.

http://www.dailyscript.com
http://www.dailyscript.com
http://www.weeklyscript.com
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5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

• Cordelia Schmid received the Humboldt Research Award, granted by the Alexander von Humboldt
Foundation.

• Cordelia Schmid was awarded the Longuet-Higgins Prize at CVPR 2016 for the paper co-authored
with Svetlana Lazebnik (University of Illinois at Urbana-Champaign) and Jean Ponce (ENS
Paris/Inria) entitled "Beyond bags of features: spatial pyramid matching for recognizing natural
scene categories".

• Cordelia Schmid was awarded the Inria - Académie des Sciences Grand Prize 2016.

• Thoth is one of the recipients of a hardware donation in the Facebook AI Research Partnership
Program.

• Julien Mairal was awarded one of the ERC starting grants 2016.

6. New Software and Platforms

6.1. CoNFab: COnvolutional Neural FABric
Participants: Shreyas Saxena, Jakob Verbeek.

Despite the success of convolutional neural networks, selecting the optimal architecture for a given task
remains an open problem. Instead of aiming to select a single optimal architecture, we propose Convolutional
Neural Fabrics [20] that embed an exponentially large class of CNN architectures. The fabric consists of a 3D
trellis that connects response maps at different layers, scales, and channels with a sparse homogeneous local
connectivity pattern. The only hyper-parameters of the model (nr. of channels and layers) are not critical for
performance. While individual CNN architectures can be recovered as paths in the trellis, the trellis can in
addition ensemble all embedded architectures together, sharing their weights where their paths overlap. By
the non-cyclic property of the trellis, its parameters can be efficiently learned using methods based on error
back-propagation. The trellis parameters can be learned using standard methods based on back-propagation, at
a cost that scales linearly in the fabric size. This software implements Convolutional Neural Fabrics by means
of wrappers on top of the Caffe library to specify and learn such models.

6.2. Modl
Participants: Julien Mairal, Arthur Mensch [Parietal], Gael Varoquaux [Parietal], Bertrand Thirion [Parietal].

Modl is a new Python library written by Arthur Mensch for factorizing huge matrices. It implements the
method presented in [25], [17], which targets matrices of several terabytes that do not fit into the main
computer’s memory.

6.3. M-CNN: Weakly-Supervised Semantic Segmentation using Motion Cues
Participants: Pavel Tokmakov, Cordelia Schmid, Karteek Alahari.

This is a public implementation of the method described in [23]. It includes a framework for integrating motion
cues into training a deep network for weakly-supervised semantic segmentation, code for data preprocessing
and trained models that correspond to the results reported in the paper. Our code is built on top of DeepLab
https://bitbucket.org/aquariusjay/deeplab-public-ver2 extension of the Caffe deep learning framework http://
caffe.berkeleyvision.org.

https://bitbucket.org/aquariusjay/deeplab-public-ver2
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org
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6.4. DALY: Daily Action Localization in Youtube
Participants: Philippe Weinzapfael, Xavier Martin, Cordelia Schmid.

DALY is a video dataset with spatial and temporal annotation of 10 everyday human actions in 31 hours
of Youtube videos, which allows to train and benchmark methods for action recognition and localization in
videos. It is available at http://thoth.inrialpes.fr/daly/. We developed the dataset jointly with a new action
localization technique. Both are described in [33].

6.5. GUN-71
Participant: Gregory Rogez.

This dataset consist of 12,000 RGB-D images of object manipulation scenes (captured from a chest-mounted
camera) that were labeled with one of 71 fine-grained grasps. We considered 28 objects per grasp, resulting
in a total of 1988 different hand-object configurations with 5-6 views for each. The data were captured with
8 different subjects (4 males and 4 females) in 5 different houses, see http://www.gregrogez.net/research/
egovision4health/gun-71/.

6.6. Synthetic human 3D pose dataset
Participants: Gregory Rogez, Cordelia Schmid.

Participants: Gregory Rogez, Cordelia Schmid This large-scale dataset consists of 2,000,000 artificial RGB
images of humans and associated 2D and 3D pose annotations. This dataset was generated using the image-
based rendering algorithm presented in [19] and has been used to train state-of-the-art Convolutional Neural
Networks (CNN) for in-the-wild 3D human pose estimation, see http://www.gregrogez.net/research/human-
pose-data-synthesis-for-cnn/.

7. New Results

7.1. Visual recognition in images
7.1.1. Convolutional Neural Fabrics

Participants: Shreyas Saxena, Jakob Verbeek.

Despite the success of CNNs, selecting the optimal architecture for a given task remains an open problem.
Instead of aiming to select a single optimal architecture, in this work [20], we propose a “fabric” that embeds an
exponentially large number of architectures. See 1 for a schematic illustration of how fabrics embed different
architectures. The fabric consists of a 3D trellis that connects response maps at different layers, scales, and
channels with a sparse homogeneous local connectivity pattern. The only hyper-parameters of a fabric are
the number of channels and layers. While individual architectures can be recovered as paths, the fabric can
in addition ensemble all embedded architectures together, sharing their weights where their paths overlap.
Parameters can be learned using standard methods based on back-propagation, at a cost that scales linearly in
the fabric size. We present benchmark results competitive with the state of the art for image classification on
MNIST and CIFAR10, and for semantic segmentation on the Part Labels dataset.

7.1.2. Heterogeneous Face Recognition with CNNs
Participants: Shreyas Saxena, Jakob Verbeek.

http://thoth.inrialpes.fr/daly/
http://www.gregrogez.net/research/egovision4health/gun-71/
http://www.gregrogez.net/research/egovision4health/gun-71/
http://www.gregrogez.net/research/human-pose-data-synthesis-for-cnn/
http://www.gregrogez.net/research/human-pose-data-synthesis-for-cnn/
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Figure 1. Fabrics embedding two seven-layer CNNs (red, green) and a ten-layer deconvolutional network (blue).
Feature map size of the CNN layers are given by height. Fabric nodes receiving input and producing output are
encircled. All edges are oriented to the right, down in the first layer, and towards the output in the last layer. The

channel dimension of the 3D fabric is omitted for clarity.

Figure 2. Schematic illustration for the task of heterogenous face recognition. The goal is to find the identity of the
probe image (shown as a sketch) among one of the identities from the gallery set (shown in the bottom row). In

contrast to standard face recognition, the probe and the gallery set do not share the same modality. In the
illustartion, the probe image is a sketch and the galley images are normal visible spectrum images.
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Heterogeneous face recognition aims to recognize faces across different sensor modalities, see 2 for a
schematic illustration. Typically, gallery images are normal visible spectrum images, and probe images are
infrared images or sketches. Recently significant improvements in visible spectrum face recognition have
been obtained by CNNs learned from very large training datasets. In this paper [21], we are interested in
the question to what extent the features from a CNN pre-trained on visible spectrum face images can be
used to perform heterogeneous face recognition. We explore different metric learning strategies to reduce the
discrepancies between the different modalities. Experimental results show that we can use CNNs trained on
visible spectrum images to obtain results that are on par or improve over the state-of-the-art for heterogeneous
recognition with near-infrared images and sketches.

7.1.3. Mocap-guided Data Augmentation for 3D Pose Estimation in the Wild
Participants: Grégory Rogez, Cordelia Schmid.

In this paper [19], we address the problem of 3D human pose estimation in the wild. A significant challenge
is the lack of training data, i.e., 2D images of humans annotated with 3D poses. Such data is necessary to
train state-of-the-art CNN architectures. Here, we propose a solution to generate a large set of photorealistic
synthetic images of humans with 3D pose annotations. We introduce an image-based synthesis engine that
artificially augments a dataset of real images with 2D human pose annotations using 3D Motion Capture
(MoCap) data. Given a candidate 3D pose our algorithm selects for each joint an image whose 2D pose locally
matches the projected 3D pose. The selected images are then combined to generate a new synthetic image by
stitching local image patches in a kinematically constrained manner. See examples in Figure 3. The resulting
images are used to train an end-to-end CNN for full-body 3D pose estimation. We cluster the training data into
a large number of pose classes and tackle pose estimation as a K-way classification problem. Such an approach
is viable only with large training sets such as ours. Our method outperforms the state of the art in terms of 3D
pose estimation in controlled environments (Human3.6M) and shows promising results for in-the-wild images
(LSP). This demonstrates that CNNs trained on artificial images generalize well to real images.

7.1.4. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
Participant: Julien Mairal.

In [16], we introduce a new image representation based on a multilayer kernel machine. Unlike traditional
kernel methods where data representation is decoupled from the prediction task, we learn how to shape the
kernel with supervision. We proceed by first proposing improvements of the recently-introduced convolutional
kernel networks (CKNs) in the context of unsupervised learning; then, we derive backpropagation rules to
take advantage of labeled training data. The resulting model is a new type of convolutional neural network,
where optimizing the filters at each layer is equivalent to learning a linear subspace in a reproducing kernel
Hilbert space (RKHS). We show that our method achieves reasonably competitive performance for image
classification on some standard " deep learning " datasets such as CIFAR-10 and SVHN, and also for image
super-resolution, demonstrating the applicability of our approach to a large variety of image-related tasks. The
model is illustrated in Figure 4.

7.1.5. Semantic segmentation using Adversarial Networks
Participants: Pauline Luc, Camille Couprie [Facebook], Soumith Chintala [Facebook], Jakob Verbeek.

Adversarial training has been shown to produce state of the art results for generative image modeling. In [24],
we propose an adversarial training approach to train semantic segmentation models. We train a convolutional
semantic segmentation network along with an adversarial network that discriminates segmentation maps com-
ing either from the ground truth or from the segmentation network, as shown in Figure 5. The motivation for
our approach is that it can detect and correct higher-order inconsistencies between ground truth segmenta-
tion maps and the ones produced by the segmentation net. Our experiments show that our adversarial training
approach leads to improved accuracy on the Stanford Background and PASCAL VOC 2012 datasets.

7.1.6. Enhancing Energy Minimization Framework for Scene Text Recognition with
Top-Down Cues
Participants: Anand Mishra [IIIT Hyderabad], Karteek Alahari, C. v. Jawahar [IIIT Hyderabad].
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Figure 3. Given a candidate 3D pose, our algorithm selects for each joint an image whose annotated 2D pose
locally matches the projected 3D pose. The selected images are then combined to generate a new synthetic image
by stitching local image patches in a kinematically constrained manner. We show 6 examples corresponding to the

same 3D pose observed from 6 different camera viewpoints.
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Figure 4. Our variant of convolutional kernel networks, illustrated between layers 0 and 1.
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Figure 5. We use adversarial training to simultaneously learn a segmentation model (left) and a high order loss
term to train it, given by the adversarial network (right). This encourages the segmentation model to output

plausible segmentations, by enforcing forms of high order consistencies that are learned rather than manually
designed.

Recognizing scene text, i.e., text in images such as the one in Figure 6, is a challenging problem, even more so
than the recognition of scanned documents. This problem has gained significant attention from the computer
vision community in recent years, and several methods based on energy minimization frameworks and deep
learning approaches have been proposed. In our work presented in [8], we focus on the energy minimization
framework and propose a model that exploits both bottom-up and top-down cues for recognizing cropped
words extracted from street images. The bottom-up cues are derived from individual character detections from
an image. We build a conditional random field model on these detections to jointly model the strength of the
detections and the interactions between them. These interactions are top-down cues obtained from a lexicon-
based prior, i.e., language statistics. The optimal word represented by the text image is obtained by minimizing
the energy function corresponding to the random field model. We evaluate our proposed algorithm extensively
on a number of cropped scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and
2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. We perform a
rigorous analysis of all the steps in our approach and analyze the results. We also show that state-of-the-art
convolutional neural network features can be integrated in our framework to further improve the recognition
performance.

7.1.7. Local Convolutional Features with Unsupervised Training for Image Retrieval
Participants: Mattis Paulin, Matthijs Douze [Facebook], Zaid Harchaoui [University of Washington], Julien
Mairal, Florent Perronnin [Xerox], Cordelia Schmid.

Patch-level descriptors underlie several important computer vision tasks, such as stereo-matching or content-
based image retrieval. We introduce a deep convolutional architecture that yields patch-level descriptors,
as an alternative to the popular SIFT descriptor for image retrieval. The proposed family of descriptors,
called Patch-CKN[9], adapt the recently introduced Convolutional Kernel Network (CKN), an unsupervised
framework to learn convolutional architectures. We present a comparison framework to benchmark current
deep convolutional approaches along with Patch-CKN for both patch and image retrieval (see Fig. 7 for
our pipeline), including our novel “RomePatches” dataset. Patch-CKN descriptors yield competitive results
compared to supervised CNNs alternatives on patch and image retrieval.
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Figure 6. A typical street scene image taken from Google Street View. It contains very prominent sign boards with
text on the building and its windows. It also contains objects such as car, person, tree, and regions such as road,

sky. Many scene understanding methods recognize these objects and regions in the image successfully, but overlook
the text on the sign board, which contains rich, useful information. The goal of our work [8] is to address this gap

in understanding scenes.

Keypoint detection Patch description Aggregation
Hessian-affine Deep Network VLAD

Figure 7. Image retrieval pipeline. Interest points are extracted with the Hessian-affine detector (left), encoded in
descriptor space using convolutional features (middle), and aggregated into a compact representation using

VLAD-pooling (right).
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7.2. Visual recognition in videos
7.2.1. Towards Weakly-Supervised Action Localization

Participants: Philippe Weinzaepfel, Xavier Martin, Cordelia Schmid.

In this paper [33], we present a novel approach for weakly-supervised action localization, i.e., that does
not require per-frame spatial annotations for training. We first introduce an effective method for extracting
human tubes by combining a state-of-the-art human detector with a tracking-by-detection approach. Our tube
extraction leverages the large amount of annotated humans available today and outperforms the state of the art
by an order of magnitude: with less than 5 tubes per video, we obtain a recall of 95% on the UCF-Sports and
J-HMDB datasets. Given these human tubes, we perform weakly-supervised selection based on multi-fold
Multiple Instance Learning (MIL) with improved dense trajectories and achieve excellent results. Figure 8
summarizes the approach. We obtain a mAP of 84% on UCF-Sports, 54% on J-HMDB and 45% on UCF-101,
which outperforms the state of the art for weakly-supervised action localization and is close to the performance
of the best fully-supervised approaches. The second contribution of this paper is a new realistic dataset for
action localization, named DALY (Daily Action Localization in YouTube). It contains high quality temporal
and spatial annotations for 10 actions in 31 hours of videos (3.3M frames), which is an order of magnitude
larger than standard action localization datasets. On the DALY dataset, our tubes have a spatial recall of 82%,
but the detection task is extremely challenging, we obtain 10.8% mAP.

Figure 8. Overview of our approach for action localization without spatial supervision.

7.2.2. The DALY dataset
Participants: Philippe Weinzaepfel, Xavier Martin, Cordelia Schmid.
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We introduce a new action localization dataset named DALY (Daily Action Localization in YouTube). DALY
consists of more than 31 hours of videos (3.3M frames) from YouTube with 10 realistic daily actions, see
Figure 9, and 3.6k spatio-temporal instances. Annotations consist in the start and end time of each action
instance, with high-quality spatial annotation for a sparse subset of frames. The task is to localize relatively
short actions (8 seconds in average) in long untrimmed videos (3min 45 in average). Furthermore, it includes
videos with multiple humans performing actions simultaneously. It overcomes the limitations of existing
benchmarks that are limited to trimmed or almosttrimmed videos with specific action types, e.g. sports only,
showing in most cases one human per video.

Figure 9. Overview of our approach for action localization without spatial supervision.

7.2.3. Weakly-Supervised Semantic Segmentation using Motion Cues
Participants: Pavel Tokmakov, Karteek Alahari, Cordelia Schmid.

Fully convolutional neural networks (FCNNs) trained on a large number of images with strong pixel-level
annotations have become the new state of the art for the semantic segmentation task. While there have been
recent attempts to learn FCNNs from image-level weak annotations, they need additional constraints, such
as the size of an object, to obtain reasonable performance. To address this issue, in [23] we present motion-
CNN (M-CNN), a novel FCNN framework which incorporates motion cues and is learned from video-level
weak annotations. Our learning scheme to train the network uses motion segments as soft constraints, thereby
handling noisy motion information, as shown in Figure 10. When trained on weakly-annotated videos, our
method outperforms the state-of-the-art EM-Adapt approach on the PASCAL VOC 2012 image segmentation
benchmark. We also demonstrate that the performance of M-CNN learned with 150 weak video annotations
is on par with state-of-the-art weakly-supervised methods trained with thousands of images. Finally, M-CNN
substantially outperforms recent approaches in a related task of video co-localization on the YouTube-Objects
dataset.

7.2.4. Multi-region two-stream R-CNN for action detection
Participants: Xiaojiang Peng, Cordelia Schmid.

This work [18] introduces a multi-region two-stream R-CNN model for action detection, see Figure 11. It
starts from frame-level action detection based on faster R-CNN and makes three contributions. The first
one is the introduction of a motion region proposal network (RPN) complementary to a standard appearance
RPN. The second is the stacking of optical flow over several frames, which significantly improves frame-level
action detection. The third is the addition of a multi-region scheme to the faster R-CNN model, which adds
complementary information on body parts. Frame-level detections are linked with the Viterbi algorithm, and
action are temporally localized with the maximum subarray method. Experimental results on the UCF-Sports,
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Figure 10. Overview of our M-CNN framework, where we show only one frame from a video example for clarity.
The soft potentials (foreground appearance) computed from motion segmentation and the FCNN predictions

(category appearance) jointly determine the latent segmentation (inferred labels) to compute the loss, and thus the
network update.

J-HMDB and UCF101 action detection datasets show that the approach outperforms the state of the art with a
significant margin in both frame-mAP and video-mAP.

Figure 11. Two-stream faster R-CNN for spatio-temporal action detection.

7.2.5. Analysing domain shift factors between videos and images for object detection
Participants: Vicky Kalogeiton, Vittorio Ferrari [Univ. Edinburgh], Cordelia Schmid.

Object detection is one of the most important challenges in computer vision. Object detectors are usually
trained on bounding-boxes from still images. Recently, video has been used as an alternative source of data.
Yet, for a given test domain (image or video), the performance of the detector depends on the domain it was
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trained on. In this paper [7], we examine the reasons behind this performance gap. We define and evaluate
different domain shift factors (see Figure 12): spatial location accuracy, appearance diversity, image quality
and aspect distribution. We examine the impact of these factors by comparing performance before and after
factoring them out. The results show that all four factors affect the performance of the detectors and their
combined effect explains nearly the whole performance gap.

Figure 12. Example of apperance diversity domain shift factor. (top row): Frames in the same shot that contain
near identical samples of an object. (bottom row): Example of near identical samples in the same image.

7.3. Large-scale statistical learning
7.3.1. Dictionary Learning for Massive Matrix Factorization

Participants: Julien Mairal, Arthur Mensch [Parietal], Gael Varoquaux [Parietal], Bertrand Thirion [Parietal].

Sparse matrix factorization is a popular tool to obtain interpretable data decompositions, which are also
effective to perform data completion or denoising. Its applicability to large datasets has been addressed with
online and randomized methods, that reduce the complexity in one of the matrix dimension, but not in both of
them. In [25], [17], we tackle very large matrices in both dimensions. We propose a new factorization method
that scales gracefully to terabyte-scale datasets. Those could not be processed by previous algorithms in a
reasonable amount of time. We demonstrate the efficiency of our approach on massive functional Magnetic
Resonance Imaging (fMRI) data, and on matrix completion problems for recommender systems, where we
obtain significant speed-ups compared to state-of-the art coordinate descent methods. The main principle of
the method is illustrated in Figure 13.

7.3.2. Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum
Structure
Participants: Alberto Bietti, Julien Mairal.

Stochastic optimization algorithms with variance reduction have proven successful for minimizing large finite
sums of functions. However, in the context of empirical risk minimization, it is often helpful to augment the
training set by considering random perturbations of input examples. In this case, the objective is no longer a
finite sum, and the main candidate for optimization is the stochastic gradient descent method (SGD). In this
paper [26], we introduce a variance reduction approach for this setting when the objective is strongly convex.
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Figure 13. Illustration of the matrix factorization algorithm, which streams columns in one dimension while
subsampling them.

After an initial linearly convergent phase, the algorithm achieves aO(1/t) convergence rate in expectation like
SGD, but with a constant factor that is typically much smaller, depending on the variance of gradient estimates
due to perturbations on a single example.

7.3.3. QuickeNing: A Generic Quasi-Newton Algorithm for Faster Gradient-Based
Optimization
Participants: Hongzhou Lin, Julien Mairal, Zaid Harchaoui [University of Washington].

In this paper [28], we propose an approach to accelerate gradient-based optimization algorithms by giving them
the ability to exploit curvature information using quasi-Newton update rules. The proposed scheme, called
QuickeNing, is generic and can be applied to a large class of first-order methods such as incremental and block-
coordinate algorithms; it is also compatible with composite objectives, meaning that it has the ability to provide
exactly sparse solutions when the objective involves a sparsity-inducing regularization. QuickeNing relies on
limited-memory BFGS rules, making it appropriate for solving high-dimensional optimization problems; with
no line-search, it is also simple to use and to implement. Besides, it enjoys a worst-case linear convergence
rate for strongly convex problems. We present experimental results, see Figure 14, where QuickeNing gives
significant improvements over competing methods for solving large-scale high-dimensional machine learning
problems.

7.3.4. Dictionary Learning from Phaseless Measurements
Participants: Julien Mairal, Yonina Eldar [Technion], Andreas Tillmann [TU Darmstadt].

In [22], [12], we propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals
from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image
from squared-magnitude measurements of a complex-valued linear transformation of the original image.
Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve
recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval,
when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown
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Figure 14. Relative duality gap for different number of passes performed over dataset covtype.

signal—possibly corrupted by noise—and learns a dictionary such that each patch of the estimated image
can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly
better reconstructions for phase retrieval problems with noise than methods that cannot exploit such “hidden”
sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.

8. Bilateral Contracts and Grants with Industry
8.1. MSR-Inria joint lab: scientific image and video mining

Participants: Cordelia Schmid, Karteek Alahari, Yang Hua.

This collaborative project, which started in September 2008, brings together the WILLOW and Thoth
project-teams with researchers at Microsoft Research Cambridge and elsewhere. It builds on several ideas
articulated in the “2020 Science” report, including the importance of data mining and machine learning in
computational science. Rather than focusing only on natural sciences, however, we propose here to expand the
breadth of e-science to include humanities and social sciences. The project focuses on fundamental computer
science research in computer vision and machine learning, and its application to archeology, cultural heritage
preservation, environmental science, and sociology.

8.2. MSR-Inria joint lab: structured large-scale machine learning
Participants: Julien Mairal, Alberto Bietti, Hongzhou Lin.

Machine learning is now ubiquitous in industry, science, engineering, and personal life. While early successes
were obtained by applying off-the-shelf techniques, there are two main challeges faced by machine learning
in the “ big data ” era : structure and scale. The project proposes to explore three axes, from theoretical,
algorithmic and practical perspectives: (1) large-scale convex optimization, (2) large-scale combinatorial
optimization and (3) sequential decision making for structured data. The project involves two Inria sites and
four MSR sites and started at the end of 2013.

8.3. Amazon
Participants: Grégory Rogez, Cordelia Schmid.
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We received an Amazon Faculty Research Award end of 2016. The objective is 3D human action recognition
from monocular RGB videos. The idea is to extend our recent work on human 3D pose estimation [19] to
videos and to develop an approach for action recognition based on temporal pose based on appropriate 3D
features.

8.4. Google
Participants: Karteek Alahari, Cordelia Schmid.

We received a Google Faculty Research Award in 2015. The objective is to interpret video semantically in the
presence of weak supervision. We will focus on answering questions such as who is in the scene, what they
are doing, and when exactly did they perform their action(s). We propose to develop models for detection and
recognition of objects and actions learned from minimally annotated training data.

8.5. Facebook
Participants: Cordelia Schmid, Jakob Verbeek, Karteek Alahari, Julien Mairal.

The collaboration started in 2016. The topics include image retrieval with CNN based descriptors, weakly
supervised semantic segmentation, and learning structure models for action recognition in videos. In 2016,
Pauline Luc started her PhD funded by a CIFRE grant, jointly supervised by Jakob Verbeek (Inria) and Camille
Couprie (Facebook). THOTH has been selected in 2016 as a recipient for the Facebook GPU Partnership
program. In this context Facebook will donate a state-of-the-art server with 8 GPUs.

8.6. MBDA
Participants: Jakob Verbeek, Julien Bardonnet.

Since 2004 we have collaborated with MBDA on a variety of subjects, namely object detection, tracking
and matching. Several PhD students have been funded by MBDA, and code has been transferred which is
integrated in products. Our collaboration resulted in 2010 in the award of the MBDA prize for innovation.
Since May 2015 we have one engineer funded by MBDA working on incremental learning of object detection
models. The goal is to take pre-existing vehicle models, and to quickly adapt them to new images of these
vehicles when they are acquired in the field.

8.7. Xerox Research Center Europe
Participants: Mattis Paulin, Karteek Alahari, Vladyslav Sydorov, Cordelia Schmid, Julien Mairal, Jakob
Verbeek.

The collaboration with Xerox has been on-going since October 2009 with two co-supervised CIFRE scholar-
ships (2009–2012; 2011-2014). Starting June 2014 we signed a third collaborative agreement for a duration of
three years. The goal is to develop approaches for deep learning based image description and pose estimation
in videos. Jakob Verbeek (Inria) and Diane Larlus (XRCE) jointly supervise a PhD-level intern for a period of
6 months in 2016-2017.

9. Partnerships and Cooperations

9.1. Regional Initiatives
9.1.1. DeCore (Deep Convolutional and Recurrent networks for image, speech, and text)

Participants: Jakob Verbeek, Maha Elbayad.
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DeCore is a project-team funded by the Persyval Lab for 3.5 years (september 2016 - February 2020),
coordinated by Jakob Verbeek. It unites experts from Grenoble’s applied-math and computer science labs LJK,
GIPSA-LAB and LIG in the areas of computer vision, machine learning, speech, natural language processing,
and information retrieval. The purpose of DeCore is to stimulate collaborative interdisciplinary research on
deep learning in the Grenoble area, which is likely to underpin future advances in machine perception (vision,
speech, text) over the next decade. It provides funding for two full PhD students. Maha Elbayad is one of them,
supervised by Jakob Verbeek and Laurant Besacier (UGA).

9.2. National Initiatives
9.2.1. ANR Project Physionomie

Participants: Jakob Verbeek, Shreyas Saxena, Guosheng Hu.

Face recognition is nowadays an important technology in many applications ranging from tagging people in
photo albums, to surveillance, and law enforcement. In this 3-year project (2013–2016) the goal is to broaden
the scope of usefulness of face recognition to situations where high quality images are available in a dataset
of known individuals, which have to be identified in relatively poor quality surveillance footage. To this end
we will develop methods that can compare faces despite an asymmetry in the imaging conditions, as well as
methods that can help searching for people based on facial attributes (old/young, male/female, etc.). The tools
will be evaluated by law-enforcement professionals. The participants of this project are: Morpho, SensorIT,
Université de Caen, Université de Strasbourg, Fondation pour la Recherche Stratégique, Préfecture de Police,
Service des Technologies et des Systèmes d’Information de la Sécurité Intérieure, and Thoth. The project
ended in June 2016.

9.2.2. ANR Project Macaron
Participants: Julien Mairal, Zaid Harchaoui [University of Washington], Laurent Jacob [CNRS, LBBE
Laboratory], Michael Blum [CNRS, TIMC Laboratory], Joseph Salmon [Telecom ParisTech].

The project MACARON is an endeavor to develop new mathematical and algorithmic tools for making ma-
chine learning more scalable. Our ultimate goal is to use data for solving scientific problems and automatically
converting data into scientific knowledge by using machine learning techniques. Therefore, our project has two
different axes, a methodological one, and an applied one driven by explicit problems. The methodological axis
addresses the limitations of current machine learning for simultaneously dealing with large-scale data and huge
models. The second axis addresses open scientific problems in bioinformatics, computer vision, image pro-
cessing, and neuroscience, where a massive amount of data is currently produced, and where huge-dimensional
models yield similar computational problems.

This is a 3 years and half project, funded by ANR under the program “Jeunes chercheurs, jeunes chercheuses”,
which started in October 2014. The principal investigator is Julien Mairal.

9.2.3. ANR Project DeepInFrance
Participant: Jakob Verbeek.

DeepInFrance (Machine learning with deep neural networks) project also aims at bringing together comple-
mentary machine learning, computer vision and machine listening research groups working on deep learning
with GPUs in order to provide the community with the knowledge, the visibility and the tools that brings
France among the key players in deep learning. The long-term vision of Deep in France is to open new fron-
tiers and foster research towards algorithms capable of discovering sense in data in an automatic manner, a
stepping stone before the more ambitious far-end goal of machine reasoning. The project partners are: INSA
Rouen, Univ. Caen, Inria, UPMC, Aix-Marseille Univ., Univ. Nice Sophia Antipolis.

9.3. European Initiatives
9.3.1. FP7 & H2020 Projects
9.3.1.1. ERC Advanced grant Allegro

Participants: Cordelia Schmid, Pavel Tokmakov, Nicolas Chesneau, Vicky Kalogeiton, Konstantin Shmelkov,
Daan Wynen, Xiaojiang Peng.
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The ERC advanced grant ALLEGRO started in April 2013 for a duration of five years. The aim of ALLEGRO
is to automatically learn from large quantities of data with weak labels. A massive and ever growing amount
of digital image and video content is available today. It often comes with additional information, such as text,
audio or other meta-data, that forms a rather sparse and noisy, yet rich and diverse source of annotation, ideally
suited to emerging weakly supervised and active machine learning technology. The ALLEGRO project will
take visual recognition to the next level by using this largely untapped source of data to automatically learn
visual models. We will develop approaches capable of autonomously exploring evolving data collections,
selecting the relevant information, and determining the visual models most appropriate for different object,
scene, and activity categories. An emphasis will be put on learning visual models from video, a particularly
rich source of information, and on the representation of human activities, one of today’s most challenging
problems in computer vision.

9.3.1.2. EU Marie Curie project: Egovision4health
Participants: Grégory Rogez, Cordelia Schmid.

After the 2-year outgoing phase hosted by the University of California, Irvine, G. Rogez spent the return (and
final) phase of the project in the team. In 2015, he analyzed functional object manipulations focusing on fine-
grained hand-object interactions and created a large dataset of 12000 RGB-D images covering 71 everyday
grasps in natural interactions. This Grasp UNderstanding dataset (GUN-71) has been made publicly available
in 2016 (http://www.gregrogez.net/research/egovision4health/gun-71/). In the last period of the fellowship,
G. Rogez and C. Schmid addressed the more general problem of full-body 3D pose estimation in third-
person images. They developed a new data synthesis technique to generate large-scale (2 millions images)
training data that were later used to train Deep Convolutional Neural Networks. The collaboration resulted in
a publication [19]. Dataset, code and models will be released soon.

9.4. International Initiatives
9.4.1. Inria Associate Teams Not Involved in an Inria International Labs
9.4.1.1. GAYA: Semantic and Geometric Models for Video Interpretation

We have formed an associate team GAYA, with the primary goal of interpreting videos in terms of recognizing
actions, understanding the human-human and human-object interactions. Despite several years of research, it
is yet unclear what is an efficient and robust video representation to attack this challenge. In order to address
this, GAYA will focus on building semantic models, wherein we learn the video feature representation with
limited supervision, and also geometric models, where we study the geometric properties of object shapes to
better recognize them. The team consists of researchers from two Inria project-teams (Thoth and WILLOW)
and a US university (Carnegie Mellon University [CMU]). It will allow the three teams to effectively combine
their respective strengths in areas such as inference and machine learning approaches for vision tasks, feature
representation, large-scale learning, geometric reasoning. The main expected outcomes of this collaboration
are: effective learnt representations of video content, new machine learning algorithms for handling minimally
annotated data, large-scale public datasets for benchmarking, theoretical analysis of objects shapes and
contours. Cordelia Schmid and Karteek Alahari are involved in this associate team.

9.4.2. Inria International Partners
9.4.2.1. Informal International Partners

• University of Edinburgh: C. Schmid collaborates with V. Ferrari, associate professor at university
of Edinburgh. Vicky Kalogeiton started a co-supervised PhD in September 2013; she is bi-localized
between Uni. Edinburgh and Inria. Her subject is the automatic learning of object representations in
videos. The collaboration resulted in a joint publication in IEEE PAMI [7]

• MPI Tübingen: C. Schmid collaborates with M. Black, a research director at MPI, starting in 2013.
She spent one month at MPI in May 2016. End of 2015 she was award a Humbolt research award
funding a long-term research project with colleagues at MPI. In 2016 the project resulted in the
development of a large-scale synthetic human action dataset.
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• Technion: J. Mairal started a collaboration with Yonina Eldar (Technion) and Andreas Tillmann
(Darmstadt university) to develop dictionary learning techniques for phase retrieval. Their collabo-
ration resulted in a paper accepted to the ICASSP’16 conference [22] and a paper accepted to IEEE
Transaction on signal processing [12].

• UC Berkeley: This collaboration between Bin Yu, Jack Gallant, Yuval Benjamini, Adam Bloniarz,
Yuansi Chen (UC Berkeley), and Julien Mairal (Inria Thoth) aims to discover the functionalities
of areas of the visual cortex. We have introduced an image representation for area V4, adapting
tools from computer vision to neuroscience data. The collaboration started when Julien Mairal was
a post-doctoral researcher at UC Berkeley and is still ongoing.

9.4.3. Participation in Other International Programs
• Indo-French project EVEREST with IIIT Hyderabad, India, funded by CEFIPRA (Centre Franco-

Indien pour la Promotion de la Recherche Avancee). The aim of this project between Cordelia
Schmid, Karteek Alahari and C. V. Jawahar (IIIT Hyderabad) is to enable the use of rich, complex
models that are required to address the challenges of high-level computer vision. The work plan
for the project will follow three directions. First, we will develop a learning framework that can
handle weak annotations. Second, we will build formulations to solve the non-convex optimization
problem resulting from the learning framework. Third, we will develop efficient and accurate energy
minimization algorithms, in order to make the optimization computationally feasible.

• France-Berkeley fund: Julien Mairal was awarded in 2014 a grant from the France-Berkeley fund
for a project with Pr. Bin Yu (statistics department, UC Berkeley) on “Invariant image representations
and high dimensional sparse estimation for neurosciences”. The award amounts to 10,000 USD, from
November 2014 to April 2016. The funds are meant to support scientific and scholarly exchanges
and collaboration between the two teams.

9.5. International Research Visitors
9.5.1. Visits to International Teams
9.5.1.1. Research Stays Abroad

• H. Lin visited Microsoft Research at New York from September to December 2016, as part of the
MSR-Inria joint centre collaboration.

• G. Chéron visited Microsoft Research at Cambridge from April to July 2016, as part of the MSR-
Inria joint centre collaboration.

10. Dissemination
10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. Member of the Organizing Committees

• G. Rogez. Co-organizer of the CVPR workshop on Observing and Understanding Hands in Action
(HANDS 2016).

• J. Verbeek. Organized Symposium on Computer Vision and Deep Learning on June 9th in Grenoble
with around 80 attendants.

10.1.2. Scientific Events Selection
10.1.2.1. Member of the Conference Program Committees

• C. Schmid: area chair for ECCV’16, ICCV’17.
• J. Mairal: area chair for CVPR 2016, ECCV 2016, ICLR 2016 and NIPS 2016.
• J. Verbeek: tutorial chair for ECCV’16.

10.1.2.2. Reviewer

The permanent members of the team reviewed numerous papers for numerous international conferences in
computer vision and machine learning: CVPR, ECCV, NIPS, ICML, AISTATS.
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10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• C. Schmid: Editor in Chief of the International Journal of Computer Vision, since 2013.

• C. Schmid: Associate editor for Foundations and Trends in Computer Graphics and Vision, since
2005.

• J. Verbeek: Associate editor for Image and Vision Computing Journal, since 2011.

• J. Verbeek: Associate editor for the International Journal on Computer Vision, since 2014.

• J. Mairal: Associate editor of the International Journal of Computer Vision (IJCV), since 2015.

• J. Mairal: Senior associate editor for IEEE Signal Processing Letters, since Feb 2015 (editor since
Aug. 2014).

• J. Mairal: Associate editor of Journal of Mathematical Imaging and Vision (JMIV), since 2015.

10.1.3.2. Reviewer - Reviewing Activities

The permanent members of the team reviewed numerous papers for numerous international journals in
computer vision (IJCV, PAMI,CVIU), machine learning (JMLR, Machine Learning). Some of them are also
reviewing for journals in optimization (SIAM Journal on Optimization, Mathematical Programming), image
processing (SIAM Imaging Science).

10.1.4. Invited Talks
• C. Schmid. Invited speaker at Large-scale Computer Vision Workshop in conjunction with NIPS’16,

December 2016.

• C. Schmid. Keynote speaker at IEEE International Conference on Image Processing, Phoenix,
September 2016.

• C. Schmid. Invited speaker at Robust Features Workshop in conjunction with CVPR’16, June 2016.

• C. Schmid. Invited speaker at collège de France seminar (chair of Yann LeCun), Mars 2016.

• C. Schmid. Invited speaker at the LIG (laboratoire d’informatique de Grenoble) keynote talks,
February 2016.

• C. Schmid. Seminar at Google, Montain View, July 2016.

• C. Schmid. Seminar at “journées scientifiques Inria”, June 2016.

• C. Schmid. Seminar at Karlsruhe Technology Institute, June 2016.

• C. Schmid. Seminar at MPI, Tübingen, April 2016.

• C. Schmid. Seminar at INSA Lyon, April 2016.

• C. Schmid. Seminar at New York University, January 2016.

• J. Verbeek. Invited speaker at NVIDIA GPU Technology Conference, Amsterdam, The Netherlands.
September 2016.

• J. Verbeek. Seminar GREYC, University of Caen, France, December 2016.

• J. Verbeek. Seminar PSI team, department of Electrical Engineering (ESAT), University of Leuven,
Belgium, October 2016.

• J. Mairal. Invited talk at the Dagstuhl seminar “New Directions for Learning with Kernels and
Gaussian Processes”, December 2016.

• J. Mairal. Invited talk at workshop Phi-Tab, Telecom ParisTech, November 2016.

• J. Mairal. Invited talk at Journées GDR-Isis, Telecom ParisTech, September 2016.

• J. Mairal. Invited talk at Journées MAS, Grenoble, France, August 2016.

• J. Mairal. Invited talk at ICCOPT, Tokyo, Japan, August 2016.

• J. Mairal. Seminar at UC Berkeley, EECS department, USA, March 2016.
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• J. Mairal. Seminar at UBC Vancouver, Canada, February 2016.
• J. Mairal. Invited talk at the MIA’16 workshop, Paris, France, January 2016.
• K. Alahari. Seminar at Carnegie Mellon University, USA, July 2016.
• K. Alahari. invited talk at Mysore Park workshop on vision, language and AI, India, December 2016.
• G. Rogez. Invited talk at Journées CNRS-GDR Isis, Telecom Paris, May 2016.
• G. Rogez. Invited speaker at CVPR Tutorial on First-person Visual Sensing: Theory, Models, and

Application, Las Vegas, June 2016.
• G. Rogez. Seminar at LIRMM, Université de Montpellier, December 2016.
• H. Lin. Seminar at New York University, USA, April 2016.
• H. Lin. Seminar at Princeton University, USA, April 2016.
• H. Lin. Invited talk at ICCOPT, Tokyo, Japan, August 2016.

10.1.5. Scientific Expertise
• C. Schmid is member of the PAMI-TC awards committee, and the PAMI-TC executive commitee.
• K. Alahari: reviewer for National Sciences and Engineering Research Council of Canada (NSERC),

Canada, Agence Nationale de la Recherche (ANR), and Icelandic Research Fund (IRF), Iceland.
• J. Mairal: reviewer for ANR.

10.1.6. Research Administration
• C. Schmid is member of the “comité d’orientations scientifiques”. Inria Grenoble, 2016.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Doctorat: C. Schmid, Tutorial on action recognition at the Winter School in Computer Vision,
Jerusalem, January 2017.
Doctorat: J. Mairal, Lecturer at the summer school MAESTRA, Ohrid, Macedonia.
Master : C. Schmid, “Object recognition and computer vision”, 9H eqTD, M2, ENS Cachan, France.
Master : J. Verbeek and C. Schmid. “Machine Learning & Category Representation”, 27H eqTD,
M2, Univ. Grenoble.
Master : J. Verbeek and J. Mairal, “Kernel Methods for Statistical Learning”, 27H eqTD, M2,
ENSIMAG, Grenoble.
Master: J. Mairal, “Kernel methods for statistical learning”, 27H eqTD, M2, Ecole Normale
Supérieure, Cachan.
Master: J. Mairal, “Introduction to sparse estimation”, 6H eq-TD, M2, PSL-ITI, France.
Master: K. Alahari, “Introduction to Discrete Optimization”, Ecole Centrale Paris, 27H eq-TD, M1,
Paris, France.
Master: K. Alahari, “Understanding Big Visual Data”, Grenoble INP, 13.5H eq-TD, M2, Grenoble,
France.
Licence: P. Weinzaepfel, “Introduction à UNIX et à la programmation en langage C”, 67.5H TD, L1,
DLST Grenoble.

10.2.2. Supervision
PhD: P. Weinzaepfel, Motion in action : optical flow estimation and action localization in videos,
supervision 50% C. Schmid and 50% Z. Harchaoui, September 2016.
PhD: Y. Hua, Towards robust visual object tracking : proposal selection and occlusion reasoning,
supervision 50% C. Schmid and 50% K. Alahari, June 2016.
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PhD: A. Mishra, Understanding Text in Scene Images, supervision 50% K. Alahari and 50% Prof.
C. V. Jawahar, November 2016.
PhD: P. Bojanowski, Learning to annotate dynamic video scenes, supervision 20% with J. Ponce, I.
Laptev and J. Sivic, June 2016.
PhD: S. Saxena, Learning representations for visual recognition, supervision 95% J. Verbeek and
5% C. Schmid, December 2016.

10.2.3. Juries
C. Schmid: Pedro Oliveira Pinheiro, January 2017, rapporteur, these, EPFL.
C. Schmid: Makarand Tapaswi, June 2016, rapporteur, these, KIT Karlsruhe.
C. Schmid: Natalia Neverova, avril 2016, president, these, INSA Lyon.
K. Alahari: Guillaume Seguin, 2016, examinateur, these, Ecole Normale Superieure, Paris, France.
G. Rogez. Marta Salas, 2016, rapporteur, these, Universidad de Zaragoza, Spain.
G. Rogez. Tu-Hoa Pham, December 2016, examinateur, these, Univ. Montpellier.
J. Verbeek. Amir Ghodrati, October 2016, rapporteur, these, Univ. Leuven.
J. Verbeek. Binod Bhattarai, December 2016, rapporteur, these, Univ. Caen.
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