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2. Overall Objectives

2.1. Statement
Object recognition —or, in a broader sense, scene understanding— is the ultimate scientific challenge of
computer vision: After 40 years of research, robustly identifying the familiar objects (chair, person, pet), scene
categories (beach, forest, office), and activity patterns (conversation, dance, picnic) depicted in family pictures,
news segments, or feature films is still beyond the capabilities of today’s vision systems. On the other hand,
truly successful object recognition and scene understanding technology will have a broad impact in application
domains as varied as defense, entertainment, health care, human-computer interaction, image retrieval and data
mining, industrial and personal robotics, manufacturing, scientific image analysis, surveillance and security,
and transportation.

Despite the limitations of today’s scene understanding technology, tremendous progress has been accom-
plished in the past ten years, due in part to the formulation of object recognition as a statistical pattern match-
ing problem. The emphasis is in general on the features defining the patterns and on the algorithms used to
learn and recognize them, rather than on the representation of object, scene, and activity categories, or the in-
tegrated interpretation of the various scene elements. WILLOW complements this approach with an ambitious
research program explicitly addressing the representational issues involved in object recognition and, more
generally, scene understanding.

Concretely, our objective is to develop geometric, physical, and statistical models for all components of the
image interpretation process, including illumination, materials, objects, scenes, and human activities. These
models will be used to tackle fundamental scientific challenges such as three-dimensional (3D) object and
scene modeling, analysis, and retrieval; human activity capture and classification; and category-level object
and scene recognition. They will also support applications with high scientific, societal, and/or economic
impact in domains such as quantitative image analysis in science and humanities; film post-production and
special effects; and video annotation, interpretation, and retrieval. Machine learning is a key part of our effort,
with a balance of practical work in support of computer vision application and methodological research aimed
at developing effective algorithms and architectures.
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WILLOW was created in 2007: It was recognized as an Inria team in January 2007, and as an official project-
team in June 2007. WILLOW is a joint research team between Inria Paris Rocquencourt, Ecole Normale
Supérieure (ENS) and Centre National de la Recherche Scientifique (CNRS).

This year we have hired two new Phd students: Antoine Miech (Inria) and Ignacio Rocco (inria). Alexei Efros
(Professor, UC Berkeley, USA) visited Willow during May-June with his postdoc Phillip Isola and Phd student
Richard Zhang. John Canny (Professor, UC Berkeley, USA) visited Willow within the framework of Inria’s
International Chair program.

3. Research Program

3.1. 3D object and scene modeling, analysis, and retrieval
This part of our research focuses on geometric models of specific 3D objects at the local (differential) and
global levels, physical and statistical models of materials and illumination patterns, and modeling and retrieval
of objects and scenes in large image collections. Our past work in these areas includes research aimed at
recognizing rigid 3D objects in cluttered photographs taken from arbitrary viewpoints (Rothganger et al.,
2006), segmenting video sequences into parts corresponding to rigid scene components before recognizing
these in new video clips (Rothganger et al., 2007), retrieval of particular objects and buildings from images and
videos (Sivic and Zisserman, 2003) and (Philbin et al., 2007), and a theoretical study of a general formalism
for modeling central and non-central cameras using the formalism and terminology of classical projective
geometry (Ponce, 2009 and Batog et al., 2010).

We have also developed multi-view stereopsis algorithms that have proven remarkably effective at recovering
intricate details and thin features of compact objects and capturing the overall structure of large-scale, cluttered
scenes. We have obtained a US patent 8,331,615 1 for the corresponding software (PMVS, https://github.
com/pmoulon/CMVS-PMVS) which is available under a GPL license and used for film production by ILM
and Weta as well as by Google in Google Maps. It is also the basic technology used by Iconem, a start-
up founded by Y. Ubelmann, a Willow collaborator. We have also applied our multi-view-stereo approach to
model archaeological sites together with developing representations and efficient retrieval techniques to enable
matching historical paintings to 3D models of archaeological sites (Russel et al., 2011).

Our current efforts in this area are outlined in detail in Section. 7.1.

3.2. Category-level object and scene recognition
The objective in this core part of our research is to learn and recognize quickly and accurately thousands of
visual categories, including materials, objects, scenes, and broad classes of temporal events, such as patterns of
human activities in picnics, conversations, etc. The current paradigm in the vision community is to model/learn
one object category (read 2D aspect) at a time. If we are to achieve our goal, we have to break away from this
paradigm, and develop models that account for the tremendous variability in object and scene appearance due
to texture, material, viewpoint, and illumination changes within each object category, as well as the complex
and evolving relationships between scene elements during the course of normal human activities.

Our current work in this area is outlined in detail in Section 7.2.

3.3. Image restoration, manipulation and enhancement
The goal of this part of our research is to develop models, and methods for image/video restoration,
manipulation and enhancement. The ability to “intelligently" manipulate the content of images and video
is just as essential as high-level content interpretation in many applications: This ranges from restoring old
films or removing unwanted wires and rigs from new ones in post production, to cleaning up a shot of your

1The patent: "Match, Expand, and Filter Technique for Multi-View Stereopsis" was issued December 11, 2012 and assigned patent
number 8,331,615.

https://github.com/pmoulon/CMVS-PMVS
https://github.com/pmoulon/CMVS-PMVS
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daughter at her birthday party, which is lovely but noisy and blurry because the lights were out when she blew
the candles, or editing out a tourist from your Roman holiday video. Going beyond the modest abilities of
current “digital zoom" (bicubic interpolation in general) so you can close in on that birthday cake, “deblock"
a football game on TV, or turn your favorite DVD into a blue-ray, is just as important.

In this context, we believe there is a new convergence between computer vision, machine learning, and signal
processing. For example: The idea of exploiting self-similarities in image analysis, originally introduced in
computer vision for texture synthesis applications (Efros and Leung, 1999), is the basis for non-local means
(Buades et al., 2005), one of today’s most successful approaches to image restoration. In turn, by combining
a powerful sparse coding approach to non-local means (Dabov et al., 2007) with modern machine learning
techniques for dictionary learning (Mairal et al., 2010), we have obtained denoising and demosaicking results
that are the state of the art on standard benchmarks (Mairal et al., 2009).

Our current work is outlined in detail in Section 7.3.

3.4. Human activity capture and classification
From a scientific point of view, visual action understanding is a computer vision problem that until recently
has received little attention outside of extremely specific contexts such as surveillance or sports. Many of
the current approaches to the visual interpretation of human activities are designed for a limited range of
operating conditions, such as static cameras, fixed scenes, or restricted actions. The objective of this part
of our project is to attack the much more challenging problem of understanding actions and interactions in
unconstrained video depicting everyday human activities such as in sitcoms, feature films, or news segments.
The recent emergence of automated annotation tools for this type of video data (Everingham, Sivic, Zisserman,
2006; Laptev, Marszałek, Schmid, Rozenfeld, 2008; Duchenne, Laptev, Sivic, Bach, Ponce, 2009) means that
massive amounts of labelled data for training and recognizing action models will at long last be available.

Our research agenda in this scientific domain is described below and our recent results are outlined in detail
in Section 7.4.

• Weakly-supervised learning and annotation of human actions in video. We aim to leverage the
huge amount of video data using readily-available annotations in the form of video scripts. Scripts,
however, often provide only imprecise and incomplete information about the video. We address this
problem with weakly-supervised learning techniques both at the text and image levels.

• Descriptors for video representation Video representation has a crucial role for recognizing human
actions and other components of a visual scene. Our work in this domain aims to develop generic
methods for representing video data based on realistic assumptions. In particular, we develop deep
learning methods and design new trainable representations for various tasks such as human action
recognition, person detection, segmentation and tracking.

4. Application Domains
4.1. Introduction

We believe that foundational modeling work should be grounded in applications. This includes (but is not
restricted to) the following high-impact domains.

4.2. Quantitative image analysis in science and humanities
We plan to apply our 3D object and scene modeling and analysis technology to image-based modeling
of human skeletons and artifacts in anthropology, and large-scale site indexing, modeling, and retrieval in
archaeology and cultural heritage preservation. Most existing work in this domain concentrates on image-
based rendering, that is, the synthesis of good-looking pictures of artifacts and digs. We plan to focus instead
on quantitative applications. We are engaged in a project involving the archaeology laboratory at ENS and
focusing on image-based artifact modeling and decorative pattern retrieval in Pompeii. Application of our 3D
reconstruction technology is now being explored in the field of cultural heritage and archeology by the start-up
Iconem, founded by Y. Ubelmann, a Willow collaborator.
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4.3. Video Annotation, Interpretation, and Retrieval
Both specific and category-level object and scene recognition can be used to annotate, augment, index,
and retrieve video segments in the audiovisual domain. The Video Google system developed by Sivic and
Zisserman (2005) for retrieving shots containing specific objects is an early success in that area. A sample
application, suggested by discussions with Institut National de l’Audiovisuel (INA) staff, is to match set
photographs with actual shots in film and video archives, despite the fact that detailed timetables and/or
annotations are typically not available for either medium. Automatically annotating the shots is of course
also relevant for archives that may record hundreds of thousands of hours of video. Some of these applications
will be pursued in our MSR-Inria project.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

• Jean Ponce (together with Svetlana Lazebnik and Cordelia Schmid) received the Longuet-Higgins
Prize for “Fundamental contributions in Computer Vision", awarded at the IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

6. New Software and Platforms

6.1. NetVLAD: CNN architecture for weakly supervised place recognition
Open source release of the software package for our paper "NetVLAD: CNN architecture for weakly
supervised place recognition" [9]. It provides a full implementation of the method, including code for weakly
supervised training of the CNN representation, testing on standard datasets, as well as trained models. Links
to all of these are available at our project page http://www.di.ens.fr/willow/research/netvlad/.

6.2. Unsupervised learning from narrated instruction videos
Open source release of the software package for our paper "Unsupervised learning from narrated instruction
videos" . It provides a full implementation of the method, including code for weakly supervised training from
instruction video, as well as trained models. Links to all of these are available at our project page http://www.
di.ens.fr/willow/research/instructionvideos/.

6.3. ContextLocNet: Context-aware deep network models for weakly
supervised localization
Open source release of code reproducing the results in our "ContextLocNet: Context-aware deep network
models for weakly supervised localization" [11]. It provides code for training models, testing on standard
datasets and trained models. It can be found online at https://github.com/vadimkantorov/contextlocnet.

6.4. Long-term Temporal Convolutions for Action Recognition
Open source release of the software package for our paper "Long-term Temporal Convolutions for Action
Recognition" [20]. It provides code for training models, testing on standard datasets and trained models. Links
are available at our project page http://www.di.ens.fr/willow/research/ltc/.

http://www.di.ens.fr/willow/research/netvlad/
http://www.di.ens.fr/willow/research/instructionvideos/
http://www.di.ens.fr/willow/research/instructionvideos/
https://github.com/vadimkantorov/contextlocnet
http://www.di.ens.fr/willow/research/ltc/
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7. New Results

7.1. 3D object and scene modeling, analysis, and retrieval
7.1.1. Trinocular Geometry Revisited

Participants: Jean Ponce, Martial Hebert, Matthew Trager.

When do the visual rays associated with triplets of point correspondences converge, that is, intersect in a
common point? Classical models of trinocular geometry based on the fundamental matrices and trifocal tensor
associated with the corresponding cameras only provide partial answers to this fundamental question, in large
part because of underlying, but seldom explicit, general configuration assumptions. In this project, we use
elementary tools from projective line geometry to provide necessary and sufficient geometric and analytical
conditions for convergence in terms of transversals to triplets of visual rays, without any such assumptions. In
turn, this yields a novel and simple minimal parameterization of trinocular geometry for cameras with non-
collinear or collinear pinholes, which can be used to construct a practical and efficient method for trinocular
geometry parameter estimation. This work has been published at CVPR 2014, and a revised version that
includes numerical experiments using synthetic and real data has been published in IJCV [7] and example
results are shown in figure 1.

Figure 1. Left: Visual rays associated with three (correct) correspondences. Right: Degenerate epipolar constraints
associated with three coplanar, but non-intersecting rays lying in the trifocal plane.

7.1.2. Consistency of silhouettes and their duals
Participants: Matthew Trager, Martial Hebert, Jean Ponce.

Silhouettes provide rich information on three-dimensional shape, since the intersection of the associated visual
cones generates the "visual hull", which encloses and approximates the original shape. However, not all
silhouettes can actually be projections of the same object in space: this simple observation has implications
in object recognition and multi-view segmentation, and has been (often implicitly) used as a basis for camera
calibration. In this paper, we investigate the conditions for multiple silhouettes, or more generally arbitrary
closed image sets, to be geometrically "consistent". We present this notion as a natural generalization of
traditional multi-view geometry, which deals with consistency for points. After discussing some general
results, we present a "dual" formulation for consistency, that gives conditions for a family of planar sets to
be sections of the same object. Finally, we introduce a more general notion of silhouette "compatibility" under
partial knowledge of the camera projections, and point out some possible directions for future research. This
work has been published in [16] and example results are shown in 2.

7.1.3. Congruences and Concurrent Lines in Multi-View Geometry
Participants: Jean Ponce, Bernd Sturmfels, Matthew Trager.
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Figure 2. Geometrically consistent silhouettes are feasible projections of a single object.

We present a new framework for multi-view geometry in computer vision. A camera is a mapping between P 3

and a line congruence. This model, which ignores image planes and measurements, is a natural abstraction of
traditional pinhole cameras. It includes two-slit cameras, pushbroom cameras, catadioptric cameras, and many
more. We study the concurrent lines variety, which consists of n-tuples of lines in P 3 that intersect at a point.
Combining its equations with those of various congruences, we derive constraints for corresponding images
in multiple views. We also study photographic cameras which use image measurements and are modeled as
rational maps from P 3 to P 2 or P 1 × P 1. This work has been accepted for publication in [19] and example
results are shown in 3.

Figure 3. Non-central panoramic (left) and stereo panoramic cameras (right) are examples of non-linear cameras
that can be modeled using line congruences.

7.1.4. NetVLAD: CNN architecture for weakly supervised place recognition
Participants: Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pajdla, Josef Sivic.

In [9], we tackle the problem of large scale visual place recognition, where the task is to quickly and accurately
recognize the location of a given query photograph. We present the following three principal contributions.
First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end
manner directly for the place recognition task. The main component of this architecture, NetVLAD, is a new
generalized VLAD layer, inspired by the "Vector of Locally Aggregated Descriptors" image representation
commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable
to training via backpropagation. Second, we develop a training procedure, based on a new weakly supervised
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ranking loss, to learn parameters of the architecture in an end-to-end manner from images depicting the same
places over time downloaded from Google Street View Time Machine. Finally, we show that the proposed
architecture obtains a large improvement in performance over non-learnt image representations as well as
significantly outperforms off-the-shelf CNN descriptors on two challenging place recognition benchmarks.
This work has been published at CVPR 2016 [9]. Figure 4 shows some qualitative results.

Figure 4. Our trained NetVLAD descriptor correctly recognizes the location (b) of the query photograph (a) despite
the large amount of clutter (people, cars), changes in viewpoint and completely different illumination (night vs

daytime).

7.1.5. Pairwise Quantization
Participants: Artem Babenko, Relja Arandjelović, Victor Lempitsky.

We consider the task of lossy compression of high-dimensional vectors through quantization. We propose the
approach that learns quantization parameters by minimizing the distortion of scalar products and squared dis-
tances between pairs of points. This is in contrast to previous works that obtain these parameters through the
minimization of the reconstruction error of individual points. The proposed approach proceeds by finding a
linear transformation of the data that effectively reduces the minimization of the pairwise distortions to the
minimization of individual reconstruction errors. After such transformation, any of the previously-proposed
quantization approaches can be used. Despite the simplicity of this transformation, the experiments demon-
strate that it achieves considerable reduction of the pairwise distortions compared to applying quantization
directly to the untransformed data. This work has been published on arXiv [18] and submitted to Neurocom-
puting journal.

7.1.5.1. Learning and Calibrating Per-Location Classifiers for Visual Place Recognition
Participants: Petr Gronat, Josef Sivic, Guillaume Obozinski [ENPC / Inria SIERRA], Tomáš Pajdla [CTU in
Prague].

The aim of this work is to localize a query photograph by finding other images depicting the same place in a
large geotagged image database. This is a challenging task due to changes in viewpoint, imaging conditions
and the large size of the image database. The contribution of this work is two-fold. First, we cast the
place recognition problem as a classification task and use the available geotags to train a classifier for each
location in the database in a similar manner to per-exemplar SVMs in object recognition. Second, as only few
positive training examples are available for each location, we propose a new approach to calibrate all the per-
location SVM classifiers using only the negative examples. The calibration we propose relies on a significance
measure essentially equivalent to the p-values classically used in statistical hypothesis testing. Experiments
are performed on a database of 25,000 geotagged street view images of Pittsburgh and demonstrate improved
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place recognition accuracy of the proposed approach over the previous work. This work has been published at
CVPR 2013, and a revised version that includes additional experimental results has been published at IJCV [3].

7.2. Category-level object and scene recognition
7.2.1. Proposal Flow

Participants: Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce.

Finding image correspondences remains a challenging problem in the presence of intra-class variations and
large changes in scene layout, typical in scene flow computation. In [10], we introduce a novel approach to
this problem, dubbed proposal flow, that establishes reliable correspondences using object proposals. Unlike
prevailing scene flow approaches that operate on pixels or regularly sampled local regions, proposal flow
benefits from the characteristics of modern object proposals, that exhibit high repeatability at multiple scales,
and can take advantage of both local and geometric consistency constraints among proposals. We also show
that proposal flow can effectively be transformed into a conventional dense flow field. We introduce a new
dataset that can be used to evaluate both general scene flow techniques and region-based approaches such as
proposal flow. We use this benchmark to compare different matching algorithms, object proposals, and region
features within proposal flow with the state of the art in scene flow. This comparison, along with experiments
on standard datasets, demonstrates that proposal flow significantly outperforms existing scene flow methods
in various settings. This work has been published at CVPR 2016 [10]. The proposed method and its qualitative
result are illustrated in Figure 5.

Figure 5. Proposal flow generates a reliable scene flow between similar images by establishing geometrically
consistent correspondences between object proposals. (Left) Region-based scene flow by matching object

proposals. (Right) Color-coded dense flow field generated from the region matches, and image warping using the
flow.

7.2.1.1. Learning Discriminative Part Detectors for Image Classification and Cosegmentation
Participants: Jian Sun, Jean Ponce.

In this work, we address the problem of learning discriminative part detectors from image sets with category
labels. We propose a novel latent SVM model regularized by group sparsity to learn these part detectors.
Starting from a large set of initial parts, the group sparsity regularizer forces the model to jointly select and
optimize a set of discriminative part detectors in a max-margin framework. We propose a stochastic version
of a proximal algorithm to solve the corresponding optimization problem. We apply the proposed method to
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image classification and cosegmentation, and quantitative experiments with standard bench- marks show that
it matches or improves upon the state of the art. The first version of this work has appeared at CVPR 2013. An
extended version has been published at IJCV [6].

7.2.2. ContextLocNet: Context-aware deep network models for weakly supervised localization
Participants: Vadim Kantorov, Maxime Oquab, Minsu Cho, Ivan Laptev.

In [11] we aim to localize objects in images using image-level supervision only. Previous approaches to this
problem mainly focus on discriminative object regions and often fail to locate precise object boundaries.
In [11] we address this problem by introducing two types of context-aware guidance models, additive and
contrastive models, that leverage their surrounding context regions to improve localization. The additive model
encourages the predicted object region to be supported by its surrounding context region. The contrastive
model encourages the predicted object region to be outstanding from its surrounding context region. Our
approach benefits from the recent success of convolutional neural networks for object recognition and extends
Fast R-CNN to weakly supervised object localization. Extensive experimental evaluation on the PASCAL
VOC 2007 and 2012 benchmarks shows hat our context-aware approach significantly improves weakly
supervised localization and detection. A high-level architecture of our model is presented in Figure 6, the
project webpage is at http://www.di.ens.fr/willow/research/contextlocnet/.

Figure 6. ContextLocNet improves localization by comparing an object score between a proposal and its context.

7.2.3. Faces In Places: Compound query retrieval
Participants: Yujie Zhong, Relja Arandjelović, Andrew Zisserman.

The goal of this work is to retrieve images containing both a target person and a target scene type from a
large dataset of images. At run time this compound query is handled using a face classifier trained for the
person, and an image classifier trained for the scene type. We make three contributions: first, we propose a
hybrid convolutional neural network architecture that produces place-descriptors that are aware of faces and
their corresponding descriptors. The network is trained to correctly classify a combination of face and scene
classifier scores. Second, we propose an image synthesis system to render high quality fully-labelled face-
and-place images, and train the network only from these synthetic images. Last, but not least, we collect and
annotate a dataset of real images containing celebrities in different places, and use this dataset to evaluate the
retrieval system. We demonstrate significantly improved retrieval performance for compound queries using the
new face-aware place-descriptors. This work has been published at BMVC 2016 [17]. Figure 7 shows some
qualitative results.

http://www.di.ens.fr/willow/research/contextlocnet/
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Figure 7. Examples of the top two retrieved images for various compound queries.

7.3. Image restoration, manipulation and enhancement
7.3.1. Robust Guided Image Filtering Using Nonconvex Potentials

Participants: Bumsub Ham, Minsu Cho, Jean Ponce.

Filtering images using a guidance signal, a process called joint or guided image filtering, has been used in
various tasks in computer vision and computational photography, particularly for noise reduction and joint
upsampling. The aim is to transfer the structure of the guidance signal to an input image, restoring noisy or
altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider
differences in structure between guidance and input images, and it is not robust to outliers. We propose a novel
SD (for static/dynamic) filter to address these problems in a unified framework by jointly leveraging structural
information of guidance and input images. Joint image filtering is formulated as a nonconvex optimization
problem, which is solved by the majorization-minimization algorithm. The proposed algorithm converges
quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure
at different scales and can handle a variety of types of data from different sensors. It is robust to outliers and
other artifacts such as gradient reversal and global intensity shifting, and has good edge-preserving smoothing
properties. We demonstrate the flexibility and effectiveness of the SD filter in a great variety of applications
including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR
denoising. This has been published at CVPR 2015. A new revised version is currently in submission [4]. The
SD filter is illustrated in Figure 8.

7.4. Human activity capture and classification
7.4.1. Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding

Participants: Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, Abhinav Gupta.

Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or
reminding us to take a pill. To succeed with such tasks, computer vision methods need to be trained from real
and diverse examples of our daily dynamic scenes. While most of such scenes are not particularly exciting,
they typically do not appear on YouTube, in movies or TV broadcasts. So how do we collect sufficiently many
diverse but boring samples representing our lives? We propose a novel Hollywood in Homes approach to
collect such data. Instead of shooting videos in the lab, we ensure diversity by distributing and crowdsourcing
the whole process of video creation from script writing to video recording and annotation. Following this
procedure we collect a new dataset, Charades, with hundreds of people recording videos in their own homes,
acting out casual everyday activities (see Figure 9). The dataset is composed of 9,848 annotated videos with an
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Figure 8. Sketch of joint image filtering and SD filtering: Static guidance filtering convolves an input image with a
weight function computed from static guidance, as in the dotted blue box. Dynamic guidance filtering uses weight
functions that are repeatedly obtained from regularized input images, as in the dotted red box. We have observed

that static and dynamic guidance complement each other, and exploiting only one of them is problematic, especially
in the case of data from different sensors (e.g., depth and color images). The SD filter takes advantage of both, and

addresses the problems of current joint image filtering.
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average length of 30 seconds, showing activities of 267 people from three continents. Each video is annotated
by multiple free-text descriptions, action labels, action intervals and classes of interacted objects. In total,
Charades provides 27,847 video descriptions, 66,500 temporally localized intervals for 157 action classes and
41,104 labels for 46 object classes. Using this rich data, we evaluate and provide baseline results for several
tasks including action recognition and automatic description generation. We believe that the realism, diversity,
and casual nature of this dataset will present unique challenges and new opportunities for computer vision
community. This work has been published at ECCV 2016 [15].

Figure 9. Comparison of actions in the Charades dataset and on YouTube: Reading a book, Opening a refrigerator,
Drinking from a cup. YouTube returns entertaining and often atypical videos, while Charades contains typical

everyday videos.

7.4.2. Unsupervised learning from narrated instruction videos
Participants: Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, Simon
Lacoste-Julien.

In [8], we address the problem of automatically learning the main steps to complete a certain task, such as
changing a car tire, from a set of narrated instruction videos. The contributions of this paper are three-fold.
First, we develop a new unsupervised learning approach that takes advantage of the complementary nature of
the input video and the associated narration. The method solves two clustering problems, one in text and one in
video, applied one after each other and linked by joint constraints to obtain a single coherent sequence of steps
in both modalities. Second, we collect and annotate a new challenging dataset of real-world instruction videos
from the Internet. The dataset contains about 800,000 frames for five different tasks that include complex
interactions between people and objects, and are captured in a variety of indoor and outdoor settings. Third, we
experimentally demonstrate that the proposed method can automatically discover, in an unsupervised manner,
the main steps to achieve the task and locate the steps in the input videos. This work has been published at
CVPR 2016 [8].
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7.4.3. Long-term Temporal Convolutions for Action Recognition
Participants: Gul Varol, Ivan Laptev, Cordelia Schmid.

Typical human actions such as hand-shaking and drinking last several seconds and exhibit characteristic
spatio-temporal structure. Recent methods attempt to capture this structure and learn action representations
with convolutional neural networks. Such representations, however, are typically learned at the level of single
frames or short video clips and fail to model actions at their full temporal scale. In [20], we learn video
representations using neural networks with long-term temporal convolutions. We demonstrate that CNN
models with increased temporal extents improve the accuracy of action recognition despite reduced spatial
resolution. We also study the impact of different low-level representations, such as raw values of video pixels
and optical flow vector fields and demonstrate the importance of high-quality optical flow estimation for
learning accurate action models. We report state-of-the-art results on two challenging benchmarks for human
action recognition UCF101 and HMDB51. This work is under review. The results for the proposed method
are illustrated in Figure 10.

Figure 10. The highest improvement of long-term temporal convolutions in terms of class accuracy is for
“JavelinThrow”. For 16-frame network, it is mostly confused with “FloorGymnastics” class. We visualize sample
videos with 7 frames extracted at every 8 frames. The intuitive explanation is that both classes start by running for
a few seconds and then the actual action takes place. Long-term temporal convolutions with 60 frames can capture

this interval, whereas 16-frame networks fail to recognize such long-term activities.

7.4.4. Thin-Slicing forPose: Learning to Understand Pose without Explicit Pose Estimation
Participants: Suha Kwak, Minsu Cho, Ivan Laptev.
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In [12], we address the problem of learning a pose-aware, compact embedding that projects images with
similar human poses to be placed close-by in the embedding space (Figure 11). The embedding function is
built on a deep convolutional network, and trained with a triplet-based rank constraint on real image data. This
architecture allows us to learn a robust representation that captures differences in human poses by effectively
factoring out variations in clothing, background, and imaging conditions in the wild. For a variety of pose-
related tasks, the proposed pose embedding provides a cost-efficient and natural alternative to explicit pose
estimation, circumventing challenges of localizing body joints. We demonstrate the efficacy of the embedding
on pose-based image retrieval and action recognition problems. This work has been published at CVPR 2016
[12].

Figure 11. The manifold of our pose embedding visualized using t-SNE. Each point represents a human pose image.
To better show correlation between the pose embedding and annotated pose, we color-code pose similarities in

annotation between an arbitrary target image (red box) and all the other images. Selected examples of color-coded
images are illustrated in the right-hand side. Images similar with the target in annotated pose are colored in yellow,
otherwise in blue. As can be seen, yellow images lie closer by the target in general, which indicates that a position

on the embedding space implicitly represents a human pose.

7.4.5. Instance-level video segmentation from object tracks
Participants: Guillaume Seguin, Piotr Bojanowski, Rémi Lajugie, Ivan Laptev.

In [14], we address the problem of segmenting multiple object instances in complex videos. Our method does
not require manual pixel-level annotation for training, and relies instead on readily-available object detectors
or visual object tracking only. Given object bounding boxes at input as shown in Figure 12, we cast video
segmentation as a weakly-supervised learning problem. Our proposed objective combines (a) a discriminative
clustering term for background segmentation, (b) a spectral clustering one for grouping pixels of same object
instances, and (c) linear constraints enabling instance-level segmentation. We propose a convex relaxation
of this problem and solve it efficiently using the Frank-Wolfe algorithm. We report results and compare our
method to several baselines on a new video dataset for multi-instance person segmentation. This work has
been published at CVPR 2016.

8. Bilateral Contracts and Grants with Industry
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Figure 12. Results of our method applied to multi-person segmentation in a sample video from our database. Given
an input video together with the tracks of object bounding boxes (left), our method finds pixel-wise segmentation

for each object instance across video frames (right).

8.1. Facebook AI Research Paris: Weakly-supervised interpretation of image
and video data (Inria)
Participants: Jean Ponce, Minsu Cho, Ivan Laptev, Josef Sivic.

We will develop in this project (Facebook gift) new models of image and video content, as well as new
recognition architectures and algorithms, to address the problem of understanding the visual content of images
and videos using weak forms of supervision, such as the fact that multiple images contain instances of the same
objects, or the textual information available in television or film scripts.

8.2. Google: Learning to annotate videos from movie scripts (Inria)
Participants: Josef Sivic, Ivan Laptev, Jean Ponce.

The goal of this project is to automatically generate annotations of complex dynamic events in video. We
wish to deal with events involving multiple people interacting with each other, objects and the scene, for
example people at a party in a house. The goal is to generate structured annotations going beyond simple
text tags. Examples include entire text sentences describing the video content as well as bounding boxes
or segmentations spatially and temporally localizing the described objects and people in video. This is an
extremely challenging task due to large intra-class variation of human actions. We propose to learn joint video
and text representations enabling such annotation capabilities from feature length movies with coarsely aligned
shooting scripts. Building on our previous work in this area, we aim to develop structured representations of
video and associated text enabling to reason both spatially and temporally about scenes, objects and people
as well as their interactions. Automatic understanding and interpretation of video content is a key-enabling
factor for a range of practical applications such as content-aware advertising or search. Novel video and text
representations are needed to enable breakthrough in this area.

8.3. Google: Structured learning from video and natural language (Inria)
Participants: Simon Lacoste-Julien, Ivan Laptev, Josef Sivic.

People can easily learn how to change a flat tire of a car or assemble an IKEA shelve by observing other people
doing the same task, for example, by watching a narrated instruction video. In addition, they can easily perform
the same task in a different context, for example, at their home. This involves advanced visual intelligence
abilities such as recognition of objects and their function as well as interpreting sequences of human actions
that achieve a specific task. However, currently there is no artificial system with a similar cognitive visual
competence. The goal of this proposal is to develop models, representations and learning algorithms for
automatic understanding of complex human activities from videos narrated with natural language.
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8.4. MSR-Inria joint lab: Image and video mining for science and humanities
(Inria)
Participants: Leon Bottou [Facebook], Ivan Laptev, Maxime Oquab, Jean Ponce, Josef Sivic, Cordelia
Schmid [Inria Lear].

This collaborative project brings together the WILLOW and LEAR project-teams with MSR researchers
in Cambridge and elsewhere. The concept builds on several ideas articulated in the “2020 Science” report,
including the importance of data mining and machine learning in computational science. Rather than focusing
only on natural sciences, however, we propose here to expand the breadth of e-science to include humanities
and social sciences. The project we propose will focus on fundamental computer science research in computer
vision and machine learning, and its application to archaeology, cultural heritage preservation, environmental
science, and sociology, and it will be validated by collaborations with researchers and practitioners in these
fields.

In October 2013 a new agreement has been signed for 2013-2016 with the research focus on automatic
understanding of dynamic video content. Recent studies predict that by 2018 video will account for 80-90%
of traffic on the Internet. Automatic understanding and interpretation of video content is a key enabling factor
for a range of practical applications such as organizing and searching home videos or content aware video
advertising. For example, interpreting videos of "making a birthday cake" or "planting a tree" could provide
effective means for advertising products in local grocery stores or garden centers. The goal of this project is to
perform fundamental computer science research in computer vision and machine learning in order to enhance
the current capabilities to automatically understand, search and organize dynamic video content.

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. Agence Nationale de la Recherche (ANR): SEMAPOLIS

Participants: Mathieu Aubry, Josef Sivic.

The goal of the SEMAPOLIS project is to develop advanced large-scale image analysis and learning
techniques to semantize city images and produce semantized 3D reconstructions of urban environments,
including proper rendering. Geometric 3D models of existing cities have a wide range of applications, such
as navigation in virtual environments and realistic sceneries for video games and movies. A number of
players (Google, Microsoft, Apple) have started to produce such data. However, the models feature only
plain surfaces, textured from available pictures. This limits their use in urban studies and in the construction
industry, excluding in practice applications to diagnosis and simulation. Besides, geometry and texturing are
often wrong when there are invisible or discontinuous parts, e.g., with occluding foreground objects such as
trees, cars or lampposts, which are pervasive in urban scenes. This project will go beyond the plain geometric
models by producing semantized 3D models, i.e., models which are not bare surfaces but which identify
architectural elements such as windows, walls, roofs, doors, etc. Semantic information is useful in a larger
number of scenarios, including diagnosis and simulation for building renovation projects, accurate shadow
impact taking into account actual window location, and more general urban planning and studies such as solar
cell deployment. Another line of applications concerns improved virtual cities for navigation, with object-
specific rendering, e.g., specular surfaces for windows. Models can also be made more compact, encoding
object repetition (e.g., windows) rather than instances and replacing actual textures with more generic ones
according to semantics; it allows cheap and fast transmission over low- bandwidth mobile phone networks,
and efficient storage in GPS navigation devices.

This is a collaborative effort with LIGM / ENPC (R. Marlet), University of Caen (F. Jurie), Inria Sophia
Antipolis (G. Drettakis) and Acute3D (R. Keriven).
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9.2. European Initiatives
9.2.1. European Research Council (ERC) Advanced Grant: "VideoWorld" - Jean Ponce

Participants: Jean Ponce, Ivan Laptev, Josef Sivic.

WILLOW will be funded in part from 2011 to 2016 by the ERC Advanced Grant "VideoWorld" awarded to
Jean Ponce by the European Research Council.

‘Digital video is everywhere, at home, at work, and on the Internet. Yet, effective technology for organizing,
retrieving, improving, and editing its content is nowhere to be found. Models for video content, interpretation
and manipulation inherited from still imagery are obsolete, and new ones must be invented. With a new
convergence between computer vision, machine learning, and signal processing, the time is right for such
an endeavor. Concretely, we will develop novel spatio-temporal models of video content learned from
training data and capturing both the local appearance and nonrigid motion of the elements—persons and their
surroundings—that make up a dynamic scene. We will also develop formal models of the video interpretation
process that leave behind the architectures inherited from the world of still images to capture the complex
interactions between these elements, yet can be learned effectively despite the sparse annotations typical of
video understanding scenarios. Finally, we will propose a unified model for video restoration and editing that
builds on recent advances in sparse coding and dictionary learning, and will allow for unprecedented control
of the video stream. This project addresses fundamental research issues, but its results are expected to serve
as a basis for groundbreaking technological advances for applications as varied as film post-production, video
archival, and smart camera phones.’

9.2.2. European Research Council (ERC) Starting Grant: "Activia" - Ivan Laptev
Participant: Ivan Laptev.

WILLOW will be funded in part from 2013 to 2017 by the ERC Starting Grant "Activia" awarded to Ivan
Laptev by the European Research Council.

‘Computer vision is concerned with the automated interpretation of images and video streams. Today’s
research is (mostly) aimed at answering queries such as ’Is this a picture of a dog?’, (classification) or
sometimes ’Find the dog in this photo’ (detection). While categorisation and detection are useful for many
tasks, inferring correct class labels is not the final answer to visual recognition. The categories and locations
of objects do not provide direct understanding of their function i.e., how things work, what they can be used
for, or how they can act and react. Such an understanding, however, would be highly desirable to answer
currently unsolvable queries such as ’Am I in danger?’ or ’What can happen in this scene?’. Solving such
queries is the aim of this proposal. My goal is to uncover the functional properties of objects and the purpose
of actions by addressing visual recognition from a different and yet unexplored perspective. The main novelty
of this proposal is to leverage observations of people, i.e., their actions and interactions to automatically learn
the use, the purpose and the function of objects and scenes from visual data. The project is timely as it builds
upon the two key recent technological advances: (a) the immense progress in visual recognition of objects,
scenes and human actions achieved in the last ten years, as well as (b) the emergence of a massive amount of
public image and video data now available to train visual models. ACTIVIA addresses fundamental research
issues in automated interpretation of dynamic visual scenes, but its results are expected to serve as a basis
for ground-breaking technological advances in practical applications. The recognition of functional properties
and intentions as explored in this project will directly support high-impact applications such as detection of
abnormal events, which are likely to revolutionise today’s approaches to crime protection, hazard prevention,
elderly care, and many others.’

9.2.3. European Research Council (ERC) Starting Grant: "Leap" - Josef Sivic
Participant: Josef Sivic.

The contract has begun on Nov 1st 2014. WILLOW will be funded in part from 2014 to 2018 by the ERC
Starting Grant "Leap" awarded to Josef Sivic by the European Research Council.
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‘People constantly draw on past visual experiences to anticipate future events and better understand, navigate,
and interact with their environment, for example, when seeing an angry dog or a quickly approaching car.
Currently there is no artificial system with a similar level of visual analysis and prediction capabilities. LEAP
is a first step in that direction, leveraging the emerging collective visual memory formed by the unprecedented
amount of visual data available in public archives, on the Internet and from surveillance or personal cameras -
a complex evolving net of dynamic scenes, distributed across many different data sources, and equipped with
plentiful but noisy and incomplete metadata. The goal of this project is to analyze dynamic patterns in this
shared visual experience in order (i) to find and quantify their trends; and (ii) learn to predict future events in
dynamic scenes. With ever expanding computational resources and this extraordinary data, the main scientific
challenge is now to invent new and powerful models adapted to its scale and its spatio-temporal, distributed
and dynamic nature. To address this challenge, we will first design new models that generalize across different
data sources, where scenes are captured under vastly different imaging conditions such as camera viewpoint,
temporal sampling, illumination or resolution. Next, we will develop a framework for finding, describing and
quantifying trends that involve measuring long-term changes in many related scenes. Finally, we will develop
a methodology and tools for synthesizing complex future predictions from aligned past visual experiences.
Our models will be automatically learnt from large-scale, distributed, and asynchronous visual data, coming
from different sources and with different forms of readily-available but noisy and incomplete metadata such as
text, speech, geotags, scene depth (stereo sensors), or gaze and body motion (wearable sensors). Breakthrough
progress on these problems would have profound implications on our everyday lives as well as science and
commerce, with safer cars that anticipate the behavior of pedestrians on streets; tools that help doctors monitor,
diagnose and predict patients’ health; and smart glasses that help people react in unfamiliar situations enabled
by the advances from this project.’

9.3. International Initiatives
9.3.1. IARPA FINDER Visual geo-localization (Inria)

Participants: Josef Sivic, Petr Gronat, Relja Arandjelovic.

Finder is an IARPA funded project aiming to develop technology to geo-localize images and videos that do
not have geolocation tag. It is common today for even consumer-grade cameras to tag the images that they
capture with the location of the image on the earth’s surface (“geolocation"). However, some imagery does
not have a geolocation tag and it can be important to know the location of the camera, image, or objects
in the scene. Finder aims to develop technology to automatically or semi-automatically geo-localize images
and video that do not have the geolocation tag using reference data from many sources, including overhead
and ground-based images, digital elevation data, existing well-understood image collections, surface geology,
geography, and cultural information.

Partners: ObjectVideo, DigitalGlobe, UC Berkeley, CMU, Brown Univ., Cornell Univ., Univ. of Kentucky,
GMU, Indiana Univ., and Washington Univ.

9.3.2. Inria CityLab initiative
Participants: Josef Sivic, Jean Ponce, Ivan Laptev, Alexei Efros [UC Berkeley].

Willow participates in the ongoing CityLab@Inria initiative (co-ordinated by V. Issarny), which aims to
leverage Inria research results towards developing “smart cities" by enabling radically new ways of living in,
regulating, operating and managing cities. The activity of Willow focuses on urban-scale quantitative visual
analysis and is pursued in collaboration with A. Efros (UC Berkeley).

Currently, map-based street-level imagery, such as Google Street-view provides a comprehensive visual record
of many cities worldwide. Additional visual sensors are likely to be wide-spread in near future: cameras will
be built in most manufactured cars and (some) people will continuously capture their daily visual experience
using wearable mobile devices such as Google Glass. All this data will provide large-scale, comprehensive
and dynamically updated visual record of urban environments.
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The goal of this project is to develop automatic data analytic tools for large-scale quantitative analysis of
such dynamic visual data. The aim is to provide quantitative answers to questions like: What are the typical
architectural elements (e.g., different types of windows or balconies) characterizing a visual style of a city
district? What is their geo-spatial distribution (see figure 1)? How does the visual style of a geo-spatial area
evolve over time? What are the boundaries between visually coherent areas in a city? Other types of interesting
questions concern distribution of people and their activities: How do the number of people and their activities
at particular places evolve during a day, over different seasons or years? Are there tourists sightseeing, urban
dwellers shopping, elderly walking dogs, or children playing on the street? What are the major causes for
bicycle accidents?

Break-through progress on these goals would open-up completely new ways smart cities are visualized,
modeled, planned and simulated, taking into account large-scale dynamic visual input from a range of visual
sensors (e.g., cameras on cars, visual data from citizens, or static surveillance cameras).

9.4. International Research Visitors
9.4.1. Visits of International Scientists

Prof. Alexei Efros (UC Berkeley, USA) visited Willow during May-June with his postdoc Phillip Isola and
Phd student Richard Zhang. Prof. John Canny (UC Berkeley) has visited Willow in 2016 within the framework
of Inria’s International Chair program.

9.4.1.1. Internships

P. Trutman and O. Rybkin have visited Willow from Czech Technical University in Prague.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. General Chair, Scientific Chair

• I. Laptev will be program co-chair of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

10.1.1.2. Member of the Organizing Committees

• M. Trager is an organizer of "Minisymposium" on "Algebraic Vision" at the SIAM conference on
Applied Algebraic Geometry (Atlanta, July 31st-August 4th 2017).

10.1.2. Scientific Events Selection
10.1.2.1. Area chairs

• IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (I. Laptev).

• Asian Conference on Computer Vision (ACCV), 2016 (I. Laptev).

• International Conference on Computer Vision (ICCV), 2017 (J. Sivic).

10.1.2.2. Member of the Conference Program Committees

• IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (R. Arandjelovic, A.
Bursuc, P. Bojanowski, M. Cho, J. Sivic, G. Cheron).

• European Conference on Computer Vision (ECCV), 2016 (R. Arandjelovic, A. Bursuc, P. Bo-
janowski, G. Cheron, M. Cho, S. Kwak, J. Sivic, G. Cheron, I. Laptev).

• International Conference on Learning Representations, 2016 (J. Sivic).
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10.1.3. Journals
10.1.3.1. Member of the editorial board

• International Journal of Computer Vision (I. Laptev, J. Ponce, J. Sivic).

• IEEE Transactions on Pattern Analysis and Machine Intelligence (I. Laptev, J. Sivic).

• Foundations and Trends in Computer Graphics and Vision (J. Ponce).

• I. Laptev and J. Sivic co-edit a special issue on "Video representations for visual recognition" in the
International Journal of Computer Vision.

• J. Sivic co-edits a special issue on "Advances in Large-Scale Media Geo-Localization" in the
International Journal of Computer Vision.

10.1.3.2. Reviewer

• International Journal of Computer Vision (M. Cho, G. Cheron, R. Arandjelovic).

• IEEE Transactions on Pattern Analysis and Machine Intelligence (R. Arandjelovic, P. Bojanowski,
M. Cho, S. Kwak, G. Cheron, A. Bursuc).

• IEEE Transactions on Circuits and Systems for Video Technology (P. Bojanowski, B. Ham).

• IEEE Transactions on Image Processing (B. Ham).

• IEEE Signal Processing Letters (B. Ham).

• Computer Vision and Image Understanding (M. Cho, A. Bursuc).

• Elsevier Neurocomputing (B. Ham).

• EURASIP Journal on Image and Video Processing (B. Ham).

10.1.4. Others
• J. Sivic is senior fellow of the Neural Computation and Adaptive Perception program of the Canadian

Institute of Advanced Research.

• R. Arandjelovic and J. Sivic obtained the outstanding reviewer award at IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

10.1.5. Invited Talks
• V. Kantorov, Speaker at Second Christmas Colloquium on Computer Vision (December 2016,

Moscow, SkolTech).

• I. Laptev, Invited talk, MailRu, Moscow, May 2016.

• I. Laptev, Invited talk, Skolkovo Robotics, Moscow, May 2016.

• I. Laptev, Invited talk, Deep Machine Intelligence and its Applications, SkolTech, Moscow, June
2016.

• I. Laptev, Invited talk, MSR-Inria Offsite Meeting, Paris, September, 2016.

• I. Laptev, Invited talk, University of Central Florida, Orlando, September, 2016.

• I. Laptev, Invited talk, Georgia Institute of Technology, Atlanta, September, 2016.

• I. Laptev, Invited talk, ECCV’16 Workshop on Brave new ideas for motion representations in videos,
Amsterdam, October, 2016.

• I. Laptev, Invited talk, Open Day AI Innovation Factory , December, 2016.

• J. Ponce, Invited talk, New York University, January 2016.

• J. Ponce, Invited talk, Université Marne la Vallée, Mars 2016.

• J. Ponce, Invited talk, Workshop on Algebraic Vision, San Jose, May 2016.

• J. Ponce, Invited talk, Colloque LORIA, Nancy, May 2016.

• J. Ponce, Invited talk, Parthenos Workshop, Bordeaux, November 2016.
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• J. Sivic, seminar, UC Berkeley, May, December, 2016.
• J. Sivic, invited talk, Brno University of Technology, April 2016.
• J. Sivic, Invited talk, the CIFAR workshop, Barcelona, December 2016.
• J. Sivic, Invited talk, Colloquium on Perspectives and New Challenges in Data Science, Ecole de

Ponts ParisTech, 2016.
• M. Trager, invited speaker, AIM workshop “Algebraic Vision" (San Jose, May 2-6, 2016).

10.1.6. Leadership within the Scientific Community
• Member, advisory board, IBM Watson AI Xprize (J. Ponce).
• Member, steering committee, "France Intelligence Artificielle" initiative (J. Ponce).
• Member, advisory board, Computer Vision Foundation (J. Sivic).

10.1.7. Scientific Expertise
• J. Sivic gave an overview of state-of-the-art in computer vision at the seminar on artificial intelli-

gence, Direction Generale des Entreprises (DGE) du Ministere de l’Economie, de l’Industrie et du
Numerique, September, 2016.

10.1.8. Research Administration
• Member, Bureau du comité des projets, Inria, Paris (J. Ponce)
• Director, Department of Computer Science, Ecole normale supérieure (J. Ponce)
• Member, Scientific academic council, PSL Research University (J. Ponce)
• Member, Research representative committee, PSL Research University (J. Ponce).
• Member of Inria Commission de developpement technologique (CDT), 2012- (J. Sivic).
• Member of ANR evaluation committee (I. Laptev).

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

• Master : J. Ponce, "Introduction to computer vision", M1, Ecole normale superieure, 36h.
• Master : I. Laptev, J. Ponce and J. Sivic (together with C. Schmid, Inria Grenoble), "Object recogni-

tion and computer vision", M2, Ecole normale superieure, and MVA, Ecole normale superieure de
Cachan, 36h.

• Master : I. Laptev, J. Ponce and J. Sivic, Cours PSL-ITI - Informatique, mathematiques appliques
pour le traitement du signal et l’imagerie, 20h.

10.2.2. Supervision
PhD : Piotr Bojanowski, "Learning to annotate dynamic video scenes", graduated in 2016, I. Laptev,
J. Ponce, C. Schmid and J. Sivic.
PhD : Guillaume Seguin, "Person analysis in stereoscopic movies", graduated in 2016, I. Laptev and
J. Sivic.
PhD in progress : Ignacio Rocco, “Estimating correspondence between images via convolutional
neural networks”, started in Jan 2017, J. Sivic, R. Arandjelovic (Google DeepMind).
PhD in progress : Antoine Miech, “Understanding long-term temporal structure of videos Phd thesis
proposal", started in Oct 2016, I. Laptev, J. Sivic, P. Bojanowski (Facebook AI Research).
PhD in progress : Gul Varol, “Deep learning methods for video interpretation”, started in Oct 2015,
I. Laptev, C. Schmid.
PhD in progress : Julia Peyre, “Learning to reason about scenes from images and language", started
in Oct 2015, C. Schmid, I. Laptev, J. Sivic.
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PhD in progress : Jean-Baptiste Alayrac, "Structured learning from video and natural language",
started in 2014, I. Laptev, J. Sivic and S. Lacoste-Julien (Inria SIERRA / U. Montreal).

PhD in progress : Rafael Sampaio de Rezende, started in 2013, J.Ponce.

PhD in progress : Guilhem Cheron, "Structured modeling and recognition of human actions in
video", started in 2014, I. Laptev and C. Schmid.

PhD in progress : Theophile Dalens, "Learning to analyze and reconstruct architectural scenes",
starting in Jan 2015, M. Aubry and J. Sivic.

PhD in progress : Vadim Kantorov, "Large-scale video mining and recognition", started in 2012, I.
Laptev.

PhD in progress : Maxime Oquab, "Learning to annotate dynamic scenes with convolutional neural
networks", started in Jan 2014, L. Bottou (Facebook AI Research), I. Laptev and J. Sivic.

PhD in progress : Matthew Trager, "Projective geometric models in vision", started in 2014, J. Ponce
and M. Hebert (CMU).

PhD in progress : Tuang Hung VU, "Learning functional description of dynamic scenes", started in
2013, I. Laptev.

10.2.3. Juries
• PhD thesis committee:

– Stavros Tsogkas, Ecole Centrale, France, 2016 (J. Sivic, examinateur).

– Sesh Karri, Ecole Normale Superieure, France, 2016 (J. Sivic, examinateur).

– Elliot Crowley, University of Oxford, UK, 2016, (J. Sivic, external examiner)

– Olivier Frigo, Universite Paris Descartes, France, 2016 (J. Sivic, rapporteur).

– Mattis Paulin, Inria Grenoble, France, 2017 (J. Sivic, rapporteur).

– Francesco Massa, ENPC, France 2017 (J. Sivic, examinateur).

– Philippe Weinzaepfel, Universite Grenoble Alpes, France, 2015 (I. Laptev, rapporteur).

– Guillaume Seguin, Ecole Normale Superieure, France, 2016 (I. Laptev, J.Ponce, J. Sivic,
examinateurs).

– Piotr Bojanowski, Ecole Normale Superieure, France, 2016 (I. Laptev, J.Ponce, J. Sivic,
examinateurs).

– Ala Aboudib, Télécom Bretagne, France, 2016 (J. Ponce).

– Philippe Weinzaepfel, Universite Grenoble Alpes, France, 2016 (J. Ponce).

10.3. Popularization
• Participation to the round table on "L’IA est-elle réservée aux GAFA", NUMA, June 2016 (J. Ponce).

• Participation to the round table on "Fictions, magie numerique et realites", Post-digital program,
ENS/PSL Research University, October 2016 (J. Ponce).

• Debate with Jacques Attali, "Intelligence Artificielle, science avec conscience?", "Intelligence
Artificielle : de la technique au business" Conference, December 2016 (J. Ponce).

• Participation to the round table on AI, Liberté Living Lab, December 2016 (J. Ponce).

• Participation to the round table on ethics at the Senate’s public hearing on Artificial Intelligence,
January 2017 (J. Ponce).

• Interview on Nolife 56Kast (https://www.youtube.com/watch?v=8UgH8_J2ugU) (J. Ponce).

• Interview in Le Monde (http://www.lemonde.fr/pixels/article/2016/01/08/intelligence-artificielle-ce-
que-voient-les-machines_4843858_4408996.html) (J. Ponce).

https://www.youtube.com/watch?v=8UgH8_J2ugU
http://www.lemonde.fr/pixels/article/2016/01/08/intelligence-artificielle-ce-que-voient-les-machines_4843858_4408996.html
http://www.lemonde.fr/pixels/article/2016/01/08/intelligence-artificielle-ce-que-voient-les-machines_4843858_4408996.html


24 Activity Report INRIA 2016

• Interview in Télérama (http://www.telerama.fr/monde/trouver-le-calme-reconstituer-palmyre-ou-
choisir-un-traitement-grace-a-l-ia,141131.php) (J. Ponce).
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