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2. Overall Objectives

2.1. Developing sound, useful and usable methods
The main objective of XPOP is to develop new sound and rigorous methods for statistical modeling in the
field of biology and life sciences. These methods for modeling include statistical methods of estimation,
model diagnostics and model selection as well as methods for numerical models (systems of ordinary and
partial differential equations). Historically, the key area where these methods have been used is population
pharmacokinetics. However, the framework is currently being extended to sophisticated numerical models
in the contexts of viral dynamics, glucose-insulin processes, tumor growth, precision medicine, intracellular
processes, etc.

Furthermore, an important aim of XPOP is to transfer the methods developed into software packages so that
they can be used in everyday practice.

2.2. Combining numerical, statistical and stochastic components of a model
Mathematical models that characterize complex biological phenomena are defined by systems of ordinary
differential equations when dealing with dynamical systems that evolve with respect to time, or by partial
differential equations when there is a spatial component in the model. Also, it is sometimes useful to integrate
a stochastic aspect into the dynamical system in order to model stochastic intra-individual variability.

In order to use such methods, we must deal with complex numerical difficulties, generally related to resolving
the systems of differential equations. Furthermore, to be able to check the quality of a model (i.e. its descriptive
and predictive performances), we require data. The statistical aspect of the model is thus critical in how it
takes into account different sources of variability and uncertainty, especially when data come from several
individuals and we are interested in characterizing the inter-subject variability. Here, the tools of reference are
mixed-effects models.

Confronted with such complex modeling problems, one of the goals of XPOP is to show the importance of
combining numerical, statistical and stochastic approaches.

2.3. Developing future standards
Linear mixed-effects models have been well-used in statistics for a long time. They are a classical approach,
essentially relying on matrix calculations in Gaussian models. Whereas a solid theoretical base has been
developed for such models, nonlinear mixed-effects models (NLMEM) have received much less attention
in the statistics community, even though they have been applied to many domains of interest. It has thus
been the users of these models, such as pharmacometricians, who have taken them and developed methods,
without really looking to develop a clean theoretical framework or understand the mathematical properties of
the methods. This is why a standard estimation method in NLMEM is to linearize the model, and few people
have been interested in understanding the properties of estimators obtained in this way.
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Statisticians and pharmacometricians frequently realize the need to create bridges between these two commu-
nities. We are entirely convinced that this requires the development of new standards for population modeling
that can be widely accepted by these various communities. These standards include the language used for
encoding a model, the approach for representing a model and the methods for using it:

• The approach. Our approach consists in seeing a model as hierarchical, represented by a joint
probability distribution. This joint distribution can be decomposed into a product of conditional
distributions, each associated with a submodel (model for observations, individual parameters, etc.).
Tasks required of the modeler are thus related to these probability distributions.

• The methods. Many tests have shown that algorithms implemented in MONOLIX are the most
reliable, all the while being extremely fast. In fact, these algorithms are precisely described and
published in well known statistical journals. In particular, the SAEM algorithm, used for calculating
the maximum likelihood estimation of population parameters, has shown its worth in numerous
situations. Its mathematical convergence has also been proven under quite general hypotheses.

• The language. Mlxtran is used by MONOLIX and other modeling tools and is today by far the most
advanced language for representing models. Initially developed for representing pharmacometric
models, its syntax also allows it to easily code dynamical systems defined by a system of ODEs,
and statistical models involving continuous, discrete and survival variables. This flexibility is a true
advantage both for numerical modelers and statisticians.

3. Research Program

3.1. Scientific positioning
"Interfaces" is the defining characteristic of XPOP:

The interface between statistics, probability and numerical methods. Mathematical modelling of complex
biological phenomena require to combine numerical, stochastic and statistical approaches. The CMAP is
therefore the right place to be for positioning the team at the interface between several mathematical
disciplines.

The interface between mathematics and the life sciences. The goal of XPOP is to bring the right answers
to the right questions. These answers are mathematical tools (statistics, numerical methods, etc.), whereas the
questions come from the life sciences (pharmacology, medicine, biology, etc.). This is why the point of XPOP
is not to take part in mathematical projects only, but also pluridisciplinary ones.

The interface between mathematics and software development. The development of new methods is
the main activity of XPOP. However, new methods are only useful if they end up being implemented in a
software tool. A strong partnership with Lixoft (the spin-off company who continue developing MONOLIX) is
indispensable to maintaining this positioning.

3.2. The mixed-effects models
Mixed-effects models are statistical models with both fixed effects and random effects. They are well-adapted
to situations where repeated measurements are made on the same individual/statistical unit.

Consider first a single subject i of the population. Let yi = (yij , 1 ≤ j ≤ ni) be the vector of observations for
this subject. The model that describes the observations yi is assumed to be a parametric probabilistic model:
let pY (yi;ψi) be the probability distribution of yi, where ψi is a vector of parameters.

In a population framework, the vector of parameters ψi is assumed to be drawn from a population distribution
pΨ(ψi; θ) where θ is a vector of population parameters.
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Then, the probabilistic model is the joint probability distribution

p(yi, ψi; θ) = pY (yi|ψi)pΨ(ψi; θ) (1)

To define a model thus consists in defining precisely these two terms.

In most applications, the observed data yi are continuous longitudinal data. We then assume the following
representation for yi:

yij = f(tij , ψi) + g(tij , ψi)εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni. (2)

Here, yij is the observation obtained from subject i at time tij . The residual errors (εij) are assumed to be
standardized random variables (mean zero and variance 1). The residual error model is represented by function
g in model (2).

Function f is usually the solution to a system of ordinary differential equations (pharmacoki-
netic/pharmacodynamic models, etc.) or a system of partial differential equations (tumor growth, respiratory
system, etc.). This component is a fundamental component of the model since it defines the prediction of the
observed kinetics for a given set of parameters.

The vector of individual parameters ψi is usually function of a vector of population parameters ψpop, a vector
of random effects ηi ∼ N(0,Ω), a vector of individual covariates ci (weight, age, gender, ...) and some fixed
effects β.

The joint model of y and ψ depends then on a vector of parameters θ = (ψpop, β,Ω).

3.3. Computational Statistical Methods
Central to modern statistics is the use of probabilistic models. To relate these models to data requires the ability
to calculate the probability of the observed data: the likelihood function, which is central to most statistical
methods and provides a principled framework to handle uncertainty.

The emergence of computational statistics as a collection of powerful and general methodologies for car-
rying out likelihood-based inference made complex models with non-standard data accessible to likelihood,
including hierarchical models, models with intricate latent structure, and missing data.

In particular, algorithms previously developed by POPIX for mixed effects models, and today implemented in
several software tools (especially MONOLIX) are part of these methods:

• the adaptive Metropolis-Hastings algorithm allows one to sample from the conditional distribution
of the individual parameters p(ψi|yi; ci, θ),

• the SAEM algorithm is used to maximize the observed likelihood L(θ; y) = p(y; θ),

• Importance Sampling Monte Carlo simulations provide an accurate estimation of the observed log-
likelihood log(L(θ; y)).

Computational statistics is an area which remains extremely active today. Recently, one can notice that
the incentive for further improvements and innovation comes mainly from three broad directions: the high
dimensional challenge, the quest for adaptive procedures that can eliminate the cumbersome process of tuning
"by hand" the settings of the algorithms and the need for flexible theoretical support, arguably required by all
recent developments as well as many of the traditional MCMC algorithms that are widely used in practice.

Working in these three directions is a clear objective for XPOP.
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3.4. Markov Chain Monte Carlo algorithms
While these Monte Carlo algorithms have turned into standard tools over the past decade, they still face
difficulties in handling less regular problems such as those involved in deriving inference for high-dimensional
models. One of the main problems encountered when using MCMC in this challenging settings is that it is
difficult to design a Markov chain that efficiently samples the state space of interest.

The Metropolis-adjusted Langevin algorithm (MALA) is a Markov chain Monte Carlo (MCMC) method for
obtaining random samples from a probability distribution for which direct sampling is difficult. As the name
suggests, MALA uses a combination of two mechanisms to generate the states of a random walk that has the
target probability distribution as an invariant measure:

1. new states are proposed using Langevin dynamics, which use evaluations of the gradient of the target
probability density function;

2. these proposals are accepted or rejected using the Metropolis-Hastings algorithm, which uses
evaluations of the target probability density (but not its gradient).

Informally, the Langevin dynamics drives the random walk towards regions of high probability in the
manner of a gradient flow, while the Metropolis-Hastings accept/reject mechanism improves the mixing and
convergence properties of this random walk.

Several extensions of MALA have been proposed recently by several authors, including fMALA (fast MALA),
AMALA (anisotropic MALA), MMALA (manifold MALA), position-dependent MALA (PMALA), ...

MALA and these extensions have demonstrated to represent very efficient alternative for sampling from high
dimensional distributions. We therefore need to adapt these methods to general mixed effects models.

3.5. Parameter estimation
The Stochastic Approximation Expectation Maximization (SAEM) algorithm has shown to be extremely
efficient for maximum likelihood estimation in incomplete data models, and particularly in mixed effects
models for estimating the population parameters. However, there are several practical situations for which
extensions of SAEM are still needed:

High dimensional model: a complex physiological model may have a large number of parameters (in the
order of 100). Then several problems arise:
• when most of these parameters are associated with random effects, the MCMC algorithm should

be able to sample, for each of the N individuals, parameters from a high dimensional distribution.
Efficient MCMC methods for high dimensions are then required.

• Practical identifiability of the model is not ensured with a limited amount of data. In other words,
we cannot expect to be able to properly estimate all the parameters of the model, including the
fixed effects and the variance-covariance matrix of the random effects. Then, some random effects
should be removed, assuming that some parameters do not vary in the population. It may also be
necessary to fix the value of some parameters (using values from the literature for instance). The
strategy to decide which parameters should be fixed and which random effects should be removed
remains totally empirical. XPOP aims to develop a procedure that will help the modeller to take such
decisions.

Large number of covariates: the covariate model aims to explain part of the inter-patient variability of
some parameters. Classical methods for covariate model building are based on comparisons with respect
to some criteria, usually derived from the likelihood (AIC, BIC), or some statistical test (Wald test, LRT,
etc.). In other words, the modelling procedure requires two steps: first, all possible models are fitted using
some estimation procedure (e.g. the SAEM algorithm) and the likelihood of each model is computed using a
numerical integration procedure (e.g. Monte Carlo Importance Sampling); then, a model selection procedure
chooses the "best" covariate model. Such a strategy is only possible with a reduced number of covariates, i.e.,
with a "small" number of models to fit and compare.
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As an alternative, we are thinking about a Bayesian approach which consists of estimating simultaneously the
covariate model and the parameters of the model in a single run. An (informative or uninformative) prior is
defined for each model by defining a prior probability for each covariate to be included in the model. In other
words, we extend the probabilistic model by introducing binary variables that indicate the presence or absence
of each covariate in the model. Then, the model selection procedure consists of estimating and maximizing
the conditional distribution of this sequence of binary variables. Furthermore, a probability can be associated
to any of the possible covariate models.

This conditional distribution can be estimated using an MCMC procedure combined with the SAEM algorithm
for estimating the population parameters of the model. In practice, such an approach can only deal with a
limited number of covariates since the dimension of the probability space to explore increases exponentially
with the number of covariates. Consequently, we would like to have methods able to find a small number
of variables (from a large starting set) that influence certain parameters in populations of individuals. That
means that, instead of estimating the conditional distribution of all the covariate models as described above,
the algorithm should focus on the most likely ones.

Fixed parameters: it is quite frequent that some individual parameters of the model have no random
component and are purely fixed effects. Then, the model may not belong to the exponential family anymore
and the original version of SAEM cannot be used as it is. Several extensions exist:

• introduce random effects with decreasing variances for these parameters,

• introduce a prior distribution for these fixed effects,

• apply the stochastic approximation directly on the sequence of estimated parameters, instead of the
sufficient statistics of the model.

None of these methods always work correctly. Furthermore, what are the pros and cons of these methods is
not clear at all. Then, developing a robust methodology for such model is necessary.

Convergence toward the global maximum of the likelihood: convergence of SAEM can strongly depend
on thie initial guess when the observed likelihood has several local maxima. A kind of simulated annealing
version of SAEM was previously developed and implemented in MONOLIX. The method works quite well in
most situations but there is no theoretical justification and choosing the settings of this algorithm (i.e. how the
temperature decreases during the iterations) remains empirical. A precise analysis of the algorithm could be
very useful to better understand why it "works" in practice and how to optimize it.

Convergence diagnostic: Convergence of SAEM was theoretically demonstrated under very general hypoth-
esis. Such result is important but of little interest in practice at the time to use SAEM in a finite amount of
time, i.e. in a finite number of iterations. Some qualitative and quantitative criteria should be defined in order
to both optimize the settings of the algorithm, detect a poor convergence of SAEM and evaluate the quality of
the results in order to avoid using them unwisely.

3.6. Model building
Defining an optimal strategy for model building is far from easy because a model is the assembled product of
numerous components that need to been evaluated and perhaps improved: the structural model, residual error
model, covariate model, covariance model, etc.

How to proceed so as to obtain the best possible combination of these components? There is no magic recipe
but an effort will be made to provide some qualitative and quantitative criteria in order to help the modeller
for building his model.

The strategy to take will mainly depend on the time we can dedicate to building the model and the time
required for running it. For relatively simple models for which parameter estimation is fast, it is possible to
fit many models and compare them. This can also be done if we have powerful computing facilities available
(e.g., a cluster) allowing large numbers of simultaneous runs.
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However, if we are working on a standard laptop or desktop computer, model building is a sequential process
in which a new model is tested at each step. If the model is complex and requires significant computation time
(e.g., when involving systems of ODEs), we are constrained to limit the number of models we can test in a
reasonable time period. In this context, it also becomes important to carefully choose the tasks to run at each
step.

3.7. Model evaluation
Diagnostic tools are recognized as an essential method for model assessment in the process of model building.
Indeed, the modeler needs to confront "his" model with the experimental data before concluding that this
model is able to reproduce the data and before using it for any purpose, such as prediction or simulation for
instance.

The objective of a diagnostic tool is twofold: first we want to check if the assumptions made on the model are
valid or not ; then, if some assumptions are rejected, we want to get some guidance on how to improve the
model.

As is the usual case in statistics, it is not because this "final" model has not been rejected that it is necessarily
the "true" one. All that we can say is that the experimental data does not allow us to reject it. It is merely one
of perhaps many models that cannot be rejected.

Model diagnostic tools are for the most part graphical, i.e., visual; we "see" when something is not right
between a chosen model and the data it is hypothesized to describe. These diagnostic plots are usually based on
the empirical Bayes estimates (EBEs) of the individual parameters and EBEs of the random effects: scatterplots
of individual parameters versus covariates to detect some possible relationship, scatterplots of pairs of random
effects to detect some possible correlation between random effects, plot of the empirical distribution of the
random effects (boxplot, histogram,...) to check if they are normally distributed, ...

The use of EBEs for diagnostic plots and statistical tests is efficient with rich data, i.e. when a significant
amount of information is available in the data for recovering accurately all the individual parameters. On the
contrary, tests and plots can be misleading when the estimates of the individual parameters are greatly shrunk.

We propose to develop new approaches for diagnosing mixed effects models in a general context and derive
formal and unbiased statistical tests for testing separately each feature of the model.

3.8. Missing data
The ability to easily collect and gather a large amount of data from different sources can be seen as an
opportunity to better understand many processes. It has already led to breakthroughs in several application
areas. However, due to the wide heterogeneity of measurements and objectives, these large databases often
exhibit an extraordinary high number of missing values. Hence, in addition to scientific questions, such data
also present some important methodological and technical challenges for data analyst.

Missing values occur for a variety of reasons: machines that fail, survey participants who do not answer certain
questions, destroyed or lost data, dead animals, damaged plants, etc. Missing values are problematic since most
statistical methods can not be applied directly on a incomplete data. Many progress have been made to properly
handle missing values. However, there are still many challenges that need to be addressed in the future, that
are crucial for the users.

• State of arts methods often consider the case of continuous or categorical data whereas real data
are very often mixed. The idea is to develop a multiple imputation method based on a specific
principal component analysis (PCA) for mixed data. Indeed, PCA has been used with success to
predict (impute) the missing values. A very appealing property is the ability of the method to handle
very large matrices with large amount of missing entries.

• The asymptotic regime underlying modern data is not any more to consider that the sample size
increases but that both number of observations and number of variables are very large. In practice
first experiments showed that the coverage properties of confidence areas based on the classical
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methods to estimate variance with missing values varied widely. The asymptotic method and the
bootstrap do well in low-noise setting, but can fail when the noise level gets high or when the
number of variables is much greater than the number of rows. On the other hand, the jackknife
has good coverage properties for large noisy examples but requires a minimum number of variables
to be stable enough.

• Inference with missing values is usually performed under the assumption of "Missing at Random"
(MAR) values which means that the probability that a value is missing may depend on the observed
data but does not depend on the missing value itself. In real data and in particular in data coming
from clinical studies, both "Missing Non at Random" (MNAR) and MAR values occur. Taking
into account in a proper way both types of missing values is extremely challenging but is worth
investigating since the applications are extremely broad.

It is important to stress that missing data models are part of the general incomplete data models addressed by
XPOP. Indeed, models with latent variables (i.e. non observed variables such as random effects in a mixed
effects model), models with censored data (e.g. data below some limit of quantification) or models with
dropout mechanism (e.g. when a subject in a clinical trial fails to continue in the study) can be seen as missing
data models.

4. Application Domains
4.1. Population pharmacometrics

Pharmacometrics involves the analysis and interpretation of data produced in pre-clinical and clinical trials.
Population pharmacokinetics studies the variability in drug exposure for clinically safe and effective doses by
focusing on identification of patient characteristics which significantly affect or are highly correlated with this
variability. Disease progress modeling uses mathematical models to describe, explain, investigate and predict
the changes in disease status as a function of time. A disease progress model incorporates functions describing
natural disease progression and drug action.

The model based drug development (MBDD) approach establishes quantitative targets for each development
step and optimizes the design of each study to meet the target. Optimizing study design requires simulations,
which in turn require models. In order to arrive at a meaningful design, mechanisms need to be understood
and correctly represented in the mathematical model. Furthermore, the model has to be predictive for future
studies. This requirement precludes all purely empirical modeling; instead, models have to be mechanistic.

In particular, physiologically based pharmacokinetic models attempt to mathematically transcribe anatomical,
physiological, physical, and chemical descriptions of phenomena involved in the ADME (Absorption -
Distribution - Metabolism - Elimination) processes. A system of ordinary differential equations for the quantity
of substance in each compartment involves parameters representing blood flow, pulmonary ventilation rate,
organ volume, etc.

The ability to describe variability in pharmacometrics model is essential. The nonlinear mixed-effects mod-
eling approach does this by combining the structural model component (the ODE system) with a statistical
model, describing the distribution of the parameters between subjects and within subjects, as well as quantify-
ing the unexplained or residual variability within subjects.

4.2. Precision medicine and pharmacogenomics
Pharmacogenomics involves using an individual’s genome to determine whether or not a particular therapy,
or dose of therapy, will be effective. Indeed, people’s reaction to a given drug depends on their physiological
state and environmental factors, but also to their individual genetic make-up.

Precision medicine is an emerging approach for disease treatment and prevention that takes into account
individual variability in genes, environment, and lifestyle for each person. While some advances in precision
medicine have been made, the practice is not currently in use for most diseases.
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Currently, in the traditional population approach, inter-individual variability in the reaction to drugs is modeled
using covariates such as weight, age, sex, ethnic origin, etc. Genetic polymorphisms susceptible to modify
pharmacokinetic or pharmacodynamic parameters are much harder to include, especially as there are millions
of possible polymorphisms (and thus covariates) per patient.

The challenge is to determine which genetic covariates are associated to some PKPD parameters and/or
implicated in patient responses to a given drug.

Another problem encountered is the dependence of genes, as indeed, gene expression is a highly regulated
process. In cases where the explanatory variables (genomic variants) are correlated, Lasso-type methods for
model selection are thwarted.

4.3. Biology - Intracellular processes
Significant cell-to-cell heterogeneity is ubiquitously-observed in isogenic cell populations. Cells respond
differently to a same stimulation. For example, accounting for such heterogeneity is essential to quantitatively
understand why some bacteria survive antibiotic treatments, some cancer cells escape drug-induced suicide,
stem cell do not differentiate, or some cells are not infected by pathogens.

The origins of the variability of biological processes and phenotypes are multifarious. Indeed, the observed
heterogeneity of cell responses to a common stimulus can originate from differences in cell phenotypes
(age, cell size, ribosome and transcription factor concentrations, etc), from spatio-temporal variations of the
cell environments and from the intrinsic randomness of biochemical reactions. From systems and synthetic
biology perspectives, understanding the exact contributions of these different sources of heterogeneity on the
variability of cell responses is a central question.

5. Highlights of the Year

5.1. Highlights of the Year
R Foundation
Julie Josse has been elected member of the R Foundation for Statistical Computing.

mlxR 3.1
mlxR 3.1 available on CRAN

6. New Software and Platforms

6.1. mlxR
A R package for the simulation and visualization of longitudinal data. The models are encoded using the model
coding language ’Mlxtran’, automatically converted into C++ codes, compiled on the fly and linked to R using
the ’Rcpp’ package. That allows one to implement very easily complex ODE-based models and complex
statistical models, including mixed effects models, for continuous, count, categorical, and time-to-event data.

6.2. FactoMineR
A R package dedicated to principal component methods (PCA, Correspondence Analysis for contingency
tables, Multiple Correspondence Analysis for categorical data, MFA for multi-blocks data). Google users
group and you-tube videos available.
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6.3. missMDA
A R package to perform principal component methods (PCA, MCA, MFA) with missing values and to impute
continuous, categorical and mixed data. Multiple imputation is available.

6.4. denoiseR
A R package that approximates a low-rank matrix from noisy data (Gaussian and Poisson Noise). Singular
values shrinkage methods are implemented.

7. New Results

7.1. Identifiability in mixed effects models
We considered the question of model identifiability within the context of nonlinear mixed effects models.
Although there has been extensive research in the area of fixed effects models, much less attention has been
paid to random effects models.

In this context we distinguish between theoretical identifiability, in which different parameter values lead to
non-identical probability distributions, structural identifiability which concerns the algebraic properties of the
structural model, and practical identifiability, whereby the model may be theoretically identifiable but the
design of the experiment may make parameter estimation difficult and imprecise.

We have explored a number of pharmacokinetic models which are known to be non-identifiable at an individual
level but can become identifiable at the population level if a number of specific assumptions on the probabilistic
model hold. Essentially if the probabilistic models are different, even though the structural models are non-
identifiable, then they will lead to different likelihoods. The findings are supported through simulations.

7.2. Enhanced Method for Diagnosing Pharmacometric Models
For nonlinear mixed-effects pharmacometric models, diagnostic approaches often rely on individual param-
eters, also called empirical Bayes estimates (EBEs), estimated through maximizing conditional distributions.
When individual data are sparse, the distribution of EBEs can “shrink” towards the same population value,
and as a direct consequence, resulting diagnostics can be misleading.

Instead of maximizing each individual conditional distribution of individual parameters, we propose to
randomly sample them in order to obtain values better spread out over the marginal distribution of individual
parameters.

We have evaluated, through diagnostic plots and statistical tests, hypothesis related to the distribution of the
individual parameters and shown that the proposed method leads to more reliable results than using the EBEs.
In particular, diagnostic plots are more meaningful, the rate of type I error is correctly controlled and its power
increases when the degree of misspecification increases. An application to the warfarin pharmacokinetic data
confirms the interest of the approach for practical applications.

7.3. A Shrinkage-Thresholding Metropolis Adjusted Langevin Algorithm for
Bayesian Variable Selection
We have introduced a new Markov Chain Monte Carlo method for Bayesian variable selection in high
dimensional settings. The algorithm is a Hastings-Metropolis sampler with a proposal mechanism which
combines a Metropolis Adjusted Langevin (MALA) step to propose local moves associated with a shrinkage-
thresholding step allowing to propose new models.

The geometric ergodicity of this new trans-dimensional Markov Chain Monte Carlo sampler was established.
An extensive numerical experiment, on simulated and real data, illustrates the performance of the proposed
algorithm in comparison with some more classical trans-dimensional algorithms
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7.4. Maximum likelihood estimation of a low-order building model
Our objective was to investigate the accuracy of the estimates learned with an open loop model of a building
whereas the data is actually collected in closed loop, which corresponds to the true exploitation of buildings.
We have proposed a simple model based on an equivalent RC network whose parameters are physically
interpretable. We also described the maximum likelihood estimation of these parameters by the EM algorithm,
and derived their statistical properties.

The numerical experiments clearly show the potential of the method, in terms of accuracy and robustness. We
have emphasized the fact that the estimations are linked to the generating process for the observations, which
includes the command system. For instance, the features of the building are correctly estimated if there is a
significant gap between the heating and cooling setpoint.

7.5. LP-convergence of a Girsanov theorem based particle filter
We have analyzed the LP-convergence of a previously proposed Girsanov theorem based particle filter for
discretely observed stochastic differential equation (SDE) models. We proved the convergence of the algorithm
with the number of particles tending to infinity by requiring a moment condition and a step-wise initial
condition boundedness for the stochastic exponential process giving the likelihood ratio of the SDEs. The
practical implications of the condition are illustrated with an Ornstein–Uhlenbeck model and with a non-linear
Bene’s model.

7.6. Adaptive estimation in the nonparametric random coefficients binary
choice model by needlet thresholding
In the random coefficients binary choice model, a binary variable equals 1 iff an index XTβ is positive. The
vectors X and β are independent and belong to the sphere Sd−1 in Rd. We have proven lower bounds on the
minimax risk for estimation of the density fβ over Besov bodies where the loss is a power of the Lp(Sd−1)
norm for 1 ≤ p ≤ ∞. We have shown that a hard thresholding estimator based on a needlet expansion with
data-driven thresholds achieves these lower bounds up to logarithmic factors.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contract with Industry
Contract with Lixoft

9. Partnerships and Cooperations

9.1. European Initiatives
9.1.1. FP7 & H2020 Projects

The Drug Disease Model Resources (DDMoRe) consortium will build and maintain a universally applicable,
open source, model-based framework, intended as the gold standard for future collaborative drug and disease
modeling and simulation.

The DDMoRe project is supported by the Innovative Medicines Initiative (IMI), a large-scale public-private
partnership between the European Union and the pharmaceutical industry association EFPIA.

Marc Lavielle was leader of WP6: "New tools for Model Based Drug Development".

DDMoRe website: http://www.ddmore.eu

Duration: 2010 - 2016

http://www.ddmore.eu
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Project members: Uppsala Universitet, Sweden; University of Navarra, Spain; Universiteit Leiden, Nether-
lands; Université Paris Diderot, France; Universita degli Studi di Pavia, Italy; UCB Pharma , Belgium; Sim-
cyp, UK; Pfizer, UK; Optimata , Israel; Novo Nordisk , Denmark; Novartis, Switzerland; Merck Serono,
Switzerland; Takeda, Switzerland; Mango Business Solutions , UK; Lixoft, France; Interface Europe, Bel-
gium; Institut de Recherches Internationales Servier, France; Inria, France; GlaxoSmithKline Research and
Development, UK; Freie Universitat Berlin, Germany; F. Hoffmann - La Roche , Switzerland; EMBL -
European Bioinformatics Institute, UK; Eli Lilly , UK; Cyprotex Discovery, UK; Consiglio Nazionale delle
Ricerche, Italy; AstraZeneca, Sweden.

9.2. International Initiatives
9.2.1. Informal International Partners

Marc Lavielle is Adjunct Professor at the Faculty of Pharmacy of Florida University.

Marc Lavielle is Adjunct Professor at the Faculty of Pharmacy of Buffalo University.

Julie Josse collaborates with Susan Holmes, Stanford University.

Eric Moulines regularly collaborates with Sean P. Meyn, University of Florida.

9.3. International Research Visitors
9.3.1. Visits of International Scientists

Ricardo Rios, Universidad Central de Venezuela, Caracas: September 2016.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. General Chair, Scientific Chair

Julie josse was chair of useR!2016, Stanford, CA, USA, July 2016. http://user2016.org.

10.1.2. Scientific Expertise
Marc Lavielle is member of the Scientific Committee of the High Council for Biotechnologies

10.1.3. Research administration
Marc Lavielle is member of

• the Scientific Programming Committee (CPS) of the Institute Henri Poincaré (IHP),

• the Executive Board (CA) of SMAI.

http://user2016.org
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10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master : Julie Josse, Statistics with R, 48, M2, X-HEC

Master : Eric Moulines, Regresson models, 36, M2, X-HEC

Engineering School : Eric Moulines, Statistics, 36, 2A, X

Engineering School : Eric Moulines, Markov Chains, 36, 3A, X

Engineering School : Erwan Le Pennec, Statistics, 36, 2A, X

Engineering School : Erwan Le Pennec, Statistical Learning, 36, 3A, X

Engineering School : Marc Lavielle, Time Series, 24, 3A, X

10.2.2. Supervision
PhD in progress : Nicolas Brosse, September 2016, Eric Moulines

PhD in progress : Geneviève Robin, September 2016, Julie Josse

PhD in progress : Belhal Karimi, October 2016, Marc Lavielle and Eric Moulines

PhD in progress : Marine Zulian, October 2016, Marc Lavielle
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