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2. Overall Objectives

2.1. Introduction
The last decade has witnessed a remarkable convergence between several sub-domains of the calculus
of variations, namely optimal transport (and its many generalizations), infinite dimensional geometry of
diffeomorphisms groups and inverse problems in imaging (in particular sparsity-based regularization). This
convergence is due to (i) the mathematical objects manipulated in these problems, namely sparse measures
(e.g. coupling in transport, edge location in imaging, displacement fields for diffeomorphisms) and (ii) the
use of similar numerical tools from non-smooth optimization and geometric discretization schemes. Optimal
Transportation, diffeomorphisms and sparsity-based methods are powerful modeling tools, that impact a
rapidly expanding list of scientific applications and call for efficient numerical strategies. Our research program
shows the important part played by the team members in the development of these numerical methods and their
application to challenging problems.

2.2. Static Optimal Transport and Generalizations
2.2.1. Optimal Transport, Old and New.

Optimal Mass Transportation is a mathematical research topic which started two centuries ago with Monge’s
work on the “Théorie des déblais et des remblais" (see [123]). This engineering problem consists in
minimizing the transport cost between two given mass densities. In the 40’s, Kantorovich [131] introduced
a powerful linear relaxation and introduced its dual formulation. The Monge-Kantorovich problem became
a specialized research topic in optimization and Kantorovich obtained the 1975 Nobel prize in economics
for his contributions to resource allocations problems. Since the seminal discoveries of Brenier in the 90’s
[73], Optimal Transportation has received renewed attention from mathematical analysts and the Fields
Medal awarded in 2010 to C. Villani, who gave important contributions to Optimal Transportation and wrote
the modern reference monographs [176], [175], arrived at a culminating moment for this theory. Optimal
Mass Transportation is today a mature area of mathematical analysis with a constantly growing range of
applications. Optimal Transportation has also received a lot of attention from probabilists (see for instance
the recent survey [141] for an overview of the Schrödinger problem which is a stochastic variant of the
Benamou-Brenier dynamical formulation of optimal transport). The development of numerical methods for
Optimal Transportation and Optimal Transportation related problems is a difficult topic and comparatively
underdeveloped. This research field has experienced a surge of activity in the last five years, with important
contributions of the MOKAPLAN group (see the list of important publications of the team). We describe below
a few of recent and less recent Optimal Transportation concepts and methods which are connected to the future
activities of MOKAPLAN :

Brenier’s theorem [74] characterizes the unique optimal map as the gradient of a convex potential. As such
Optimal Transportation may be interpreted as an infinite dimensional optimisation problem under “convexity
constraint": i.e. the solution of this infinite dimensional optimisation problem is a convex potential. This
connects Optimal Transportation to “convexity constrained" non-linear variational problems such as, for
instance, Newton’s problem of the body of minimal resistance. The value function of the optimal transport
problem is also known to define a distance between source and target densities called the Wasserstein distance
which plays a key role in many applications such as image processing.
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2.2.2. Monge-Ampère Methods.
A formal substitution of the optimal transport map as the gradient of a convex potential in the mass
conservation constraint (a Jacobian equation) gives a non-linear Monge-Ampère equation. Caffarelli [82]
used this result to extend the regularity theory for the Monge-Ampère equation. In the last ten years, it also
motivated new research on numerical solvers for non-linear degenerate Elliptic equations [111] [139] [57]
[58] and the references therein. Geometric approaches based on Laguerre diagrams and discrete data [148]
have also been developed. Monge-Ampère based Optimal Transportation solvers have recently given the first
linear cost computations of Optimal Transportation (smooth) maps.

2.2.3. Generalizations of OT.
In recent years, the classical Optimal Transportation problem has been extended in several directions. First,
different ground costs measuring the “physical" displacement have been considered. In particular, well
posedness for a large class of convex and concave cost has been established by McCann and Gangbo
[122]. Optimal Transportation techniques have been applied for example to a Coulomb ground cost in
Quantum chemistry in relation with Density Functional theory [105]. Given the densities of electrons Optimal
Transportation models the potential energy and their relative positions. For more than more than 2 electrons
(and therefore more than 2 densities) the natural extension of Optimal Transportation is the so called Multi-
marginal Optimal Transport (see [152] and the references therein). Another instance of multi-marginal
Optimal Transportation arises in the so-called Wasserstein barycenter problem between an arbitrary number
of densities [41]. An interesting overview of this emerging new field of optimal transport and its applications
can be found in the recent survey of Ghoussoub and Pass [151].

Figure 1. Example of color transfer between two images, computed using the method developed in [54], see also
[169]. The image framed in red and blue are the input images. Top and middle row: adjusted image where the color

of the transported histogram has been imposed. Bottom row: geodesic (displacement) interpolation between the
histogram of the chrominance of the image.

2.2.4. Numerical Applications of Optimal Transportation.
Optimal transport has found many applications, starting from its relation with several physical models such
as the semi-geostrophic equations in meteorology [128], [107], [106], [51], [138], mesh adaptation [137], the
reconstruction of the early mass distribution of the Universe [119], [75] in Astrophysics, and the numerical
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optimisation of reflectors following the Optimal Transportation interpretation of Oliker [83] and Wang [177].
Extensions of OT such as multi-marginal transport has potential applications in Density Functional Theory ,
Generalized solution of Euler equations [72] (DFT) and in statistics and finance [48], [121] ...Recently, there
has been a spread of interest in applications of OT methods in imaging sciences [67], statistics [63] and
machine learning [109]. This is largely due to the emergence of fast numerical schemes to approximate the
transportation distance and its generalizations, see for instance [54]. Figure 1 shows an example of application
of OT to color transfer. Figure 9 shows an example of application in computer graphics to interpolate between
input shapes.

2.3. Diffeomorphisms and Dynamical Transport
2.3.1. Dynamical transport.

While the optimal transport problem, in its original formulation, is a static problem (no time evolution is
considered), it makes sense in many applications to rather consider time evolution. This is relevant for instance
in applications to fluid dynamics or in medical images to perform registration of organs and model tumor
growth.

In this perspective, the optimal transport in Euclidean space corresponds to an evolution where each particule
of mass evolves in straight line. This interpretation corresponds to the Computational Fluid Dynamic (CFD)
formulation proposed by Brenier and Benamou in [50]. These solutions are time curves in the space of
densities and geodesics for the Wasserstein distance. The CFD formulation relaxes the non-linear mass
conservation constraint into a time dependent continuity equation, the cost function remains convex but is
highly non smooth. A remarkable feature of this dynamical formulation is that it can be re-cast as a convex
but non smooth optimization problem. This convex dynamical formulation finds many non-trivial extensions
and applications, see for instance [52]. The CFD formulation also appears to be a limit case of Mean Fields
games (MFGs), a large class of economic models introduced by Lasry and Lions [133] leading to a system
coupling an Hamilton-Jacobi with a Fokker-Planck equation. In contrast, the Monge case where the ground
cost is the euclidan distance leads to a static system of PDEs [69].

2.3.2. Gradient Flows for the Wasserstein Distance.
Another extension is, instead of considering geodesic for transportation metric (i.e. minimizing the Wasserstein
distance to a target measure), to make the density evolve in order to minimize some functional. Computing
the steepest descent direction with respect to the Wasserstein distance defines a so-called Wasserstein gradient
flow, also known as JKO gradient flows after its authors [129]. This is a popular tool to study a large class of
non-linear diffusion equations. Two interesting examples are the Keller-Segel system for chemotaxis [130],
[100] and a model of congested crowd motion proposed by Maury, Santambrogio and Roudneff-Chupin
[144]. From the numerical point of view, these schemes are understood to be the natural analogue of implicit
scheme for linear parabolic equations. The resolution is however costly as in involves taking the derivative in
the Wasserstein sense of the relevant energy, which in turns requires the resolution of a large scale convex but
non-smooth minimization.

2.3.3. Geodesic on infinite dimensional Riemannian spaces.
To tackle more complicated warping problems, such as those encountered in medical image analysis, one
unfortunately has to drop the convexity of the functional involved to define the gradient flow. This gradient flow
can either be understood as defining a geodesic on the (infinite dimensional) group of diffeomorphisms [47],
or on a (infinite dimensional) space of curves or surfaces [178]. The de-facto standard to define, analyze and
compute these geodesics is the “Large Deformation Diffeomorphic Metric Mapping” (LDDMM) framework
of Trouvé, Younes, Holm and co-authors [47], [127]. While in the CFD formulation of optimal transport, the
metric on infinitesimal deformations is just the L2 norm (measure according to the density being transported),
in LDDMM, one needs to use a stronger regularizing metric, such as Sobolev-like norms or reproducing kernel
Hilbert spaces (RKHS). This enables a control over the smoothness of the deformation which is crucial for
many applications. The price to pay is the need to solve a non-convex optimization problem through geodesic
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Figure 2. Examples of displacement interpolation (geodesic for optimal transport) according to a non-Euclidean
Riemannian metric (the mass is constrained to move inside a maze) between to input Gaussian distributions. Note

that the maze is dynamic: its topology change over time, the mass being “trapped” at time t = 1/3.

shooting method [145], which requires to integrate backward and forward the geodesic ODE. The resulting
strong Riemannian geodesic structure on spaces of diffeomorphisms or shapes is also pivotal to allow to
perform statistical analysis on the tangent space, to define mean shapes and perform dimensionality reduction
when analyzing large collection of input shapes (e.g. to study evolution of a diseases in time or the variation
across patients) [84].

2.4. Sparsity in Imaging
2.4.1. Sparse `1 regularization.

Beside image warping and registration in medical image analysis, a key problem in nearly all imaging
applications is the reconstruction of high quality data from low resolution observations. This field, commonly
referred to as “inverse problems”, is very often concerned with the precise location of features such as point
sources (modeled as Dirac masses) or sharp contours of objects (modeled as gradients being Dirac masses
along curves). The underlying intuition behind these ideas is the so-called sparsity model (either of the data
itself, its gradient, or other more complicated representations such as wavelets, curvelets, bandlets [143] and
learned representation [179]).

The huge interest in these ideas started mostly from the introduction of convex methods to serve as proxy
for these sparse regularizations. The most well known is the `1 norm introduced independently in imaging by
Donoho and co-workers under the name “Basis Pursuit” [103] and in statistics by Tibshirani [170] under
the name “Lasso”. A more recent resurgence of this interest dates back to 10 years ago with the introduction
of the so-called “compressed sensing” acquisition techniques [85], which make use of randomized forward
operators and `1-type reconstruction.
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2.4.2. Regularization over measure spaces.
However, the theoretical analysis of sparse reconstructions involving real-life acquisition operators (such as
those found in seismic imaging, neuro-imaging, astro-physical imaging, etc.) is still mostly an open problem.
A recent research direction, triggered by a paper of Candès and Fernandez-Granda [87], is to study directly
the infinite dimensional problem of reconstruction of sparse measures (i.e. sum of Dirac masses) using the
total variation of measures (not to be mistaken for the total variation of 2-D functions). Several works [86],
[115], [112] have used this framework to provide theoretical performance guarantees by basically studying
how the distance between neighboring spikes impacts noise stability.

Segmentation input output Zooming input output

Figure 3. Two example of application of the total variation regularization of functions. Left: image segmentation
into homogeneous color regions. Right: image zooming (increasing the number of pixels while keeping the edges

sharp).

2.4.3. Low complexity regularization and partial smoothness.
In image processing, one of the most popular methods is the total variation regularization [163], [79]. It
favors low-complexity images that are piecewise constant, see Figure 3 for some examples on how to solve
some image processing problems. Beside applications in image processing, sparsity-related ideas also had
a deep impact in statistics [170] and machine learning [43]. As a typical example, for applications to
recommendation systems, it makes sense to consider sparsity of the singular values of matrices, which can
be relaxed using the so-called nuclear norm (a.k.a. trace norm) [44]. The underlying methodology is to make
use of low-complexity regularization models, which turns out to be equivalent to the use of partly-smooth
regularization functionals [136], [172] enforcing the solution to belong to a low-dimensional manifold.

2.5. Mokaplan unified point of view
The dynamical formulation of optimal transport creates a link between optimal transport and geodesics
on diffeomorphisms groups. This formal link has at least two strong implications that MOKAPLAN’s will
elaborate on: (i) the development of novel models that bridge the gap between these two fields ; (ii) the
introduction of novel fast numerical solvers based on ideas from both non-smooth optimization techniques
and Bregman metrics, as highlighted in Section 3.2.3.

In a similar line of ideas, we believe a unified approach is needed to tackle both sparse regularization in imaging
and various generalized OT problems. Both require to solve related non-smooth and large scale optimization
problems. Ideas from proximal optimization has proved crucial to address problems in both fields (see for
instance [50], [160]). Transportation metrics are also the correct way to compare and regularize variational
problems that arise in image processing (see for instance the Radon inversion method proposed in [54])
and machine learning (see [109]). This unity in term of numerical methods is once again at the core of
Section 3.2.3.
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3. Research Program

3.1. Modeling and Analysis
The first layer of methodological tools developed by our team is a set of theoretical continuous models that
aim at formalizing the problems studied in the applications. These theoretical findings will also pave the way
to efficient numerical solvers that are detailed in Section 3.2.

3.1.1. Static Optimal Transport and Generalizations
3.1.1.1. Convexity constraint and Principal Agent problem in Economics.

(Participants: G. Carlier, J-D. Benamou, V. Duval, Xavier Dupuis (LUISS Guido Carli University, Roma))
The principal agent problem plays a distinguished role in the literature on asymmetric information and contract
theory (with important contributions from several Nobel prizes such as Mirrlees, Myerson or Spence) and it has
many important applications in optimal taxation, insurance, nonlinear pricing. The typical problem consists in
finding a cost minimizing strategy for a monopolist facing a population of agents who have an unobservable
characteristic, the principal therefore has to take into account the so-called incentive compatibilty constraint
which is very similar to the cyclical monotonicity condition which characterizes optimal transport plans. In a
special case, Rochet and Choné [161] reformulated the problem as a variational problem subject to a convexity
constraint. For more general models, and using ideas from Optimal Transportation, Carlier [89] considered
the more general c-convexity constraint and proved a general existence result. Using the formulation of [89]
McCann, Figalli and Kim [116] gave conditions under which the principal agent problem can be written as
an infinite dimensional convex variational problem. The important results of [116] are intimately connected
to the regularity theory for optimal transport and showed that there is some hope to numerically solve the
principal-agent problem for general utility functions.
Our expertise: We have already contributed to the numerical resolution of the Principal Agent problem in the
case of the convexity constraint, see [95], [149], [146].
Goals: So far, the mathematical PA model can be numerically solved for simple utility functions. A
Bregman approach inspired by [54] is currently being developed [92] for more general functions. It would
be extremely useful as a complement to the theoretical analysis. A new semi-Discrete Geometric approach is
also investigated where the method reduces to non-convex polynomial optimization.

3.1.1.2. Optimal transport and conditional constraints in statistics and finance.

(Participants: G. Carlier, J-D. Benamou, G. Peyré) A challenging branch of emerging generalizations of
Optimal Transportation arising in economics, statistics and finance concerns Optimal Transportation with
conditional constraints. The martingale optimal transport [48], [121] which appears naturally in mathematical
finance aims at computing robust bounds on option prices as the value of an optimal transport problem where
not only the marginals are fixed but the coupling should be the law of a martingale, since it represents the
prices of the underlying asset under the risk-neutral probability at the different dates. Note that as soon as
more than two dates are involved, we are facing a multimarginal problem.
Our expertise: Our team has a deep expertise on the topic of OT and its generalization, including many already
existing collaboration between its members, see for instance [54], [59], [52] for some representative recent
collaborative publications.
Goals: This is a non trivial extension of Optimal Transportation theory and MOKAPLAN will develop
numerical methods (in the spirit of entropic regularization) to address it. A popular problem in statistics is
the so-called quantile regression problem, recently Carlier, Chernozhukov and Galichon [90] used an Optimal
Transportation approach to extend quantile regression to several dimensions. In this approach again, not only
fixed marginals constraints are present but also constraints on conditional means. As in the martingale Optimal
Transportation problem, one has to deal with an extra conditional constraint. The usual duality approach
usually breaks down under such constraints and characterization of optimal couplings is a challenging task
both from a theoretical and numerical viewpoint.
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3.1.1.3. JKO gradient flows.

(Participants: G. Carlier, J-D. Benamou, M. Laborde, Q. Mérigot, V. Duval) The connection between the
static and dynamic transportation problems (see Section 2.3) opens the door to many extensions, most notably
by leveraging the use of gradient flows in metric spaces. The flow with respect to the transportation distance
has been introduced by Jordan-Kindelherer-Otto (JKO) [129] and provides a variational formulation of many
linear and non-linear diffusion equations. The prototypical example is the Fokker Planck equation. We will
explore this formalism to study new variational problems over probability spaces, and also to derive innovative
numerical solvers. The JKO scheme has been very successfully used to study evolution equations that have
the structure of a gradient flow in the Wasserstein space. Indeed many important PDEs have this structure: the
Fokker-Planck equation (as was first considered by [129]), the porous medium equations, the granular media
equation, just to give a few examples. It also finds application in image processing [78]. Figure 4 shows
examples of gradient flows.
Our expertise: There is an ongoing collaboration between the team members on the theoretical and numerical
analysis of gradient flows.
Goals: We apply and extend our research on JKO numerical methods to treat various extensions:

• Wasserstein gradient flows with a non displacement convex energy (as in the parabolic-elliptic
Keller-Segel chemotaxis model [98])

• systems of evolution equations which can be written as gradient flows of some energy on a product
space (possibly mixing the Wasserstein and L2 structures) : multi-species models or the parabolic-
parabolic Keller-Segel model [65]

• perturbation of gradient flows: multi-species or kinetic models are not gradient flows, but may be
viewed as a perturbation of Wasserstein gradient flows, we shall therefore investigate convergence
of splitting methods for such equations or systems.

Figure 4. Example of non-linear diffusion equations solved with a JKO flow [55]. The horizontal axis shows the
time evolution minimizing the functional

∫
ρα

α−1 on the density ρ (discretized here using point clouds, i.e. sum of
Diracs’ with equal mass). Each row shows a different value of α = (0.6, 2, 3)
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3.1.1.4. From networks to continuum congestion models.

(Participants: G. Carlier, J-D. Benamou, G. Peyré) Congested transport theory in the discrete framework
of networks has received a lot of attention since the 50’s starting with the seminal work of Wardrop. A few
years later, Beckmann proved that equilibria are characterized as solution of a convex minimization problem.
However, this minimization problem involves one flow variable per path on the network, its dimension thus
quickly becomes too large in practice. An alternative, is to consider continuous in space models of congested
optimal transport as was done in [94] which leads to very degenerate PDEs [70].
Our expertise: MOKAPLAN members have contributed a lot to the analysis of congested transport problems
and to optimization problems with respect to a metric which can be attacked numerically by fast marching
methods [59].
Goals: The case of general networks/anisotropies is still not well understood, general Γ-convergence results
will be investigated as well as a detailed analysis of the corresponding PDEs and numerical methods to solve
them. Benamou and Carlier already studied numerically some of these PDEs by an augmented Lagrangian
method see figure 5. Note that these class of problems share important similarities with metric learning
problem in machine learning, detailed in Section 4.2.

Figure 5. Monge and Wardrop flows of mass around an obstacle [52]. the source/target mass is represented by the
level curves. Left : no congestion, Right : congestion.

3.1.2. Diffeomorphisms and Dynamical Transport
3.1.2.1. Growth Models for Dynamical Optimal Transport.

(Participants: F-X. Vialard, J-D. Benamou, G. Peyré, L. Chizat) A major issue with the standard dynamical
formulation of OT is that it does not allow for variation of mass during the evolution, which is required
when tackling medical imaging applications such as tumor growth modeling [81] or tracking elastic organ
movements [167]. Previous attempts [140], [157] to introduce a source term in the evolution typically lead to
mass teleportation (propagation of mass with infinite speed), which is not always satisfactory.
Our expertise: Our team has already established key contributions both to connect OT to fluid dynamics [50]
and to define geodesic metrics on the space of shapes and diffeomorphisms [102].
Goals: Lenaic Chizat’s PhD thesis aims at bridging the gap between dynamical OT formulation, and LDDDM
diffeomorphisms models (see Section 2.3). This will lead to biologically-plausible evolution models that are
both more tractable numerically than LDDM competitors, and benefit from strong theoretical guarantees
associated to properties of OT.
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3.1.2.2. Mean-field games.

(Participants: G. Carlier, J-D. Benamou) The Optimal Transportation Computational Fluid Dynamics (CFD)
formulation is a limit case of variational Mean-Field Games (MFGs), a new branch of game theory recently
developed by J-M. Lasry and P-L. Lions [133] with an extremely wide range of potential applications [124].
Non-smooth proximal optimization methods used successfully for the Optimal Transportation can be used in
the case of deterministic MFGs with singular data and/or potentials [53]. They provide a robust treatment of
the positivity constraint on the density of players.
Our expertise: J.-D. Benamou has pioneered with Brenier the CFD approach to Optimal Transportation.
Regarding MFGs, on the numerical side, our team has already worked on the use of augmented Lagrangian
methods in MFGs [52] and on the analytical side [88] has explored rigorously the optimality system for a
singular CFD problem similar to the MFG system.
Goals: We will work on the extension to stochastic MFGs. It leads to non-trivial numerical difficulties already
pointed out in [40].

3.1.2.3. Macroscopic Crowd motion, congestion and equilibria.

(Participants: G. Carlier, J-D. Benamou, Q. Mérigot, F. Santambrogio (U. Paris-Sud), Y. Achdou (Univ. Paris
7), R. Andreev (Univ. Paris 7)) Many models from PDEs and fluid mechanics have been used to give a
description of people or vehicles moving in a congested environment. These models have to be classified
according to the dimension (1D model are mostly used for cars on traffic networks, while 2-D models are most
suitable for pedestrians), to the congestion effects (“soft” congestion standing for the phenomenon where high
densities slow down the movement, “hard” congestion for the sudden effects when contacts occur, or a certain
threshold is attained), and to the possible rationality of the agents Maury et al [144] recently developed
a theory for 2D hard congestion models without rationality, first in a discrete and then in a continuous
framework. This model produces a PDE that is difficult to attack with usual PDE methods, but has been
successfully studied via Optimal Transportation techniques again related to the JKO gradient flow paradigm.
Another possibility to model crowd motion is to use the mean field game approach of Lions and Lasry which
limits of Nash equilibria when the number of players is large. This also gives macroscopic models where
congestion may appear but this time a global equilibrium strategy is modelled rather than local optimisation
by players like in the JKO approach. Numerical methods are starting to be available, see for instance [40],
[77].
Our expertise: We have developed numerical methods to tackle both the JKO approach and the MFG
approach. The Augmented Lagrangian (proximal) numerical method can actually be applied to both models
[52], JKO and deterministic MFGs.
Goals: We want to extend our numerical approach to more realistic congestion model where the speed of
agents depends on the density, see Figure 6 for preliminary results. Comparison with different numerical
approaches will also be performed inside the ANR ISOTACE. Extension of the Augmented Lagrangian
approach to Stochastic MFG will be studied.

3.1.2.4. Diffeomorphic image matching.

(Participants: F-X. Vialard, G. Peyré, B. Schmitzer, L. Chizat) Diffeomorphic image registration is widely
used in medical image analysis. This class of problems can be seen as the computation of a generalized
optimal transport, where the optimal path is a geodesic on a group of diffeomorphisms. The major difference
between the two approaches being that optimal transport leads to non smooth optimal maps in general, which
is however compulsory in diffeomorphic image matching. In contrast, optimal transport enjoys a convex
variational formulation whereas in LDDMM the minimization problem is non convex.
Our expertise: F-X. Vialard is an expert of diffeomorphic image matching (LDDMM) [173], [76], [171]. Our
team has already studied flows and geodesics over non-Riemannian shape spaces, which allows for piecewise
smooth deformations [102].
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Figure 6. Example of crowd congestion with density dependent speed. The macroscopic density, at 4 different times,
of people forced to exit from one room towards a meeting point in a second room.
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Goals: Our aim consists in bridging the gap between standard optimal transport and diffeomorphic methods
by building new diffeomorphic matching variational formulations that are convex (geometric obstructions
might however appear). A related perspective is the development of new registration/transport models in a
Lagrangian framework, in the spirit of [166], [167] to obtain more meaningful statistics on longitudinal
studies.

Diffeomorphic matching consists in the minimization of a functional that is a sum of a deformation cost and
a similarity measure. The choice of the similarity measure is as important as the deformation cost. It is often
chosen as a norm on a Hilbert space such as functions, currents or varifolds. From a Bayesian perspective,
these similarity measures are related to the noise model on the observed data which is of geometric nature and
it is not taken into account when using Hilbert norms. Optimal transport fidelity have been used in the context
of signal and image denoising [135], and it is an important question to extends these approach to registration
problems. Therefore, we propose to develop similarity measures that are geometric and computationally very
efficient using entropic regularization of optimal transport.

Our approach is to use a regularized optimal transport to design new similarity measures on all of those Hilbert
spaces. Understanding the precise connections between the evolution of shapes and probability distributions
will be investigated to cross-fertilize both fields by developing novel transportation metrics and diffeomorphic
shape flows.

The corresponding numerical schemes are however computationally very costly. Leveraging our understanding
of the dynamic optimal transport problem and its numerical resolution, we propose to develop new algorithms.
These algorithms will use the smoothness of the Riemannian metric to improve both accuracy and speed, using
for instance higher order minimization algorithm on (infinite dimensional) manifolds.

3.1.2.5. Metric learning and parallel transport for statistical applications.

(Participants: F-X. Vialard, G. Peyré, B. Schmitzer, L. Chizat) The LDDMM framework has been advocated
to enable statistics on the space of shapes or images that benefit from the estimation of the deformation. The
statistical results of it strongly depend on the choice of the Riemannian metric. A possible direction consists
in learning the right invariant Riemannian metric as done in [174] where a correlation matrix (Figure 7) is
learnt which represents the covariance matrix of the deformation fields for a given population of shapes. In
the same direction, a question of emerging interest in medical imaging is the analysis of time sequence of
shapes (called longitudinal analysis) for early diagnosis of disease, for instance [117]. A key question is the
inter subject comparison of the organ evolution which is usually done by transport of the time evolution in
a common coordinate system via parallel transport or other more basic methods. Once again, the statistical
results (Figure 8) strongly depend on the choice of the metric or more generally on the connection that defines
parallel transport.
Our expertise: Our team has already studied statistics on longitudinal evolutions in [117], [118].
Goals: Developing higher order numerical schemes for parallel transport (only low order schemes are
available at the moment) and developing variational models to learn the metric or the connections for
improving statistical results.

3.1.3. Sparsity in Imaging
3.1.3.1. Inverse problems over measures spaces.

(Participants: G. Peyré, V. Duval, C. Poon, Q. Denoyelle) As detailed in Section 2.4, popular methods for
regularizing inverse problems in imaging make use of variational analysis over infinite-dimensional (typically
non-reflexive) Banach spaces, such as Radon measures or bounded variation functions.
Our expertise: We have recently shown in [172] how – in the finite dimensional case – the non-smoothness
of the functionals at stake is crucial to enforce the emergence of geometrical structures (edges in images or
fractures in physical materials [66]) for discrete (finite dimensional) problems. We extended this result in a
simple infinite dimensional setting, namely sparse regularization of Radon measures for deconvolution [112].
A deep understanding of those continuous inverse problems is crucial to analyze the behavior of their discrete
counterparts, and in [113] we have taken advantage of this understanding to develop a fine analysis of the
artifacts induced by discrete (i.e. which involve grids) deconvolution models. These works are also closely
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Axial Coronal Sagittal

Figure 7. Learning Riemannian metrics in diffeomorphic image matching to capture the brain variability: a
diagonal operator that encodes the Riemannian metric is learnt on a template brain out of a collection of brain

images. The values of the diagonal operator are shown in greyscale. The red curves represent the boundary
between white and grey matter. For more details, we refer the reader to [174], which was a first step towards

designing effective and robust metric learning algorithms.

Figure 8. Statistics on initial momenta: In [117], we compared several intersubject transport methodologies to
perform statistics on longitudinal evolutions. These longitudinal evolutions are represented by an initial velocity
field on the shapes boundaries and these velocity fields are then compared using logistic regression methods that
are regularized. The four pictures represent different regularization methods such as L2, H1 and regularization

including a sparsity prior such as Lasso, Fused Lasso and TV .



14 Activity Report INRIA 2017

related to the problem of limit analysis and yield design in mechanical plasticity, see [91], [66] for an existing
collaboration between MOKAPLAN’s team members.
Goals: A current major front of research in the mathematical analysis of inverse problems is to extend these
results for more complicated infinite dimensional signal and image models, such as for instance the set of
piecewise regular functions. The key bottleneck is that, contrary to sparse measures (which are finite sums of
Dirac masses), here the objects to recover (smooth edge curves) are not parameterized by a finite number of
degrees of freedom. The relevant previous work in this direction are the fundamental results of Chambolle,
Caselles and co-workers [49], [42], [99]. They however only deal with the specific case where there is no
degradation operator and no noise in the observations. We believe that adapting these approaches using our
construction of vanishing derivative pre-certificate [112] could lead to a solution to these theoretical questions.

3.1.3.2. Sub-Riemannian diffusions.

(Participants: G. Peyré, J-M. Mirebeau, D. Prandi) Modeling and processing natural images require to
take into account their geometry through anisotropic diffusion operators, in order to denoise and enhance
directional features such as edges and textures [156], [114]. This requirement is also at the heart of recently
proposed models of cortical processing [155]. A mathematical model for these processing is diffusion on sub-
Riemanian manifold. These methods assume a fixed, usually linear, mapping from the 2-D image to a lifted
function defined on the product of space and orientation (which in turn is equipped with a sub-Riemannian
manifold structure).
Our expertise: J-M. Mirebeau is an expert in the discretization of highly anisotropic diffusions through the
use of locally adaptive computational stencils [147], [114]. G. Peyré has done several contributions on the
definition of geometric wavelets transform and directional texture models, see for instance [156]. Dario Prandi
has recently applied methods from sub-Riemannian geometry to image restoration [68].
Goals: A first aspect of this work is to study non-linear, data-adaptive, lifting from the image to the
space/orientation domain. This mapping will be implicitly defined as the solution of a convex variational
problem. This will open both theoretical questions (existence of a solution and its geometrical properties,
when the image to recover is piecewise regular) and numerical ones (how to provide a faithful discretization
and fast second order Newton-like solvers). A second aspect of this task is to study the implication of these
models for biological vision, in a collaboration with the UNIC Laboratory (directed by Yves Fregnac), located
in Gif-sur-Yvette. In particular, the study of the geometry of singular vectors (or “ground states” using the
terminology of [60]) of the non-linear sub-Riemannian diffusion operators is highly relevant from a biological
modeling point of view.

3.1.3.3. Sparse reconstruction from scanner data.

(Participants: G. Peyré, V. Duval, C. Poon) Scanner data acquisition is mathematically modeled as a (sub-
sampled) Radon transform [126]. It is a difficult inverse problem because the Radon transform is ill-posed
and the set of observations is often aggressively sub-sampled and noisy [165]. Typical approaches [132] try
to recovered piecewise smooth solutions in order to recover precisely the position of the organ being imaged.
There is however a very poor understanding of the actual performance of these methods, and little is known
on how to enhance the recovery.
Our expertise: We have obtained a good understanding of the performance of inverse problem regularization
on compact domains for pointwise sources localization [112].
Goals: We aim at extending the theoretical performance analysis obtained for sparse measures [112] to the
set of piecewise regular 2-D and 3-D functions. Some interesting previous work of C. Poon et al [158] (C.
Poon is currently a postdoc in MOKAPLAN) have tackled related questions in the field of variable Fourier
sampling for compressed sensing application (which is a toy model for fMRI imaging). These approaches are
however not directly applicable to Radon sampling, and require some non-trivial adaptations. We also aim
at better exploring the connection of these methods with optimal-transport based fidelity terms such as those
introduced in [39].
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3.1.3.4. Tumor growth modeling in medical image analysis.

(Participants: G. Peyré, F-X. Vialard, J-D. Benamou, L. Chizat) Some applications in medical image analysis
require to track shapes whose evolution is governed by a growth process. A typical example is tumor growth,
where the evolution depends on some typically unknown but meaningful parameters that need to be estimated.
There exist well-established mathematical models [81], [154] of non-linear diffusions that take into account
recently biologically observed property of tumors. Some related optimal transport models with mass variations
have also recently been proposed [142], which are connected to so-called metamorphoses models in the
LDDMM framework [61].
Our expertise: Our team has a strong experience on both dynamical optimal transport models and diffeomor-
phic matching methods (see Section 3.1.2).
Goals: The close connection between tumor growth models [81], [154] and gradient flows for (possibly non-
Euclidean) Wasserstein metrics (see Section 3.1.2) makes the application of the numerical methods we develop
particularly appealing to tackle large scale forward tumor evolution simulation. A significant departure from
the classical OT-based convex models is however required. The final problem we wish to solve is the backward
(inverse) problem of estimating tumor parameters from noisy and partial observations. This also requires to
set-up a meaningful and robust data fidelity term, which can be for instance a generalized optimal transport
metric.

3.2. Numerical Tools
The above continuous models require a careful discretization, so that the fundamental properties of the models
are transferred to the discrete setting. Our team aims at developing innovative discretization schemes as well
as associated fast numerical solvers, that can deal with the geometric complexity of the variational problems
studied in the applications. This will ensure that the discrete solution is correct and converges to the solution of
the continuous model within a guaranteed precision. We give below examples for which a careful mathematical
analysis of the continuous to discrete model is essential, and where dedicated non-smooth optimization solvers
are required.

3.2.1. Geometric Discretization Schemes
3.2.1.1. Discretizing the cone of convex constraints.

(Participants: J-D. Benamou, G. Carlier, J-M. Mirebeau, Q. Mérigot) Optimal transportation models as well
as continuous models in economics can be formulated as infinite dimensional convex variational problems
with the constraint that the solution belongs to the cone of convex functions. Discretizing this constraint is
however a tricky problem, and usual finite element discretizations fail to converge.
Our expertise: Our team is currently investigating new discretizations, see in particular the recent proposal
[58] for the Monge-Ampère equation and [146] for general non-linear variational problems. Both offer
convergence guarantees and are amenable to fast numerical resolution techniques such as Newton solvers.
Since [58] explaining how to treat efficiently and in full generality Transport Boundary Conditions for Monge-
Ampère, this is a promising fast and new approach to compute Optimal Transportation viscosity solutions. A
monotone scheme is needed. One is based on Froese Oberman work [120], a new different and more accurate
approach has been proposed by Mirebeau, Benamou and Collino [56]. As shown in [104], discretizing the
constraint for a continuous function to be convex is not trivial. Our group has largely contributed to solve this
problem with G. Carlier [95], Quentin Mérigot [149] and J-M. Mirebeau [146]. This problem is connected
to the construction of monotone schemes for the Monge-Ampère equation.
Goals: The current available methods are 2-D. They need to be optimized and parallelized. A non-trivial
extension to 3-D is necessary for many applications. The notion of c-convexity appears in optimal transport for
generalized displacement costs. How to construct an adapted discretization with “good” numerical properties
is however an open problem.
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3.2.1.2. Numerical JKO gradient flows.

(Participants: J-D. Benamou, G. Carlier, J-M. Mirebeau, G. Peyré, Q. Mérigot) As detailed in Section 2.3,
gradient Flows for the Wasserstein metric (aka JKO gradient flows [129]) provides a variational formulation
of many non-linear diffusion equations. They also open the way to novel discretization schemes. From a
computational point, although the JKO scheme is constructive (it is based on the implicit Euler scheme), it has
not been very much used in practice numerically because the Wasserstein term is difficult to handle (except in
dimension one).
Our expertise:

Solving one step of a JKO gradient flow is similar to solving an Optimal transport problem. A geometrical
a discretization of the Monge-Ampère operator approach has been proposed by Mérigot, Carlier, Oudet and
Benamou in [55] see Figure 4. The Gamma convergence of the discretisation (in space) has been proved.
Goals: We are also investigating the application of other numerical approaches to Optimal Transport to
JKO gradient flows either based on the CFD formulation or on the entropic regularization of the Monge-
Kantorovich problem (see section 3.2.3). An in-depth study and comparison of all these methods will be
necessary.

3.2.2. Sparse Discretization and Optimization
3.2.2.1. From discrete to continuous sparse regularization and transport.

(Participants: V. Duval, G. Peyré, G. Carlier, Jalal Fadili (ENSICaen), Jérôme Malick (CNRS, Univ. Greno-
ble)) While pervasive in the numerical analysis community, the problem of discretization and Γ-convergence
from discrete to continuous is surprisingly over-looked in imaging sciences. To the best of our knowledge, our
recent work [112], [113] is the first to give a rigorous answer to the transition from discrete to continuous
in the case of the spike deconvolution problem. Similar problems of Γ-convergence are progressively being
investigated in the optimal transport community, see in particular [96].
Our expertise: We have provided the first results on the discrete-to-continous convergence in both sparse
regularization variational problems [112], [113] and the static formulation of OT and Wasserstein barycenters
[96]
Goals: In a collaboration with Jérôme Malick (Inria Grenoble), our first goal is to generalize the result of
[112] to generic partly-smooth convex regularizers routinely used in imaging science and machine learning, a
prototypal example being the nuclear norm (see [172] for a review of this class of functionals). Our second
goal is to extend the results of [96] to the novel class of entropic discretization schemes we have proposed
[54], to lay out the theoretical foundation of these ground-breaking numerical schemes.

3.2.2.2. Polynomial optimization for grid-free regularization.

(Participants: G. Peyré, V. Duval, I. Waldspurger) There has been a recent spark of attention of the imaging
community on so-called “grid free” methods, where one tries to directly tackle the infinite dimensional
recovery problem over the space of measures, see for instance [87], [112]. The general idea is that if the
range of the imaging operator is finite dimensional, the associated dual optimization problem is also finite
dimensional (for deconvolution, it corresponds to optimization over the set of trigonometric polynomials).
Our expertise: We have provided in [112] a sharp analysis of the support recovery property of this class of
methods for the case of sparse spikes deconvolution.
Goals: A key bottleneck of these approaches is that, while being finite dimensional, the dual problem
necessitates to handle a constraint of polynomial positivity, which is notoriously difficult to manipulate
(except in the very particular case of 1-D problems, which is the one exposed in [87]). A possible, but
very costly, methodology is to ressort to Lasserre’s SDP representation hierarchy [134]. We will make use
of these approaches and study how restricting the level of the hierarchy (to obtain fast algorithms) impacts
the recovery performances (since this corresponds to only computing approximate solutions). We will pay
a particular attention to the recovery of 2-D piecewise constant functions (the so-called total variation of
functions regularization [163]), see Figure 3 for some illustrative applications of this method.
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3.2.3. First Order Proximal Schemes
3.2.3.1. L2 proximal methods.

(Participants: G. Peyré, J-D. Benamou, G. Carlier, Jalal Fadili (ENSICaen)) Both sparse regularization
problems in imaging (see Section 2.4) and dynamical optimal transport (see Section 2.3) are instances of large
scale, highly structured, non-smooth convex optimization problems. First order proximal splitting optimization
algorithms have recently gained lots of interest for these applications because they are the only ones capable
of scaling to giga-pixel discretizations of images and volumes and at the same time handling non-smooth
objective functions. They have been successfully applied to optimal transport [50], [150], congested optimal
transport [80] and to sparse regularizations (see for instance [160] and the references therein).
Our expertise: The pioneering work of our team has shown how these proximal solvers can be used to tackle
the dynamical optimal transport problem [50], see also [150]. We have also recently developed new proximal
schemes that can cope with non-smooth composite objectives functions [160].
Goals: We aim at extending these solvers to a wider class of variational problems, most notably optimization
under divergence constraints [52]. Another subject we are investigating is the extension of these solvers to both
non-smooth and non-convex objective functionals, which are mandatory to handle more general transportation
problems and novel imaging regularization penalties.

Figure 9. Example of barycenter between shapes computed using optimal transport barycenters of the uniform
densities inside the 3 extremal shapes, computed as detailed in [169]. Note that the barycenters are not in general

uniform distributions, and we display them as the surface defined by a suitable level-set of the density.

3.2.3.2. Bregman proximal methods.

(Participants: G. Peyré G. Carlier, L. Nenna, J-D. Benamou, L. Nenna, Marco Cuturi (Kyoto Univ.)) The
entropic regularization of the Kantorovich linear program for OT has been shown to be surprisingly simple
and efficient, in particular for applications in machine learning [109]. As shown in [54], this is a special
instance of the general method of Bregman iterations, which is also a particular instance of first order proximal
schemes according to the Kullback-Leibler divergence.
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Our expertise: We have recently [54] shown how Bregman projections [71] and Dykstra algorithm [46] offer
a generic optimization framework to solve a variety of generalized OT problems. Carlier and Dupuis [92] have
designed a new method based on alternate Dykstra projections and applied it to the principal-agent problem
in microeconomics. We have applied this method in computer graphics in a paper accepted in SIGGRAPH
2015 [169]. Figure 9 shows the potential of our approach to handle giga-voxel datasets: the input volumetric
densities are discretized on a 1003 computational grid.
Goals: Following some recent works (see in particular [101]) we first aim at studying primal-dual optimiza-
tion schemes according to Bregman divergences (that would go much beyond gradient descent and iterative
projections), in order to offer a versatile and very effective framework to solve variational problems involving
OT terms. We then also aim at extending the scope of usage of this method to applications in quantum mechan-
ics (Density Functional Theory, see [105]) and fluid dynamics (Brenier’s weak solutions of the incompressible
Euler equation, see [72]). The computational challenge is that realistic physical examples are of a huge size
not only because of the space discretization of one marginal but also because of the large number of marginals
involved (for incompressible Euler the number of marginals equals the number of time steps).

4. Application Domains
4.1. Freeform Optics

Following the pioneering work of Caffarelli and Oliker [83], Wang [177] has shown that the inverse problem
of freeforming a convex reflector which sends a prescribed source to a target intensity is a particular instance of
Optimal Transportation. This is a promising approach to automatize the industrial design of optimised energy
efficient reflectors (car/public lights for instance). We show in figure 10 the experiment setting and one of the
first numerical simulations produced by the ADT Mokabajour.

A third specific topic is the use of optimal transport models in non-imaging optics. Light intensity here plays
the role of the source/target prescribed mass and the transport map defines the physical shape of specular
reflector or refracting lense achieving such a transformation. This models have been around since the works of
Oliker and Wang in the 90’s. Recent numerical progresses indicate that OT may have an important industrial
impact in the design of optical elements and calls for further modelisation and analysis.

The method developed in [58] has been used by researchers of TU Eindhoven in collaboration with Philips
Lightning Labs to compute reflectors [159] in a simplified setting (directional light source). Another approach,
based on a geometric discretization of Optimal Transportation has been developed in [8], and is able to handle
more realistic conditions (punctual light source).

Solving the exact Optimal Transportation model for the Reflector inverse problem involves a generalized
Monge-Ampère problem and is linked to the open problem of c-convexity compatible discretization we plan
to work on. The corresponding software development is the topic of the ADT Mokabajour.

4.1.1. Software and industrial output.
See section 4.3 below for softwares. These methods will clearly become mainstream in reflector design but
also in lense design [162]. The industrial problems are mainly on efficiency (light pollution) and security
(car head lights) based on free tailoring of the illumination. The figure below is an extreme test case where
we exactly reproduce an image. They may represent one of the first incursion on PDE discretisation based
methods into the field of non-imaging optics.

4.2. Metric learning for natural language processing
The analysis of large scale datasets to perform un-supervised (clustering) and supervised (classification,
regression) learning requires the design of advanced models to capture the geometry of the input data. We
believe that optimal transport is a key tool to address this problem because (i) many of these datasets are
composed of histograms (social network activity, image signatures, etc.) (ii) optimal transport makes use of a
ground metric that enhances the performances of classical learning algorithms, as illustrated for instance in
[109].
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Figure 10. A constant source to a prescribed image (center). The reflector is computed (but not shown) and a
resimulation using ray tracing shows the image reflected by the computed reflector.

Some of the theoretical and numerical tools developed by our team, most notably Wasserstein barycenters
[41], [67], are now becoming mainstream in machine learning [63], [109]. In its simplest (convex) form where
one seeks to only maximize pairwise wasserstein distances, metric learning corresponds to the congestion
problem studied by G. Carlier and collaborators [97], [70], and we will elaborate on this connection to perform
both theoretical analysis and develop numerical schemes (see for instance our previous work [59]).

We aim at developing novel variational estimators extending classification regression energies (SVM, logistic
regression [125]) and kernel methods (see [168]). One of the key bottleneck is to design numerical schemes to
learn an optimal metric for these purpose, extending the method of Marco Cuturi [108] to large scale and more
general estimators. Our main targeted applications is natural language processing. The analysis and processing
of large corpus of texts is becoming a key problems at the interface between linguistic and machine learning
[45]. Extending classical machine learning methods to this field requires to design suitable metrics over both
words and bag-of-words (i.e. histograms). Optimal transport is thus a natural candidate to bring innovative
solutions to these problems. In a collaboration with Marco Cuturi (Kyoto University), we aim at unleashing
the power of transportation distances by performing ground distance learning on large database of text. This
requires to lift previous works on distance on words (see in particular [153]) to distances on bags-of-words
using transport and metric learning.

4.3. Physics and Astrophysic
The Brenier interpretation of the generalized solutions of Euler equations in the sense of Arnold is an instance
of multi-marginal optimal transportation, a recent and expanding research field which also appears in DFT
(see chemistry below). Recent numerical developments in OT provide new means of exploring these class of
solutions.

In the years 2000 and after the pioneering works of Otto, the theory of many-particle systems has become
“geometrized” thanks to the observed intimate relation between the geometric theory of geodesic convexity
in the Wasserstein distance and the proof of entropy dissipation inequalities that determine the trend to
equilibrium. The OT approach to the study of equilibration is still an extremely active field, in particular
the various recently established connections to sharp functional inequalities and isoperimetric problems.

4.4. Chemistry
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Figure 11. Examples of two histogram (bag-of-words) extracted from the congress speech of US president. In this
application, the goal is to infer a meaningful metric on the words of the english language and lift this metric to

histogram using OT technics.

The treatment of chemical reactions in the framework of OT is a rather recent development. The classical
theory must be extended to deal with the transfer of mass between different particle species by means of
chemical reactions.

A promising and significant recent advance is the introduction and analysis of a novel metric that combines
the pure transport elements of the Wasserstein distance with the annihilation and creation of mass, which is
a first approximation of chemical reactions. The logical next challenge is the extension of OT concepts to
vectorial quantities, which allows to rewrite cross-diffusion systems for the concentration of several chemical
species as gradient flows in the associated metric. An example of application is the modeling of a chemical
vapor deposition process, used for the manufacturing of thin-film solar cells for instance. This leads to a
degenerate cross-diffusion equations, whose analysis — without the use of OT theory — is delicate. Finding an
appropriate OT framework to give the formal gradient flow structure a rigorous meaning would be a significant
advance for the applicability of the theory, also in other contexts, like for biological multi-species diffusion.

A very different application of OT in chemistry is a novel approach to the understanding of density functional
theory (DFT) by using optimal transport with “Coulomb costs”, which is highly non convex and singular.
Albeit this theory shares some properties with the usual optimal transportation problems, it does not induce a
metric between probability measures. It also uses the multi-marginal extension of OT, which is an active field
on its own right.

4.5. Biology
OT methods have been introduced in biology via gradient flows in the Wasserstein metric. Writing certain
chemotaxis systems in variational form allowed to prove sharp estimates on the long time asymptotics
of the bacterial aggregation. This application had a surprising payback on the theory: it lead to a better
understanding and novel proofs of important functional inequalities, like the logarithmic Hardy-Littlewood-
Sobolev inequality. Further applications followed, like transport models for species that avoid over-crowding,
or cross-diffusion equations for the description of biologic segregation. The inclusion of dissipative cross-
diffusion systems into the framework of gradient flows in OT-like metrics appears to be one of the main
challenges for the future development of the theory. This extension is not only relevant for biological
applications, but is clearly of interest to participants with primary interest in physics or chemistry as well.

Further applications include the connection of OT with game theory, following the idea that many selection
processes are based on competition. The ansatz is quite universal and has been used in other areas of the life
sciences as well, like for the modeling of personal income in economics.
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Another application of our methods is the use of inverse problems in measure spaces for microscopy imaging.
The Single Molecule Microscopy Imaging techniques such as PALM [62] or STORM [164] have yielded a
breakthrough in fluorescence microscopy, improving the typical resolution of conventional microscopes (250
nm) by an order of magnitude (20 nm). These techniques convert the problems of full image reconstruction into
a family of sparse spike reconstructions. Our variational methods, which take advantage of the sparsity of the
signals to recover, are much more powerful than the usual methods used by biologists for sparse recovery. They
promise to release the full potential of PALM and STORM in terms of resolution and speed of acquisition.

4.6. Medical Imaging
Applications of variational methods are widespread in medical imaging and especially for diffeomorphic
image matching. The formulation of large deformation by diffeomorphisms consists in finding geodesics on
a group of diffeomorphisms. This can be seen as a non-convex and smoothed version of optimal transport
where a correspondence is sought between objects that can be more general than densities. Whereas the
diffeomorphic approach is well established, similarity measures between objects of interest are needed in
order to drive the optimization. While being crucial for the final registration results, these similarity measures
are often non geometric due to a need of fast computability and gradient computation. However, our team
pioneered the use of entropic smoothing for optimal transport which gives fast and differentiable similarity
measures that take into account the geometry. Therefore, we expect an important impact on this topic, work
still in progress. This example of application belongs to the larger class of inverse problems where a geometric
similarity measure such as optimal transport might enhance notably the results. Concerning this particular
application, potential interactions with the Inria team ARAMIS and also the team ASCLEPIOS can leverage
new proposed similarity measure towards a more applicative impact.

4.7. Economics
Recent years have seen intense cross-fertilization between OT and various problems arising in economics.
The principal-agent problem with adverse selection is particularly important in modern microeconomics,
mathematically it consists in minimizing a certain integral cost functional among the set of c-concave
functions, this problem is convex under some conditions related to the MTW regularity theory for OT as
shown in the important paper [116]. Other examples of fruitful interactions between mathematical economics
concern multi-marginal OT and multi-populations matching [93], or games with a continuum of agents and
Cournot-Nash equilibria [64]. The team has as strong expertise, both numerical and theoretical in the field of
variational problems subject to a convexity constraint and their applications to the principal-agent problem.
Our expertise in numerical OT and entropic regularization will also enable us to develop efficient solvers for
realistic matching and hedonic pricing models.

5. New Software and Platforms

5.1. ALG2
FUNCTIONAL DESCRIPTION: ALG2 for Monge Mean-Field Games, Monge problem and Variational prob-
lems under divergence constraint. A generalisation of the ALG2 algorithm has been implemented in
FreeFem++.

• Contact: Jean-David Benamou

• URL: https://team.inria.fr/mokaplan/augmented-lagrangian-simulations/

https://team.inria.fr/mokaplan/augmented-lagrangian-simulations/
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5.2. Mokabajour
FUNCTIONAL DESCRIPTION: We design a software resolving the following inverse problem: define the shape
of a mirror which reflects the light from a source to a defined target, distribution and support of densities being
prescribed. Classical applications include the conception of solar oven, public lightning, car headlights. . .
Mathematical modeling of this problem, related to the optimal transport theory, takes the form of a nonlinear
Monge-Ampere type PDE. The numerical resolution of these models remained until recently a largely open
problem. MOKABAJOUR project aims to develop, using algorithms invented especially at Inria and LJK, a
reflector design software more efficient than geometrical methods used so far. The final step is to realize and
physically test prototype reflectors.

• Participants: Boris Thibert, Jean-David Benamou and Quentin Mérigot

• Contact: Jean-David Benamou

• URL: https://project.inria.fr/mokabajour/

5.3. Platforms
5.3.1. MABV2

A 2D Julia implementation of the algorithm described in [25]. https://gforge.inria.fr/scm/browser.
php?group_id=9995

6. New Results

6.1. Optimal transport for diffeomorphic registration
J. Feydy and B. Charlier and G. Peyré and F-X. Vialard

[18]

This paper introduces the use of unbalanced optimal transport methods as a similarity measure for diffeomor-
phic matching of imaging data. The similarity measure is a key object in diffeomorphic registration methods
that, together with the regularization on the deformation, defines the optimal deformation. Most often, these
similarity measures are local or non local but simple enough to be computationally fast. We build on recent
theoretical and numerical advances in optimal transport to propose fast and global similarity measures that
can be used on surfaces or volumetric imaging data. This new similarity measure is computed using a fast
generalized Sinkhorn algorithm. We apply this new metric in the LDDMM framework on synthetic and real
data, fibres bundles and surfaces and show that better matching results are obtained.

6.2. Quantum Optimal Transport for Tensor Field Processing
G. Peyré and L. Chizat and F-X. Vialard and J. Solomon

[18]

This article introduces a new notion of optimal transport (OT) between tensor fields, which are measures
whose values are positive semidefinite (PSD) matrices. This "quantum" formulation of OT (Q-OT) corresponds
to a relaxed version of the classical Kantorovich transport problem, where the fidelity between the input
PSD-valued measures is captured using the geometry of the Von-Neumann quantum entropy. We propose a
quantum-entropic regularization of the resulting convex optimization problem, which can be solved efficiently
using an iterative scaling algorithm. This method is a generalization of the celebrated Sinkhorn algorithm to
the quantum setting of PSD matrices. We extend this formulation and the quantum Sinkhorn algorithm to
compute barycenters within a collection of input tensor fields. We illustrate the usefulness of the proposed
approach on applications to procedural noise generation, anisotropic meshing, diffusion tensor imaging and
spectral texture synthesis.

https://project.inria.fr/mokabajour/
https://gforge.inria.fr/scm/browser.php?group_id=9995
https://gforge.inria.fr/scm/browser.php?group_id=9995
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6.3. The Camassa-Holm equation as an incompressible Euler equation: a
geometric point of view
T. Gallouët and F-X. Vialard

[35]

The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of
probability densities gives a unifying framework for the incompressible Euler equation and the theory of
optimal mass transport. Recently, several authors have extended optimal transport to the space of positive
Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-
Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport
problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the
Camassa-Holm (CH) equation in one dimension. On the optimal transport side, we prove a polar factorization
theorem on the automorphism group of half-densities.Geometrically, our point of view provides an isometric
embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms
group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a
new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this
automorphisms group; On S1, solutions to the standard CH thus give particular solutions of the incompressible
Euler equation on a group of homeomorphisms of R2 which preserve a radial density that has a singularity at
0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv
right-invariant metric are length minimizing geodesics for sufficiently short times.

6.4. Minimal convex extensions and finite difference discretization of the
quadratic Monge-Kantorovich problem
J-D. Benamou and V. Duval

[25]

We designed an adaptation of the MA-LBR scheme [4] to the Monge-Ampère equation with second boundary
value condition, provided the target is a convex set. This yields a fast adaptive method to numerically solve
the Optimal Transport problem between two absolutely continuous measures, the second of which has convex
support. The proposed numerical method actually captures a specific Brenier solution which is minimal in
some sense. We prove the convergence of the method as the grid stepsize vanishes and we show with numerical
experiments that it is able to reproduce subtle properties of the Optimal Transport problem.

6.5. Phase retrieval for wavelet transforms
I. Waldspurger

[15]

This article describes an algorithm for solving a particular phase retrieval problem, with important applications
in audio processing: the reconstruction of a function from the modulus of its wavelet transform. Previous
algorithms for this problem were either unreliable in certain regimes, or too slow to be applied to large-
dimensional audio signals. Ours relies on a new reformulation of the phase retrieval problem, that involves the
holomorphic extension of the wavelet transform. Numerical results, on audio and non-audio signals, show it
allows precise reconstruction, and is stable to noise. Its complexity is linear in the size of the unknown signal,
up to logarithmic factors. It can thus be applied to large signals.

6.6. Phase retrieval with random Gaussian sensing vectors by alternating
projections
I. Waldspurger

[16]
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We consider the phase retrieval problem that consists in reconstructing a vector from its phaseless scalar
products with sensing vectors independently sampled from complex normal distributions. In the previous two
years, several new non-convex algorithms have been introduced to solve it, and have been proven to succeed
with high probability. In this work, we show that the same success guarantees hold true for the oldest and most
well-known phase retrieval algorithm, namely alternating projections (Gerchberg-Saxton), provided that it is
carefully initialized. We conjecture that this result is still true when no special initialization procedure is used,
and present numerical experiments that support this conjecture.

6.7. Exponential decay of scattering coefficients
I. Waldspurger

[19]

The scattering transform is a deep representation, defined as a cascade of wavelet transforms followed by
the application of a complex modulus. In her PhD, the author showed that, under some conditions on the
wavelets, the norm of the scattering coefficients at a given layer only depends on the values of the signal
outside a frequency band whose size is exponential in the depth of the layer. This article succintly describes
this result, and generalizes it by removing one of the assumptions on the wavelets (namely the weak analyticity
condition).

6.8. Generalized incompressible flows, multi-marginal transport and Sinkhorn
algorithm
J-D. Benamou and G. Carlier and L. Nenna

[24]

Starting from Brenier’s relaxed formulation of the incompressible Euler equation in terms of geodesics in the
group of measurepreserving diffeomorphisms, we propose a numerical method based on Sinkhorn?s algorithm
for the entropic regularization of optimal transport. We also make a detailed comparison of this entropic
regularization with the so-called Bredinger entropic interpolation problem. Numerical results in dimension
one and two illustrate the feasibility of the method.

6.9. A Characterization of the Non-Degenerate Source Condition in
Super-Resolution
V. Duval

[34]

This article deals with the Basis Pursuit (or LASSO) for measures for for the super-resolution problem, i.e.
retrieving the fine details of a signal or an image. If the signal is made of M non-negative Dirac masses,
under some assumptions on the measurement process, it is possible to exactly recover the signal from 2M
observations, regardless of the minimum distance between the spikes. We study the stability to noise of such a
reconstruction, and we propose a characterization of the Non-Degenerate Source Condition which is an almost
necessary and sufficient for the stability of the support (the number and locations of the reconstructed spikes).
The case of Laplace and Gaussian measurements are studied in detail.

6.10. A Low-Rank Approach to Off-The-Grid Sparse Deconvolution
P. Catala, V. Duval and G. Peyré

[28].
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We propose a new solver for the sparse spikes deconvolution problem over the space of Radon measures. A
common approach to off-the-grid deconvolution considers semidefinite (SDP) relaxations of the total variation
(the total mass of the absolute value of the measure) minimization problem. The direct resolution of this SDP
is however intractable for large scale settings, since the problem size grows as f2dc where fc is the cutoff
frequency of the filter and d the ambient dimension. Our first contribution introduces a penalized formulation
of this semidefinite lifting, which has low-rank solutions. Our second contribution is a conditional gradient
optimization scheme with non-convex updates. This algorithm leverages both the low-rank and the convolutive
structure of the problem, resulting in an O(fdc log (fc)) complexity per iteration. Numerical simulations are
promising and show that the algorithm converges in exactly r steps, r being the number of Diracs composing
the solution.

6.11. Approximate Optimal Designs for Multivariate Polynomial Regression
Y. De Castro

[110].

We introduce a new approach aiming at computing approximate optimal designs for multivariate polynomial
regressions on compact (semi-algebraic) design spaces. We use the moment-sum-of-squares hierarchy of
semidefinite programming problems to solve numerically the approximate optimal design problem. The
geometry of the design is recovered via semidefinite programming duality theory. This article shows that the
hierarchy converges to the approximate optimal design as the order of the hierarchy increases. Furthermore,
we provide a dual certificate ensuring finite convergence of the hierarchy and showing that the approximate
optimal design can be computed numerically with our method. As a byproduct, we revisit the equivalence
theorem of the experimental design theory: it is linked to the Christoffel polynomial and it characterizes finite
convergence of the moment-sum-of-square hierarchies.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. Optimal Transport applied to altimetric data dynamic interpolation

(S. Legrand V. Duval L. Chizat J-D. Benamou).

This collaboration between CLS and and funded by CNES intends to test on Column of Tropospheric Humidity
data Optimal transportation interpolation techniques for balanced and unbalanced data.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR

J-D. Benamou is the coordinator of the ANR ISOTACE (Interacting Systems and Optimal Transportation,
Applications to Computational Economics) ANR-12-MONU-0013 (2012-2016). The consortium explores
new numerical methods in Optimal Transportation AND Mean Field Game theory with applications in
Economics and congested crowd motion. Check https://project.inria.fr/isotace/.
J-D. Benamou and G. Carlier are members of the ANR MFG (ANR-16-CE40-0015-01). Scientific topics of
the project: Mean field analysis Analysis of the MFG systems and of the Master equation Numerical analysis
Models and applications

https://project.inria.fr/isotace/
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J-D. Benamou G. Carlier F-X. Vialard and T. Gallouët are members of ANR MAGA (ANR-13-JS01-0007-
01). The Monge-Ampère equation is a fully nonlinear elliptic equation, which plays a central role in geometry
and in the theory of optimal transport. However, the singular and non-linear nature of the equation is a
serious obstruction to its efficient numerical resolution. The first aim of the MAGA project is to study and
to implement discretizations of optimal transport and Monge-Ampère equations which rely on tools from
computational geometry (Laguerre diagrams). In a second step, these solvers will be applied to concrete
problems from various fields involving optimal transport or Monge-Ampère equations such as computational
physics: early universe reconstruction problem, congestion/incompressibility constraints economics: principal
agent problems, geometry: variational problems over convex bodies, reflector and refractor design for non-
imaging optics
T. Gallouët is member of the ANR GEOPOR Scientific topic: geometrical approach, based on Wasserstein
gradient flow, for multiphase flows in porous media. Theory and Numerics.

8.2. European Initiatives
8.2.1. FP7 & H2020 Projects

• J-D. Benamou is a member of the ITN ROMSOC (Nov. 2017-Nov.2021).

• Andrea Natale has a PRESTIGE Post-Doc Fellowship.

8.3. International Research Visitors
8.3.1. Visits of International Scientists

The following people visited MOKAPLAN during 2016.

• Alfred Galichon (Courant), Teresa Radice (Naples), Gaoyue Guo (Oxford) visited G. Carlier at inria
in 2017

• Simone di Marino (Pisa)

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. Member of the Organizing Committees

G. Carlier has corganized CMO-BIRS 17w5093.

J-D. Benamou has co-organized Brenier 60.
J-D. Benamou has co-organized MFO workshop 1705 (February).

9.1.2. Journal
9.1.2.1. Member of the Editorial Boards

Guillaume Carlier is in the board of Journal de l’école Polytechnique, Applied Mathematics and optimization
(since 2016) and Mathematics and financial economics, with Filippo Santambrogio and Thierry Champion he
co-edited a special issues of RICAM Series devoted to optimal transport. G. Peyré is editor for SIAM Journal
of Imaging Sciences and Springer Journal of Mathematical Imaging and Vision. He co-edited a special issues
of RICAM Series devoted to inverse problems.
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9.1.2.2. Reviewer - Reviewing Activities

The members of the team are frequently reviewing papers in SIIMS (SIAM Journal on Imaging Sciences),
JMAA (Journal of Mathematical Analysis and Applications), IPol (Image Processing Online), JVCI (Journal
of Visual Communication and Image Representation), COCV, M2AN ... Discrete and computational geometry,
Journal of the London Math Society, JOTA, JCP, “Information and Inference: A Journal of the IMA”, JMIV,
Optimization Letters, PAMI, SIAM optimization and control, IPMI, MICCAI (leading conferences in medical
imaging), IEEE Information Theory, ICLR, NIPS, ICML (important machine learning conferences).

9.1.3. Invited Talks
Y. De Castrogave talks at Séminaire d’Informatique de l’Ecole Normale Supérieure, Lyon, and Séminaire
de Probabilités de l’Ecole Normale Supérieure, Lyon, Groupe de Travail “Gaussian Process” Université
Jean Monnet, St-Etienne, Séminaire de Probabilités de Lille, Séminaire de Probabilités et Statistique de
Liège, Séminaire de Probabilités et Statistique de Versailles, LMV, Séminaire de Statistique de Toulouse,
IMT, Groupe de Travail “Sequential Structured Statistical Learning”, IHES, Cambridge Statistics Seminar,
Cambridge, UK.

G. Carlier gave talks in Banff, Victoria, Naples, Le Teich, Toulouse (conference in honor of P. Cattiaux and
C. Léonard), Paris (conference in honor of Y. Brenier, functional analysis seminar at IMJ and Game theory
seminar at IHP), PGMO Days Paris Saclay.

J-D. Benamou was invited speaker at FOCM (Barcelona, July), CEMRACS (CIRM, July), Conf. in Honor of
P. Joly (Gif, September) SPO (IHP, October) .

I. Waldspurger gave talks at Journées EDP (Roscoff, June), and at workshops on phase retrieval (Minneapolis,
August) and on generative models, parameter learning and sparsity (Cambridge, October). She also gave a
mini-course at Journées de géométrie algorithmique (Aussois, December).

V. Duval has given talks at the SPOC seminar (Université de Dijon, January) and Statistics seminar (Télécom
ParisTech, September).

F-X. Vialard gave talks at MIT, csail, in the medical imaging group, in Chapell Hill University (April), work-
shop on applied geometric mechanics (Darryl Holm’s anniversary) in Madrid (July), Classic and Stochastic
Approaches to Mathematical Fluid Dynamics at Imperial College (September), workshop in Cambridge about
growth and form (November), and about mathematics for imaging (December), Geometric Functional Data
Analysis Workshop in Tallahassee (September), GMO (Paris-Saclay).

T. Gallouët gave a talk at the ANEDP seminar of Paris Sud University (December 2017).

9.1.4. Research Administration
J-D. Benamou is an elected member of the "Conseil Académique" of the PSL COMUE.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Master : V. Duval, Student project supervision, October 2017 to March 2018, M2, INSA Rouen-
Normandie

Licence : I. Waldspurger, Analyse 1, Université Paris-Dauphine, 72h.

Master : Y. De Castro, Master 1 course on Statistics at Orsay.

9.2.2. Supervision
Internship :

PhD in progress : Miao Yu, Optimal Transport distances and Geophyscial imaging J-D. Benamou
(co-direction J.-P. Vilotte, IPGP).
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PhD in progress : Paul Catala, Low-rank approaches for off-the-grid superresolution, October 2016,
G. Peyré and V. Duval.
PhD in progress : Lucas Martinet Multi-Marginal OT Oct. 2017 , J-D. Benamou.
PhD in progress : Aude Genevay, Optimal Transport for Machine Learning , october 2015, G. Peyré.
PhD in progress : Quentin Denoyelle, Off-the-grid super-resolution: theory, algorithms and appli-
cations in fluorescence imaging, October 2014, G. Peyré and V. Duval.
Postdoc completed:
PhD completed: Lenaic Chizat
Postdoc in progress : A. Natale (Inria/Prestige)
Postdoc in progress : J.B. Courbot (PSL IRIS, in collaboration with LMD, ENS).
PhD in progress : Ernesto Araya, Measures on graphs , Y. De Castro

9.2.3. Juries
J-D. Benamou F-X. Vialard were in the PhD comittee of Lenaic Chizat (Paris-Dauphine, November).
J-D. Benamou was in the HDR comittee of F-X. Vialard (Paris-Dauphine, December).
G. Carlier and F-X. Vialard were in the PhD comittee of Xianglong Duan (École Polytechnique, September).
G. Carlier was in the HDR commitee of Francisco Silva (Limoges) and Daniela Tonon (Dauphine), in the PhD
comittee of Fatima Al Reda (Orsay), Xianglong Duan (Poolytechnique), Van-Thanh Nguyen (Limoges) and
Luigia Ripani (Lyon). G. Carlier was president of the commitee for the PGMO PhD. award.
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