
IN PARTNERSHIP WITH:
CNRS

Université Pierre et Marie Curie
(Paris 6)

Activity Report 2017

Project-Team WHISPER

Well Honed Infrastructure Software for
Programming Environments and Runtimes

IN COLLABORATION WITH: Laboratoire d’informatique de Paris 6 (LIP6)

RESEARCH CENTER
Paris

THEME
Distributed Systems and middleware

Table of contents

1. Personnel . 1
2. Overall Objectives . 2
3. Research Program . 3

3.1. Scientific Foundations 3
3.1.1. Program analysis 3
3.1.2. Domain Specific Languages 4

3.1.2.1. Traditional approach. 4
3.1.2.2. Embedding DSLs. 4
3.1.2.3. Certifying DSLs. 5

3.2. Research direction: Tools for improving legacy infrastructure software 5
3.3. Research direction: developing infrastructure software using Domain Specific Languages 6

4. Application Domains .6
4.1. Linux 6
4.2. Device Drivers 7

5. Highlights of the Year . 7
6. New Software and Platforms . 8

6.1. Coccinelle 8
6.2. Prequel 8

7. New Results . 8
7.1. Software engineering for infrastructure software 8
7.2. Trustworthy domain-specific compilers 9
7.3. Algebra of programming 10
7.4. Developing infrastructure software using Domain Specific Languages 10

8. Bilateral Contracts and Grants with Industry . 11
9. Partnerships and Cooperations . 11

9.1. Regional Initiatives 11
9.2. National Initiatives 11
9.3. International Initiatives 12

9.3.1. Inria International Labs 12
9.3.2. Inria International Partners 12

9.4. International Research Visitors 12
9.4.1.1. Internships 12
9.4.1.2. Research Stays Abroad 12

10. Dissemination . 12
10.1. Promoting Scientific Activities 12

10.1.1. Scientific Events Organisation 12
10.1.2. Scientific Events Selection 13

10.1.2.1. Chair of Conference Program Committees 13
10.1.2.2. Member of the Conference Program Committees 13

10.1.3. Journal 13
10.1.3.1. Member of the Editorial Boards 13
10.1.3.2. Reviewer - Reviewing Activities 13

10.1.4. Invited Talks 13
10.1.5. Research Administration 13

10.2. Teaching - Supervision - Juries 13
10.2.1. Teaching 13
10.2.2. Supervision 14
10.2.3. Juries 14

10.3. Popularization 14

2 Activity Report INRIA 2017

11. Bibliography .14

Project-Team WHISPER

Creation of the Team: 2014 May 15, updated into Project-Team: 2015 December 01

Keywords:

Computer Science and Digital Science:
A1. - Architectures, systems and networks
A1.1.1. - Multicore, Manycore
A2. - Software
A2.1.6. - Concurrent programming
A2.1.10. - Domain-specific languages
A2.1.11. - Proof languages
A2.2.1. - Static analysis
A2.2.3. - Run-time systems
A2.3.1. - Embedded systems
A2.3.3. - Real-time systems
A2.4. - Verification, reliability, certification
A2.4.3. - Proofs
A2.5. - Software engineering
A2.6. - Infrastructure software
A2.6.1. - Operating systems
A2.6.2. - Middleware
A2.6.3. - Virtual machines

Other Research Topics and Application Domains:
B5. - Industry of the future
B5.2.1. - Road vehicles
B5.2.3. - Aviation
B5.2.4. - Aerospace
B6.1. - Software industry
B6.1.1. - Software engineering
B6.1.2. - Software evolution, maintenance
B6.3.3. - Network Management
B6.5. - Information systems
B6.6. - Embedded systems

1. Personnel
Research Scientists

Gilles Muller [Team leader, Inria, Senior Researcher, HDR]
Pierre-Évariste Dagand [CNRS, Researcher]
Julia Lawall [Inria, Senior Researcher]

Faculty Member
Bertil Folliot [Univ Pierre et Marie Curie, Professor, HDR]

https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2017

Post-Doctoral Fellow
Van-Anh Nguyen [Univ Pierre et Marie Curie, financed by ANR ITrans]

PhD Students
Cédric Courtaud [Thales]
Redha Gouicem [Univ Pierre et Marie Curie]
Lucas Serrano [Univ Pierre et Marie Curie, from Nov 2017]
Darius Mercadier [Univ Pierre et Marie Curie, from Nov 2017]

Technical staff
Antoine Blin [Inria, granted by ORANGE SA]
Lucas Serrano [Inria, from Sep 2017 until Oct 2017]

Administrative Assistants
Nelly Maloisel [Inria, Assistant]
Eugène Kamdem [UPMC, Assistant]

Visiting Scientist
Gregory Kroah-Hartman [Linux Foundation, until Jul 2017]

2. Overall Objectives

2.1. Overall Objectives
The focus of Whisper is on how to develop (new) and improve (existing) infrastructure software. Infrastructure
software (also called systems software) is the software that underlies all computing. Such software allows
applications to access resources and provides essential services such as memory management, synchronization
and inter-process interactions. Starting bottom-up from the hardware, examples include virtual machine
hypervisors, operating systems, managed runtime environments, standard libraries, and browsers, which
amount to the new operating system layer for Internet applications. For such software, efficiency and
correctness are fundamental. Any overhead will impact the performance of all supported applications. Any
failure will prevent the supported applications from running correctly. Since computing now pervades our
society, with few paper backup solutions, correctness of software at all levels is critical. Formal methods are
increasingly being applied to operating systems code in the research community [45], [51], [90]. Still, such
efforts require a huge amount of manpower and a high degree of expertise which makes this work difficult to
replicate in standard infrastructure-software development.

In terms of methodology, Whisper is at the interface of the domains of operating systems, software engineering
and programming languages. Our approach is to combine the study of problems in the development of real-
world infrastructure software with concepts in programming language design and implementation, e.g., of
domain-specific languages, and knowledge of low-level system behavior. A focus of our work is on providing
support for legacy code, while taking the needs and competences of ordinary system developers into account.

We aim at providing solutions that can be easily learned and adopted by system developers in the short term.
Such solutions can be tools, such as Coccinelle [1], [8], [9] for transforming C programs, or domain-specific
languages such as Devil [7] and Bossa [6] for designing drivers and kernel schedulers. Due to the small size
of the team, Whisper mainly targets operating system kernels and runtimes for programming languages. We
put an emphasis on achieving measurable improvements in performance and safety in practice, and on feeding
these improvements back to the infrastructure software developer community.

Project-Team WHISPER 3

3. Research Program

3.1. Scientific Foundations
3.1.1. Program analysis

A fundamental goal of the research in the Whisper team is to elicit and exploit the knowledge found in
existing code. To do this in a way that scales to a large code base, systematic methods are needed to infer
code properties. We may build on either static [35], [37], [39] or dynamic analysis [59], [62], [69]. Static
analysis consists of approximating the behavior of the source code from the source code alone, while dynamic
analysis draws conclusions from observations of sample executions, typically of test cases. While dynamic
analysis can be more accurate, because it has access to information about actual program behavior, obtaining
adequate test cases is difficult. This difficulty is compounded for infrastructure software, where many, often
obscure, cases must be handled, and external effects such as timing can have a significant impact. Thus, we
expect to primarily use static analyses. Static analyses come in a range of flavors, varying in the extent to
which the analysis is sound, i.e., the extent to which the results are guaranteed to reflect possible run-time
behaviors.

One form of sound static analysis is abstract interpretation [37]. In abstract interpretation, atomic terms
are interpreted as sound abstractions of their values, and operators are interpreted as functions that soundly
manipulate these abstract values. The analysis is then performed by interpreting the program in a compositional
manner using these abstracted values and operators. Alternatively, dataflow analysis [50] iteratively infers
connections between variable definitions and uses, in terms of local transition rules that describe how various
kinds of program constructs may impact variable values. Schmidt has explored the relationship between
abstract interpretation and dataflow analysis [77]. More recently, more general forms of symbolic execution
[35] have emerged as a means of understanding complex code. In symbolic execution, concrete values are used
when available, and these are complemented by constraints that are inferred from terms for which only partial
information is available. Reasoning about these constraints is then used to prune infeasible paths, and obtain
more precise results. A number of works apply symbolic execution to operating systems code [31], [33].

While sound approaches are guaranteed to give correct results, they typically do not scale to the very diverse
code bases that are prevalent in infrastructure software. An important insight of Engler et al. [42] was that
valuable information could be obtained even when sacrificing soundness, and that sacrificing soundness could
make it possible to treat software at the scales of the kernels of the Linux or BSD operating systems. Indeed,
for certain types of problems, on certain code bases, that may mostly follow certain coding conventions, it
may mostly be safe to e.g., ignore the effects of aliases, assume that variable values are unchanged by calls to
unanalyzed functions, etc. Real code has to be understood by developers and thus cannot be too complicated, so
such simplifying assumptions are likely to hold in practice. Nevertheless, approaches that sacrifice soundness
also require the user to manually validate the results. Still, it is likely to be much more efficient for the user
to perform a potentially complex manual analysis in a specific case, rather than to implement all possible
required analyses and apply them everywhere in the code base. A refinement of unsound analysis is the
CEGAR approach [36], in which a highly approximate analysis is complemented by a sound analysis that
checks the individual reports of the approximate analysis, and then any errors in reasoning detected by the
sound analysis are used to refine the approximate analysis. The CEGAR approach has been applied effectively
on device driver code in tools developed at Microsoft [23]. The environment in which the driver executes,
however, is still represented by possibly unsound approximations.

Going further in the direction of sacrificing soundness for scalability, the software engineering community has
recently explored a number of approaches to code understanding based on techniques developed in the areas
of natural language understanding, data mining, and information retrieval. These approaches view code, as
well as other software-reated artifacts, such as documentation and postings on mailing lists, as bags of words
structured in various ways. Statistical methods are then used to collect words or phrases that seem to be highly
correlated, independently of the semantics of the program constructs that connect them. The obliviousness to
program semantics can lead to many false positives (invalid conclusions) [55], but can also highlight trends that

4 Activity Report INRIA 2017

are not apparent at the low level of individual program statements. We have previously explored combining
such statistical methods with more traditional static analysis in identifying faults in the usage of constants in
Linux kernel code [54].

3.1.2. Domain Specific Languages
Writing low-level infrastructure code is tedious and difficult, and verifying it is even more so. To produce
non-trivial programs, we could benefit from moving up the abstraction stack to enable both programming and
proving as quickly as possible. Domain-specific languages (DSLs), also known as little languages, are a means
to that end [5] [63].

3.1.2.1. Traditional approach.

Using little languages to aid in software development is a tried-and-trusted technique [80] by which program-
mers can express high-level ideas about the system at hand and avoid writing large quantities of formulaic C
boilerplate.

This approach is typified by the Devil language for hardware access [7]. An OS programmer describes the
register set of a hardware device in the high-level Devil language, which is then compiled into a library
providing C functions to read and write values from the device registers. In doing so, Devil frees the
programmer from having to write extensive bit-manipulation macros or inline functions to map between the
values the OS code deals with, and the bit-representation used by the hardware: Devil generates code to do
this automatically.

However, DSLs are not restricted to being “stub” compilers from declarative specifications. The Bossa
language [6] is a prime example of a DSL involving imperative code (syntactically close to C) while offering
a high-level of abstraction. This design of Bossa enables the developer to implement new process scheduling
policies at a level of abstraction tailored to the application domain.

Conceptually, a DSL both abstracts away low-level details and justifies the abstraction by its semantics. In
principle, it reduces development time by allowing the programmer to focus on high-level abstractions. The
programmer needs to write less code, in a language with syntax and type checks adapted to the problem at
hand, thus reducing the likelihood of errors.

3.1.2.2. Embedding DSLs.

The idea of a DSL has yet to realize its full potential in the OS community. Indeed, with the notable exception
of interface definition languages for remote procedure call (RPC) stubs, most OS code is still written in a low-
level language, such as C. Where DSL code generators are used in an OS, they tend to be extremely simple
in both syntax and semantics. We conjecture that the effort to implement a given DSL usually outweighs
its benefit. We identify several serious obstacles to using DSLs to build a modern OS: specifying what the
generated code will look like, evolving the DSL over time, debugging generated code, implementing a bug-
free code generator, and testing the DSL compiler.

Filet-o-Fish (FoF) [3] addresses these issues by providing a framework in which to build correct code
generators from semantic specifications. This framework is presented as a Haskell library, enabling DSL
writers to embed their languages within Haskell. DSL compilers built using FoF are quick to write, simple,
and compact, but encode rigorous semantics for the generated code. They allow formal proofs of the run-
time behavior of generated code, and automated testing of the code generator based on randomized inputs,
providing greater test coverage than is usually feasible in a DSL. The use of FoF results in DSL compilers that
OS developers can quickly implement and evolve, and that generate provably correct code. FoF has been used
to build a number of domain-specific languages used in Barrelfish, [24] an OS for heterogeneous multicore
systems developed at ETH Zurich.

The development of an embedded DSL requires a few supporting abstractions in the host programming
language. FoF was developed in the purely functional language Haskell, thus benefiting from the type
class mechanism for overloading, a flexible parser offering convenient syntactic sugar, and purity enabling
a more algebraic approach based on small, composable combinators. Object-oriented languages – such as
Smalltalk [44] and its descendant Pharo [28] – or multi-paradigm languages – such as the Scala programming

Project-Team WHISPER 5

language [66] – also offer a wide range of mechanisms enabling the development of embedded DSLs. Perhaps
suprisingly, a low-level imperative language – such as C – can also be extended so as to enable the development
of embedded compilers [25].

3.1.2.3. Certifying DSLs.

Whilst automated and interactive software verification tools are progressively being applied to larger and larger
programs, we have not yet reached the point where large-scale, legacy software – such as the Linux kernel –
could formally be proved “correct”. DSLs enable a pragmatic approach, by which one could realistically
strengthen a large legacy software by first narrowing down its critical component(s) and then focus our
verification efforts onto these components.

Dependently-typed languages, such as Coq or Idris, offer an ideal environment for embedding DSLs [34],
[29] in a unified framework enabling verification. Dependent types support the type-safe embedding of object
languages and Coq’s mixfix notation system enables reasonably idiomatic domain-specific concrete syntax.
Coq’s powerful abstraction facilities provide a flexible framework in which to not only implement and verify
a range of domain-specific compilers [3], but also to combine them, and reason about their combination.

Working with many DSLs optimizes the “horizontal” compositionality of systems, and favors reuse of building
blocks, by contrast with the “vertical” composition of the traditional compiler pipeline, involving a stack of
comparatively large intermediate languages that are harder to reuse the higher one goes. The idea of building
compilers from reusable building blocks is a common one, of course. But the interface contracts of such blocks
tend to be complex, so combinations are hard to get right. We believe that being able to write and verify formal
specifications for the pieces will make it possible to know when components can be combined, and should help
in designing good interfaces.

Furthermore, the fact that Coq is also a system for formalizing mathematics enables one to establish a
close, formal connection between embedded DSLs and non-trivial domain-specific models. The possibility
of developing software in a truly “model-driven” way is an exciting one. Following this methodology, we
have implemented a certified compiler from regular expressions to x86 machine code [4]. Interestingly, our
development crucially relied on an existing Coq formalization, due to Braibant and Pous, [30] of the theory of
Kleene algebras.

While these individual experiments seem to converge toward embedding domain-specific languages in rich
type theories, further experimental validation is required. Indeed, Barrelfish is an extremely small software
compared to the Linux kernel. The challenge lies in scaling this methodology up to large software systems.
Doing so calls for a unified platform enabling the development of a myriad of DSLs, supporting code reuse
across DSLs as well as providing support for mechanically-verified proofs.

3.2. Research direction: Tools for improving legacy infrastructure software
A cornerstone of our work on legacy infrastructure software is the Coccinelle program matching and
transformation tool for C code. Coccinelle has been in continuous development since 2005. Today, Coccinelle
is extensively used in the context of Linux kernel development, as well as in the development of other software,
such as wine, python, kvm, and systemd. Currently, Coccinelle is a mature software project, and no research
is being conducted on Coccinelle itself. Instead, we leverage Coccinelle in other research projects [26], [27],
[67], [70], [74], [76], [79], [60],[16], both for code exploration, to better understand at a large scale problems in
Linux development, and as an essential component in tools that require program matching and transformation.
The continuing development and use of Coccinelle is also a source of visibility in the Linux kernel developer
community. We submitted the first patches to the Linux kernel based on Coccinelle in 2007. Since then, over
5500 patches have been accepted into the Linux kernel based on the use of Coccinelle, including around 3000
by over 500 developers from outside our research group.

Our recent work has focused on driver porting. Specifically, we have considered the problem of porting a
Linux device driver across versions, particularly backporting, in which a modern driver needs to be used by
a client who, typically for reasons of stability, is not able to update their Linux kernel to the most recent
version. When multiple drivers need to be backported, they typically need many common changes, suggesting

6 Activity Report INRIA 2017

that Coccinelle could be applicable. Using Coccinelle, however, requires writing backporting transformation
rules. In order to more fully automate the backporting (or symmetrically forward porting) process, these rules
should be generated automatically. We have carried out a preliminary study in this direction with David Lo of
Singapore Management University; this work, published at ICSME 2016 [82], is limited to a port from one
version to the next one, in the case where the amount of change required is limited to a single line of code.
Whisper has been awarded an ANR PRCI grant to collaborate with the group of David Lo on scaling up the
rule inference process and proposing a fully automatic porting solution.

3.3. Research direction: developing infrastructure software using Domain
Specific Languages
We wish to pursue a declarative approach to developing infrastructure software. Indeed, there exists a signifi-
cant gap between the high-level objectives of these systems and their implementation in low-level, imperative
programming languages. To bridge that gap, we propose an approach based on domain-specific languages
(DSLs). By abstracting away boilerplate code, DSLs increase the productivity of systems programmers. By
providing a more declarative language, DSLs reduce the complexity of code, thus the likelihood of bugs.

Traditionally, systems are built by accretion of several, independent DSLs. For example, one might use
Devil [7] to interact with devices, Bossa [6] to implement the scheduling policies. However, much effort
is duplicated in implementing the back-ends of the individual DSLs. Our long term goal is to design a unified
framework for developing and composing DSLs, following our work on Filet-o-Fish [3]. By providing a single
conceptual framework, we hope to amortize the development cost of a myriad of DSLs through a principled
approach to reusing and composing them.

Beyond the software engineering aspects, a unified platform brings us closer to the implementation
of mechanically-verified DSLs. Dagand’s recent work using the Coq proof assistant as an x86 macro-
assembler [4] is a step in that direction, which belongs to a larger trend of hosting DSLs in dependent type
theories [29], [34], [64]. A key benefit of those approaches is to provide – by construction – a formal, mech-
anized semantics to the DSLs thus developed. This semantics offers a foundation on which to base further
verification efforts, whilst allowing interaction with non-verified code. We advocate a methodology based on
incremental, piece-wise verification. Whilst building fully-certified systems from the top-down is a worthwhile
endeavor [51], we wish to explore a bottom-up approach by which one focuses first and foremost on crucial
subsystems and their associated properties.

Our current work on DSLs has two complementary goals: (i) the design of a unified framework for developing
and composing DSLs, following our work on Filet-o-Fish, and (ii) the design of domain-specific languages
for domains where there is a critical need for code correctness, and corresponding methodologies for proving
properties of the run-time behavior of the system.

4. Application Domains
4.1. Linux

Linux is an open-source operating system that is used in settings ranging from embedded systems to
supercomputers. The most recent release of the Linux kernel, v4.14, comprises over 16 million lines of code,
and supports 30 different families of CPU architectures, around 50 file systems, and thousands of device
drivers. Linux is also in a rapid stage of development, with new versions being released roughly every 2.5
months. Recent versions have each incorporated around 13,500 commits, from around 1500 developers. These
developers have a wide range of expertise, with some providing hundreds of patches per release, while others
have contributed only one. Overall, the Linux kernel is critical software, but software in which the quality of the
developed source code is highly variable. These features, combined with the fact that the Linux community is
open to contributions and to the use of tools, make the Linux kernel an attractive target for software researchers.
Tools that result from research can be directly integrated into the development of real software, where it can
have a high, visible impact.

Project-Team WHISPER 7

Starting from the work of Engler et al. [41], numerous research tools have been applied to the Linux kernel,
typically for finding bugs [39], [58], [71], [81] or for computing software metrics [47], [87]. In our work, we
have studied generic C bugs in Linux code [9], bugs in function protocol usage [52], [53], issues related to the
processing of bug reports [75] and crash dumps [46], and the problem of backporting [70], [82], illustrating
the variety of issues that can be explored on this code base. Unique among research groups working in this
area, we have furthermore developed numerous contacts in the Linux developer community. These contacts
provide insights into the problems actually faced by developers and serve as a means of validating the practical
relevance of our work.

4.2. Device Drivers
Device drivers are essential to modern computing, to provide applications with access, via the operating
system, to physical devices such as keyboards, disks, networks, and cameras. Development of new computing
paradigms, such as the internet of things, is hampered because device driver development is challenging and
error-prone, requiring a high level of expertise in both the targeted OS and the specific device. Furthermore,
implementing just one driver is often not sufficient; today’s computing landscape is characterized by a number
of OSes, e.g., Linux, Windows, MacOS, BSD and many real time OSes, and each is found in a wide range
of variants and versions. All of these factors make the development, porting, backporting, and maintenance of
device drivers a critical problem for device manufacturers, industry that requires specific devices, and even for
ordinary users.

The last fifteen years have seen a number of approaches directed towards easing device driver development.
Réveillère, who was supervised by G. Muller, proposes Devil [7], a domain-specific language for describing
the low-level interface of a device. Chipounov et al. propose RevNic, [33] a template-based approach for
porting device drivers from one OS to another. Ryzhyk et al. propose Termite, [72], [73] an approach for
synthesizing device driver code from a specification of an OS and a device. Currently, these approaches have
been successfully applied to only a small number of toy drivers. Indeed, Kadav and Swift [49] observe that
these approaches make assumptions that are not satisfied by many drivers; for example, the assumption that
a driver involves little computation other than the direct interaction between the OS and the device. At the
same time, a number of tools have been developed for finding bugs in driver code. These tools include SDV
[23], Coverity [41], CP-Miner, [57] PR-Miner [58], and Coccinelle [8]. These approaches, however, focus on
analyzing existing code, and do not provide guidelines on structuring drivers.

In summary, there is still a need for a methodology that first helps the developer understand the software
architecture of drivers for commonly used operating systems, and then provides tools for the maintenance of
existing drivers.

5. Highlights of the Year

5.1. Highlights of the Year
As part of a collaborative effort with Timothy Bourke, Lélio Brun, Marc Pouzet (Parkas team), Xavier Leroy
(Gallium team), Lionel Rieg (Collège de France) and Pierre-Évariste Dagand, our work on a certified Lustre
compiler was accepted at PLDI [13].

Julia Lawall was invited to present a talk as part of the Colloquium Jacques Morgenstern at Inria - Sophia
Antipolis. The talk was entitled "Coccinelle: synergy between programming language research and the Linux
kernel". A video of the presentation is available. 1

The work of Julia Lawall on the Linux kernel was featured in the Linux Foundation’s 2017 Linux Kernel
Development Report. 2

1https://www.canal-u.tv/video/inria/coccinelle_synergy_between_programming_language_research_and_the_linux_kernel.38185
2https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page

https://www.canal-u.tv/video/inria/coccinelle_synergy_between_programming_language_research_and_the_linux_kernel.38185
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page

8 Activity Report INRIA 2017

6. New Software and Platforms
6.1. Coccinelle

KEYWORDS: Code quality - Evolution - Infrastructure software
FUNCTIONAL DESCRIPTION: Coccinelle is a tool for code search and transformation for C programs. It has
been extensively used for bug finding and evolutions in Linux kernel code.

• Participants: Gilles Muller, Julia Lawall, Nicolas Palix, Rene Rydhof Hansen and Thierry Martinez
• Partners: LIP6 - IRILL
• Contact: Julia Lawall
• URL: http://coccinelle.lip6.fr

6.2. Prequel
KEYWORDS: Code search - Git
SCIENTIFIC DESCRIPTION: The commit history of a code base such as the Linux kernel is a gold mine of
information on how evolutions should be made, how bugs should be fixed, etc. Nevertheless, the high volume
of commits available and the rudimentary filtering tools provided mean that it is often necessary to wade
through a lot of irrelevant information before finding example commits that can help with a specific software
development problem. To address this issue, we propose Prequel (Patch Query Language), which brings the
descriptive power of code matching to the problem of querying a commit history.
FUNCTIONAL DESCRIPTION: Prequel is a tool for searching for complex patterns in the commits of software
managed using git.

• Participants: Gilles Muller and Julia Lawall
• Partners: LIP6 - IRILL
• Contact: Julia Lawall
• URL: http://prequel-pql.gforge.inria.fr/

7. New Results
7.1. Software engineering for infrastructure software

Work in 2017 on the Linux kernel has focused on the problem of kernel device driver porting and on kernel
compilation as a validation mechanism in the presence of variability. We have also completed a study with
researchers at Singapore Management University on the relationship between the code coverage of test cases
and the number of post-release defects, focusing on a range of popular open-source projects. Finally, we have
worked with researchers at the University of Frankfurt on the design of a transformation language targeting
data representation changes.

Porting Linux device drivers to target more recent and older Linux kernel versions to compensate for the ever-
changing kernel interface is a continual problem for Linux device driver developers. Acquiring information
about interface changes is a necessary, but tedious and error prone, part of this task. To address these
problems, we have proposed two tools, Prequel and gcc-reduce, to help the developer collect the needed
information. Prequel provides language support for querying git commit histories, while gcc-reduce translates
error messages produced by compiling a driver with a target kernel into appropriate Prequel queries. We have
used our approach in porting 33 device driver files over up to 3 years of Linux kernel history, amounting
to hundreds of thousands of commits. In these experiments, for 3/4 of the porting issues, our approach
highlighted commits that enabled solving the porting task. For many porting issues, our approach retrieves
relevant commits in 30 seconds or less. This work was published at USENIX ATC [16] and a related talk
was presented at Linuxcon Europe. The Prequel tool and some of our experimental results are available at
http://prequel-pql.gforge.inria.fr/. The complete tool suite is available at http://select-new.gforge.inria.fr/.

http://coccinelle.lip6.fr
http://prequel-pql.gforge.inria.fr/
http://prequel-pql.gforge.inria.fr/
http://select-new.gforge.inria.fr/

Project-Team WHISPER 9

The Linux kernel is highly configurable, and thus, in principle, any line of code can be included or excluded
from the compiled kernel based on configuration operations. Configurability complicates the task of a kernel
janitor, who cleans up faults across the code base. A janitor may not be familiar with the configuration
options that trigger compilation of a particular code line, leading him to believe that a fix has been compile-
checked when this is not the case. We have proposed JMake, a mutation-based tool for signaling changed
lines that are not subjected to the compiler. JMake shows that for most of the 12,000 file-modifying commits
between Linux v4.3 and v4.4 the configuration chosen by the kernel allyesconfig option is sufficient, once the
janitor chooses the correct architecture. For most commits, this check requires only 30 seconds or less. We
furthermore characterize the situations in which changed code is not subjected to compilation in practice. This
work was published at DSN [15] and a related talk was presented at Linuxcon Europe. JMake is available at
http://jmake-release.gforge.inria.fr/.

Testing is a pivotal activity in ensuring the quality of software. Code coverage is a common metric used as a
yardstick to measure the efficacy and adequacy of testing. However, does higher coverage actually lead to a
decline in post-release bugs? Do files that have higher test coverage actually have fewer bug reports? The direct
relationship between code coverage and actual bug reports has not yet been analysed via a comprehensive
empirical study on real bugs. In an empirical study, we have examined these questions in the context of 100
large open-source Java software projects based on their actual reported bugs. Our results show that coverage
has an insignificant correlation with the number of bugs that are found after the release of the software at the
project level, and no such correlation at the file level. This work was done in collaboration with researchers at
Singapore Management University and has been published in the IEEE Transactions on Reliability [12].

Data representation migration is a program transformation that involves changing the type of a particular
data structure, and then updating all of the operations that somehow depend on that data structure according
to the new type. Changing the data representation can provide benefits such as improving efficiency and
improving the quality of the computed results. Performing such a transformation is challenging, because it
requires applying data-type specific changes to code fragments that may be widely scattered throughout the
source code, connected by dataflow dependencies. Refactoring systems are typically sensitive to dataflow
dependencies, but are not programmable with respect to the features of particular data types. Existing program
transformation languages provide the needed flexibility, but do not concisely support reasoning about dataflow
dependencies.

To address the needs of data representation migration, we have proposed a new approach to program
transformation that relies on a notion of semantic dependency: every transformation step propagates the
transformation process onward to code that somehow depends on the transformed code. Our approach provides
a declarative transformation-specification language, for expressing type-specific transformation rules. Our
approach further provides scoped rules, a mechanism for guiding rule application, and tags, a device for
simple program analysis within our framework, to enable more powerful program transformations. Evaluation
of our prototype based on our approach, targeting C and C++ software, shows that it can improve program
performance and the precision of the computed results, and that it scales to programs of up to 3700 lines. This
work was done in collaboration with researchers at the University of Frankfurt and was published at PEPM
[18].

7.2. Trustworthy domain-specific compilers
This year, we concluded the correctness proof of the compiler back-end of the Lustre [32] synchronous
dataflow language. Synchronous dataflow languages are widely used for the design of embedded systems:
they allow a high-level description of the system and naturally lend themselves to a hierarchical design.
Developed in collaboration with members of the Parkas team of Inria Paris (Tim Bourke, Lélio Brun, Marc
Pouzet), the Gallium team of Inria Paris (Xavier Leroy) and Collège de France (Lionel Rieg), this work
formalizes the compilation of a synchronous data-flow language into an imperative sequential language,
which is eventually translated to Cminor [56], one of CompCert’s intermediate languages. The proof has
been developed and verified in the Coq theorem prover. This project illustrates perfectly our methodology:
the design of synchronous dataflow languages is first governed by semantic considerations (Kahn process

http://jmake-release.gforge.inria.fr/

10 Activity Report INRIA 2017

networks and the synchrony hypothesis) that are then reifed into syntactic artefacts. The implementation of a
certified compiler highlights this dependency on semantics, forcing us to give as crisp a semantics as possible
for the proof effort to be manageable. This work was published in a national conference [19] as well as in an
international conference [13], both on the topic of language design and implementation.

Expanding upon these ideas, Darius Mercadier started his PhD with us in October. We are currently devel-
oping a synchronous dataflow language targeting verified and high-performance implementations of bitsliced
algorithms, with application to cryptographical algorithms [40]. Our preliminary results [22] are encouraging.

7.3. Algebra of programming
We have pursued our study of the algebraic structures of programming languages, from a syntactic as well
as semantics perspective. Tackling the semantics aspect, Pierre-Évariste Dagand published a journal article
introducing the theory of ornaments [11] to a general audience of functional programmers. Ornaments amount
to a domain-specific language, usually described in type theory, for describing structure-preserving changes
in algebraic datatypes. Such descriptions can be used to improve code reuse as well as ease of refactoring
in functional languages. This work is part of a wider effort by our community to foster the adoption of
ornaments when programming with algebraic datatypes, be it in type theory [48] or general-purpose functional
programming languages [65], [89]. Tackling the syntactic aspect and in collaboration with researchers
at the University of Utrecht (Victor Miraldo, Wouter Swierstra), Pierre-Évariste Dagand has worked on a
formalization of diffs for structured data [20]. This preliminary and foundational work aims at providing
a typed specification to the problem of computing the difference of two pieces of structured data. Unlike
previous approaches [43], following a type-theoretical approach allowed us to formalize the difference of two
structure as a typed object. The task of computing the difference of two structured objects is then able to exploit
this typing information to control the search space (which is otherwise gigantic). Having a typed difference
also ensures that applying such a diff to a well-structured data results in either a failure (the difference is in
conflict with the given file) or another well-structured data.

7.4. Developing infrastructure software using Domain Specific Languages
In terms of DSL design for domains where correctness is critical, our current focus is first on process
scheduling for multicore architecture, and second on selfishness in distributed systems. Ten years ago,
we developed Bossa, targeting process scheduling on unicore processors, and primarily focusing on the
correctness of a scheduling policy with respect to the requirements of the target kernel. At that time, the main
use cases were soft real-time applications, such as video playback. Bossa was and still continues to be used
in teaching, because the associated verifications allow a student to develop a kernel-level process scheduling
policy without the risk of a kernel crash. Today, however, there is again a need for the development of new
scheduling policies, now targeting multicore architectures. As identified by Lozi et al. [61], large-scale server
applications, having specific resource access properties, can exhibit pathological properties when run with the
Linux kernel’s various load balancing heuristics. We are working on a new domain-specific language, Ipanema,
to enable verification of critical scheduling properties such as liveness and work-conservation; for the latter,
we are exploring the use of the Leon theorem prover from EPFL [17]. A first version of the language has been
designed and we expect to release a prototype of Ipanema working next year. The work around Ipanema is
the subject of a very active collaboration between researchers at four institutions (Inria, University of Nice,
University of Grenoble, and EPFL (groups of V. Kuncak and W. Zwaenepoel)). Baptiste Lepers (EPFL) is
supported in 2017 as a postdoc as part of the Inria-EPFL joint laboratory.

Selfishness is one of the key problems that confronts developers of cooperative distributed systems (e.g., file-
sharing networks, voluntary computing). It has the potential to severely degrade system performance and to
lead to instability and failures. Current techniques for understanding the impact of selfish behaviours and
designing effective countermeasures remain manual and time-consuming, requiring multi-domain expertise.
To overcome these difficulties, we have proposed SEINE, a simulation framework for rapid modelling and
evaluation of selfish behaviours in a cooperative system. SEINE relies on a domain-specific language (SEINE-
L) for specifying selfishness scenarios, and provides semi-automatic support for their implementation and

Project-Team WHISPER 11

study in a state-of-the-art simulator. We show in a paper published at DSN 2017 [14] that (1) SEINE-L is
expressive enough to specify fifteen selfishness scenarios taken from the literature, (2) SEINE is accurate in
predicting the impact of selfishness compared to real experiments, and (3) SEINE substantially reduces the
development effort compared to traditional manual approaches.

8. Bilateral Contracts and Grants with Industry
8.1. Bilateral Contracts with Industry

• Orange Labs, 2016-2018, 120 000 euros. The purpose of this contract is to apply the techniques
developed in the context of the PhD of Antoine Blin to the domain of Software Defined Networks
where network functions are run using virtual machines on commodity multicore machines.

• Thales Research, 2016-2018, 45 000 euros. The purpose of this contract is to enable the usage of
multicore architectures in avionics systems. More precisely, our goal is to develop optimizations for
a software TDMA hypervisor developed by Thales that provides full time-isolation of tasks. The
PhD of Cédric Courtaud is supported by a CIFRE fellowship with Thales Research.

• OSADL, 2016-2017, development of the Prequel patch query language, 20 000 euros. OSADL
is an organization headquartered in Germany that promotes and supports the use of open source
software in the automation and machine industry. The project is in the context of the OSADL project
SIL2LinuxMP bringing together various companies in automotive and embedded sytems with the
goal of developing methodologies for certifying the basic components of a GNU/Linux-based RTOS.

9. Partnerships and Cooperations
9.1. Regional Initiatives

• City of Paris, 2016-2019, 100 000 euros. As part of the “Émergence - young team” program the city
of Paris is supporting part of our work on domain-specific languages.

9.2. National Initiatives
9.2.1. ANR

ITrans - awarded in 2016, duration 2017 - 2020
Members: LIP6 (Whisper), David Lo (Singapore Management University)
Coordinator: Julia Lawall
Whisper members: Julia Lawall, Gilles Muller, Lucas Serrano, Van-Anh Nguyen
Funding: ANR PRCI, 287,820 euros.
Objectives:

Large, real-world software must continually change, to keep up with evolving requirements, fix bugs,
and improve performance, maintainability, and security. This rate of change can pose difficulties for
clients, whose code cannot always evolve at the same rate. This project will target the problems of
forward porting, where one software component has to catch up to a code base with which it needs to
interact, and back porting, in which it is desired to use a more modern component in a context where
it is necessary to continue to use a legacy code base, focusing on the context of Linux device drivers.
In this project, we will take a history-guided source-code transformation-based approach, which
automatically traverses the history of the changes made to a software system, to find where changes
in the code to be ported are required, gathers examples of the required changes, and generates change
rules to incrementally back port or forward port the code. Our approach will be a success if it is able
to automatically back and forward port a large number of drivers for the Linux operating system to
various earlier and later versions of the Linux kernel with high accuracy while requiring minimal
developer effort. This objective is not achievable by existing techniques.

12 Activity Report INRIA 2017

9.3. International Initiatives
9.3.1. Inria International Labs

• EPFL-Inria Lab Our work on the Ipanema DSL [17] is done as part of the EPFL-Inria Lab. Baptiste
Lepers (EPFL) is supported in 2017 as a joint postdoc between the Whisper and the groups of V.
Kuncak and W. Zwaenepoel.

9.3.2. Inria International Partners
9.3.2.1. Informal International Partners

• We collaborate with David Lo and Lingxiao Jiang of Singapore Management University, who are
experts in software mining, clone detection, and information retrieval techniques. Our work with Lo
and/or Jiang has led to 8 joint publications since 2013 [12], [68], [78], [83], [84], [85], [88], [86], at
conferences including ASE and ICSME. The ITrans ANR is a joint project with them.

• We collaborate with Christoph Reichenbach of the University of Lund and Krishna Narasimhan
of Itemis (Germany) on program transformation [18] and the design of tools for code clone
management.

• We collaborate with Wouter Swierstra of the University of Utrecht (Netherlands) on type-directed
structured differences [20].

• We collaborate with Eric Tanter of the University of Chile (Chile) on the theoretical and practical
aspects of dependent interoperability [38] in type theory.

9.4. International Research Visitors
9.4.1. Visits of International Scientists

As part of the Invited Professor program of LIP6, we have hosted Prof. Éric Tanter (University of Chile)
for two weeks (December 2017) who took this opportunity to give an introductory master class as well as a
research seminar on the topic of gradual typing.

9.4.1.1. Internships
• Lukas Gnirke, Oberlin College, January 2017, evaluation of our methodology for searching for

examples to guide driver porting [16].
• Adina Johnson, Oberlin College, May - August 2017, analysis of the differences between the Linux

kernel and the Android kernel.
• Jonathan Carroll, Oberlin College, May - August 2017, use of machine learning to identify stable-

kernel relevant patches.
• Bhumika Goyal, October - November 2017, constification of Linux kernel structures, supported by

the Linux Foundation’s Core Infrastructure Initiative.
• Peio Borthelle, École Normale Supérieure de Lyon, June - July 2017, solving the Oware on a single

machine.
• Darius Mercadier, Université Pierre et Marie Curie, January - August 2017, designing and imple-

menting Usuba, a bitslicing compiler.
9.4.1.2. Research Stays Abroad

• Julia Lawall, visit to David Lo and Lingxiao Jiang at Singapore Management University (two weeks
in May 2017).

10. Dissemination
10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. Member of the Organizing Committees

Project-Team WHISPER 13

• Gilles Muller: PLOS 2017

10.1.2. Scientific Events Selection
10.1.2.1. Chair of Conference Program Committees

• Julia Lawall: PLOS 2017

10.1.2.2. Member of the Conference Program Committees
• Gilles Muller: Usenix ATC 2017, DSN 2017, Systor 2017,
• Julia Lawall: ICSE NIER, ML workshop, OCaml workshop, SPLASH workshops.
• Pierre-Évariste Dagand: HOPE workshop

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• Julia Lawall: Editorial board of Science of Computer Programing (2008 - present).

10.1.3.2. Reviewer - Reviewing Activities
• Gilles Muller: IEEE Transactions on Computer Systems
• Julia Lawall: Computer Languages, Empirical Software Engineering, IEEE Transactions on Relia-

bility
• Pierre-Évariste Dagand: Journal of Functional Programming, Journal of Logical and Algebraic

Methods in Programming, Journée Francophones des Langages Applicatifs

10.1.4. Invited Talks
• Gilles Muller: University of North Carolina, Inria Grenoble, University of Bordeaux.
• Julia Lawall: Colloquium Jacques Morgenstern Sopha Antipolis, Vrije Universiteit Brussel, Univer-

sity of Copenhagen, 2017 FSD Meeting.
• Pierre-Évariste Dagand: École Normale Supérieure de Cachan

10.1.5. Research Administration
• Pierre-Évariste Dagand: Member of the steering committee for the Colloquium d’Informatique de

L’UPMC Sorbonne Universités, organizer of the Colloquium of Philippa Gardner (March 2017) and
Timothy Roscoe (November 2017).

• Julia Lawall: IFIP TC secretary (2012 - present). Elected member of IFIP WG 2.11.

Hiring committees: UPMC (PR)

Board member of Software Heritage (https://www.softwareheritage.org/).

Organized the Colloquium d’Informatique de L’UPMC Sorbonne Universités of Simon Peyton Jones
(May 2017)

• Gilles Muller: EuroSys steering committee (2013-2017), elected member of IFIP WG 10.4 (Depend-
ability), representative of Inria in Sorbonne University’s advisory committee for research, member of
the project committee board of the Inria Paris Center, member of the Paris committee for allocating
post-docs, PhD stipends and sabbaticals.

Hiring committees: University of Grenoble (MdC).
• Bertil Folliot: Elected member of the IFIP WG10.3 working group (Concurrent systems)

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

• Professional Licence: Bertil Folliot, Programmation C, L2, UPMC, France
• Professional Licence: Bertil Folliot, Lab projects, L2, UPMC, France

https://www.softwareheritage.org/

14 Activity Report INRIA 2017

• Licence: Pierre-Évariste Dagand, Distributed cooperating objects, L3, UPMC, France

• Master: Pierre-Évariste Dagand, Specification and Validation of Programs, M2, UPMC, France

• Licence: Pierre-Évariste Dagand, INF311: Introduction to Programming, L1, École Polytechnique,
France

10.2.2. Supervision
• PhD in progress : Mariem Saeid, soutenance en 2018, Jens Gustedt (Camus), Gilles Muller.

• PhD in progress : Cédric Courtaud, CIFRE Thalès, 2016-2019, Gilles Muller, Julien Sopéna (Regal).

• PhD in progress : Redha Gouicem, 2016-2019, Gilles Muller, Julien Sopéna (Regal).

• PhD in progress : Darius Mercadier, 2017-2020, Pierre-Évariste Dagand, Gilles Muller.

• PhD in progress : Lucas Serrano, 2017-2020, Julia Lawall.

10.2.3. Juries
• Gilles Muller: Reporter of the HDR of A. Tchana (U. Toulouse), member of the HDR of S. Ben

Mokhtar (U. of Lyon).

• Julia Lawall: Vinh Tao (PhD, UPMC, president), Marcelino Cancio Rodriguez (PhD, University of
Rennes, reporter), Victor Allombert (PhD, Paris Est-Creteil, reporter), Reinout Stevens (PhD, VUB,
reporter).

10.3. Popularization
• Julia Lawall: Coordinator of the Outreachy internship program for the Linux kernel. Outreachy

provides remote 3-month internships twice a year for women and other underrepresented minorities
on open source projects. Julia Lawall also mentored Bhumika Goyal as part of this program.

• Julia Lawall, “Fast and Precise Retrieval of Forward and Back Porting Information for Linux Device
Drivers”, Open Source Summit Europe, October 2017.

• Julia Lawall, “JMake: Dependable Compilation for Kernel Janitors”, Open Source Summit Europe,
October 2017.

• Julia Lawall, “Panel Discussion: Outreachy Kernel Internship Report” (moderator), Open Source
Summit Europe, October 2017.

• Julia Lawall, “Overview of Coccinelle”, Linux Lund Conference, May 2018.

• Julia Lawall, “Constification of Linux kernel structures”, OSADL Networking Day, May 2017.

11. Bibliography
Major publications by the team in recent years

[1] J. BRUNEL, D. DOLIGEZ, R. R. HANSEN, J. L. LAWALL, G. MULLER. A foundation for flow-based program
matching using temporal logic and model checking, in "POPL", Savannah, GA, USA, ACM, January 2009,
pp. 114–126

[2] L. BURGY, L. RÉVEILLÈRE, J. L. LAWALL, G. MULLER. Zebu: A Language-Based Approach for Network
Protocol Message Processing, in "IEEE Trans. Software Eng.", 2011, vol. 37, no 4, pp. 575-591

[3] P.-É. DAGAND, A. BAUMANN, T. ROSCOE. Filet-o-Fish: practical and dependable domain-specific languages
for OS development, in "Programming Languages and Operating Systems (PLOS)", 2009, pp. 51–55

Project-Team WHISPER 15

[4] A. KENNEDY, N. BENTON, J. B. JENSEN, P.-É. DAGAND. Coq: The World’s Best Macro Assembler?, in
"PPDP", Madrid, Spain, ACM, 2013, pp. 13–24

[5] G. MULLER, C. CONSEL, R. MARLET, L. P. BARRETO, F. MÉRILLON, L. RÉVEILLÈRE. Towards Robust
OSes for Appliances: A New Approach Based on Domain-specific Languages, in "Proceedings of the 9th
Workshop on ACM SIGOPS European Workshop: Beyond the PC: New Challenges for the Operating System",
Kolding, Denmark, 2000, pp. 19–24

[6] G. MULLER, J. L. LAWALL, H. DUCHESNE. A Framework for Simplifying the Development of Kernel Sched-
ulers: Design and Performance Evaluation, in "HASE - High Assurance Systems Engineering Conference",
Heidelberg, Germany, IEEE, October 2005, pp. 56–65

[7] F. MÉRILLON, L. RÉVEILLÈRE, C. CONSEL, R. MARLET, G. MULLER. Devil: An IDL for hardware
programming, in "Proceedings of the Fourth Symposium on Operating Systems Design and Implementation
(OSDI)", San Diego, California, USENIX Association, October 2000, pp. 17–30

[8] Y. PADIOLEAU, J. L. LAWALL, R. R. HANSEN, G. MULLER. Documenting and Automating Collateral
Evolutions in Linux Device Drivers, in "EuroSys", Glasgow, Scotland, March 2008, pp. 247–260

[9] N. PALIX, G. THOMAS, S. SAHA, C. CALVÈS, J. L. LAWALL, G. MULLER. Faults in Linux 2.6, in "ACM
Transactions on Computer Systems", June 2014, vol. 32, no 2, pp. 4:1–4:40

Publications of the year
Doctoral Dissertations and Habilitation Theses

[10] A. BLIN. Towards an efficient use of multi-core processors in mixed criticality embedded systems, Université
Pierre et Marie Curie - Paris VI, January 2017, https://tel.archives-ouvertes.fr/tel-01624259

Articles in International Peer-Reviewed Journals

[11] P.-E. DAGAND. The essence of ornaments, in "Journal of Functional Programming", January 2017, vol. 27
[DOI : 10.1017/S0956796816000356], https://hal.archives-ouvertes.fr/hal-01461209

[12] P. SINGH KOCHHAR, D. LO, J. LAWALL, N. NAGAPPAN. Code Coverage and Postrelease Defects: A Large-
Scale Study on Open Source Projects, in "IEEE Transactions on Reliability", December 2017, vol. 66, no 4,
pp. 1213 - 1228 [DOI : 10.1109/TR.2017.2727062], https://hal.inria.fr/hal-01653728

International Conferences with Proceedings

[13] T. BOURKE, L. BRUN, P.-E. DAGAND, X. LEROY, M. POUZET, L. RIEG. A Formally Verified Compiler
for Lustre, in "PLDI 2017 - 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation", Barcelone, Spain, ACM, June 2017, https://hal.inria.fr/hal-01512286

[14] G. L. COTA, S. BEN MOKHTAR, G. GIANINI, E. DAMIANI, J. LAWALL, G. MULLER, L. BRUNIE.
Analysing Selfishness Flooding with SEINE, in "The 47th IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’17)", Denver, Colorado, United States, June 2017, pp. 603 - 614
[DOI : 10.1109/DSN.2017.51], https://hal.archives-ouvertes.fr/hal-01581628

https://tel.archives-ouvertes.fr/tel-01624259
https://hal.archives-ouvertes.fr/hal-01461209
https://hal.inria.fr/hal-01653728
https://hal.inria.fr/hal-01512286
https://hal.archives-ouvertes.fr/hal-01581628

16 Activity Report INRIA 2017

[15] J. LAWALL, G. MULLER. JMake: Dependable Compilation for Kernel Janitors, in "The 47th IEEE/IFIP
International Conference on Dependable Systems and Networks", Denver,Colorado, United States, IEEE/IFIP,
June 2017 [DOI : 10.1109/DSN.2017.62], https://hal.inria.fr/hal-01555711

[16] J. LAWALL, D. PALINSKI, L. GNIRKE, G. MULLER. Fast and Precise Retrieval of Forward and Back Porting
Information for Linux Device Drivers, in "2017 USENIX Annual Technical Conference", Santa Clara, CA,
United States, July 2017, 12 p. , https://hal.inria.fr/hal-01556589

[17] B. LEPERS, W. ZWAENEPOEL, J.-P. LOZI, N. PALIX, R. GOUICEM, J. SOPENA, J. LAWALL, G.
MULLER. Towards Proving Optimistic Multicore Schedulers, in "HotOS 2017 - 16th Workshop on Hot
Topics in Operating Systems", Whistler, British Columbia, Canada, ACM SIGOPS, May 2017, 6 p.
[DOI : 10.1145/3102980.3102984], https://hal.inria.fr/hal-01556597

[18] K. NARASIMHAN, C. REICHENBACH, J. LAWALL. Interactive Data Representation Migration: Exploiting
Program Dependence to Aid Program Transformation, in "PEPM 2017 Workshop on Partial Evaluation and
Program Manipulation", Paris, France, January 2017, https://hal.inria.fr/hal-01408266

National Conferences with Proceedings

[19] T. BOURKE, P.-E. DAGAND, M. POUZET, L. RIEG. Vérification de la génération modulaire du code impératif
pour Lustre, in "JFLA 2017 - Vingt-huitième Journées Francophones des Langages Applicatifs", Gourette,
France, January 2017, https://hal.inria.fr/hal-01403830

Conferences without Proceedings

[20] V. C. MIRALDO, P.-E. DAGAND, W. SWIERSTRA. Type-directed diffing of structured data, in "TyDe 2017
Proceedings of the 2nd ACM SIGPLAN International Workshop on Type-Driven Development", Oxford,
United Kingdom, September 2017 [DOI : 10.1145/3122975.3122976], https://hal.archives-ouvertes.fr/hal-
01673541

Other Publications

[21] P.-E. DAGAND, N. TABAREAU, É. TANTER. Foundations of Dependent Interoperability, December 2017,
working paper or preprint, https://hal.inria.fr/hal-01629909

[22] D. MERCADIER, P.-É. DAGAND, L. LACASSAGNE, G. MULLER. Usuba, Optimizing & Trustworthy
Bitslicing Compiler, December 2017, working paper or preprint, https://hal.archives-ouvertes.fr/hal-01657259

References in notes

[23] T. BALL, E. BOUNIMOVA, B. COOK, V. LEVIN, J. LICHTENBERG, C. MCGARVEY, B. ONDRUSEK, S. K.
RAJAMANI, A. USTUNER. Thorough Static Analysis of Device Drivers, in "EuroSys", 2006, pp. 73–85

[24] A. BAUMANN, P. BARHAM, P.-É. DAGAND, T. HARRIS, R. ISAACS, S. PETER, T. ROSCOE, A. SCHÜP-
BACH, A. SINGHANIA. The multikernel: A new OS architecture for scalable multicore systems, in "SOSP",
2009, pp. 29–44

[25] T. F. BISSYANDÉ, L. RÉVEILLÈRE, J. L. LAWALL, Y.-D. BROMBERG, G. MULLER. Implementing an
embedded compiler using program transformation rules, in "Software: Practice and Experience", 2013

https://hal.inria.fr/hal-01555711
https://hal.inria.fr/hal-01556589
https://hal.inria.fr/hal-01556597
https://hal.inria.fr/hal-01408266
https://hal.inria.fr/hal-01403830
https://hal.archives-ouvertes.fr/hal-01673541
https://hal.archives-ouvertes.fr/hal-01673541
https://hal.inria.fr/hal-01629909
https://hal.archives-ouvertes.fr/hal-01657259

Project-Team WHISPER 17

[26] T. F. BISSYANDÉ, L. RÉVEILLÈRE, J. LAWALL, Y.-D. BROMBERG, G. MULLER. Implementing an
Embedded Compiler using Program Transformation Rules, in "Software: Practice and Experience", February
2015, vol. 45, no 2, pp. 177-196, https://hal.archives-ouvertes.fr/hal-00844536

[27] T. F. BISSYANDÉ, L. RÉVEILLÈRE, J. LAWALL, G. MULLER. Ahead of Time Static Analysis for Automatic
Generation of Debugging Interfaces to the Linux Kernel, in "Automated Software Engineering", May 2014,
pp. 1-39 [DOI : 10.1007/S10515-014-0152-4], https://hal.archives-ouvertes.fr/hal-00992283

[28] A. P. BLACK, S. DUCASSE, O. NIERSTRASZ, D. POLLET. Pharo by Example, Square Bracket Associates,
2010

[29] E. BRADY, K. HAMMOND. Resource-Safe Systems Programming with Embedded Domain Specific Languages,
in "14th International Symposium on Practical Aspects of Declarative Languages (PADL)", LNCS, Springer,
2012, vol. 7149, pp. 242–257

[30] T. BRAIBANT, D. POUS. An Efficient Coq Tactic for Deciding Kleene Algebras, in "1st International
Conference on Interactive Theorem Proving (ITP)", LNCS, Springer, 2010, vol. 6172, pp. 163–178

[31] C. CADAR, D. DUNBAR, D. R. ENGLER. KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs, in "OSDI", 2008, pp. 209–224

[32] P. CASPI, N. HALBWACHS, D. PILAUD, J. PLAICE. Lustre: a declarative language for programming
synchronous systems, in "14th ACM Symposium on Principles of Programming Languages", ACM, 1987

[33] V. CHIPOUNOV, G. CANDEA. Reverse Engineering of Binary Device Drivers with RevNIC, in "EuroSys",
2010, pp. 167–180

[34] A. CHLIPALA. The Bedrock Structured Programming System: Combining Generative Metaprogramming and
Hoare Logic in an Extensible Program Verifier, in "ICFP", 2013, pp. 391–402

[35] L. A. CLARKE. A system to generate test data and symbolically execute programs, in "IEEE Transactions on
Software Engineering", 1976, vol. 2, no 3, pp. 215–222

[36] E. CLARKE, O. GRUMBERG, S. JHA, Y. LU, H. VEITH. Counterexample-guided abstraction refinement for
symbolic model checking, in "J. ACM", 2003, vol. 50, no 5, pp. 752–794

[37] P. COUSOT, R. COUSOT. Abstract Interpretation: Past, Present and Future, in "CSL-LICS", 2014, pp.
2:1–2:10

[38] P.-E. DAGAND, N. TABAREAU, É. TANTER. Partial Type Equivalences for Verified Dependent Interoper-
ability, in "ICFP 2016 - 21st ACM SIGPLAN International Conference on Functional Programming", Nara,
Japan, September 2016, pp. 298-310, http://dx.doi.org/10.1145/2951913.2951933

[39] I. DILLIG, T. DILLIG, A. AIKEN. Sound, complete and scalable path-sensitive analysis, in "PLDI", June
2008, pp. 270–280

[40] D. DINU, Y. L. CORRE, D. KHOVRATOVICH, L. PERRIN, J. GROSSSCHÄDL, A. BIRYUKOV. Triathlon of
Lightweight Block Ciphers for the Internet of Things, 2015, Cryptology ePrint Archive, Report 2015/209

https://hal.archives-ouvertes.fr/hal-00844536
https://hal.archives-ouvertes.fr/hal-00992283
http://dx.doi.org/10.1145/2951913.2951933

18 Activity Report INRIA 2017

[41] D. R. ENGLER, B. CHELF, A. CHOU, S. HALLEM. Checking System Rules Using System-Specific,
Programmer-Written Compiler Extensions, in "OSDI", 2000, pp. 1–16

[42] D. R. ENGLER, D. Y. CHEN, A. CHOU, B. CHELF. Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code, in "SOSP", 2001, pp. 57–72

[43] J. FALLERI, F. MORANDAT, X. BLANC, M. MARTINEZ, M. MONPERRUS. Fine-grained and accurate source
code differencing, in "ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014", 2014, pp. 313–324, http://dx.doi.org/10.1145/2642937.2642982

[44] A. GOLDBERG, D. ROBSON. Smalltalk-80: The Language and Its Implementation, Addison-Wesley, 1983

[45] L. GU, A. VAYNBERG, B. FORD, Z. SHAO, D. COSTANZO. CertiKOS: A Certified Kernel for Secure Cloud
Computing, in "Proceedings of the Second Asia-Pacific Workshop on Systems (APSys)", 2011, pp. 3:1–3:5

[46] L. GUO, J. L. LAWALL, G. MULLER. Oops! Where did that code snippet come from?, in "11th Working
Conference on Mining Software Repositories, MSR", Hyderabad, India, ACM, May 2014, pp. 52–61

[47] A. ISRAELI, D. G. FEITELSON. The Linux kernel as a case study in software evolution, in "Journal of Systems
and Software", 2010, vol. 83, no 3, pp. 485–501

[48] H.-S. KO, J. GIBBONS. Programming with ornaments, in "Journal of Functional Programming", 2017, vol.
27, http://dx.doi.org/10.1017/S0956796816000307

[49] A. KADAV, M. M. SWIFT. Understanding modern device drivers, in "ASPLOS", 2012, pp. 87–98

[50] G. A. KILDALL. A Unified Approach to Global Program Optimization, in "POPL", 1973, pp. 194–206

[51] G. KLEIN, K. ELPHINSTONE, G. HEISER, J. ANDRONICK, D. COCK, P. DERRIN, D. ELKADUWE,
K. ENGELHARDT, R. KOLANSKI, M. NORRISH, T. SEWELL, H. TUCH, S. WINWOOD. seL4: formal
verification of an OS kernel, in "SOSP", 2009, pp. 207–220

[52] J. L. LAWALL, J. BRUNEL, N. PALIX, R. R. HANSEN, H. STUART, G. MULLER. WYSIWIB: Exploiting
fine-grained program structure in a scriptable API-usage protocol-finding process, in "Software, Practice
Experience", 2013, vol. 43, no 1, pp. 67–92

[53] J. L. LAWALL, B. LAURIE, R. R. HANSEN, N. PALIX, G. MULLER. Finding Error Handling Bugs in
OpenSSL using Coccinelle, in "Proceeding of the 8th European Dependable Computing Conference (EDCC)",
Valencia, Spain, April 2010, pp. 191–196

[54] J. L. LAWALL, D. LO. An automated approach for finding variable-constant pairing bugs, in "25th
IEEE/ACM International Conference on Automated Software Engineering", Antwerp, Belgium, September
2010, pp. 103–112

[55] C. LE GOUES, W. WEIMER. Specification Mining with Few False Positives, in "TACAS", York, UK, Lecture
Notes in Computer Science, March 2009, vol. 5505, pp. 292–306

http://dx.doi.org/10.1145/2642937.2642982
http://dx.doi.org/10.1017/S0956796816000307

Project-Team WHISPER 19

[56] X. LEROY. Formal verification of a realistic compiler, in "Communications of the ACM", 2009, vol. 52, no

7, pp. 107–115

[57] Z. LI, S. LU, S. MYAGMAR, Y. ZHOU. CP-Miner: A Tool for Finding Copy-paste and Related Bugs in
Operating System Code, in "OSDI", 2004, pp. 289–302

[58] Z. LI, Y. ZHOU. PR-Miner: automatically extracting implicit programming rules and detecting violations
in large software code, in "Proceedings of the 10th European Software Engineering Conference", 2005, pp.
306–315

[59] D. LO, S. KHOO. SMArTIC: towards building an accurate, robust and scalable specification miner, in "FSE",
2006, pp. 265–275

[60] J.-P. LOZI, F. DAVID, G. THOMAS, J. LAWALL, G. MULLER. Fast and Portable Locking for Multicore
Architectures, in "ACM Transactions on Computer Systems", January 2016 [DOI : 10.1145/2845079],
https://hal.inria.fr/hal-01252167

[61] J. LOZI, B. LEPERS, J. R. FUNSTON, F. GAUD, V. QUÉMA, A. FEDOROVA. The Linux scheduler: a decade
of wasted cores, in "Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016,
London, United Kingdom, April 18-21, 2016", C. CADAR, P. PIETZUCH, K. KEETON, R. RODRIGUES
(editors), ACM, 2016, pp. 1:1–1:16, http://doi.acm.org/10.1145/2901318.2901326

[62] S. LU, S. PARK, Y. ZHOU. Finding Atomicity-Violation Bugs through Unserializable Interleaving Testing, in
"IEEE Transactions on Software Engineering", 2012, vol. 38, no 4, pp. 844–860

[63] M. MERNIK, J. HEERING, A. M. SLOANE. When and How to Develop Domain-specific Languages, in "ACM
Comput. Surv.", December 2005, vol. 37, no 4, pp. 316–344, http://dx.doi.org/10.1145/1118890.1118892

[64] G. MORRISETT, G. TAN, J. TASSAROTTI, J.-B. TRISTAN, E. GAN. RockSalt: better, faster, stronger SFI for
the x86, in "PLDI", 2012, pp. 395-404

[65] S. NAJD, S. P. JONES. Trees that Grow, in "Journal of Universal Computer Science", jan 2017, vol. 23, no 1,
pp. 42–62

[66] M. ODERSKY, T. ROMPF. Unifying functional and object-oriented programming with Scala, in "Commun.
ACM", 2014, vol. 57, no 4, pp. 76–86

[67] M. C. OLESEN, R. R. HANSEN, J. L. LAWALL, N. PALIX. Coccinelle: Tool support for automated CERT C
Secure Coding Standard certification, in "Science of Computer Programming", October 2014, vol. 91, no B,
pp. 141–160, https://hal.inria.fr/hal-01096185

[68] K. PAVNEET SINGH, F. THUNG, D. LO, J. LAWALL. An Empirical Study on the Adequacy of Testing in Open
Source Projects, in "21st Asia-Pacific Software Engineering Conference", Jeju, South Korea, December 2014,
https://hal.inria.fr/hal-01096132

[69] T. REPS, T. BALL, M. DAS, J. LARUS. The Use of Program Profiling for Software Maintenance with
Applications to the Year 2000 Problem, in "ESEC/FSE", 1997, pp. 432–449

https://hal.inria.fr/hal-01252167
http://doi.acm.org/10.1145/2901318.2901326
http://dx.doi.org/10.1145/1118890.1118892
https://hal.inria.fr/hal-01096185
https://hal.inria.fr/hal-01096132

20 Activity Report INRIA 2017

[70] L. R. RODRIGUEZ, J. LAWALL. Increasing Automation in the Backporting of Linux Drivers Using Coccinelle,
in "11th European Dependable Computing Conference - Dependability in Practice", Paris, France, 11th
European Dependable Computing Conference - Dependability in Practice, November 2015, https://hal.inria.
fr/hal-01213912

[71] C. RUBIO-GONZÁLEZ, H. S. GUNAWI, B. LIBLIT, R. H. ARPACI-DUSSEAU, A. C. ARPACI-DUSSEAU.
Error propagation analysis for file systems, in "PLDI", Dublin, Ireland, ACM, June 2009, pp. 270–280

[72] L. RYZHYK, P. CHUBB, I. KUZ, E. LE SUEUR, G. HEISER. Automatic device driver synthesis with Termite,
in "SOSP", 2009, pp. 73–86

[73] L. RYZHYK, A. WALKER, J. KEYS, A. LEGG, A. RAGHUNATH, M. STUMM, M. VIJ. User-Guided Device
Driver Synthesis, in "OSDI", 2014, pp. 661–676

[74] R. K. SAHA, J. L. LAWALL, S. KHURSHID, D. E. PERRY. On the Effectiveness of Information Retrieval Based
Bug Localization for C Programs, in "ICSME 2014 - 30th International Conference on Software Maintenance
and Evolution", Victoria, Canada, IEEE, September 2014, pp. 161-170 [DOI : 10.1109/ICSME.2014.38],
https://hal.inria.fr/hal-01086082

[75] R. SAHA, J. L. LAWALL, S. KHURSHID, D. E. PERRY. On the Effectiveness of Information Retrieval based
Bug Localization for C Programs, in "International Conference on Software Maintenance and Evolution
(ICSME)", Victoria, BC, Canada, September 2014

[76] S. SAHA, J.-P. LOZI, G. THOMAS, J. LAWALL, G. MULLER. Hector: Detecting resource-release omission
faults in error-handling code for systems software, in "DSN 2013 - 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN)", Budapest, Hungary, IEEE Computer Society, June
2013, pp. 1-12 [DOI : 10.1109/DSN.2013.6575307], https://hal.inria.fr/hal-00918079

[77] D. A. SCHMIDT. Data Flow Analysis is Model Checking of Abstract Interpretations, in "POPL", 1998, pp.
38–48

[78] P. SENNA, L. RÉVEILLÈRE, L. JIANG, D. LO, J. LAWALL, G. MULLER. Understanding the ge-
netic makeup of Linux device drivers, in "PLOS’13 - 7th Workshop on Programming Languages and
Operating Systems", Nemacolin Woodlands Resort, Pennsylvania, United States, ACM, November 2013
[DOI : 10.1145/2525528.2525536], https://hal.inria.fr/hal-00927070

[79] P. SENNA TSCHUDIN, J. LAWALL, G. MULLER. 3L: Learning Linux Logging, in "BElgian-NEtherlands
software eVOLution seminar (BENEVOL 2015)", Lille, France, December 2015, https://hal.inria.fr/hal-
01239980

[80] M. SHAPIRO. Purpose-built languages, in "Commun. ACM", 2009, vol. 52, no 4, pp. 36–41

[81] R. TARTLER, D. LOHMANN, J. SINCERO, W. SCHRÖDER-PREIKSCHAT. Feature consistency in compile-
time-configurable system software: facing the Linux 10,000 feature problem, in "EuroSys", 2011, pp. 47–60

[82] F. THUNG, D. X. B. LE, D. LO, J. LAWALL. Recommending Code Changes for Automatic Backporting
of Linux Device Drivers, in "32nd IEEE International Conference on Software Maintenance and Evolution
(ICSME)", Raleigh, North Carolina, United States, IEEE, October 2016, https://hal.inria.fr/hal-01355859

https://hal.inria.fr/hal-01213912
https://hal.inria.fr/hal-01213912
https://hal.inria.fr/hal-01086082
https://hal.inria.fr/hal-00918079
https://hal.inria.fr/hal-00927070
https://hal.inria.fr/hal-01239980
https://hal.inria.fr/hal-01239980
https://hal.inria.fr/hal-01355859

Project-Team WHISPER 21

[83] F. THUNG, D. LO, J. L. LAWALL. Automated library recommendation, in "WCRE 2013 - 20th Working
Conference on Reverse Engineering", Koblenz, Germany, R. LÄMMEL, R. OLIVETO, R. ROBBES (editors),
IEEE, October 2013, pp. 182-191 [DOI : 10.1109/WCRE.2013.6671293], https://hal.inria.fr/hal-00918076

[84] F. THUNG, S. WANG, D. LO, J. LAWALL. Automatic recommendation of API methods from feature requests,
in "ASE 2013 - 28th IEEE/ACM International Conference on Automated Software Engineering", Palo Alto,
California, United States, E. DENNEY, T. BULTAN, A. ZELLER (editors), IEEE, November 2013, https://hal.
inria.fr/hal-00918828

[85] Y. TIAN, D. LO, J. LAWALL. Automated construction of a software-specific word similarity database, in
"2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering, CSMR-WCRE", Antwerp, Belgium, IEEE, February 2014, pp. 44-53, https://hal.inria.fr/hal-
01086077

[86] Y. TIAN, D. LO, J. LAWALL. SEWordSim: software-specific word similarity database, ACM, May 2014, pp.
568-571, ICSE Companion 2014 - Companion Proceedings of the 36th International Conference on Software
Engineering, Poster [DOI : 10.1145/2591062.2591071], https://hal.inria.fr/hal-01086079

[87] W. WANG, M. GODFREY. A Study of Cloning in the Linux SCSI Drivers, in "Source Code Analysis and
Manipulation (SCAM)", IEEE, 2011

[88] S. WANG, D. LO, J. LAWALL. Compositional Vector Space Models for Improved Bug Localization, in "30th
International Conference on Software Maintenance and Evolution", Victoria, Canada, IEEE, September 2014,
pp. 171-180, https://hal.inria.fr/hal-01086084

[89] T. WILLIAMS, P. DAGAND, D. RÉMY. Ornaments in practice, in "Proceedings of the 10th ACM SIGPLAN
workshop on Generic programming, WGP 2014, Gothenburg, Sweden, August 31, 2014", 2014, pp. 15–24,
http://dx.doi.org/10.1145/2633628.2633631

[90] J. YANG, C. HAWBLITZEL. Safe to the Last Instruction: Automated Verification of a Type-safe Operating
System, in "PLDI", 2010, pp. 99–110

https://hal.inria.fr/hal-00918076
https://hal.inria.fr/hal-00918828
https://hal.inria.fr/hal-00918828
https://hal.inria.fr/hal-01086077
https://hal.inria.fr/hal-01086077
https://hal.inria.fr/hal-01086079
https://hal.inria.fr/hal-01086084
http://dx.doi.org/10.1145/2633628.2633631

