y 4

: informatics g”mathematics

IN PARTNERSHIP WITH:
Institut national des sciences
appliquées de Rennes

Université Rennes 1

Activity Report 2018
Project-Team DIVERSE

Diversity-centric Software Engineering

IN COLLABORATION WITH: Institut de recherche en informatique et systéemes aléatoires (IRISA)

RESEARCH CENTER
Rennes - Bretagne-Atlantique

THEME
Distributed programming and Soft-
ware engineering

1.

4.
5.

6.

Team, Visitors, External Collaborators
2. Overall Objectives
3. Research Program

Table of contents

3.1. Scientific background

3.1.1.
3.1.2.
3.1.3.
3.14.
3.1.5.

Model-driven engineering

Variability modeling

Component-based software development
Validation and verification

Empirical software engineering

3.2. Research axis

3.2.1.

Software Language Engineering

3.2.1.1. Challenges
3.2.1.2. Scientific objectives

3.2.2.

Variability Modeling and Engineering

3.2.2.1. Challenges
3.2.2.2. Scientific objectives

3.2.3.

Heterogeneous and dynamic software architectures

3.2.3.1. Challenges
3.2.3.2. Scientific objectives

3.24.

Diverse implementations for resilience

3.2.4.1. Challenges
3.2.4.2. Scientific objectives

Highlights of the Year
New Software and Platforms

5.1. amiunique

5.2. FAMILIAR

5.3. GEMOC Studio
5.4. Kevoree

5.5. Melange

5.6. Opencompare
5.7. DSpot

5.8. ALE

5.9. InspectorGuidget

New Results

6.1. Results on Variability modeling and management

6.1.1.
6.1.2.
6.1.3.

Variability and testing.
Variability and teaching.
Variability and machine learning

6.2. Results on Software Language Engineering

6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.
6.2.7.

Omniscient Debugging for Executable DSLs

Trace Comprehension Operators for Executable DSLs
Model Transformation Reuse across Metamodels

Modular Language Composition for the Masses
Shape-Diverse DSLs

Fostering metamodels and grammars

Automatic Production of End User Documentation for DSLs

6.3. Results on Heterogeneous and dynamic software architectures

6.3.1.
6.3.2.

Resource-aware models @runtime layer for dynamically adaptive system
A Temporal Model for Interactive Diagnosis of Adaptive Systems

O O 0000 1 JWn B~ W Ww

et
N === O O O O

2 Activity Report INRIA 2018
6.3.3. Detection and analysis of behavioral T-patterns in debugging activities 22
6.4. Results on Diverse Implementations for Resilience 22
6.4.1. Privacy and Security 22
6.4.1.1. FP-STALKER: Tracking Browser Fingerprint Evolutions 22
6.4.1.2. Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at
Large Scale 23
6.4.1.3. User Controlled Trust and Security Level of Web Real-Time Communications 23
6.4.2. Software Testing 23
6.4.2.1. A Comprehensive Study of Pseudo-tested Methods 23
6.4.2.2. Automatic Test Improvement with DSpot: a Study with Ten Mature Open-Source
Projects 23
6.4.2.3. Multimorphic Testing 24
6.4.2.4. User Interface Design Smell: Automatic Detection and Refactoring of Blob Listen-
ers 24
7. Bilateral Contracts and Grants with Industry 24
7.1.1. ADR Nokia 24
7.1.2. BCOM 25
7.1.3. GLOSE 25
7.1.4. OneShotSoftware 25
7.1.5. Agileo 25
7.1.6. Obeo 25
7.1.7. OKWind 25
7.1.8. Orange 25
7.1.9. Keolis 26
7.1.10. FaberNovel 26
8. Partnerships and Cooperations e 26
8.1. Regional Initiatives 26
8.2. National Initiatives 26
82.1. ANR 26
8.2.1.1. SOPRANO 26
8.2.1.2. VaryVary ANR JCJC 26
8.2.2. Competitivity Clusters 27
8.2.3. Cominlabs 27
8.3. European Initiatives 28
8.3.1. FP7 & H2020 Projects 28
8.3.2. Collaborations in European Programs, Except FP7 & H2020 28
8.3.3. Collaborations with Major European Organizations 29
8.4. International Initiatives 29
8.4.1. Inria International Labs 29
8.4.2. Inria International Partners 29
8.4.3. Participation in Other International Programs 29
8.5. International Research Visitors 30
8.5.1. Visits of International Scientists 30
8.5.2. Visits to International Teams 30
9. Dissemination e 31
9.1. Promoting Scientific Activities 31
9.1.1. Scientific Events Organisation 31
9.1.1.1. General Chair, Scientific Chair 31
9.1.1.2. Member of the Organizing Committees 31
9.1.2. Scientific Events Selection 31

9.1.2.1. Chair of Conference Program Committees 31

Project-Team DIVERSE 3

9.1.2.2. Member of the Conference Program Committees 31
9.1.2.3. Reviewer 32
9.1.3. Journal 32
9.1.3.1. Member of the Editorial Boards 32
9.1.3.2. Reviewer - Reviewing Activities 32
9.14. Invited Talks 33
9.1.5. Leadership within the Scientific Community 33
9.1.6. Scientific Expertise 33
9.1.7. Research Administration 34
9.2. Teaching - Supervision - Juries 34
9.2.1. Teaching 34
9.2.2. Supervision 34
9.2.3. Juries 35
9.2.3.1. Jean-Marc Jézéquel 35
9.2.3.2. Mathieu Acher 35
9.2.3.3. Olivier Barais 35
9.2.3.4. Benoit Baudry 35
9.2.3.5. Benoit Combemale 36
9.3. Popularization 36
9.3.1. Internal or external Inria responsibilities 36
9.3.2. Interventions 36
9.3.3. Internal action 36

10. Bibliography 36

Project-Team DIVERSE

Creation of the Team: 2014 January 01, updated into Project-Team: 2014 July 01
Keywords:

Computer Science and Digital Science:
A1.2.1. - Dynamic reconfiguration
Al1.3.1. - Web
A1.3.6. - Fog, Edge
A2.1.3. - Object-oriented programming
A2.1.10. - Domain-specific languages
A2.5. - Software engineering
A2.5.1. - Software Architecture & Design
A2.5.2. - Component-based Design
A2.5.3. - Empirical Software Engineering
A2.5.4. - Software Maintenance & Evolution
A2.5.5. - Software testing
A2.6.2. - Middleware
A2.6.4. - Ressource management
A4.4. - Security of equipment and software
A4.8. - Privacy-enhancing technologies

Other Research Topics and Application Domains:
B3.1. - Sustainable development
B3.1.1. - Resource management
B6.1. - Software industry
B6.1.1. - Software engineering
B6.1.2. - Software evolution, maintenance
B6.4. - Internet of things
B6.5. - Information systems
B6.6. - Embedded systems
B8.1.2. - Sensor networks for smart buildings
B9.5.1. - Computer science
B9.10. - Privacy

1. Team, Visitors, External Collaborators

Faculty Members
Olivier Barais [Team leader, Univ de Rennes I, Professor, HDR]
Mathieu Acher [Univ de Rennes I, Associate Professor]
Arnaud Blouin [INSA Rennes, Associate Professor]
Johann Bourcier [Univ de Rennes I, Associate Professor, HDR]
Benoit Combemale [Univ de Toulouse 2 Jean Jaures, Professor, Inria secondment, HDR]
Jean-Marc Jezequel [Univ de Rennes I, Professor, HDR]
Noel Plouzeau [Univ de Rennes I, Associate Professor]

https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2018

Post-Doctoral Fellow
Juliana Alves Pereira [Univ de Rennes I, from Sep 2018]

PhD Students
Akbar Pranata Alif [Inria, from Oct 2018]
June Benvegnu Sallou [Univ de Rennes I, from Oct 2018]
Antoine Cheron [FaberNoval, from Mar 2018]
Fabien Coulon [Obeo, from Sep 2018]
Jean-Emile Dartois [Institut de recherche technologique B-com]
Alejandro Gomez Boix [Inria]
Pierre Jeanjean [Inria, from Nov 2018]
Romain Lebouc [Univ de Rennes I, from Oct 2018]
Manuel Leduc [Univ de Rennes I]
Dorian Leroy [TU Wien, Austria]
Gauthier Lyan [Keolis, from Feb 2018]
Hugo Martin [Univ de Rennes I, from Sep 2018]
Ludovic Mouline [SnT, Luxembourg]
Youssou Ndiaye [Orange Labs]
Johan Pelay [Institut de recherche technologique B-com, until Sep 2018]
Quentin Plazar [Inria, until Sep 2018]
Paul Temple [Univ de Rennes I, until Nov 2018]
Oscar Luis Vera Perez [Inria]

Technical staff
Amine Benelallam [Univ de Rennes I]
Maxime Bricet [Univ de Rennes I]
Caroline Landry [Inria]
Maxime Tricoire [Inria, until Jun 2018]
Didier Vojtisek [Inria]

Interns
Max Aguirre [Univ de Rennes I, from Jun 2018 until Jul 2018]
Gwendal Didot [Univ de Rennes I, from May 2018 until Aug 2018]
Arnaud Gohier [Univ de Rennes I, from Apr 2018 until Aug 2018]
Alexis Lemasle [Univ de Rennes I, from May 2018 until Aug 2018]
Hugo Martin [Univ de Rennes I, from Feb 2018 until Aug 2018]
Enzo Menegaldo [Univ de Rennes I, from Jun 2018 until Sep 2018]
Yannick Namour [Univ de Rennes I, from Apr 2018 until Aug 2018]
Koko Armando Nguepi Kenfack [Univ de Rennes I, until Jan 2018]
Anthony Orain [Univ de Rennes I, from Jun 2018 until Jul 2018]

Administrative Assistant
Tifenn Donguy [CNRS]
Visiting Scientists
Erwan Bousse [TU Wien, Austria, until Aug 2018]
Marcel Heinz [University of Koblenz-Landau, Jul 2018]
Benoit Combemale [Université de Toulouse, until Aug 2018, HDR]

External Collaborators
Gurvan Le Guernic [DGA]
Benoit Baudry [KTH, HDR]

Project-Team DIVERSE 3

2. Overall Objectives

2.1. Overall objectives

DIVERSE’s research agenda targets core values of software engineering. In this fundamental domain we
focus and develop models, methodologies and theories to address major challenges raised by the emergence
of several forms of diversity in the design, deployment and evolution of software-intensive systems. Software
diversity has emerged as an essential phenomenon in all application domains born by our industrial partners.
These application domains range from complex systems brought by systems of systems (addressed in
collaboration with Thales, Safran, CEA and DGA) and Instrumentation and Control (addressed with EDF)
to pervasive combinations of Internet of Things and Internet of Services (addressed with TellU and Orange)
and tactical information systems (addressed in collaboration with civil security). Today these systems seem
to be radically different, but we envision a strong convergence of the scientific principles that underpin their
construction and validation, bringing forwards sane and reliable methods for the design of flexible and open
yet dependable systems. Flexibility and openness are critical and challenging software layer properties that
must deal with four dimensions of diversity: diversity of languages, used by the stakeholders involved in the
construction of these systems; diversity of features, required by the different customers; diversity of runtime
environments, in which software has to run and adapt; diversity of implementations, which are necessary
for resilience by redundancy.

In this context, the central software engineering challenge consists in handling diversity from variability in
requirements and design to heterogeneous and dynamic execution environments. In particular this requires
considering that the software system must adapt, in unpredictable yet valid ways, to changes in the require-
ments and environment. Conversely, explicitly handling of diversity is a great opportunity to allow software
to spontaneously explore alternative design solutions. Concretely, we want to provide software engineers with
the ability:

e to characterize an ‘envelope’ of possible variations;

e to compose ‘envelopes’ (to discover new macro envelopes in an opportunistic manner);

e to dynamically synthesize software inside a given envelop.

The major scientific objective that we must achieve to provide such mechanisms for software engineering is
summarized below:

Scientific objective for DIVERSE: To automatically compose and synthesize software diversity from
design to runtime to address unpredictable evolutions of software-intensive systems

Software product lines and associated variability modeling formalisms represent an essential aspect of
software diversity, which we already explored in the past, and this aspect stands as a major foundation of
DIVERSE's research agenda. However, DIVERSE also exploits other foundations to handle new forms of
diversity: type theory and models of computation for the composition of languages; distributed algorithms and
pervasive computation to handle the diversity of execution platforms; functional and qualitative randomized
transformations to synthesize diversity for robust systems.

3. Research Program

3.1. Scientific background
3.1.1. Model-driven engineering

Model-Driven Engineering (MDE) aims at reducing the accidental complexity associated with developing
complex software-intensive systems (e.g., use of abstractions of the problem space rather than abstractions of
the solution space) [99]. It provides DIVERSE with solid foundations to specify, analyze and reason about the
different forms of diversity that occur through the development lifecycle. A primary source of accidental

3.1.2.

4 Activity Report INRIA 2018

complexity is the wide gap between the concepts used by domain experts and the low-level abstractions
provided by general-purpose programming languages [69]. MDE approaches address this problem through
modeling techniques that support separation of concerns and automated generation of major system artifacts
from models (e.g., test cases, implementations, deployment and configuration scripts). In MDE, a model
describes an aspect of a system and is typically created or derived for specific development purposes [51].
Separation of concerns is supported through the use of different modeling languages, each providing constructs
based on abstractions that are specific to an aspect of a system. MDE technologies also provide support
for manipulating models, for example, support for querying, slicing, transforming, merging, and analyzing
(including executing) models. Modeling languages are thus at the core of MDE, which participates to the
development of a sound Software Language Engineering, including a unified typing theory that integrate
models as first class entities [102].

Incorporating domain-specific concepts and high-quality development experience into MDE technologies can
significantly improve developer productivity and system quality. Since the late nineties, this realization has led
to work on MDE language workbenches that support the development of domain-specific modeling languages
(DSMLs) and associated tools (e.g., model editors and code generators). A DSML provides a bridge between
the field in which domain experts work and the implementation (programming) field. Domains in which
DSMLs have been developed and used include, among others, automotive, avionics, and the emerging cyber-
physical systems. A study performed by Hutchinson et al. [75] provides some indications that DSMLs can
pave the way for wider industrial adoption of MDE.

More recently, the emergence of new classes of systems that are complex and operate in heterogeneous
and rapidly changing environments raises new challenges for the software engineering community. These
systems must be adaptable, flexible, reconfigurable and, increasingly, self-managing. Such characteristics
make systems more prone to failure when running and thus development and study of appropriate mechanisms
for continuous design and run-time validation and monitoring are needed. In the MDE community, research
is focused primarily on using models at design, implementation, and deployment stages of development.
This work has been highly productive, with several techniques now entering a commercialization phase. As
software systems are becoming more and more dynamic, the use of model-driven techniques for validating
and monitoring run-time behavior is extremely promising [83].

Variability modeling

While the basic vision underlying Software Product Lines (SPL) can probably be traced back to David Parnas
seminal article [92] on the Design and Development of Program Families, it is only quite recently that SPLs are
emerging as a paradigm shift towards modeling and developing software system families rather than individual
systems [90]. SPL engineering embraces the ideas of mass customization and software reuse. It focuses on
the means of efficiently producing and maintaining multiple related software products, exploiting what they
have in common and managing what varies among them.

Several definitions of the software product line concept can be found in the research literature. Clements
et al. define it as a set of software-intensive systems sharing a common, managed set of features that satisfy
the specific needs of a particular market segment or mission and are developed from a common set of core
assets in a prescribed way [89]. Bosch provides a different definition [57]: A SPL consists of a product line
architecture and a set of reusable components designed for incorporation into the product line architecture.
In addition, the PL consists of the software products developed using the mentioned reusable assets. In spite
of the similarities, these definitions provide different perspectives of the concept: market-driven, as seen by
Clements et al., and technology-oriented for Bosch.

SPL engineering is a process focusing on capturing the commonalities (assumptions true for each family
member) and variability (assumptions about how individual family members differ) between several software
products [63]. Instead of describing a single software system, a SPL model describes a set of products in the
same domain. This is accomplished by distinguishing between elements common to all SPL. members, and
those that may vary from one product to another. Reuse of core assets, which form the basis of the product
line, is key to productivity and quality gains. These core assets extend beyond simple code reuse and may

Project-Team DIVERSE 5

include the architecture, software components, domain models, requirements statements, documentation, test
plans or test cases.

The SPL engineering process consists of two major steps:
1. Domain Engineering, or development for reuse, focuses on core assets development.

2. Application Engineering, or development with reuse, addresses the development of the final
products using core assets and following customer requirements.

Central to both processes is the management of variability across the product line [71]. In common language
use, the term variability refers to the ability or the tendency to change. Variability management is thus seen
as the key feature that distinguishes SPL engineering from other software development approaches [58].
Variability management is thus growingly seen as the cornerstone of SPL development, covering the entire
development life cycle, from requirements elicitation [104] to product derivation [109] to product testing
[87], [86].

Halmans et al. [71] distinguish between essential and technical variability, especially at requirements level.
Essential variability corresponds to the customer’s viewpoint, defining what to implement, while technical
variability relates to product family engineering, defining how to implement it. A classification based on the
dimensions of variability is proposed by Pohl et al. [94]: beyond variability in time (existence of different
versions of an artifact that are valid at different times) and variability in space (existence of an artifact in
different shapes at the same time) Pohl e al. claim that variability is important to different stakeholders
and thus has different levels of visibility: external variability is visible to the customers while internal
variability, that of domain artifacts, is hidden from them. Other classification proposals come from Meekel
et al. [81] (feature, hardware platform, performances and attributes variability) or Bass efr al. [49] who
discusses about variability at the architectural level.

Central to the modeling of variability is the notion of feature, originally defined by Kang et al. as: a prominent
or distinctive user-visible aspect, quality or characteristic of a software system or systems [77]. Based on
this notion of feature, they proposed to use a feature model to model the variability in a SPL. A feature
model consists of a feature diagram and other associated information: constraints and dependency rules.
Feature diagrams provide a graphical tree-like notation depicting the hierarchical organization of high level
product functionalities represented as features. The root of the tree refers to the complete system and is
progressively decomposed into more refined features (tree nodes). Relations between nodes (features) are
materialized by decomposition edges and textual constraints. Variability can be expressed in several ways.
Presence or absence of a feature from a product is modeled using mandatory or optional features. Features are
graphically represented as rectangles while some graphical elements (e.g., unfilled circle) are used to describe
the variability (e.g., a feature may be optional).

Features can be organized into feature groups. Boolean operators exclusive alternative (XOR), inclusive
alternative (OR) or inclusive (AND) are used to select one, several or all the features from a feature group.
Dependencies between features can be modeled using fextual constraints: requires (presence of a feature
requires the presence of another), mutex (presence of a feature automatically excludes another). Feature
attributes can be also used for modeling quantitative (e.g., numerical) information. Constraints over attributes
and features can be specified as well.

Modeling variability allows an organization to capture and select which version of which variant of any
particular aspect is wanted in the system [58]. To implement it cheaply, quickly and safely, redoing by
hand the tedious weaving of every aspect is not an option: some form of automation is needed to leverage
the modeling of variability [53], [65]. Model Driven Engineering (MDE) makes it possible to automate this
weaving process [76]. This requires that models are no longer informal, and that the weaving process is itself
described as a program (which is as a matter of facts an executable meta-model [84]) manipulating these
models to produce for instance a detailed design that can ultimately be transformed to code, or to test suites
[93], or other software artifacts.

3.1.3. Component-based software development

6 Activity Report INRIA 2018

Component-based software development [103] aims at providing reliable software architectures with a low
cost of design. Components are now used routinely in many domains of software system designs: distributed
systems, user interaction, product lines, embedded systems, etc. With respect to more traditional software
artifacts (e.g., object oriented architectures), modern component models have the following distinctive features
[64]: description of requirements on services required from the other components; indirect connections
between components thanks to ports and connectors constructs [79]; hierarchical definition of components
(assemblies of components can define new component types); connectors supporting various communication
semantics [61]; quantitative properties on the services [56].

In recent years component-based architectures have evolved from static designs to dynamic, adaptive designs
(e.g., SOFA [61], Palladio [54], Frascati [85]). Processes for building a system using a statically designed
architecture are made of the following sequential lifecycle stages: requirements, modeling, implementation,
packaging, deployment, system launch, system execution, system shutdown and system removal. If for any
reason after design time architectural changes are needed after system launch (e.g., because requirements
changed, or the implementation platform has evolved, etc) then the design process must be reexecuted from
scratch (unless the changes are limited to parameter adjustment in the components deployed).

Dynamic designs allow for on the fly redesign of a component based system. A process for dynamic adaptation
is able to reapply the design phases while the system is up and running, without stopping it (this is different
from a stop/redeploy/start process). Dynamic adaptation process supports chosen adaptation, when changes
are planned and realized to maintain a good fit between the needs that the system must support and the way
it supports them [78]. Dynamic component-based designs rely on a component meta-model that supports
complex life cycles for components, connectors, service specification, etc. Advanced dynamic designs can
also take platform changes into account at run-time, without human intervention, by adapting themselves

[62], [106]. Platform changes and more generally environmental changes trigger imposed adaptation, when
the system can no longer use its design to provide the services it must support. In order to support an eternal
system [55], dynamic component based systems must separate architectural design and platform compatibility.
This requires support for heterogeneity, since platform evolutions can be partial.

The Models @runtime paradigm denotes a model-driven approach aiming at taming the complexity of dynamic
software systems. It basically pushes the idea of reflection one step further by considering the reflection
layer as a real model “something simpler, safer or cheaper than reality to avoid the complexity, danger and
irreversibility of reality [97]”. In practice, component-based (and/or service-based) platforms offer reflection
APIs that make it possible to introspect the system (which components and bindings are currently in place
in the system) and dynamic adaptation (by applying CRUD operations on these components and bindings).
While some of these platforms offer rollback mechanisms to recover after an erroneous adaptation, the idea
of Models@runtime is to prevent the system from actually enacting an erroneous adaptation. In other words,
the “model at run-time” is a reflection model that can be uncoupled (for reasoning, validation, simulation
purposes) and automatically resynchronized.

Heterogeneity is a key challenge for modern component based system. Until recently, component based
techniques were designed to address a specific domain, such as embedded software for command and control,
or distributed Web based service oriented architectures. The emergence of the Internet of Things paradigm
calls for a unified approach in component based design techniques. By implementing an efficient separation
of concern between platform independent architecture management and platform dependent implementations,
Models@runtime is now established as a key technique to support dynamic component based designs. It
provides DIVERSE with an essential foundation to explore an adaptation envelop at run-time.

Search Based Software Engineering [73] has been applied to various software engineering problems in order
to support software developers in their daily work. The goal is to automatically explore a set of alternatives
and assess their relevance with respect to the considered problem. These techniques have been applied
to craft software architecture exhibiting high quality of services properties [70]. Multi Objectives Search
based techniques [67] deal with optimization problem containing several (possibly conflicting) dimensions
to optimize. These techniques provide DIVERSE with the scientific foundations for reasoning and efficiently
exploring an envelope of software configurations at run-time.

3.14.

3.1.5.

Project-Team DIVERSE 7

Validation and verification

Validation and verification (V&V) theories and techniques provide the means to assess the validity of a
software system with respect to a specific correctness envelop. As such, they form an essential element of
DIVERSE's scientific background. In particular, we focus on model-based V&V in order to leverage the
different models that specify the envelop at different moments of the software development lifecycle.

Model-based testing consists in analyzing a formal model of a system (e.g., activity diagrams, which capture
high-level requirements about the system, statecharts, which capture the expected behavior of a software
module, or a feature model, which describes all possible variants of the system) in order to generate test
cases that will be executed against the system. Model-based testing [105] mainly relies on model analysis,
constraint solving [66] and search-based reasoning [80]. DIVERSE leverages in particular the applications of
model-based testing in the context of highly-configurable systems and [107] interactive systems [82] as well
as recent advances based on diversity for test cases selection [74].

Nowadays, it is possible to simulate various kinds of models. Existing tools range from industrial tools
such as Simulink, Rhapsody or Telelogic to academic approaches like Omega [91], or Xholon !. All these
simulation environments operate on homogeneous environment models. However, to handle diversity in
software systems, we also leverage recent advances in heterogeneous simulation. Ptolemy [60] proposes a
common abstract syntax, which represents the description of the model structure. These elements can be
decorated using different directors that reflect the application of a specific model of computation on the model
element. Metropolis [50] provides modeling elements amenable to semantically equivalent mathematical
models. Metropolis offers a precise semantics flexible enough to support different models of computation.
ModHel’ X [72] studies the composition of multi-paradigm models relying on different models of computation.

Model-based testing and simulation are complemented by runtime fault-tolerance through the automatic
generation of software variants that can run in parallel, to tackle the open nature of software-intensive systems.
The foundations in this case are the seminal work about N-version programming [48], recovery blocks [95]
and code randomization [52], which demonstrated the central role of diversity in software to ensure runtime
resilience of complex systems. Such techniques rely on truly diverse software solutions in order to provide
systems with the ability to react to events, which could not be predicted at design time and checked through
testing or simulation.

Empirical software engineering

The rigorous, scientific evaluation of DIVERSE’s contributions is an essential aspect of our research method-
ology. In addition to theoretical validation through formal analysis or complexity estimation, we also aim
at applying state-of-the-art methodologies and principles of empirical software engineering. This approach
encompasses a set of techniques for the sound validation contributions in the field of software engineering,
ranging from statistically sound comparisons of techniques and large-scale data analysis to interviews and
systematic literature reviews [100], [98]. Such methods have been used for example to understand the im-
pact of new software development paradigms [59]. Experimental design and statistical tests represent another
major aspect of empirical software engineering. Addressing large-scale software engineering problems often
requires the application of heuristics, and it is important to understand their effects through sound statistical
analyses [47].

3.2. Research axis

Figure 1 illustrates the four dimensions of software diversity, which form the core research axis of DIVERSE:
the diversity of languages used by the stakeholders involved in the construction of these systems; the diversity
of features required by the different customers; the diversity of runtime environments in which software has
to run and adapt; the diversity of implementations that are necessary for resilience through redundancy. These
four axes share and leverage the scientific and technological results developed in the area of model-driven
engineering in the last decade. This means that all our research activities are founded on sound abstractions to

1 http://www.primordion.com/Xholon/

8 Activity Report INRIA 2018

reason about specific aspects of software systems, compose different perspectives and automatically generate
parts of the system.

Functional Language
diversity — diversity
Model driven
engineering
Execution —1 Implementation
diversity diversity

Figure 1. The four research axes of DIVERSE, which rely on a MDE scientific background

3.2.1. Software Language Engineering

The engineering of systems involves many different stakeholders, each with their own domain of expertise.
Hence more and more organizations are adopting Domain Specific Modeling Languages (DSMLs) to allow
domain experts to express solutions directly in terms of relevant domain concepts [99], [69]. This new trend
raises new challenges about designing DSMLs, evolving a set of DSMLs and coordinating the use of multiple
DSLs for both DSL designers and DSL users.

3.2.1.1. Challenges

Reusability of software artifacts is a central notion that has been thoroughly studied and used by both
academics and industrials since the early days of software construction. Essentially, designing reusable
artifacts allows the construction of large systems from smaller parts that have been separately developed and
validated, thus reducing the development costs by capitalizing on previous engineering efforts. However, it
is still hardly possible for language designers to design typical language artifacts (e.g. language constructs,
grammars, editors or compilers) in a reusable way. The current state of the practice usually prevents the
reusability of language artifacts from one language to another, consequently hindering the emergence of real
engineering techniques around software languages. Conversely, concepts and mechanisms that enable artifacts
reusability abound in the software engineering community.

Variability in modeling languages occur in the definition of the abstract and concrete syntax as well as in the
specification of the language’s semantics. The major challenges met when addressing the need for variability
are: (i) to set principles for modeling language units that support the modular specification of a modeling
language; and (ii) to design mechanisms to assemble these units into a complete language, according to the set
of authorized variation points for the modeling language family.

A new generation of complex software-intensive systems (for example smart health support, smart grid,
building energy management, and intelligent transportation systems) gives new opportunities for leveraging
modeling languages. The development of these systems requires expertise in diverse domains. Consequently,
different types of stakeholders (e.g., scientists, engineers and end-users) must work in a coordinated manner
on various aspects of the system across multiple development phases. DSMLs can be used to support the work
of domain experts who focus on a specific system aspect, but they can also provide the means for coordinating
work across teams specializing in different aspects and across development phases. The support and integration
of DSMLs leads to what we call the globalization of modeling languages, i.e. the use of multiple languages

Project-Team DIVERSE 9

for the coordinated development of diverse aspects of a system. One can make an analogy with world
globalization in which relationships are established between sovereign countries to regulate interactions (e.g.,
travel and commerce related interactions) while preserving each country’s independent existence.

3.2.1.2. Scientific objectives

3.2.2

We address reuse and variability challenges through the investigation of the time-honored concepts of
substitutability, inheritance and components, evaluate their relevance for language designers and provide tools
and methods for their inclusion in software language engineering. We will develop novel techniques for the
modular construction of language extensions with support to model syntactical variability. From the semantics
perspective, we investigate extension mechanisms for the specification of variability in operational semantics,
focusing on static introduction and heterogeneous models of computation. The definition of variation points
for the three aspects of the language definition provides the foundations for the novel concept Language Unit
(LU) as well as suitable mechanisms to compose such units.

We explore the necessary breakthrough in software languages to support modeling and simulation of het-
erogeneous and open systems. This work relies on the specification of executable domain specific modeling
languages (DSMLs) to formalize the various concerns of a software-intensive system, and of models of com-
putation (MoCs) to explicitly model the concurrency, time and communication of such DSMLs. We develop a
framework that integrates the necessary foundations and facilities for designing and implementing executable
and concurrent domain-specific modeling languages. It also provides unique features to specify composition
operators between (possibly heterogeneous) DSMLs. Such specifications are amenable to support the edition,
execution, graphical animation and analysis of heterogeneous models. The objective is to provide both a sig-
nificant improvement to MoCs and DSMLs design and implementation and to the simulation based validation
and verification of complex systems.

We see an opportunity for the automatic diversification of programs’ computation semantics, for example
through the diversification of compilers or virtual machines. The main impact of this artificial diversity is to
provide flexible computation and thus ease adaptation to different execution conditions. A combination of
static and dynamic analysis could support the identification of what we call plastic computation zones in the
code. We identify different categories of such zones: (i) areas in the code in which the order of computation
can vary (e.g., the order in which a block of sequential statements is executed); (ii) areas that can be removed,
keeping the essential functionality [101] (e.g., skip some loop iterations); (iii) areas that can replaced by
alternative code (e.g., replace a try-catch by a return statement). Once we know which zones in the code can
be randomized, it is necessary to modify the model of computation to leverage the computation plasticity. This
consists in introducing variation points in the interpreter to reflect the diversity of models of computation.
Then, the choice of a given variation is performed randomly at run time.

Variability Modeling and Engineering

The systematic modeling of variability in software systems has emerged as an effective approach to document
and reason about software evolutions and heterogeneity (cf. Section 3.1.2). Variability modeling characterizes
an “envelope” of possible software variations. The industrial use of variability models and their relation to
software artifact models require a complete engineering framework, including composition, decomposition,
analysis, configuration and artifact derivation, refactoring, re-engineering, extraction, and testing. This frame-
work can be used both to tame imposed diversity and to manage chosen diversity.

3.2.2.1. Challenges

A fundamental problem is that the number of variants can be exponential in the number of options (features).
Already with 300 boolean configuration options, approximately 10°° configurations exist — more than the
estimated count of atoms in the universe. Domains like automotive or operating systems have to manage
more than 10000 options (e.g., Linux). Practitioners face the challenge of developing billions of variants. It
is easy to forget a necessary constraint, leading to the synthesis of unsafe variants, or to under-approximate
the capabilities of the software platform. Scalable modelling techniques are therefore crucial to specify and
reason about a very large set of variants.

10 Activity Report INRIA 2018

Model-driven development supports two approaches to deal with the increasing number of concerns in
complex systems: multi-view modeling, i.e. when modeling each concern separately, and variability modeling.
However, there is little support to combine both approaches consistently. Techniques to integrate both
approaches will enable the construction of a consistent set of views and variation points in each view.

The design, construction and maintenance of software families have a major impact on software testing.
Among the existing challenges, we can cite: the selection of test cases for a specific variant; the evolution of test
suites with integration of new variants; the combinatorial explosion of the number of software configurations
to be tested. Novel model-based techniques for test generation and test management in a software product line
context are needed to overcome state-of-the-art limits we already observed in some projects.

3.2.2.2. Scientific objectives

3.2.3

We aim at developing scalable reasoning techniques to automatically analyze variability models and their
interactions with other views on the software intensive system (requirements, architecture, design, code).
These techniques provide two major advancements in the state of the art: (1) an extension of the semantics
of variability models in order to enable the definition of attributes (e.g., cost, quality of service, effort) on
features and to include these attributes in the reasoning; (2) an assessment of the consistent specification
of variability models with respect to system views (since variability is orthogonal to system modeling, it is
currently possible to specify the different models in ways that are semantically meaningless). The former
aspect of analysis is tackled through constraint solving and finite-domain constraint programming, while the
latter aspect is investigated through automatic search-based and learning-based techniques for the exploration
of the space of interaction between variability and view models.

We want to develop procedures to reverse engineer dependencies and features’ sets from existing software
artefacts — be it source code, configuration files, spreadsheets (e.g., product comparison matrices) or require-
ments. We expect to scale up (e.g., for extracting a very large number of variation points) and guarantee some
properties (e.g., soundness of configuration semantics, understandability of ontological semantics). For in-
stance, when building complex software-intensive systems, textual requirements are captured in very large
quantities of documents. In this context, adequate models to formalize the organization of requirements doc-
uments and automated techniques to support impact analysis (in case of changes in the requirements) have to
be developed.

Heterogeneous and dynamic software architectures

Flexible yet dependable systems have to cope with heterogeneous hardware execution platforms ranging from
smart sensors to huge computation infrastructures and data centers. Evolutions range from a mere change in
the system configuration to a major architectural redesign, for instance to support addition of new features
or a change in the platform architecture (new hardware is made available, a running system switches to low
bandwidth wireless communication, a computation node battery is running low, etc). In this context, we need
to devise formalisms to reason about the impact of an evolution and about the transition from one configuration
to another. It must be noted that this axis focuses on the use of models to drive the evolution from design time
to run-time. Models will be used to (i) systematically define predictable configurations and variation points
through which the system will evolve; (ii) develop behaviors necessary to handle unpredicted evolutions.

3.2.3.1. Challenges

The main challenge is to provide new homogeneous architectural modelling languages and efficient techniques
that enable continuous software reconfiguration to react to changes. This work handles the challenges of
handling the diversity of runtime infrastructures and managing the cooperation between different stakeholders.
More specifically, the research developed in this axis targets the following dimensions of software diversity.

Platform architectural heterogeneity induces a first dimension of imposed diversity (type diversity). Platform
reconfigurations driven by changing resources define another dimension of diversity (deployment diversity).
To deal with these imposed diversity problems, we will rely on model based runtime support for adapta-
tion, in the spirit of the dynamic distributed component framework developed by the Triskell team. Since the
runtime environment composed of distributed, resource constrained hardware nodes cannot afford the over-
head of traditional runtime adaptation techniques, we investigate the design of novel solutions relying on

Project-Team DIVERSE 11

models@runtime and on specialized tiny virtual machines to offer resource provisioning and dynamic recon-
figurations.

Diversity can also be an asset to optimize software architecture. Architecture models must integrate multiple
concerns in order to properly manage the deployment of software components over a physical platform.
However, these concerns can contradict each other (e.g., accuracy and energy). In this context, we investigate
automatic solutions to explore the set of possible architecture models and to establish valid trade-offs between
all concerns in case of changes.

3.2.3.2. Scientific objectives

Automatic synthesis of optimal software architectures. Implementing a service over a distributed platform
(e.g., a pervasive system or a cloud platform) consists in deploying multiple software components over
distributed computation nodes. We aim at designing search-based solutions to (i) assist the software architect
in establishing a good initial architecture (that balances between different factors such as cost of the nodes,
latency, fault tolerance) and to automatically update the architecture when the environment or the system itself
change. The choice of search-based techniques is motivated by the very large number of possible software
deployment architectures that can be investigated and that all provide different trade-offs between qualitative
factors. Another essential aspect that is supported by multi-objective search is to explore different architectural
solutions that are not necessarily comparable. This is important when the qualitative factors are orthogonal to
each other, such as security and usability for example.

Flexible software architecture for testing and data management. As the number of platforms on which
software runs increases and different software versions coexist, the demand for testing environments also
increases. For example, the number of testing environments to test a software patch or upgrade is the product
of the number of running environments the software supports and the number of coexisting versions of the
software. Based on our first experiment on the synthesis of cloud environment using architectural models,
our objective is to define a set of domain specific languages to catch the requirement and to design cloud
environments for testing and data management of future internet systems from data centers to things. These
languages will be interpreted to support dynamic synthesis and reconfiguration of a testing environment.

Runtime support for heterogeneous environments. Execution environments must provide a way to account
or reserve resources for applications. However, current execution environments such as the Java Virtual
Machine do not clearly define a notion of application: each framework has its own definition. For example, in
OSGi, an application is a component, in JEE, an application is most of the time associated to a class loader, in
the Multi-Tasking Virtual machine, an application is a process. The challenge consists in defining an execution
environment that provides direct control over resources (CPU, Memory, Network I/0) independently from the
definition of an application. We propose to define abstract resource containers to account and reserve resources
on a distributed network of heterogeneous devices.

3.2.4. Diverse implementations for resilience

Open software-intensive systems have to evolve over their lifetime in response to changes in their environment.
Yet, most verification techniques assume a closed environment or the ability to predict all changes. Dynamic
changes and evolutions thus represent a major challenge for these techniques that aim at assessing the
correctness and robustness of the system. On the one hand, DIVERSE will adapt V&V techniques to handle
diversity imposed by the requirements and the execution environment, on the other hand we leverage diversity
to increase the robustness of software in face of unpredicted situations. More specifically, we address the
following V&V challenges.

3.2.4.1. Challenges

One major challenge to build flexible and open yet dependable systems is that current software engineering
techniques require architects to foresee all possible situations the system will have to face. However, openness
and flexibility also mean unpredictability: unpredictable bugs, attacks, environmental evolutions, etc. Current
fault-tolerance [95] and security [68] techniques provide software systems with the capacity of detecting
accidental and deliberate faults. However, existing solutions assume that the set of bugs or vulnerabilities

12 Activity Report INRIA 2018

in a system does not evolve. This assumption does not hold for open systems, thus it is essential to revisit
fault-tolerance and security solutions to account for diverse and unpredictable faults.

Diversity is known to be a major asset for the robustness of large, open, and complex systems (e.g., economical
or ecological systems). Following this observation, the software engineering literature provides a rich set
of work that choose to implement diversity in software systems in order to improve robustness to attacks
or to changes in quality of service. These works range from N-version programming to obfuscation of
data structures or control flow, to randomization of instruction sets. An essential remaining challenge is to
support the automatic synthesis and evolution of software diversity in open software-intensive systems. There
is an opportunity to further enhance these techniques in order to cope with a wider diversity of faults, by
multiplying the levels of diversity in the different software layers that are found in software-intensive systems
(system, libraries, frameworks, application). This increased diversity must be based on artificial program
transformations and code synthesis, which increase the chances of exploring novel solutions, better fitted
at one point in time. The biological analogy also indicates that diversity should emerge as a side-effect of
evolution, to prevent over-specialization towards one kind of diversity.

3.2.4.2. Scientific objectives

The main objective is to address one of the main limitations of N-version programming for fault-tolerant
systems: the manual production and management of software diversity. Through automated injection of
artificial diversity we aim at systematically increasing failure diversity and thus increasing the chances of
early error detection at run-time. A fundamental assumption for this work is that software-intensive systems
can be “good enough” [96], [108].

Proactive program diversification. We aim at establishing novel principles and techniques that favor the
emergence of multiple forms of software diversity in software-intensive systems, in conjunction with the
software adaptation mechanisms that leverage this diversity. The main expected outcome is a set of meta-
design principles that maintain diversity in systems and the experimental demonstration of the effects of
software diversity on the adaptive capacities of CASs. Higher levels of diversity in the system provide a pool
of software solutions that can eventually be used to adapt to situations unforeseen at design time (bugs, crash,
attacks, etc.). Principles of automated software diversification rely on the automated synthesis of variants in
a software product line, as well as finer-grained program synthesis combining unsound transformations and
genetic programming to explore the space of mutational robustness.

Multi-tier software diversification. We call multi-tier diversification the fact of diversifying several applica-
tion software components simultaneously. The novelty of our proposal, with respect to the software diversity
state of the art, is to diversify the application-level code (for example, diversify the business logics of the appli-
cation), focusing on the technical layers found in web applications. The diversification of application software
code is expected to provide a diversity of failures and vulnerabilities in web server deployment. Web server
deployment usually adopts a form of the Reactor architecture pattern, for scalability purposes: multiple copies
of the server software stack, called request handlers, are deployed behind a load balancer. This architecture is
very favorable for diversification, since by using the multiplicity of request handlers running in a web server
we can simultaneously deploy multiple combinations of diverse software components. Then, if one handler is
hacked or crashes the others should still be able to process client requests.

4. Highlights of the Year
4.1. Highlights of the Year

This year, we would like to highlight the following results:
e In terms of publications:

— Among the many articles published this year, articles [25] and b [28] have been published
at the highest level but above all they represent perfectly the type of research conducted
within the team: open research based on studies of major open-source software and in
connection with the developer communities.

Project-Team DIVERSE 13

— The results of this year’s SLE conference also make us very proud. 4 accepted papers
including 1 best vision paper [33], 1 best artifact (hal-01890446) and the award for the best
reviewer for a former doctoral student of the team recently appointed associate professor
at the University of Nantes.

e A former PhD student of the team, Pierre Laperdrix was awarded the "Le prix de thése Gilles Kahn
2018 (premier accessit), décerné par la SiF et patronné par I’Académie des Sciences" for his PhD
entitled Browser Fingerprinting: Exploring Device Diversity to Augment Authentication and Build
Client-Side Countermeasures.

e Three new PhDs and one new HDR have been succesfully defended this year.
e A new CNRS junior researcher, Djamel Eddine Khelladi, will join the team in 2019.

e Mathieu Acher succesfully submitted its ERC starting grant program: Killing and Resurrecting
Software Variability (REVARY). This research program fully structures the Variability axis of the
team for the next years.

e Didier Vojtisek, research engineer hosted since many years within the team was awarded the Inria
award (appui a la recherche) with Guillaume Cassonnet, Christophe Demarey, Herve Mathieu,
Florent Pruvost for the Sonarqube project. As a research team in the field of software engineering,
we study and produce many open source software artefacts. In this context, we regularly test and
deploy internally support services to produce high-quality software. Sonar (SonarQube ancestor)
had been deployed internally since 2008. Embedding research engineers into software engineering
research teams as often as possible is undoubtedly a win-win operation for both parties (the research
team but also the SED and therefore Inria as a whole)

4.1.1. Awards

Paper was awarded the best vision paper at SLE’18.
Paper was awarded the best artefact associated to a scientific paper at SLE’18.

Paper was awarded the best paper at ICMT’ 18.
BEST PAPERS AWARDS:

[33]

F. CouLoN, T. DEGUEULE, T. VAN DER STORM, B. COMBEMALE. Shape-Diverse DSLs: Lan-
guages without Borders (Vision Paper), in "SLE 2018 - 11th ACM SGIPLAN International Confer-
ence on Software Language Engineering", Boston, United States, ACM, November 2018, pp. 215-219
[DOI : 10.1145/3276604.3276623], https://hal.archives-ouvertes.fr/hal-01889155

[36]

M. LEDUC, T. DEGUEULE, B. COMBEMALE. Modular Language Composition for the Masses, in "SLE 2018
- 11th ACM SIGPLAN International Conference on Software Language Engineering", Boston, United States,
November 2018, pp. 1-12 [DOI : 10.1145/3276604.3276622], https://hal.inria.fr/hal-01890446

[32]

J.-M. BRUEL, B. COMBEMALE, E. GUERRA, J.-M. JEZEQUEL, J. KIENZLE, J. DE LARA, G. MUSS-
BACHER, E. SYRIANI, H. VANGHELUWE. Model Transformation Reuse across Metamodels - A classi-
fication and comparison of approaches, in "ICMT 2018 - International Conference on Theory and Prac-
tice of Model Transformations", Toulouse, France, LNCS, Springer, June 2018, vol. 10888, pp. 92-109
[DOI : 10.1007/978-3-319-93317-7_4], https://hal.inria.fr/hal-01910113

5. New Software and Platforms

5.1. amiunique

KEYWORDS: Privacy - Browser fingerprinting

https://hal.archives-ouvertes.fr/hal-01889155
https://hal.inria.fr/hal-01890446
https://hal.inria.fr/hal-01910113

14 Activity Report INRIA 2018

SCIENTIFIC DESCRIPTION: The amiunique web site has been deployed in the context of the DiverSE’s
research activities on browser fingerprinting and how software diversity can be leveraged in order to mitigate
the impact of fingerprinting on the privacy of users. The construction of a dataset of genuine fingerprints
is essential to understand in details how browser fingerprints can serve as unique identifiers and hence
what should be modified in order to mitigate its impact privacy. This dataset also supports the large-scale
investigation of the impact of web technology advances on fingerprinting. For example, we can analyze in
details the impact of the HTMLS canvas element or the behavior of fingerprinting on mobile devices.

The whole source code of amiunique is open source and is distributed under the terms of the MIT license.

Similar sites: Panopticlick https://panopticlick.eff.org/ BrowserSpy http://browserspy.dk/ http://noc.to/ Main
innovative features: canvas fingerprinting WebGL fingerprinting advanced JS features (platform, DNT, etc.)

Impact: The website has been showcased in several professional forums in 2014 and 2015 (Open World Forum
2014, FOSSA’14, FIC’ 15, ICT’15) and it has been visited by more than 100000 unique visitors in one year.
FUNCTIONAL DESCRIPTION: This web site aims at informing visitors about browser fingerprinting and
possible tools to mitigate its effect, as well as at collecting data about the fingerprints that can be found
on the web. It collects browser fingerprints with the explicit agreement of the users (they have to click on a
button on the home page). Fingerprints are composed of 17 attributes, which include regular HTTP headers as
well as the most recent state of the art techniques (canvas fingerprinting, WebGL information).

e Participants: Benoit Baudry and Pierre Laperdrix
e Partner: INSA Rennes

e Contact: Benoit Baudry

e URL: https://amiunique.org/

5.2. FAMILIAR

KEYWORDS: Software line product - Configators - Customisation

SCIENTIFIC DESCRIPTION: FAMILIAR (for FeAture Model scrlpt Language for manlpulation and Automatic
Reasoning) is a language for importing, exporting, composing, decomposing, editing, configuring, computing
"diffs", refactoring, reverse engineering, testing, and reasoning about (multiple) feature models. All these
operations can be combined to realize complex variability management tasks. A comprehensive environment
is proposed as well as integration facilities with the Java ecosystem.

FUNCTIONAL DESCRIPTION: Familiar is an environment for large-scale product customisation. From a model
of product features (options, parameters, etc.), Familiar can automatically generate several million variants.
These variants can take many forms: software, a graphical interface, a video sequence or even a manufactured
product (3D printing). Familiar is particularly well suited for developing web configurators (for ordering
customised products online), for providing online comparison tools and also for engineering any family of
embedded or software-based products.

e Participants: Aymeric Hervieu, Benoit Baudry, Didier Vojtisek, Edward Mauricio Alferez Salinas,
Guillaume Bécan, Joao Bosco Ferreira-Filho, Julien Richard-Foy, Mathieu Acher, Olivier Barais and
Sana Ben Nasr

e Contact: Mathieu Acher
e URL: http://familiar-project.github.com

5.3. GEMOC Studio

KEYWORDS: DSL - Language workbench - Model debugging
SCIENTIFIC DESCRIPTION: The language workbench put together the following tools seamlessly integrated
to the Eclipse Modeling Framework (EMF):

https://amiunique.org/
http://familiar-project.github.com

Project-Team DIVERSE 15

- Melange, a tool-supported meta-language to modularly define executable modeling languages with execution
functions and data, and to extend (EMF-based) existing modeling languages. - MoCCML, a tool-supported
meta-language dedicated to the specification of a Model of Concurrency and Communication (MoCC) and its
mapping to a specific abstract syntax and associated execution functions of a modeling language. - GEL, a
tool-supported meta-language dedicated to the specification of the protocol between the execution functions
and the MoCC to support the feedback of the data as well as the callback of other expected execution functions.
- BCOoL, a tool-supported meta-language dedicated to the specification of language coordination patterns to
automatically coordinates the execution of, possibly heterogeneous, models. - Sirius Animator, an extension
to the model editor designer Sirius to create graphical animators for executable modeling languages.
FUNCTIONAL DESCRIPTION: The GEMOC Studio is an eclipse package that contains components supporting
the GEMOC methodology for building and composing executable Domain-Specific Modeling Languages
(DSMLs). It includes the two workbenches: The GEMOC Language Workbench: intended to be used by
language designers (aka domain experts), it allows to build and compose new executable DSMLs. The
GEMOC Modeling Workbench: intended to be used by domain designersto create, execute and coordinate
models conforming to executable DSMLs. The different concerns of a DSML, as defined with the tools of the
language workbench, are automatically deployed into the modeling workbench. They parametrize a generic
execution framework that provide various generic services such as graphical animation, debugging tools, trace
and event managers, timeline, etc.

Participants: Didier Vojtisek, Dorian Leroy, Erwan Bousse, Fabien Coulon and Julien Deantoni
e Partners: IRIT - ENSTA - I3S - OBEO - Thales TRT
e Contact: Benoit Combemale

e URL: http://gemoc.org/studio.html

5.4. Kevoree

Kevoree Core

KEYWORDS: M2M - Dynamic components - ot - Heterogeneity - Smart home - Cloud - Software architecture
- Dynamic deployment

SCIENTIFIC DESCRIPTION: Kevoree is an open-source models @runtime platform (http://www.kevoree.org)
to properly support the dynamic adaptation of distributed systems. Models @runtime basically pushes the idea
of reflection [132] one step further by considering the reflection layer as a real model that can be uncoupled
from the running architecture (e.g. for reasoning, validation, and simulation purposes) and later automatically
resynchronized with its running instance.

Kevoree has been influenced by previous work that we carried out in the DiVA project [132] and the Entimid
project [135] . With Kevoree we push our vision of models@runtime [131] farther. In particular, Kevoree
provides a proper support for distributed models @runtime. To this aim we introduced the Node concept to
model the infrastructure topology and the Group concept to model semantics of inter node communication
during synchronization of the reflection model among nodes. Kevoree includes a Channel concept to allow
for multiple communication semantics between remoteComponents deployed on heterogeneous nodes. All
Kevoree concepts (Component, Channel, Node, Group) obey the object type design pattern to separate
deployment artifacts from running artifacts. Kevoree supports multiple kinds of very different execution node
technology (e.g. Java, Android, MiniCloud, FreeBSD, Arduino, ...).

Kevoree is distributed under the terms of the LGPL open source license.
Main competitors:

e the Fractal/Frascati eco-system (http://frascati.ow2.org).

e SpringSource Dynamic Module (http://spring.io/)
GCM-Proactive (http://proactive.inria.fr/)
OSGi (http://www.osgi.org)
Chef

http://gemoc.org/studio.html

16 Activity Report INRIA 2018

Vagran (http://vagrantup.com/)
Main innovative features:

distributed models @runtime platform (with a distributed reflection model and an extensible models @runtime
dissemination set of strategies).

Support for heterogeneous node type (from Cyber Physical System with few resources until cloud computing
infrastructure).

Fully automated provisioning model to correctly deploy software modules and their dependencies.

Communication and concurrency access between software modules expressed at the model level (not in the
module implementation).

Impact:

Several tutorials and courses have been performed this year at EICP for French PhD student, at ECNU summer
school for 82 chineese PhD students. See also the web page http://www.kevoree.org .

In 2015, we mainly created a new implementation in C# and we created an implementation for system
containers for driving resources using Kevoree. We also use Kevoree in the context of Mohammed’s PhD
to create testing infrastructure on-demand.

FUNCTIONAL DESCRIPTION: Kevoree is an open-source models @runtime platform to properly support the
dynamic adaptation of distributed systems. Models @runtime basically pushes the idea of reflection one step
further by considering the reflection layer as a real model that can be uncoupled from the running architecture
(e.g. for reasoning, validation, and simulation purposes) and later automatically resynchronized with its
running instance.

e Participants: Aymeric Hervieu, Benoit Baudry, Francisco-Javier Acosta Padilla, Inti Gonzalez Her-
rera, Ivan Paez Anaya, Jacky Bourgeois, Jean Emile Dartois, Johann Bourcier, Manuel Leduc,
Maxime Tricoire, Mohamed Boussaa, Noél Plouzeau and Olivier Barais

e Contact: Olivier Barais
e URL: http://kevoree.org/

5.5. Melange

KEYWORDS: Model-driven engineering - Meta model - MDE - DSL - Model-driven software engineering -
Dedicated langage - Language workbench - Meta-modelisation - Modeling language - Meta-modeling
SCIENTIFIC DESCRIPTION: Melange is a follow-up of the executable metamodeling language Kermeta, which
provides a tool-supported dedicated meta-language to safely assemble language modules, customize them and
produce new DSMLs. Melange provides specific constructs to assemble together various abstract syntax and
operational semantics artifacts into a DSML. DSMLs can then be used as first class entities to be reused,
extended, restricted or adapted into other DSMLs. Melange relies on a particular model-oriented type system
that provides model polymorphism and language substitutability, i.e. the possibility to manipulate a model
through different interfaces and to define generic transformations that can be invoked on models written using
different DSLs. Newly produced DSMLs are correct by construction, ready for production (i.e., the result can
be deployed and used as-is), and reusable in a new assembly.

Melange is tightly integrated with the Eclipse Modeling Framework ecosystem and relies on the meta-language
Ecore for the definition of the abstract syntax of DSLs. Executable meta-modeling is supported by weaving
operational semantics defined with Xtend. Designers can thus easily design an interpreter for their DSL in a
non-intrusive way. Melange is bundled as a set of Eclipse plug-ins.

http://kevoree.org/

Project-Team DIVERSE 17

FUNCTIONAL DESCRIPTION: Melange is a language workbench which helps language engineers to mashup
their various language concerns as language design choices, to manage their variability, and support their
reuse. It provides a modular and reusable approach for customizing, assembling and integrating DSMLs
specifications and implementations.

e Participants: Arnaud Blouin, Benoit Combemale, David Mendez Acuna, Didier Vojtisek, Dorian
Leroy, Erwan Bousse, Fabien Coulon, Jean-Marc Jézéquel, Olivier Barais and Thomas Degueule

e Contact: Benoit Combemale

e URL: http://melange-lang.org

5.6. Opencompare

KEYWORD: Software Product Line

FUNCTIONAL DESCRIPTION: Product comparison matrices (PCMs) are tabular data: supported and unsup-
ported features are documented for both describing the product itself and for discriminating one product com-
pared to another. PCMs abound — we are all using PCMs — and constitute a rich source of knowledge for
easily comparing and choosing product. Yet the current practice is suboptimal both for humans and comput-
ers, mainly due to unclear semantics, heterogeneous forms of data, and lack of dedicated support.

OpenCompare.org is an ambitious project for the collaborative edition, the sharing, the standardisation, and the
open exploitation of PCMs. The goal of OpenCompare.org is to provide an integrated set of tools (e.g., APIs,
visualizations, configurators, editors) for democratizing their creation, import, maintenance, and exploitation.

e Participants: Guillaume Bécan, Mathieu Acher and Sana Ben Nasr
e Contact: Mathieu Acher
e URL: http://opencompare.org

5.7. DSpot

KEYWORDS: Software testing - Test amplification

FUNCTIONAL DESCRIPTION: DSpot is a tool that generates missing assertions in JUnit tests. DSpot takes as
input a Java project with an existing test suite. As output, DSpot outputs new test cases on console. DSpot
supports Java projects built with Maven and Gradle

e Participants: Benoit Baudry, Martin Monperrus and Benjamin Danglot
e Partner: KTH Royal Institute of Technology

e Contact: Benjamin Danglot

e URL: https://github.com/STAMP-project/dspot

5.8. ALE

Action Language for Ecore
KEYWORDS: Meta-modeling - Executable DSML
FUNCTIONAL DESCRIPTION: Main features of ALE include:

- Executable metamodeling: Re-open existing EClasses to insert new methods with their implementations -
Metamodel extension: The very same mechanism can be used to extend existing Ecore metamodels and insert
new features (eg. attributes) in a non-intrusive way - Interpreted: No need to deploy Eclipse plugins, just run
the behavior on a model directly in your modeling environment - Extensible: If ALE doesn’t fit your needs,
register Java classes as services and invoke them inside your implementations of EOperations.

e Partner: OBEO
e Contact: Benoit Combemale

e URL: http://gemoc.org/ale-lang/

http://melange-lang.org
http://opencompare.org
https://github.com/STAMP-project/dspot
http://gemoc.org/ale-lang/

18 Activity Report INRIA 2018

5.9. InspectorGuidget

KEYWORDS: Static analysis - Software testing - User Interfaces
FUNCTIONAL DESCRIPTION: InspectorGuidget is a static code analysing tool. InspectorGuidget analyses
UI (user interface/interaction) code of a software system to extract high level information and metrics.
InspectorGuidget also finds bad UI coding pratices, such as Blob listener instances. InspectorGuidget analyses
Java code.

e Participants: Arnaud Blouin and Benoit Baudry

e Contact: Arnaud Blouin

e Publications: User Interface Design Smell: Automatic Detection and Refactoring of Blob Listeners

- Automatic Detection of GUI Design Smells: The Case of Blob Listener
e URL: https://github.com/diverse-project/InspectorGuidget

6. New Results

6.1. Results on Variability modeling and management

6.1.1.

6.1.2.

Variability and testing.

Many approaches for testing configurable software systems start from the same assumption: it is impossible to
test all configurations. This motivated the definition of variability-aware abstractions and sampling techniques
to cope with large configuration spaces. Yet, there is no theoretical barrier that prevents the exhaustive testing
of all configurations by simply enumerating them, if the effort required to do so remains acceptable. Not only
this: we believe there is lots to be learned by systematically and exhaustively testing a configurable system.
We report on the first ever endeavor to test all possible configurations of an industry-strength, open source
configurable software system, JHipster, a popular code generator for web applications. We built a testing
scaffold for the 26,000+ configurations of JHipster using a cluster of 80 machines during 4 nights for a total
of 4,376 hours (182 days) CPU time. We find that 35.70% configurations fail and we identify the feature
interactions that cause the errors. We show that sampling testing strategies (like dissimilarity and 2-wise) (1)
are more effective to find faults than the 12 default configurations used in the JHipster continuous integration;
(2) can be too costly and exceed the available testing budget. We cross this quantitative analysis with the
qualitative assessment of JHipster’s lead developers. Publication at Empirical Software Engineering: [25] See
also, in the rest of the report, the work on Multimorphic Testing that actually relies on variability techniques.

Variability and teaching.

Software Product Line (SPL) engineering has emerged to provide the means to efficiently model, produce,
and maintain multiple similar software variants, exploiting their common properties, and managing their
variabilities (differences). With over two decades of existence, the community of SPL researchers and
practitioners is thriving as can be attested by the extensive research output and the numerous successful
industrial projects. Education has a key role to support the next generation of practitioners to build highly
complex, variability-intensive systems. Yet, it is unclear how the concepts of variability and SPLs are taught,
what are the possible missing gaps and difficulties faced, what are the benefits, or what is the material
available. Also, it remains unclear whether scholars teach what is actually needed by industry. We report
on three initiatives we have conducted with scholars, educators, industry practitioners, and students to
further understand the connection between SPLs and education, i.e., an online survey on teaching SPLs
we performed with 35 scholars, another survey on learning SPLs we conducted with 25 students, as well
as two workshops held at the International Software Product Line Conference in 2014 and 2015 with both
researchers and industry practitioners participating. We build upon the two surveys and the workshops to
derive recommendations for educators to continue improving the state of practice of teaching SPLs, aimed
at both individual educators as well as the wider community. Finally, we are developing and maintaining a
repository for teaching SPLs and variability. Publication at SPLC (journal first) [29], workshop SPLTea’ 18
http://spltea.irisa.fr/ and repository: https://teaching.variability.io

https://hal.inria.fr/hal-01499106v5
https://hal.inria.fr/hal-01308625v2
https://github.com/diverse-project/InspectorGuidget
http://spltea.irisa.fr/
https://teaching.variability.io

6.1.3.

Project-Team DIVERSE 19

Variability and machine learning

We propose the use of a machine learning approach to infer variability constraints from an oracle that is
able to assess whether a given configuration is correct. We propose an automated procedure to generate
configurations, classify them according to the oracle, and synthesize cross-tree constraints. Specifically, based
on an oracle (e.g. a runtime test) that tells us whether a given configuration meets the requirements (e.g.
speed or memory footprint), we leverage machine learning to retrofit the acquired knowledge into a variability
model of the system that can be used to automatically specialize the configurable system. We validate our
approach on a set of well-known configurable software systems (Apache server, x264, etc.) Our results
show that, for many different kinds of objectives and performance qualities, the approach has interesting
accuracy, precision and recall after a learning stage based on a relative small number of random samples.
Publications: Temple et al. Towards Adversarial Configurations for Software Product Lines https://arxiv.org/
abs/1805.12021, VaryLaTeX [30] a variability and learning-based tool to generate relevant paper variants
written in latex.

TUXML (Tux is the mascotte of the Linux Kernel while ML stands for statistical machine learning). The
goal of TuxML is to predict properties of Linux Kernel configurations (e.g., does the kernel compile?
what’s its size? does it boot?). The Linux Kernel provides near 15000 configuration options: there is an
infinity of different kernels. As we cannot compile, measure, and observe all combinations of options (aka
configurations), we’re trying to learn Linux kernel properties out of a sample of configurations. The TuxML
project is developing tools, mainly based on Docker and Python, to massively compile and gather data about
thousand of configuration kernels https://github.com/TuxML/.

In general, we are currently exploring the use of machine learning for variability-intensive systems in the
context of VaryVary ANR project https://varyvary.github.io.

6.2. Results on Software Language Engineering

6.2.1.

6.2.2.

Omniscient Debugging for Executable DSLs

Omniscient debugging is a promising technique that relies on execution traces to enable free traversal of the
states reached by a model (or program) during an execution. While a few General-Purpose Languages (GPLs)
already have support for omniscient debugging, developing such a complex tool for any executable Domain
Specific Language (DSL) remains a challenging and error prone task. A generic solution must: support a
wide range of executable DSLs independently of the metaprogramming approaches used for implementing
their semantics; be efficient for good responsiveness. Our contribution in [21] relies on a generic omniscient
debugger supported by efficient generic trace management facilities. To support a wide range of executable
DSLs, the debugger provides a common set of debugging facilities, and is based on a pattern to define
runtime services independently of metaprogramming approaches. Results show that our debugger can be used
with various executable DSLs implemented with different metaprogramming approaches. As compared to a
solution that copies the model at each step, it is on average six times more efficient in memory, and at least 2.2
faster when exploring past execution states, while only slowing down the execution 1.6 times on average.

Trace Comprehension Operators for Executable DSLs

Recent approaches contribute facilities to breathe life into metamodels, thus making behavioral models directly
executable. Such facilities are particularly helpful to better utilize a model over the time dimension, e.g., for
early validation and verification. However, when even a small change is made to the model, to the language
definition (e.g., semantic variation points), or to the external stimuli of an execution scenario, it remains
difficult for a designer to grasp the impact of such a change on the resulting execution trace. This prevents
accessible trade-off analysis and design-space exploration on behavioral models. In [44], we propose a set
of formally defined operators for analyzing execution traces. The operators include dynamic trace filtering,
trace comparison with diff computation and visualization, and graph-based view extraction to analyze cycles.
The operators are applied and validated on a demonstrative example that highlight their usefulness for the
comprehension specific aspects of the underlying traces.

https://arxiv.org/abs/1805.12021
https://arxiv.org/abs/1805.12021
https://github.com/TuxML/
https://varyvary.github.io

6.2.3.

6.2.4.

6.2.5.

6.2.6.

20 Activity Report INRIA 2018

Model Transformation Reuse across Metamodels

Model transformations (MTs) are essential elements of model-driven engineering (MDE) solutions. MDE
promotes the creation of domain-specific metamodels, but without proper reuse mechanisms, MTs need to
be developed from scratch for each new metamodel. In [32], awarded by the best paper award at ICMT
2018, we classify reuse approaches for MTs across different metamodels and compare a sample of specific
approaches — model types, concepts, a-posteriori typing, multilevel modeling, and design patterns for MTs —
with the help of a feature model developed for this purpose, as well as a common example. We discuss strengths
and weaknesses of each approach, provide a reading grid used to compare their features, and identify gaps in
current reuse approaches.

Modular Language Composition for the Masses

The goal of modular language development is to enable the definition of new languages as assemblies of
pre-existing ones. Recent approaches in this area are plentiful but usually suffer from two main problems:
either they do not support modular language composition both at the specification and implementation levels,
or they require advanced knowledge of specific paradigms which hampers wide adoption in the industry. In
[36], awarded by the best artefact award at SLE 2018, we introduce a non-intrusive approach to modular
development of language concerns with well-defined interfaces that can be composed modularly at the
specification and implementation levels. We present an implementation of our approach atop the Eclipse
Modeling Framework, namely Alex-an object-oriented metalanguage for semantics definition and language
composition. We evaluate Alex in the development of a new DSL for IoT systems modeling resulting from the
composition of three independently defined languages (UML activity diagrams, Lua, and the OMG Interface
Description Language). We evaluate the effort required to implement and compose these languages using Alex
with regards to similar approaches of the literature.

Shape-Diverse DSLs

Domain-Specific Languages (DSLs) manifest themselves in remarkably diverse shapes, ranging from internal
DSLs embedded as a mere fluent API within a programming language, to external DSLs with dedicated syntax
and tool support. Although different shapes have different pros and cons, combining them for a single language
is problematic: language designers usually commit to a particular shape early in the design process, and it is
hard to reconsider this choice later. In the new ideas paper [33] awarded as the best new ideas paper at
SLE 2018, we envision a language engineering approach enabling (i) language users to manipulate language
constructs in the most appropriate shape according to the task at hand, and (ii) language designers to combine
the strengths of different technologies for a single DSL. We report on early experiments and lessons learned
building Prism, our prototype approach to this problem. We illustrate its applicability in the engineering
of a simple shape-diverse DSL implemented conjointly in Rascal, EMF, and Java. We hope that our initial
contribution will raise the awareness of the community and encourage future research.

Fostering metamodels and grammars

Advanced and mature language workbenches have been proposed in the past decades to develop Domain-
Specific Languages (DSL) and rich associated environments. They all come in various flavors, mostly
depending on the underlying technological space (e.g., grammarware or modelware). However, when the time
comes to start a new DSL project, it often comes with the choice of a unique technological space which later
bounds the possible expected features. In [37], we introduce NabLab, a full-fledged industrial environment for
scientific computing and High Performance Computing (HPC), involving several metamodels and grammars.
Beyond the description of an industrial experience of the development and use of tool-supported DSLs, we
report in this paper our lessons learned, and demonstrate the benefits from usefully combining metamodels
and grammars in an integrated environment.

6.2.7. Automatic Production of End User Documentation for DSLs

The development of DSLs requires a significant software engineering effort: editors, code generators, etc.,
must be developed to make a DSL usable. Documenting a DSL is also a major and time-consuming task

Project-Team DIVERSE 21

required to promote it and address its learning curve. Recent research work in software language engineering
focus on easing the development of DSLs. This work focuses on easing the production of documentation
of textual DSLs [27], [17]. The API documentation domain identified challenges we adapted to DSL
documentation. Based on these challenges we propose a model-driven approach that relies on DSL artifacts
to extract information required to build documentation. Our implementation, called Docywood, targets two
platforms: Markdown documentation for static web sites and Xtext code fragments for live documentation
while modeling. We used Docywood on two DSLs, namely ThingML and Target Platform Definition.
Feedback from end users and language designers exhibits qualitative benefits of the proposal with regard
to the DSL documentation challenges. End user experiments conducted on ThingML and Target Platform
Definition show benefits on the correctness of the created models when using Docywood on ThingML.

6.3. Results on Heterogeneous and dynamic software architectures

We have selected three main contributions for DIVERSE’s research axis #4: one is in the field of runtime
management of resources for dynamically adaptive system, one in the field of temporal context model for
dynamically adaptive system and a last one to improve the exploration of hidden real-time structures of
programming behavior at runtime.

6.3.1. Resource-aware models @runtime layer for dynamically adaptive system

In Kevoree, one of the goal is to work on the shipping pases in which we aim at making deployment, and the
reconfiguration simple and accessible to a whole development team. This year, we mainly explore two main
axes.

In the first one, we try to improve the proposed models that could be used at runtime to improve resource
usage in two domains: cloud computing and energy [34]. In the cloud computing domain, we try to improve
resources usage in providing models to cloud provider to allow the reselling of unused resources to peers.
Indeed, although Cloud computing techniques have reduced the total cost of ownership thanks to virtualization,
the average usage of resources (e.g., CPU, RAM, Network, I/O) remains low. To address such issue, one
may sell unused resources. Such a solution requires the Cloud provider to determine the resources available
and estimate their future use to provide availability guarantees. In this work, we propose a technique that
uses machine learning algorithms (Random Forest, Gradient Boosting Decision Tree, and Long Short Term
Memory) to forecast 24-hour of available resources at the host level. Our technique relies on the use of quantile
regression to provide a flexible trade-off between the potential amount of resources to reclaim and the risk
of SLA violations. In addition, several metrics (e.g., CPU, RAM, disk, network) were predicted to provide
exhaustive availability guarantees. Our methodology was evaluated by relying on four in production data center
traces and our results show that quantile regression is relevant to reclaim unused resources. Our approach may
increase the amount of savings up to 20% compared to traditional approaches.

In the energy domain, we work at proposing models that could be used at runtime to improve self-consumption
of renewable energies [46]. Self-consumption of renewable energies is defined as electricity that is produced
from renewable energy sources, not injected to the distribution or transmission grid or instantaneously
withdrawn from the grid and consumed by the owner of the power production unit or by associates directly
contracted to the producer. Designing solutions in favor of self-consumption for small industries or city
districts is challenging. It consists in designing an energy production system made of solar panels, wind
turbines, batteries that fit the annual weather prediction and the industrial or human activity. In this context,
this we highlight the essentials of a domain specific modeling language designed to let domain experts run
their own simulations.

6.3.2. A Temporal Model for Interactive Diagnosis of Adaptive Systems

The evolving complexity of adaptive systems impairs our ability to deliver anomaly-free solutions. Fixing
these systems require a deep understanding on the reasons behind decisions which led to faulty or suboptimal
system states. Developers thus need diagnosis support that trace system states to the previous circumstances
targeted requirements, input context that had resulted in these decisions. However, the lack of efficient
temporal representation limits the tracing ability of current approaches. To tackle this problem, we describe

22 Activity Report INRIA 2018

a novel temporal data model to represent, store and query decisions as well as their relationship with the
knowledge (context, requirements, and actions) [38]. We validate our approach through a use case based-on
the smart grid at Luxembourg.

Based on this work, we also enable a models @runtime approach in which we integrate the time required for
a reconfiguration action to achieve the expected impact [39]. Indeed in most of the MAPE-K loop system,
unfinished actions as well as their expected effects over time are not taken into consideration in MAPE-K loop
processes, leading upcoming analysis phases potentially take sub-optimal actions. In this work, we propose
an extended context model for MAPE-K loop that integrates the history of planned actions as well as their
expected effects over time into the context representations. This information can then be used during the
upcoming analysis and planning phases to compare measured and expected context metrics. We demonstrate
on a cloud elasticity manager case study that such temporal action-aware context leads to improved reasoners
while still be highly scalable.

6.3.3. Detection and analysis of behavioral T-patterns in debugging activities

A growing body of research in empirical software engineering applies recurrent patterns analysis in order to
make sense of the developers’ behavior during their interactions with IDEs. However, the exploration of hidden
real-time structures of programming behavior remains a challenging task. In this work [40], we investigate the
presence of temporal behavioral patterns (T-patterns) in debugging activities using the THEME software.
Our preliminary exploratory results show that debugging activities are strongly correlated with code editing,
file handling, window interactions and other general types of programming activities. The validation of our T-
patterns detection approach demonstrates that debugging activities are performed on the basis of repetitive and
well-organized behavioral events. Furthermore, we identify a large set of T-patterns that associate debugging
activities with build success, which corroborates the positive impact of debugging practices on software
development.

6.4. Results on Diverse Implementations for Resilience

Diversity is acknowledged as a crucial element for resilience, sustainability and increased wealth in many
domains such as sociology, economy and ecology. Yet, despite the large body of theoretical and experimental
science that emphasizes the need to conserve high levels of diversity in complex systems, the limited amount of
diversity in software-intensive systems is a major issue. This is particularly critical as these systems integrate
multiple concerns, are connected to the physical world, run eternally and are open to other services and to
users. Here we present our latest observational and technical results about (i) observations of software diversity
mainly through browser fingerprinting, and (ii) software testing to study and assess the validity of software.

6.4.1. Privacy and Security
6.4.1.1. FP-STALKER: Tracking Browser Fingerprint Evolutions

Browser fingerprinting has emerged as a technique to track users without their consent. Unlike cookies,
fingerprinting is a stateless technique that does not store any information on devices, but instead exploits
unique combinations of attributes handed over freely by browsers. The uniqueness of fingerprints allows
them to be used for identification. However, browser fingerprints change over time and the effectiveness of
tracking users over longer durations has not been properly addressed. In this work [42], we show that browser
fingerprints tend to change frequently—from every few hours to days—due to, for example, software updates
or configuration changes. Yet, despite these frequent changes, we show that browser fingerprints can still be
linked, thus enabling long-term tracking. FP-STALKER is an approach to link browser fingerprint evolutions.
It compares fingerprints to determine if they originate from the same browser. We created two variants of
FP-STALKER, a rule-based variant that is faster, and a hybrid variant that exploits machine learning to boost
accuracy. To evaluate FP-STALKER, we conduct an empirical study using 98,598 fingerprints we collected
from 1,905 distinct browser instances. We compare our algorithm with the state of the art and show that, on
average, we can track browsers for 54.48 days, and 26% of browsers can be tracked for more than 100 days.

6.4.1.2.

6.4.1.3.

6.4.2.
6.4.2.1.

6.4.2.2.

Project-Team DIVERSE 23

Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale

Browser fingerprinting is a stateless technique, which consists in collecting a wide range of data about a
device through browser APIs. Past studies have demonstrated that modern devices present so much diversity
that fingerprints can be exploited to identify and track users online. With this work [35], we want to evaluate if
browser fingerprinting is still effective at uniquely identifying a large group of users when analyzing millions
of fingerprints over a few months.We analyze 2,067,942 browser fingerprints collected from one of the top 15
French websites. The observations made on this novel dataset shed a newlight on the ever-growing browser
fingerprinting domain. The key insight is that the percentage of unique fingerprints in this dataset is much
lower than what was reported in the past: only 33.6% of fingerprints are unique by opposition to over 80% in
previous studies. We show that non-unique fingerprints tend to be fragile. If some features of the fingerprint
change, it is very probable that the fingerprint will become unique. We also confirm that the current evolution of
web technologies is benefiting users’ privacy significantly as the removal of plugins brings down substantively
the rate of unique desktop machines.

User Controlled Trust and Security Level of Web Real-Time Communications

In this work [16], we propose three main contributions. In our first contribution we study the WebRTC
identity architecture and more particularly its integration with existing authentication delegation protocols.
This integration has not been studied yet. To fill this gap, we implement components of the WebRTC identity
architecture and comment on the issues encountered in the process. We then study this specification from a
privacy perspective an identify new privacy considerations related to the central position of identity provider.
In our second contribution, we aim at giving more control to users. To this end, we extend the WebRTC
specification to allow identity parameters negotiation. We then propose a web API allowing users to choose
their identity provider in order to authenticate on a third-party website. We validate our propositions by
presenting prototype implementations. Finally, in our third contribution, we propose a trust and security model
of a WebRTC session to help non-expert users to better understand the security of their WebRTC session. Our
proposed model integrates in a single metric the security parameters used in the session establishment, the
encryption parameters for the media streams, and trust in actors of the communication setup as defined by the
user. We conduct a preliminary study on the comprehension of our model to validate our approach.

Software Testing
A Comprehensive Study of Pseudo-tested Methods

Pseudo-tested methods are defined as follows: they are covered by the test suite, yet no test case fails when
the method body is removed, i.e., when all the effects of this method are suppressed. This intriguing concept
was coined in 2016, by Niedermayr and colleagues [88], who showed that such methods are systematically
present, even in well-tested projects with high statement coverage. This work presents a novel analysis of
pseudo-tested methods [28]. First, we run a replication of Niedermayr’s study with 28K+ methods, enhancing
its external validity thanks to the use of new tools and new study subjects. Second, we perform a systematic
characterization of these methods, both quantitatively and qualitatively with an extensive manual analysis
of 101 pseudo-tested methods. The first part of the study confirms Niedermayr’s results: pseudo-tested
methods exist in all our subjects. Our in-depth characterization of pseudo-tested methods leads to two key
insights: pseudo-tested methods are significantly less tested than the other methods; yet, for most of them,
the developers would not pay the testing price to fix this situation. This calls for future work on targeted test
generation to specify those pseudo-tested methods without spending developer time.

This work uses Descartes is a tool that implements extreme mutation operators and aims at finding pseudo-
tested methods in Java projects [43]. It leverages the efficient transformation and runtime features of PITest.

Automatic Test Improvement with DSpot: a Study with Ten Mature Open-Source Projects

In the literature, there is a rather clear segregation between manually written tests by developers and
automatically generated ones. In this work [23], we explore a third solution: to automatically improve existing
test cases written by developers. We present the concept, design and implementation of a system called DSpot,
that takes developer-written test cases as input (JUnit tests in Java) and synthesizes improved versions of them

24 Activity Report INRIA 2018

as output. Those test improvements are given back to developers as patches or pull requests, that can be
directly integrated in the main branch of the test code base. We have evaluated DSpot in a deep, systematic
manner over 40 real-world unit test classes from 10 notable and open-source software projects. We have
amplified all test methods from those 40 unit test classes. In 26/40 cases, DSpot is able to automatically
improve the test under study, by triggering new behaviors and adding new valuable assertions. Next, for ten
projects under consideration, we have proposed a test improvement automatically synthesized by DSpot to
the lead developers. In total, 13/19 proposed test improvements were accepted by the developers and merged
into the main code base. This shows that DSpot is capable of automatically improving unit-tests in real-world,
large scale Java software.

6.4.2.3. Multimorphic Testing

The functional correctness of a software application is, of course, a prime concern, but other issues such as its
execution time, precision , or energy consumption might also be important in some contexts. Systematically
testing these quantitative properties is still extremely difficult, in particular, because there exists no method to
tell the developer whether such a test set is "good enough" or even whether a test set is better than another
one. This work [41] proposes a new method, called Multimorphic testing, to assess the relative effectiveness
of a test suite for revealing performance variations of a software system. By analogy with mutation testing, our
core idea is to vary software parameters, and to check whether it makes any difference on the outcome of the
tests: i.e. are some tests able to " kill " bad morphs (configurations)? Our method can be used to evaluate the
quality of a test suite with respect to a quantitative property of interest, such as execution time or computation
accuracy.

6.4.2.4. User Interface Design Smell: Automatic Detection and Refactoring of Blob Listeners

User Interfaces (Uls) intensively rely on event-driven programming: widgets send Ul events, which capture
users’ interactions, to dedicated objects called controllers. Controllers use several Ul listeners that handle
these events to produce Ul commands. In this work [20], we reveal the presence of design smells in the code
that describes and controls Uls. We then demonstrate that specific code analyses are necessary to analyze
and refactor Ul code, because of its coupling with the rest of the code. We conducted an empirical study on
four large Java Swing and SWT open-source software systems: Eclipse, JabRef, ArgouML, and FreeCol. We
study to what extent the number of Ul commands that a UI listener can produce has an impact on the change-
and fault-proneness of the Ul listener code. We develop a static code analysis for detecting Ul commands in
the code. We identify a new type of design smell, called Blob listener that characterizes Ul listeners that can
produce more than two UI commands. We propose a systematic static code analysis procedure that searches for
Blob listener that we implement in InspectorGuidget. We conducted experiments on the four software systems
for which we manually identified 53 instances of Blob listener. The results exhibit a precision of 81.25 % and
a recall of 98.11 %. We then developed a semi-automatically and behavior-preserving refactoring process to
remove Blob listeners. 49.06 % of the Blob listeners were automatically refactored. Patches for JabRef, and
FreeCol have been accepted and merged. Discussions with developers of the four software systems assess the
relevance of the Blob listener.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. ADR Nokia

e Coordinator: Inria
e Dates: 2017-2021

e Abstract: The goal of this project is to integrate chaos engineering principles to IoT Services
frameworks to improve the robustness of the software-defined network services using this approach,
to explore the concept of equivalence for software-defined network services, and to propose an
approach to constantly alter the attack surface of the network services.

Project-Team DIVERSE 25

7.1.2. BCOM

e Coordinator: UR1
e Dates: 2018-2024

e Abstract: The purpose of the Falcon project is to investigate how to improve the resale of available
resources in private clouds to third parties. In this context, the collaboration with DiverSE mainly
aims to work on efficient techniques for the design of consumption models and resource consumption
forecasting models. These models are then used as a knowledge base in a classical autonomous loop.

7.1.3. GLOSE

e Partners: Inria/CNRS/Safran
e Dates: 2017-2021

e Abstract: The GLOSE project develops new techniques for heterogeneous modeling and simulation
in the context of systems engineering. It aims to provide formal and operational tools and meth-
ods to formalize the behavioral semantics of the various modeling languages used at system-level.
These semantics will be used to extract behavioral language interfaces supporting the definition of
coordination patterns. These patterns, in turn, can systematically be used to drive the coordination
of any model conforming to these languages. The project is structured according to the following
tasks: concurrent xXDSML engineering, coordination of discrete models, and coordination of dis-
crete/continuous models. The project is funded in the context of the network DESIR, and supported
by the GEMOC initiative.

7.1.4. OneShotSoftware

e Partners: Inria/Orange
e Dates: 2017-2019

e Abstract: The OSS project investigates an extreme version of moving target defense where a slightly
different version of the application is deployed each time it is used (e.g., for crypto functions or
payment services). We investigate the analysis, synthesis and transformation techniques to support
diversification at five locations of a software construction pipeline, which once combined yield up to
billions of variants. We also evaluate the support of diversification as a first class property in DevOps.

7.1.5. Agileo
e Partners: Inria/Agileo
e Dates: 2017-2018

e Abstract: In this project we mainly design a systematic mapping study on modeling for Industry 4.0
in order to share a common scientific roadmap.

7.1.6. Obeo
e Partners: Inria/Obo
e Dates: 2017-2020

e Abstract: Web engineering for domain-specific modeling languages, Fabien Coulon’s PhD Cifre
project.

7.1.7. OKWind
e Partners: UR1/OKWind
e Dates: 2017-2020

e Abstract: Models@runtime to improve self-consumption of renewable energies, Alexandre Rio’s
PhD Cifre project. .

7.1.8. Orange

26 Activity Report INRIA 2018

e Partners: UR1/Orange
e Dates: 2016-2019

e Abstract: Security level modelling of user interface, Youssou Ndiaye’s PhD Cifre project. .

7.1.9. Keolis

e Partners: UR1/Keolis
e Dates: 2018-2021

e Abstract: Urban mobility: machine learning for building simulators using large amounts of data,
Gauthier LYAN’s PhD Cifre project. .

7.1.10. FaberNovel

e Partners: UR1/FaberNovel
e Dates: 2018-2021

e Abstract: Abstractions for linked data and the programmable web, Antoine Cheron’s PhD Cifre
project. .

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. PEC - Péle d’Excellence Cyber

e Coordinator: Université de Rennes 1
e Dates: 2016-2019

e Abstract: Formal and Executable Specification of domain-specific language families

8.2. National Initiatives

8.2.1. ANR

8.2.1.1. SOPRANO

e Coordinator: CEA

e CEA, University of Paris-Sud, Inria Rennes, OcamlPro, Adacore

e Dates: 2014-2018

e Abstract: Today most major verification approaches rely on automatic external solvers. However
these solvers do not fill the current and future needs for ver