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2. Overall Objectives

2.1. Overall objectives
The overall objectives of the NACHOS project-team are the design, mathematical analysis and actual leverag-
ing of numerical methods for the solution of first order linear systems of partial differential equations (PDEs)
with variable coefficients modeling wave propagation problems. The two main physical contexts considered
by the team are electrodynamics and elastodynamics. The corresponding applications lead to the simulation of
electromagnetic or seismic wave interaction with media exhibiting space and time heterogeneities. Moreover,
in most of the situations of practical relevance, the propagation settings involve structures or/and material in-
terfaces with complex shapes. Both the heterogeneity of the media and the complex geometrical features of
the propagation domains motivate the use of numerical methods that can deal with non-uniform discretiza-
tion meshes. In this context, the research efforts of the team concentrate on numerical methods formulated on
unstructured or hybrid structured/unstructured meshes for the solution of the systems of PDEs of electrody-
namics and elastodynamics. Our activities include the implementation of these numerical methods in advanced
3D simulation software that efficiently exploit the capabilities of modern high performance computing plat-
forms. In this respect, our research efforts are also concerned with algorithmic issues related to the design of
numerical algorithms that perfectly fit to the hardware characteristics of petascale class supercomputers.

In the case of electrodynamics, the mathematical model of interest is the full system of unsteady Maxwell
equations [42] which is a first-order hyperbolic linear system of PDEs (if the underlying propagation media
is assumed to be linear). This system can be numerically solved using so-called time-domain methods among
which the Finite Difference Time-Domain (FDTD) method introduced by K.S. Yee [48] in 1996 is the
most popular and which often serves as a reference method for the works of the team. For certain types of
problems, a time-harmonic evolution can be assumed leading to the formulation of the frequency-domain
Maxwell equations whose numerical resolution requires the solution of a linear system of equations (i.e
in that case, the numerical method is naturally implicit). Heterogeneity of the propagation media is taken
into account in the Maxwell equations through the electrical permittivity, the magnetic permeability and the
electric conductivity coefficients. In the general case, the electrical permittivity and the magnetic permeability
are tensors whose entries depend on space (i.e heterogeneity in space) and frequency. In the latter case, the
time-domain numerical modeling of such materials requires specific techniques in order to switch from the
frequency evolution of the electromagnetic coefficients to a time dependency. Moreover, there exist several
mathematical models for the frequency evolution of these coefficients (Debye model, Drude model, Drude-
Lorentz model, etc.).

In the case of elastodynamics, the mathematical model of interest is the system of elastodynamic equations
[37] for which several formulations can be considered such as the velocity-stress system. For this system,
as with Yee’s scheme for time-domain electromagnetics, one of the most popular numerical method is the
finite difference method proposed by J. Virieux [46] in 1986. Heterogeneity of the propagation media is taken
into account in the elastodynamic equations through the Lamé and mass density coefficients. A frequency
dependence of the Lamé coefficients allows to take into account physical attenuation of the wave fields and
characterizes a viscoelastic material. Again, several mathematical models are available for expressing the
frequency evolution of the Lamé coefficients.

3. Research Program

3.1. Scientific foundations
The research activities undertaken by the team aim at developing innovative numerical methodologies putting
the emphasis on several features:
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• Accuracy. The foreseen numerical methods should rely on discretization techniques that best
fit to the geometrical characteristics of the problems at hand. Methods based on unstructured,
locally refined, even non-conforming, simplicial meshes are particularly attractive in this regard.
In addition, the proposed numerical methods should also be capable to accurately describe the
underlying physical phenomena that may involve highly variable space and time scales. Both
objectives are generally addressed by studying so-called hp-adaptive solution strategies which
combine h-adaptivity using local refinement/coarsening of the mesh and p-adaptivity using adaptive
local variation of the interpolation order for approximating the solution variables. However, for
physical problems involving strongly heterogeneous or high contrast propagation media, such a
solution strategy may not be sufficient. Then, for dealing accurately with these situations, one has to
design numerical methods that specifically address the multiscale nature of the underlying physical
phenomena.

• Numerical efficiency. The simulation of unsteady problems most often relies on explicit time
integration schemes. Such schemes are constrained by a stability criterion, linking some space and
time discretization parameters, that can be very restrictive when the underlying mesh is highly non-
uniform (especially for locally refined meshes). For realistic 3D problems, this can represent a severe
limitation with regards to the overall computing time. One possible overcoming solution consists in
resorting to an implicit time scheme in regions of the computational domain where the underlying
mesh size is very small, while an explicit time scheme is applied elsewhere in the computational
domain. The resulting hybrid explicit-implicit time integration strategy raises several challenging
questions concerning both the mathematical analysis (stability and accuracy, especially for what
concern numerical dispersion), and the computer implementation on modern high performance
systems (data structures, parallel computing aspects). A second, often considered approach is to
devise a local time stepping strategy. Beside, when considering time-harmonic (frequency-domain)
wave propagation problems, numerical efficiency is mainly linked to the solution of the system of
algebraic equations resulting from the discretization in space of the underlying PDE model. Various
strategies exist ranging from the more robust and efficient sparse direct solvers to the more flexible
and cheaper (in terms of memory resources) iterative methods. Current trends tend to show that the
ideal candidate will be a judicious mix of both approaches by relying on domain decomposition
principles.

• Computational efficiency. Realistic 3D wave propagation problems involve the processing of
very large volumes of data. The latter results from two combined parameters: the size of the
mesh i.e the number of mesh elements, and the number of degrees of freedom per mesh element
which is itself linked to the degree of interpolation and to the number of physical variables
(for systems of partial differential equations). Hence, numerical methods must be adapted to the
characteristics of modern parallel computing platforms taking into account their hierarchical nature
(e.g multiple processors and multiple core systems with complex cache and memory hierarchies). In
addition, appropriate parallelization strategies need to be designed that combine SIMD and MIMD
programming paradigms.

From the methodological point of view, the research activities of the team are concerned with four main
topics: (1) high order finite element type methods on unstructured or hybrid structured/unstructured meshes
for the discretization of the considered systems of PDEs, (2) efficient time integration strategies for dealing
with grid induced stiffness when using non-uniform (locally refined) meshes, (3) numerical treatment of
complex propagation media models (e.g. physical dispersion models), (4) algorithmic adaptation to modern
high performance computing platforms.

3.2. High order discretization methods
3.2.1. The Discontinuous Galerkin method

The Discontinuous Galerkin method (DG) was introduced in 1973 by Reed and Hill to solve the neutron
transport equation. From this time to the 90’s a review on the DG methods would likely fit into one page. In
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the meantime, the Finite Volume approach (FV) has been widely adopted by computational fluid dynamics
scientists and has now nearly supplanted classical finite difference and finite element methods in solving
problems of non-linear convection and conservation law systems. The success of the FV method is due to its
ability to capture discontinuous solutions which may occur when solving non-linear equations or more simply,
when convecting discontinuous initial data in the linear case. Let us first remark that DG methods share with
FV methods this property since a first order FV scheme may be viewed as a 0th order DG scheme. However
a DG method may also be considered as a Finite Element (FE) one where the continuity constraint at an
element interface is released. While keeping almost all the advantages of the FE method (large spectrum of
applications, complex geometries, etc.), the DG method has other nice properties which explain the renewed
interest it gains in various domains in scientific computing as witnessed by books or special issues of journals
dedicated to this method [34]- [35]- [36]- [41]:

• It is naturally adapted to a high order approximation of the unknown field. Moreover, one may
increase the degree of the approximation in the whole mesh as easily as for spectral methods but,
with a DG method, this can also be done very locally. In most cases, the approximation relies on
a polynomial interpolation method but the DG method also offers the flexibility of applying local
approximation strategies that best fit to the intrinsic features of the modeled physical phenomena.

• When the space discretization is coupled to an explicit time integration scheme, the DG method
leads to a block diagonal mass matrix whatever the form of the local approximation (e.g. the type of
polynomial interpolation). This is a striking difference with classical, continuous FE formulations.
Moreover, the mass matrix may be diagonal if the basis functions are orthogonal.

• It easily handles complex meshes. The grid may be a classical conforming FE mesh, a non-
conforming one or even a hybrid mesh made of various elements (tetrahedra, prisms, hexahedra,
etc.). The DG method has been proven to work well with highly locally refined meshes. This property
makes the DG method more suitable (and flexible) to the design of some hp-adaptive solution
strategy.

• It is also flexible with regards to the choice of the time stepping scheme. One may combine the
DG spatial discretization with any global or local explicit time integration scheme, or even implicit,
provided the resulting scheme is stable.

• It is naturally adapted to parallel computing. As long as an explicit time integration scheme is used,
the DG method is easily parallelized. Moreover, the compact nature of DG discretization schemes
is in favor of high computation to communication ratio especially when the interpolation order is
increased.

As with standard FE methods, a DG method relies on a variational formulation of the continuous problem at
hand. However, due to the discontinuity of the global approximation, this variational formulation has to be
defined locally, at the element level. Then, a degree of freedom in the design of a DG method stems from the
approximation of the boundary integral term resulting from the application of an integration by parts to the
element-wise variational form. In the spirit of FV methods, the approximation of this boundary integral term
calls for a numerical flux function which can be based on either a centered scheme or an upwind scheme, or a
blending between these two schemes.

3.2.2. High order DG methods for wave propagation models
DG methods are at the heart of the activities of the team regarding the development of high order discretization
schemes for the PDE systems modeling electromagnetic and elatsodynamic wave propagation.

• Nodal DG methods for time-domain problems. For the numerical solution of the time-domain
Maxwell equations, we have first proposed a non-dissipative high order DGTD (Discontinuous
Galerkin Time-Domain) method working on unstructured conforming simplicial meshes [9]. This
DG method combines a central numerical flux function for the approximation of the integral term
at the interface of two neighboring elements with a second order leap-frog time integration scheme.
Moreover, the local approximation of the electromagnetic field relies on a nodal (Lagrange type)
polynomial interpolation method. Recent achievements by the team deal with the extension of these
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methods towards non-conforming unstructured [6]-[7] and hybrid structured/unstructured meshes
[4], their coupling with hybrid explicit/implicit time integration schemes in order to improve their
efficiency in the context of locally refined meshes [3]-[13]-[12]. A high order DG method has also
been proposed for the numerical resolution of the elastodynamic equations modeling the propagation
of seismic waves [2].

• Hybridizable DG (HDG) method for time-domain and time-harmonic problems. For the numer-
ical treatment of the time-harmonic Maxwell equations, nodal DG methods can also be considered
[5]. However, such DG formulations are highly expensive, especially for the discretization of 3D
problems, because they lead to a large sparse and undefinite linear system of equations coupling
all the degrees of freedom of the unknown physical fields. Different attempts have been made in
the recent past to improve this situation and one promising strategy has been recently proposed by
Cockburn et al.[39] in the form of so-called hybridizable DG formulations. The distinctive feature
of these methods is that the only globally coupled degrees of freedom are those of an approximation
of the solution defined only on the boundaries of the elements. This work is concerned with the
study of such Hybridizable Discontinuous Galerkin (HDG) methods for the solution of the system
of Maxwell equations in the time-domain when the time integration relies on an implicit scheme, or
in the frequency-domain. The team has been a precursor in the development of HDG methods for
the frequency-domain Maxwell equations[11].

• Multiscale DG methods for time-domain problems. More recently, in collaboration with LNCC
in Petropolis (Frédéric Valentin) the framework of the HOMAR assoacite team, we are investigating
a family of methods specifically designed for an accurate and efficient numerical treatment of
multiscale wave propagation problems. These methods, referred to as Multiscale Hybrid Mixed
(MHM) methods, are currently studied in the team for both time-domain electromagnetic and
elastodynamic PDE models. They consist in reformulating the mixed variational form of each system
into a global (arbitrarily coarse) problem related to a weak formulation of the boundary condition
(carried by a Lagrange multiplier that represents e.g. the normal stress tensor in elastodynamic
sytems), and a series of small, element-wise, fully decoupled problems resembling to the initial one
and related to some well chosen partition of the solution variables on each element. By construction,
that methodology is fully parallelizable and recursivity may be used in each local problem as well,
making MHM methods belonging to multi-level highly parallelizable methods. Each local problem
may be solved using DG or classical Galerkin FE approximations combined with some appropriate
time integration scheme (θ-scheme or leap-frog scheme).

3.3. Efficient time integration strategies
The use of unstructured meshes (based on triangles in two space dimensions and tetrahedra in three space
dimensions) is an important feature of the DGTD methods developed in the team which can thus easily deal
with complex geometries and heterogeneous propagation media. Moreover, DG discretization methods are
naturally adapted to local, conforming as well as non-conforming, refinement of the underlying mesh. Most of
the existing DGTD methods rely on explicit time integration schemes and lead to block diagonal mass matrices
which is often recognized as one of the main advantages with regards to continuous finite element methods.
However, explicit DGTD methods are also constrained by a stability condition that can be very restrictive
on highly refined meshes and when the local approximation relies on high order polynomial interpolation.
There are basically three strategies that can be considered to cure this computational efficiency problem. The
first approach is to use an unconditionally stable implicit time integration scheme to overcome the restrictive
constraint on the time step for locally refined meshes. In a second approach, a local time stepping strategy
is combined with an explicit time integration scheme. In the third approach, the time step size restriction is
overcome by using a hybrid explicit-implicit procedure. In this case, one blends a time implicit and a time
explicit schemes where only the solution variables defined on the smallest elements are treated implicitly. The
first and third options are considered in the team in the framework of DG [3]-[13]-[12] and HDG discretization
methods.
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3.4. Numerical treatment of complex material models
Towards the general aim of being able to consider concrete physical situations, we are interested in taking
into account in the numerical methodologies that we study, a better description of the propagation of waves
in realistic media. In the case of electromagnetics, a typical physical phenomenon that one has to consider is
dispersion. It is present in almost all media and expresses the way the material reacts to an electromagnetic
field. In the presence of an electric field a medium does not react instantaneously and thus presents an
electric polarization of the molecules or electrons that itself influences the electric displacement. In the
case of a linear homogeneous isotropic media, there is a linear relation between the applied electric field
and the polarization. However, above some range of frequencies (depending on the considered material), the
dispersion phenomenon cannot be neglected and the relation between the polarization and the applied electric
field becomes complex. This is rendered via a frequency-dependent complex permittivity. Several models
of complex permittivity exist. Concerning biological media, the Debye model is commonly adopted in the
presence of water, biological tissues and polymers, so that it already covers a wide range of applications
[10]. In the context of nanoplasmonics, one is interested in modeling the dispersion effects on metals on the
nanometer scale and at optical frequencies. In this case, the Drude or the Drude-Lorentz models are generally
chosen [15]. In the context of seismic wave propagation, we are interested by the intrinsic attenuation of the
medium [14]. In realistic configurations, for instance in sedimentary basins where the waves are trapped, we
can observe site effects due to local geological and geotechnical conditions which result in a strong increase in
amplification and duration of the ground motion at some particular locations. During the wave propagation in
such media, a part of the seismic energy is dissipated because of anelastic losses relied to the internal friction
of the medium. For these reasons, numerical simulations based on the basic assumption of linear elasticity are
no more valid since this assumption results in a severe overestimation of amplitude and duration of the ground
motion, even when we are not in presence of a site effect, since intrinsic attenuation is not taken into account.

3.5. High performance numerical computing
Beside basic research activities related to the design of numerical methods and resolution algorithms for
the wave propagation models at hand, the team is also committed to demonstrate the benefits of the
proposed numerical methodologies in the simulation of challenging three-dimensional problems pertaining to
computational electromagnetics and computational geoseismics. For such applications, parallel computing is a
mandatory path. Nowadays, modern parallel computers most often take the form of clusters of heterogeneous
multiprocessor systems, combining multiple core CPUs with accelerator cards (e.g Graphical Processing Units
- GPUs), with complex hierarchical distributed-shared memory systems. Developing numerical algorithms
that efficiently exploit such high performance computing architectures raises several challenges, especially in
the context of a massive parallelism. In this context, current efforts of the team are towards the exploitation
of multiple levels of parallelism (computing systems combining CPUs and GPUs) through the study of
hierarchical SPMD (Single Program Multiple Data) strategies for the parallelization of unstructured mesh
based solvers.

4. Application Domains

4.1. Electromagnetic wave propagation
Electromagnetic devices are ubiquitous in present day technology. Indeed, electromagnetism has found
and continues to find applications in a wide array of areas, encompassing both industrial and societal
purposes. Applications of current interest include (among others) those related to communications (e.g
transmission through optical fiber lines), to biomedical devices (e.g microwave imaging, micro-antenna
design for telemedecine, etc.), to circuit or magnetic storage design (electromagnetic compatibility, hard disc
operation), to geophysical prospecting, and to non-destructive evaluation (e.g crack detection), to name but
just a few. Equally notable and motivating are applications in defence which include the design of military
hardware with decreased signatures, automatic target recognition (e.g bunkers, mines and buried ordnance,
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etc.) propagation effects on communication and radar systems, etc. Although the principles of electromagnetics
are well understood, their application to practical configurations of current interest, such as those that arise in
connection with the examples above, is significantly complicated and far beyond manual calculation in all but
the simplest cases. These complications typically arise from the geometrical characteristics of the propagation
medium (irregular shapes, geometrical singularities), the physical characteristics of the propagation medium
(heterogeneity, physical dispersion and dissipation) and the characteristics of the sources (wires, etc.).

Although many of the above-mentioned application contexts can potentially benefit from numerical modeling
studies, the team currently concentrates its efforts on two physical situations.

4.1.1. Microwave interaction with biological tissues
Two main reasons motivate our commitment to consider this type of problem for the application of the
numerical methodologies developed in the NACHOS project-team:

• First, from the numerical modeling point of view, the interaction between electromagnetic waves
and biological tissues exhibit the three sources of complexity identified previously and are thus
particularly challenging for pushing one step forward the state-of-the art of numerical methods
for computational electromagnetics. The propagation media is strongly heterogeneous and the
electromagnetic characteristics of the tissues are frequency dependent. Interfaces between tissues
have rather complicated shapes that cannot be accurately discretized using cartesian meshes. Finally,
the source of the signal often takes the form of a complicated device (e.g a mobile phone or an
antenna array).

• Second, the study of the interaction between electromagnetic waves and living tissues is of interest
to several applications of societal relevance such as the assessment of potential adverse effects
of electromagnetic fields or the utilization of electromagnetic waves for therapeutic or diagnostic
purposes. It is widely recognized nowadays that numerical modeling and computer simulation
of electromagnetic wave propagation in biological tissues is a mandatory path for improving the
scientific knowledge of the complex physical mechanisms that characterize these applications.

Despite the high complexity both in terms of heterogeneity and geometrical features of tissues, the great
majority of numerical studies so far have been conducted using variants of the widely known FDTD method
due to Yee [48]. In this method, the whole computational domain is discretized using a structured (cartesian)
grid. Due to the possible straightforward implementation of the algorithm and the availability of computational
power, FDTD is currently the leading method for numerical assessment of human exposure to electromagnetic
waves. However, limitations are still seen, due to the rather difficult departure from the commonly used
rectilinear grid and cell size limitations regarding very detailed structures of human tissues. In this context,
the general objective of the contributions of the NACHOS project-team is to demonstrate the benefits of
high order unstructured mesh based Maxwell solvers for a realistic numerical modeling of the interaction
of electromagnetic waves and biological tissues with emphasis on applications related to numerical dosimetry.
Since the creation of the team, our works on this topic have mainly been focussed on the study of the exposure
of humans to radiations from mobile phones or wireless communication systems (see Fig. 1). This activity
has been conducted in close collaboration with the team of Joe Wiart at Orange Labs/Whist Laboratory
(http://whist.institut-telecom.fr/en/index.html) (formerly, France Telecom Research & Development) in Issy-
les-Moulineaux [8].

4.1.2. Light-matter interaction on the nanoscale
Nanostructuring of materials has opened up a number of new possibilities for manipulating and enhancing
light-matter interactions, thereby improving fundamental device properties. Low-dimensional semiconductors,
like quantum dots, enable one to catch the electrons and control the electronic properties of a material, while
photonic crystal structures allow to synthesize the electromagnetic properties. These technologies may, e.g., be
employed to make smaller and better lasers, sources that generate only one photon at a time, for applications
in quantum information technology, or miniature sensors with high sensitivity. The incorporation of metallic
structures into the medium add further possibilities for manipulating the propagation of electromagnetic
waves. In particular, this allows subwavelength localisation of the electromagnetic field and, by subwavelength

http://whist.institut-telecom.fr/en/index.html
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Figure 1. Exposure of head tissues to an electromagnetic wave emitted by a localized source. Top figures: surface
triangulations of the skin and the skull. Bottom figures: contour lines of the amplitude of the electric field.

structuring of the material, novel effects like negative refraction, e.g. enabling super lenses, may be realized.
Nanophotonics is the recently emerged, but already well defined, field of science and technology aimed at
establishing and using the peculiar properties of light and light-matter interaction in various nanostructures.
Nanophotonics includes all the phenomena that are used in optical sciences for the development of optical
devices. Therefore, nanophotonics finds numerous applications such as in optical microscopy, the design of
optical switches and electromagnetic chips circuits, transistor filaments, etc. Because of its numerous scientific
and technological applications (e.g. in relation to telecommunication, energy production and biomedicine),
nanophotonics represents an active field of research increasingly relying on numerical modeling beside
experimental studies.
Plasmonics is a related field to nanophotonics. Metallic nanostructures whose optical scattering is dominated
by the response of the conduction electrons are considered as plasmomic media. If the structure presents an
interface with e.g. a dielectric with a positive permittivity, collective oscillations of surface electrons create
surface-plasmons-polaritons (SPPs) that propagate along the interface. SPPs are guided along metal-dielectric
interfaces much in the same way light can be guided by an optical fiber, with the unique characteristic of
subwavelength-scale confinement perpendicular to the interface. Nanofabricated systems that exploit SPPs
offer fascinating opportunities for crafting and controlling the propagation of light in matter. In particular,
SPPs can be used to channel light efficiently into nanometer-scale volumes, leading to direct modification
of mode dispersion properties (substantially shrinking the wavelength of light and the speed of light pulses
for example), as well as huge field enhancements suitable for enabling strong interactions with non-linear
materials. The resulting enhanced sensitivity of light to external parameters (for example, an applied electric
field or the dielectric constant of an adsorbed molecular layer) shows great promise for applications in sensing
and switching. In particular, very promising applications are foreseen in the medical domain [40]- [49].
Numerical modeling of electromagnetic wave propagation in interaction with metallic nanostructures at optical
frequencies requires to solve the system of Maxwell equations coupled to appropriate models of physical
dispersion in the metal, such as the Drude and Drude-Lorentz models. Here again, the FDTD method is a
widely used approach for solving the resulting system of PDEs [45]. However, for nanophotonic applications,
the space and time scales, in addition to the geometrical characteristics of the considered nanostructures (or
structured layouts of the latter), are particularly challenging for an accurate and efficient application of the
FDTD method. Recently, unstructured mesh based methods have been developed and have demonstrated their
potentialities for being considered as viable alternatives to the FDTD method [43]- [44]- [38]. Since the end
of 2012, nanophotonics/plasmonics is increasingly becoming a focused application domain in the research
activities of the team in close collaboration with physicists from CNRS laboratories, and also with researchers
from international institutions.
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Figure 2. Simulation of the field enhancement at the tip of a gold bowtie nanoantenna (PhD thesis of Jonathan
Viquerat).

4.2. Elastodynamic wave propagation
Elastic wave propagation in interaction with solids are encountered in a lot of scientific and engineering con-
texts. One typical example is geoseismic wave propagation for earthquake dynamics or resource prospection.

4.2.1. Earthquake dynamics
To understand the basic science of earthquakes and to help engineers better prepare for such an event,
scientists want to identify which regions are likely to experience the most intense shaking, particularly
in populated sediment-filled basins. This understanding can be used to improve buildings in high hazard
areas and to help engineers design safer structures, potentially saving lives and property. In the absence of
deterministic earthquake prediction, forecasting of earthquake ground motion based on simulation of scenarios
is one of the most promising tools to mitigate earthquake related hazard. This requires intense modeling
that meets the spatial and temporal resolution scales of the continuously increasing density and resolution of
the seismic instrumentation, which record dynamic shaking at the surface, as well as of the basin models.
Another important issue is to improve the physical understanding of the earthquake rupture processes and
seismic wave propagation. Large-scale simulations of earthquake rupture dynamics and wave propagation are
currently the only means to investigate these multiscale physics together with data assimilation and inversion.
High resolution models are also required to develop and assess fast operational analysis tools for real time
seismology and early warning systems.

Numerical methods for the propagation of seismic waves have been studied for many years. Most of existing
numerical software rely on finite difference type methods. Among the most popular schemes, one can cite
the staggered grid finite difference scheme proposed by Virieux [46] and based on the first order velocity-
stress hyperbolic system of elastic waves equations, which is an extension of the scheme derived by Yee
[48] for the solution of the Maxwell equations. Many improvements of this method have been proposed, in
particular, higher order schemes in space or rotated staggered-grids allowing strong fluctuations of the elastic
parameters. Despite these improvements, the use of cartesian grids is a limitation for such numerical methods
especially when it is necessary to incorporate surface topography or curved interface. Moreover, in presence
of a non planar topography, the free surface condition needs very fine grids (about 60 points by minimal
Rayleigh wavelength) to be approximated. In this context, our objective is to develop high order unstructured
mesh based methods for the numerical solution of the system of elastodynamic equations for elastic media
in a first step, and then to extend these methods to a more accurate treatment of the heterogeneities of the
medium or to more complex propagation materials such as viscoelastic media which take into account the
intrinsic attenuation. Initially, the team has considered in detail the necessary methodological developments
for the large-scale simulation of earthquake dynamics [1]. More recently, the team has collaborated with CETE
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Méditerranée which is a regional technical and engineering centre whose activities are concerned with seismic
hazard assessment studies, and IFSTTAR (https://www.ifsttar.fr/en/welcome/) which is the French institute of
science and technology for transport, development and networks, conducting research studies on control over
aging, risks and nuisances.

Figure 3. Propagation of a plane wave in a heterogeneous model of Nice area (provided by CETE Méditerranée).
Left figure: topography of Nice and location of the cross-section used for numerical simulations (black line).
Middle figure: S-wave velocity distribution along the cross-section in the Nice basin. Right figure: transfer

functions (amplification) for a vertically incident plane wave ; receivers every 5 m at the surface. This numerical
simulation was performed using a numerical method for the solution of the elastodynamics equations coupled to a

Generalized Maxwell Body (GMB) model of viscoelasticity (PhD thesis of Fabien Peyrusse).

4.2.2. Seismic exploration
This application topic is considered in close collaboration with the MAGIQUE-3D project-team at Inria
Bordeaux - Sud-Ouest which is coordinating the Depth Imaging Partnership (DIP -http://dip.inria.fr) between
Inria and TOTAL. The research program of DIP includes different aspects of the modeling and numerical
simulation of sesimic wave propagation that must be considered to construct an efficient software suites
for producing accurate images of the subsurface. Our common objective with the MAGIQUE-3D project-
team is to design high order unstructured mesh based methods for the numerical solution of the system
of elastodynamic equations in the time-domain and in the frequency-domain, that will be used as forward
modelers in appropriate inversion procedures.

5. New Software and Platforms

5.1. DIOGENeS
DIscOntinuous GalErkin Nanoscale Solvers
KEYWORDS: High-Performance Computing - Computational electromagnetics - Discontinuous Galerkin -
Computational nanophotonics

https://www.ifsttar.fr/en/welcome/
http://dip.inria.fr
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FUNCTIONAL DESCRIPTION: The DIOGENeS software suite provides several tools and solvers for the nu-
merical resolution of light-matter interactions at nanometer scales. A choice can be made between time-domain
(DGTD solver) and frequency-domain (HDGFD solver) depending on the problem. The available sources, ma-
terial laws and observables are very well suited to nano-optics and nano-plasmonics (interaction with metals).
A parallel implementation allows to consider large problems on dedicated cluster-like architectures.

• Authors: Stéphane Lanteri, Nikolai Schmitt, Alexis Gobe and Jonathan Viquerat
• Contact: Stéphane Lanteri
• URL: https://diogenes.inria.fr/

5.2. GERShWIN
discontinuous GalERkin Solver for microWave INteraction with biological tissues
KEYWORDS: High-Performance Computing - Computational electromagnetics - Discontinuous Galerkin -
Computational bioelectromagnetics
FUNCTIONAL DESCRIPTION: GERShWIN is based on a high order DG method formulated on unstructured
tetrahedral meshes for solving the 3D system of time-domain Maxwell equations coupled to a Debye
dispersion model.

• Contact: Stéphane Lanteri
• URL: http://www-sop.inria.fr/nachos/index.php/Software/GERShWIN

5.3. HORSE
High Order solver for Radar cross Section Evaluation
KEYWORDS: High-Performance Computing - Computational electromagnetics - Discontinuous Galerkin
FUNCTIONAL DESCRIPTION: HORSE is based on a high order HDG (Hybridizable Discontinuous Galerkin)
method formulated on unstructured tetrahedral and hybrid structured/unstructured (cubic/tetrahedral) meshes
for the discretization of the 3D system of frequency-domain Maxwell equations, coupled to domain decom-
position solvers.

• Contact: Stéphane Lanteri
• URL: http://www-sop.inria.fr/nachos/index.php/Software/HORSE

6. New Results
6.1. Electromagnetic wave propagation
6.1.1. POD-based reduced-order DGTD method

Participants: Stéphane Lanteri, Kun Li [UESTC, Chengdu, China], Liang Li [UESTC, Chengdu, China].

This study is concerned with reduced-order modeling for time-domain electromagnetics and nanophotonics.
More precisely, we consider the applicability of the proper orthogonal decomposition (POD) technique for
the system of 3D time-domain Maxwell equations, possibly coupled to a Drude dispersion model, which
is employed to describe the interaction of light with nanometer scale metallic structures. We introduce a
discontinuous Galerkin (DG) approach for the discretization of the problem in space based on an unstructured
tetrahedral mesh. A reduced subspace with a significantly smaller dimension is constructed by a set of POD
basis vectors extracted offline from snapshots that are obtained by the global DGTD scheme with a second
order leap-frog method for time integration at a number of time levels. POD-based ROM is established by
projecting (Galerkin projection) the global semi-discrete DG scheme onto the low-dimensional space. The
stability of the POD-based ROM equipped with the second order leap-frog time scheme has been analysed
through an energy method. Numerical experiments have allowed to verify the accuracy, and demonstrate the
capabilities of the POD-based ROM. These very promising preliminary results are currently consolidated by
assessing the efficiency of the proposed POD-based ROM when applied to the simulation of 3D nanophotonic
problems.

https://diogenes.inria.fr/
http://www-sop.inria.fr/nachos/index.php/Software/GERShWIN
http://www-sop.inria.fr/nachos/index.php/Software/HORSE
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6.1.2. Numerical treatment of non-local dispersion for nanoplasmonics
Participants: Herbert de Gersem [TEMF, Technische Universität Darmstadt, Germany], Stéphane Lanteri,
Antoine Moreau [Université Clermont Auvergne], Claire Scheid, Dimitrios Loukrezis [TEMF, Technische
Universität Darmstadt, Germany], Serge Nicaise [Université de Valenciennes et du Hainaut-Cambresis], Armel
Pitelet [Université Clermont Auvergne], Nikolai Schmitt, Jonathan Viquerat.

When metallic nanostructures have sub-wavelength sizes and the illuminating frequencies are in the regime
of metal’s plasma frequency, electron interaction with the exciting fields have to be taken into account. Due
to these interactions, plasmonic surface waves (called plasmons) can be excited and cause extreme local field
enhancements. Exploiting such field enhancements in applications of interest requires a detailed knowledge
about the occurring fields which can generally not be obtained analytically. For the numerical modeling of
light-matter interaction on the nanoscale, the choice of an appropriate model is a crucial point. Approaches
that are adopted in a first instance are based on local (no interaction between electrons) dispersion models e.g.
Drude or Drude-Lorentz. From the mathematical point of view, these models lead to an additional ordinary
differential equation in time that is coupled to Maxwell’s equations. When it comes to very small structures
in a regime of 2 nm to 25 nm, non-local response due to electron collisions have to be taken into account.
This leads to additional, in general non-linear, partial differential equations and is significantly more difficult
to treat, though. The classical model is based on a hydrodynamical approach that takes non-local response
of the electrons into account. We in particular focus our attention on the linearized version of this model
called Linearized Hydrodynamical Drude model. We conducted numerical studies in 2D (published in 2016)
and 3D on a linearized hydrodynamic model (published in 2018). However differences between local and
nonlocal response are still small. Especially for today’s fabrication precision, it remains a challenging task to
find reliable structures where non-locality is dominant over e.g. geometrical errors. Motivated by trying to find
experimental setups where non-locality is clearly distinguishable from other effects, we studied two promising
structures, in close collaboration with physicists. First, in collaboration with A. Pitelet and A. Moreau from
Université Clermont Auvergne, and D. Loukrezis and H. De Gersem from Technische Universität Darmstadt,
we studied the impact of non-locality on gratings and showed that non-locality can affect surface plasmons
propagating at the interface between a metal and a dielectric with a sufficiently high permittivity. We then
design a grating coupler that should allow to experimentally observe this influence. Finally, we carefully set
up a procedure to measure the signature of spatial dispersion precisely, paving the way for future experiments.
Indeed, to ensure that the impact of non-locality exceeds geometric fabrication uncertainties, we proposed a
post-fabrication characterization of the grating coupler. Based on the solution of inverse problems leading to
the actually fabricated geometry and an uncertainty quantification (UQ) analysis, we conclude that non-locality
should clearly be measurable in the grating coupler setting. This work has been submitted in a physics journal.
Secondly in collaboration with A. Moreau we considered a nanocube setup that consists of an infinite gold
ground layer plus a dielectric spacer of a given height above which a silver nanocube is chemically deposited.
Due to this particular setting, the illumination of such a device is creating inside the gap between the nanocube
and the ground layer (i.e. inside the dielectric layer) a gap plasmon that is very sensitive to non-locality. We
proposed a surrogate-model based telemetry strategy in order to obtain the fabricated cube dimension (inverse
problem). Based on this geometric characterization, we decreased the gap-size between the gold substrate and
the silver cube and have compared local and non-local numerical simulations. We showed that the influence
of non-locality exceeds the experimental error-bars for gap-sizes below 3.1 nm. Additionally, our nonlocal
simulations are able to explain the discrepancy between the experiment and local simulations for very small
gap-sizes. This project is still ongoing, since we are waiting for another set of experimental results.

On a theoretical side, we pursue the collaboration with S. Nicaise (Université de Valenciennes et du Hainaut-
Cambresis) and proved well-posedness of the linearized non-local Drude model for various boundary con-
ditions. We furthermore focused on establishing polynomial stability with optimal energy decay rate. We
conducted a thorough study of energy stability for various numerical schemes and DG formulation using a
general framework and finally numerically investigate the discrete polynomial stability. This work is almost
finalized.

6.1.3. Study of 3D periodic structures at oblique incidences
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Figure 4. Nanosphere dimer system. Left figure sketches the dimer setup with an ex polarized incident plane wave.
Right figure shows the 3D field distribution of the electric field on the dimer surface and on a cutting plane and

along the dimer axis (PhD thesis of Nikolai Schmitt).

Participants: Claire Scheid, Nikolai Schmitt, Jonathan Viquerat.

In this work, we focus on the development of the use of periodic boundary conditions with sources at oblique
incidence in a DGTD framework. Whereas in the context of the Finite Difference Time Domain (FDTD)
methods, an abundant literature can be found, for DGTD, the amount of contributions reporting on such
methods is remarkably low. In this work, we supplement the existing references using the field transform
technique with an analysis of the continuous system using the method of characteristics and provide an
energy estimate. Furthermore, we also study the numerical stability of the resulting DGTD scheme. After
numerical validations, two realistic test problems have been considered in the context of nanophotonics with
our DIOGENeS DGTD solver. This work is under review.

6.1.4. Toward thermoplasmonics
Participants: Yves d’Angelo, Guillaume Baffou [Fresnel Institute, Marseille], Stéphane Lanteri, Claire
Scheid.

Although losses in metal is viewed as a serious drawback in many plasmonics experiments, thermoplasmonics
is the field of physics that tries to take advantage of the latter. Indeed, the strong field enhancement obtained
in nanometallic structures lead to a localized raise of the temperature in its vicinity leading to interesting
photothermal effects. Therefore, metallic nanoparticles may be used as heat sources that can be easily
integrated in various environments. This is especially appealing in the field of nanomedecine and can for
example be used for diagnosis purposes or nanosurgery to cite but just a few. This year, we initiated a
preliminary work towards this new field in collaboration with Y. D’Angelo (Université Côte d’Azur) and G.
Baffou (Fresnel Institute, Marseille) who is an expert in this field. Due to the various scales and phenomena that
come into play, the numerical modeling present great challenges. The laser illumination first excite a plasmon
oscillation (reaction of the electrons of the metal) that relaxes in a thermal equilibrium and in turn excite
the metal lattice (phonons). The latter is then responsible for heating the environment. A relevant modeling
approach thus consists in describing the electron-phonon coupling through the evolution of their respective
temperature. Maxwell’s equations is then coupled to a set of coupled nonlinear hyperbolic equations describing
the evolution of the temperatures of electrons, phonons and environment. The nonlinearities and the different
time scales at which each thermalization occurs make the numerical approximation of these equations quite
challenging.

6.1.4.1. Numerical modeling of metasurfaces
Participants: Loula Fezoui, Patrice Genevet [CRHEA laboratory, Sophia Antipolis], Stéphane Lanteri, Liang
Li [UESTC, Chengdu, China], Ronan Perrussel [Laplace laboratory, Toulouse].
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Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to
the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are
not found in nature. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of a layer
of dielectric or plasmonic nanostructures, can be readily fabricated using lithography and nanoprinting meth-
ods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses.
Metasurfaces enable a spatially varying optical response, mold optical wavefronts into shapes that can be de-
signed at will, and facilitate the integration of functional materials to accomplish active control and greatly
enhanced nonlinear response. Designing metasurfaces is generally a challenging inverse problem. A recently
introduced synthesis techniques is based on so-called General Sheet Transition Conditions (GSTC) that can
be leveraged to define the components of general bianisotropic surface susceptibility tensors characterizing
the metasurface. A GSTC-based design technique has several advantages: 1) it is exact; 2) it is general, trans-
forming arbitrary incident waves into arbitrary reflected and transmitted waves, 3) it often admits closed-form
solutions, 4) it provides deep insight into the physics of the transformations, 5) it allows multiple (at least
up to 4) simultaneous and independent transformations. We study the numerical treatment of GSTC in the
time-domain and frequency-domain regimes in the DG and HDG settings respectively.
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Figure 5. Simulation of a generalized refracting metasurface: problem formulation (left) and real part of Hy ,
refraction at θ = π/6 (right).

6.1.4.2. Corner effects in nanoplasmonics
Participants: Camille Carvalho [Applied Mathematics Department, University of California Merced, USA],
Patrick Ciarlet [ENSTA, POEMS project-team], Claire Scheid.

In this work, we study nanoplasmonic structures with corners (typically a diedral/triangular structure). This
is the central subject considered in the PhD thesis of Camille Carvalho. In the latter, the focus is made on
a lossles Drude dispersion model with a frequency-domain approach. Several well posedness problems arise
due to the presence of corners and are addressed in the PhD thesis. A time-domain approach in this context
is also relevant and we propose to use the techniques developed in the team in this prospect. Even if both
approaches (time-domain and frequency-domain) represent similar physical phenomena, problems that arise
are different. These two approaches appear as complementary; it is thus worth bridging the gap between the
two frameworks. We are currently performing a thorough comparison in the case of theses 2D structures with
corners and we especially focus on the amplitude principle limit that raises a lot of questions.

6.1.4.3. MHM methods for the time-domain Maxwell equations
Participants: Alexis Gobé, Stéphane Lanteri, Diego Paredes Concha [Instituto de Matemáticas, Universidad
Católica de Valparaiso, Chile], Claire Scheid, Frédéric Valentin [LNCC, Petropolis, Brazil].
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Although the DGTD method has already been successfully applied to complex electromagnetic wave propaga-
tion problems, its accuracy may seriously deteriorate on coarse meshes when the solution presents multiscale
or high contrast features. In other physical contexts, such an issue has led to the concept of multiscale ba-
sis functions as a way to overcome such a drawback and allow numerical methods to be accurate on coarse
meshes. The present work, which is conducted in the context of the HOMAR Associate Team, is concerned
with the study of a particular family of multiscale methods, named Multiscale Hybrid-Mixed (MHM) meth-
ods. Initially proposed for fluid flow problems, MHM methods are a consequence of a hybridization procedure
which caracterize the unknowns as a direct sum of a coarse (global) solution and the solutions to (local) prob-
lems with Neumann boundary conditions driven by the purposely introduced hybrid (dual) variable. As a
result, the MHM method becomes a strategy that naturally incorporates multiple scales while providing solu-
tions with high order accuracy for the primal and dual variables. The completely independent local problems
are embedded in the upscaling procedure, and computational approximations may be naturally obtained in a
parallel computing environment. In this study, a family of MHM methods is proposed for the solution of the
time-domain Maxwell equations where the local problems are discretized either with a continuous FE method
or a DG method (that can be viewed as a multiscale DGTD method). Preliminary results have been obtained
in the two-dimensional case.

Figure 6. Light propagation in a photonic crystal structure using a MHM-DGTD method for solving the 2D
Maxwell’s equations. Left: quadrangular mesh. Right: contour lines of the amplitude of the electric field.

6.1.4.4. MHM methods for the frequency-domain Maxwell equations
Participants: Théophile Chaumont-Frelet, Zakaria Kassali, Stéphane Lanteri, Frédéric Valentin [LNCC,
Petropolis, Brazil].

We have initiated this year a study of MHM methods for the system of frequency-domain Maxwell equations
based on very promising results recently obtained by T. Chaumont-Frelet and F. Valentin for the Helmholtz
equation. The design principles are very similar to those underlying MHM methods for the system of time-
domain Maxwell equations however we expect to achieve more convincing results for highly multiscale
problems since we do not have to deal with the time dimension in the present case. Part of this study
is conducted in the context of the PHOTOM (PHOTOvoltaic solar devices in Multiscale computational
simulations) Math-Amsud project.

6.1.4.5. HDG methods for the time-domain Maxwell equations
Participants: Stéphane Descombes, Stéphane Lanteri, Georges Nehmetallah.

This study is concerned with the development of accurate and efficient solution strategies for the system of
3D time-domain Maxwell equations coupled to local dispersion models (e.g. Debye, Drude or Drude-Lorentz
models) in the presence of locally refined meshes. Such meshes impose a constraint on the allowable time
step for explicit time integration schemes that can be very restrictive for the simulation of 3D problems.
We consider here the possibility of using an unconditionally stable implicit time or a locally implicit time
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integration scheme combined to a HDG discretization method. As a preliminary step, we have investigated a
fully explicit HDG method generalizing the classical upwind flux-based DG method for the system of time-
domain Maxwell equations. We have studied the stability of this new HDG method and in particular, the
influence of the stabilization parameter on the CFL condition. We are now progressing toward the design of a
new family of high order in time hybrid explicit-implicit HDG methods to deal efficiently with CFL restriction
due to grid-induced stiffness.

6.1.4.6. HDG methods for frequency-domain plasmonics
Participants: Stéphane Lanteri, Mostafa Javadzadeh Moghtader, Liang Li [UESTC, Chengdu, China].

HDG method is a new class of DG family with significantly less globally coupled unknowns, and can
leverage a post-processing step to gain super-convergence. Its features make HDG a possible candidate
for computational electromagnetics applications, especially in the frequency-domain. The HDG method
introduces an hybrid variable, which represents an additional unknown on each face of the mesh, and leads to
a sparse linear system in terms of the degrees of freedom of the hybrid variable only. Our HDG method had
been first introduced for the system of 3D time-harmonic Maxwell’s, combined to an iterative Schwarz domain
decomposition (DD) algorithm to allow for an efficient parallel hybrid iterative-direct solver. The resulting
DD-HDG solver has been applied to classical applications of electromagnetics in the microwave regime. In
the present study we further focus on this particular physical context and propose a arbitrary high order HDG
method for solving the system of 3D frequency-domain Maxwell equations coupled to a generalized model
of physical dispersion in metallic nanostructures at optical frequencies. Such a generalized dispersion model
unifies most common dispersion models, like Drude and Drude-Lorentz models, and it permits to fit large
range of experimental data. The resulting DD-HDG solver is capable of using different element types and
orders of approximation, hence enabling the possibilities of p-adaptivity and non-conforming meshing, and
proves to have interesting potentials for modeling of complex nanophotonic and nanoplasmonic problems.

6.2. Elastodynamic wave propagation
6.2.1. Multiscale DG methods for the time-domain elastodynamic equations

Participants: Marie-Hélène Lallemand, Claire Scheid, Weslley Da Silva Pereira [LNCC, Petropolis, Brazil],
Frédéric Valentin [LNCC, Petropolis, Brazil].

In the context of the visit of Frédéric Valentin in the team, we have initiated a study aiming at the design
of novel multiscale methods for the solution of the time-domain elastodynamic equations, in the spirit of
MHM (Multiscale Hybrid-Mixed) methods previously proposed for fluid flow problems. Motivation in that
direction naturally came when dealing with non homogeneous anisotropic elastic media as those encountered
in geodynamics related applications, since multiple scales are naturally present when high contrast elasticity
parameters define the propagation medium. Instead of solving the usual system expressed in terms of
displacement or displacement velocity, and stress tensor variables, a hybrid mixed-form is derived in which
an additional variable, the Lagrange multiplier, is sought as representing the (opposite) of the surface tension
defined at each face of the elements of a given discretization mesh. We consider the velocity/stress formulation
of the elastodynamic equations, and study a MHM method defined for a heterogeneous medium where each
elastic material is considered as isotropic to begin with. If the source term (the applied given force on the
medium) is time independent, and if we are given an arbitrarily coarse conforming mesh (triangulation in
2D, tetrahedrization in 3D), the proposed MHM method consists in first solving a series of fully decoupled
(therefore parallelizable) local (element-wise) problems defining parts of the full solution variables which
are directly related to the source term, followed by the solution of a global (coarse) problem, which yields
the degrees of freedom of both the Lagrange multiplier dependent part of the full solution variables and the
Lagrange multiplier itself. Finally, the updating of the full solution variables is obtained by adding each splitted
solution variables, before going on the next time step of a leap-frog time integration scheme. Theoretical
analysis and implementation of this MHM method where the local problems are discretized with a DG method,
are underway.
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Figure 7. Top figures: scattering of a plane wave by a 50 nm gold nanosphere: magnitude of E field at frequencies
1070 THz (left), 1185 THz (middle) and 1300 THz (right). Simulations based on a HDG-P2 method. Bottom figure:

Scattering cross section.
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6.3. High performance numerical computing
6.3.1. High order HDG schemes and domain decomposition solvers for frequency-domain

electromagnetics
Participants: Emmanuel Agullo [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Cristobal Samaniego
Alvarado [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Mathieu Faverge [HIEPACS project-team,
Inria Bordeaux - Sud-Ouest], Luc Giraud [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Matthieu
Kuhn [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Stéphane Lanteri, Grégoire Pichon [HIEPACS
project-team, Inria Bordeaux - Sud-Ouest], Pierre Ramet [HIEPACS project-team, Inria Bordeaux - Sud-
Ouest].

This work is undertaken in the context of PRACE 5IP (http://www.prace-ri.eu/prace-5ip/) project and aims at
the development of scalable frequency-domain electromagnetic wave propagation solvers, in the framework of
the HORSE simulation software. HORSE is based on a high order HDG scheme formulated on an unstructured
tetrahedral grid for the discretization of the system of three-dimensional Maxwell equations in heterogeneous
media, leading to the formulation of large sparse undefinite linear system for the hybrid variable unknowns.
This system is solved with domain decomposition strategies that can be either a purely algebraic algorithm
working at the matrix operator level (i.e. a black-box solver), or a tailored algorithm designed at the continuous
PDE level (i.e. a PDE-based solver). In the former case, we collaborate with the HIEPACS project-team at Inria
Bordeaux - Sud-Ouest in view of adapting and exploiting the MaPHyS (Massively Parallel Hybrid Solver -
https://gitlab.inria.fr/solverstack/maphys) algebraic hybrid iterative-direct domain decomposition solver. More
precisely, this collaboration is concerned with two topics: one one hand, the improvement of the iterative
convergence of MaPHyS for the HDG hybrid variable linear system and, on the other hand, the leveraging
of low rank compression techniques for reducing the memory footprint of the factorization of subdomain
problems using the PaStiX (Parallel Sparse matriX package - http://pastix.gforge.inria.fr/) package.

Figure 8. Scattering of a plane wave by a squadron Lockheed F-104 Starfighter. Contour lines of the amplitude of
E field. Simulations are performed with a HDG scheme based on a cubic interpolation of the electric and magnetic

field unknowns, combined with a PDE-based domain decomposition solver.

6.3.2. High order HDG schemes and domain decomposition solvers for frequency-domain
electromagnetics

http://www.prace-ri.eu/prace-5ip/
https://gitlab.inria.fr/solverstack/maphys
http://pastix.gforge.inria.fr/
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Participants: Stéphane Lanteri, Laércio Lima Pilla [CORSE project-team, Inria Grenoble - Rhône Alpes],
Jean-François Méhaut [CORSE project-team, Inria Grenoble - Rhône Alpes].

This work is undertaken in the context of PRACE 5IP (http://www.prace-ri.eu/prace-5ip/) project and aims
at the development of a hybrid MPI/OpenMP parallellization of the DGTD solver of the DIOGENeS
software suite. In practice, we concentrated our efforts on identifying and evaluating the best approaches
for implementing fine grain parallism of the main DG numerical kernels, based on OpenMP features for loop-
based parallelism on one hand, and task-based parallelism on the other hand.

6.4. Applications
6.4.1. Gap-plasmon confinement with gold nanocubes

Participants: Stéphane Lanteri, Antoine Moreau [Institut Pascal, Université Blaise Pascal], Armel Pitelet
[Institut Pascal, Université Blaise Pascal], Claire Scheid, Nikolai Schmitt, Jonathan Viquerat.

The propagation of light in a slit between metals is known to give rise to guided modes. When the slit is
of nanometric size, plasmonic effects must be taken into account, since most of the mode propagates inside
the metal. Indeed, light experiences an important slowing-down in the slit, the resulting mode being called
gap-plasmon. Hence, a metallic structure presenting a nanometric slit can act as a light trap, i.e. light will
accumulate in a reduced space and lead to very intense, localized fields. Recently, the chemical production
of random arrangements of nanocubes on gold films at low cost was proved possible by Antoine Moreau
and colleagues at Institut Pascal. Nanocubes are separated from the gold substrate by a dielectric spacer of
variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration
is able to support gap-plasmon modes which, once trapped, will keep bouncing back and forth inside the
cavity. At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped
electromagnetic field, turning the metallic nanocubes into efficient absorbers. The frequencies at which this
absorption occurs can be tuned by adjusting the dimensions of the nanocube and the spacer. In collaboration
with Antoine Moreau, we propose to study numerically the impact of the geometric parameters of the problem
on the behaviour of a single nanocube placed over a metallic slab (see Fig. 9).

Figure 9. Meshes of rounded nanocubes with rounding radii ranging from 2 to 10 nm. Red cells correspond to the
cube. The latter lies on the dielectric spacer (gray cells) and the metallic plate (green). Blue cells represent the air

surrounding the device.

6.4.2. Photovoltaics
The ultimate success of photovoltaic (PV) cell technology requires substantial progress in both cost reduction
and efficiency improvement. An actively studied approach to simultaneously achieve these two objectives is to
leverage light trapping schemes. Light trapping allows solar cells to absorb sunlight using an active material
layer that is much thinner than the material’s intrinsic absorption length. This then reduces the amount of
materials used in PV cells, which cuts cell cost in general, and moreover facilitates mass production of PV

http://www.prace-ri.eu/prace-5ip/
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cells that are based on less abundant materials. In addition, light trapping can improve cell efficiency, since
thinner cells provide better collection of photo-generated charge carriers. Enhancing the light absorption in
ultrathin film silicon solar cells is thus of paramount importance for improving efficiency and reducing cost.
We are involved in several studies in collaboration with physicists that aim at simulating light trapping in
complex solar cell structures using high order DG and HDG solvers developed in our core research activities.

6.4.2.1. Light-trapping in texturized thin film solar cells
Participants: Urs Aeberhard [IEK5 - Photovoltaik, Forschungszentrum Juelich GmbH, German], Karsten
Bittkau [IEK5 - Photovoltaik, Forschungszentrum Juelich GmbH, German], Alexis Gobé, Stéphane Lanteri.

This work is undertaken in the context of the EoCoE Center of Excellence in collaboration with researchers
from IEK5 - Photovoltaik, Forschungszentrum Juelich GmbH, Germany. The objective is to design a scalable
high order DGTD solver for the simulation of light trapping in a multi-layer solar cell with surface texture.
For that purpose, we rely on the DIOGENeS software suite from which we extract a high order DGTD solver
for the problem under consideration, taking into account its specificities (in particular, with regards to material
models and boundary conditions). We also need to specify and develop a dedicated preprocessing tool for
building topography conforming geometrical models. Simulations are performed on the Occigen PRACE
system at CINES.

Figure 10. Simulation of light trapping in a multi-layer solar cell with surface texture using a high order DGTD
fullwave solver and topography conforming geometrical models.

6.4.2.2. Light-trapping in nanocone gratings
Participants: Stéphane Collin [Sunlit team, C2N-CNRS, Marcoussi], Alexis Gobé, Julie Goffard [Sunlit team,
C2N-CNRS, Marcoussi], Stéphane Lanteri.

There is significant recent interest in designing ultrathin crystalline silicon solar cells with active layer thick-
ness of a few micrometers. Efficient light absorption in such thin films requires both broadband antireflection
coatings and effective light trapping techniques, which often have different design considerations. In collabo-
ration with physicists from the Sunlit team at C2N-CNRS, we conduct a numerical study of solar cells based
on nanocone gratings. Indeed, it has been previously shown that by employing a double-sided grating design,
one can separately optimize the geometries for antireflection and light trapping purposes to achieve broadband
light absorption enhancement [47]. In the present study, we adopt the nanocone grating considered in [47].
This structure contains a crystalline silicon thin film with nanocone gratings also made of silicon. The circular
nanocones form two-dimensional square lattices on both the front and the back surfaces. The film is placed
on a perfect electric conductor (PEC) mirror. The ultimate objective of this study is to devise a numerical
optimization strategy to infer optimal values of the geometrical characteristics of the nanocone grating on
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each side of the crystalline silicon thin film. Absorption characteristics are here evaluated using the high order
DGTD solver from the DIOGENeS software suite.

Figure 11. Simulation of light trapping in a solar cell based on nanocone gratings. Geometrical model (left) and
contour lines of the module of the DFT of E for a wavelength λ = 857 nm (right).

6.4.3. Inver design of metasurfaces
Participants: Régis Duvigneau [ACUMES project-team, Inria Sophia Antipolis-Méditerranée], Mahmoud
Elsawy, Patrice Genevet [CRHEA laboratory, Sophia Antipolis], Stéphane Lanteri.

Metasurfaces are flat surfaces consisting of sub-wavelength nanoresonators, made of plasmonic or high
dielectric refractive index materials patterned in a specific way. These flat surfaces provide nearly full control
of the light properties in a very short propagation distance with high resolution. By changing the dimensions,
shapes, and orientation of these nanoresonators, different functionalities can be obtained. The complexity of
the problem and the wide parameter space, make the direct modelling problem insufficient. Recently, several
optimization techniques have been applied to the field of nanophotonics (including metasurfaces) by solving
an inverse design problem. Generally speaking, there are two classes of optimization techniques that have been
used in the metasurface designs; local and global techniques. The local methods depend on the initial guess and
most of them require the computation of the gradient, which might be challenging. In addition, they are limited
to small parameter space. On the other hand, global optimization techniques are suitable for optimizing several
parameters moreover, they do not stuck in a local minima/maxima like the local methods. However, most of
the global techniques used in the metasurface designs require costly simulations (for large parameter space),
which make them inapplicable for modeling real-life designs that require 3D fullwave solvers. In this study
conducted in collaboration with physicists at CRHEA, we use two efficient global optimization techniques
based on statistical learning in order to overcome the disadvantageous of usual global optimization methods.
The first one is the covariance matrix adaptation evolutionary strategy (CMA-ES). The CMA-ES has been
gaining a lot of attention since it requires fewer cost function evaluations compared to the other evolutionary
algorithms like genetic algorithms especially for 3D problems that require expensive simulations even with the
high-performance computational resources. The second method is the Efficient Global Optimization (EGO)
algorithm. The EGO algorithm is based on the surrogate modelling, that is to say, replacing the complex
or costly evaluation process by a simpler and cheaper model to reduce dramatically the computational cost
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(number of calls for the electromagnetic simulations). Both techniques are offered by the Famosa library
(http://famosa.gforge.inria.fr), which is developed by R. Duvigneau and colleagues in the ACUMES project-
team.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. Numerical study of light absorption in a photovoltaic glass

Participants: Alexis Gobé, Badre Kerzabi [Sunpartner Technologies, Rousset], Stéphane Lanteri.

Sunpartner Technologies is a company in the field of novel technologies for a sustainable environment,
which develops innovative photovoltaic solutions dedicated to the connected object, building and transport
markets. In particular, the company is designing devices using solar energy to improve the autonomy
of connected objects such as smartphones. Supartner Technologies also offers glass modules that can be
integrated on the screen of a watch or a smart e-reader, for example. These glass modules are transparent
and integrate photovoltaic cells to recover solar energy in order to recharge the batteries. In all these products,
nanostructuring of constituent materials is an exploited strategy to maximize the absorption of sunlight. In
addition to measurement, the simulation of the interaction between light and nanostructured matter is an
important ingredient in the implementation of this strategy. As an extension of the simulation, the optimization
of nanostructuring makes it possible to explore many solutions before the design stage. In the context of this
partnership that has started this year, we aim at adapting and applying a DGTD solver from the DIOGENeS
software suite to characterize and further optimize the nanostructuring of a photovoltaic glass.

8. Partnerships and Cooperations

8.1. European Initiatives
8.1.1. FP7 & H2020 Projects
8.1.1.1. EoCoE

Title: Energy oriented Centre of Excellence for computer applications
Program: H2020
See also: https://www.eocoe.eu
Duration: October 2015 - October 2018
Coordinator: CEA
Partners:

Barcelona Supercomputing Center (Spain)
CEA (France)
CERFACS (France)
CNR (Italy)
The Cyprus Institute (Cyprus)
ENEA (Italy)
Fraunhofer–Gesellschaft (Germany)
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk (Poland)
Forschungszentrum Julich (Germany)
Max-Planck-Gesellschaft (Germany)

http://famosa.gforge.inria.fr
https://www.eocoe.eu
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University of Bath (United Kingdom)

Universite Libre de Bruxelles (Belgium)

Universita Degli Studi di Trento (Italy)

Inria contact: Michel Kern

The aim of the present proposal is to establish an Energy Oriented Centre of Excellence for
computing applications, (EoCoE). EoCoE (pronounce “Echo”) will use the prodigious potential
offered by the ever-growing computing infrastructure to foster and accelerate the European transition
to a reliable and low carbon energy supply. To achieve this goal, we believe that the present
revolution in hardware technology calls for a similar paradigm change in the way application codes
are designed. EoCoE will assist the energy transition via targeted support to four renewable energy
pillars: Meteo, Materials, Water and Fusion, each with a heavy reliance on numerical modelling.
These four pillars will be anchored within a strong transversal multidisciplinary basis providing
high-end expertise in applied mathematics and HPC. EoCoE is structured around a central Franco-
German hub coordinating a pan-European network, gathering a total of 8 countries and 23 teams.
Its partners are strongly engaged in both the HPC and energy fields; a prerequisite for the long-term
sustainability of EoCoE and also ensuring that it is deeply integrated in the overall European strategy
for HPC. The primary goal of EoCoE is to create a new, long lasting and sustainable community
around computational energy science. At the same time, EoCoE is committed to deliver high-
impact results within the first three years. It will resolve current bottlenecks in application codes,
leading to new modelling capabilities and scientific advances among the four user communities;
it will develop cutting-edge mathematical and numerical methods, and tools to foster the usage
of Exascale computing. Dedicated services for laboratories and industries will be established to
leverage this expertise and to foster an ecosystem around HPC for energy. EoCoE will give birth to
new collaborations and working methods and will encourage widely spread best practices.

8.1.1.2. PRACE 5IP

Title: PRACE Fifth Implementation Phase (PRACE-5IP) project

See also: http://www.prace-ri.eu/prace-5ip

Duration: January 2017 - April 2019

Partners: see http://www.prace-ri.eu/member-systems

Inria contact: Stéphane Lanteri

The mission of PRACE (Partnership for Advanced Computing in Europe) is to enable high-impact
scientific discovery and engineering research and development across all disciplines to enhance
European competitiveness for the benefit of society. PRACE seeks to realise this mission by offering
world class computing and data management resources and services through a peer review process.
PRACE also seeks to strengthen the European users of HPC in industry through various initiatives.
PRACE has a strong interest in improving energy efficiency of computing systems and reducing
their environmental impact. The objectives of PRACE-5IP are to build on and seamlessly continue
the successes of PRACE and start new innovative and collaborative activities proposed by the
consortium. These include: assisting the transition to PRACE2 including ananalysis of TransNational
Access; strengthening the internationally recognised PRACE brand; continuing and extend advanced
training which so far provided more than 18 800 persontraining days; preparing strategies and
best practices towards Exascale computing; coordinating and enhancing the operation of the multi-
tier HPC systems and services; supporting users to exploit massively parallel systems and novel
architectures.

8.1.1.3. EPEEC

Title: European joint effort toward a highly productive programming environment for heterogeneous
exascale computing

Program: H2020

http://www.prace-ri.eu/prace-5ip
http://www.prace-ri.eu/member-systems
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See also: https://epeec-project.eu
Duration: October 2018 - September 2021
Coordinator: Barcelona Supercomputing Center
Partner: Barcelona Supercomputing Center (Spain)
Coordinator: CEA
Partners:

Fraunhofer–Gesellschaft (Germany)
CINECA (Italy)
IMEC (Blegium)
INESC ID (Portugal)
Appentra Solutions (Spain)
Eta Scale (Sweden)
Uppsala University (Sweden)
Inria (France)
Cerfacs (France)

Inria contact: Stéphane Lanteri
EPEEC’s main goal is to develop and deploy a production-ready parallel programming environment
that turns upcoming overwhelmingly-heterogeneous exascale supercomputers into manageable plat-
forms for domain application developers. The consortium will significantly advance and integrate
existing state-of-the-art components based on European technology (programming models, runtime
systems, and tools) with key features enabling 3 overarching objectives: high coding productivity,
high performance, and energy awareness. An automatic generator of compiler directives will pro-
vide outstanding coding productivity from the very beginning of the application developing/porting
process. Developers will be able to leverage either shared memory or distributed-shared memory
programming flavours, and code in their preferred language: C, Fortran, or C++. EPEEC will ensure
the composability and interoperability of its programming models and runtimes, which will incorpo-
rate specific features to handle data-intensive and extreme-data applications. Enhanced leading-edge
performance tools will offer integral profiling, performance prediction, and visualisation of traces.
Five applications representative of different relevant scientific domains will serve as part of a strong
inter-disciplinary co-design approach and as technology demonstrators. EPEEC exploits results from
past FET projects that led to the cutting-edge software components it builds upon, and pursues in-
fluencing the most relevant parallel programming standardisation bodies.

8.2. International Initiatives
8.2.1. Participation in Other International Programs
8.2.1.1. International Initiatives

PHOTOM
Title: PHOTOvoltaic solar devices in Multiscale computational simulations
International Partners:

Center for Research in Mathematical Engineering, Universidad de Concepcion (Chile),
Rodolfo Araya
Laboratório Nacional de Computação Científica (Brazil), Frédéric Valentin
Instituto de Matemáticas, PUCV (Chile), Diego Paredes

Duration: 2018 - 2019
Start year: 2018

https://epeec-project.eu
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See also: http://www.photom.lncc.br

The work consists of devising, analyzing and implementing new multiscale finite element methods,
called Multiscale Hybrid-Mixed (MHM) method, for the Helmholtz and the Maxwell equations in
the frequency domain. The physical coefficients involved in the models contain highly heterogeneous
and/or high contrast features. The goal is to propose numerical algorithms to simulate wave
propagation in complex geometries as found in photovoltaic devices, which are naturally prompt
to be used in massively parallel computers. We demonstrate the well-posedness and establish the
optimal convergence of the MHM methods. Also, the MHM methods are shown to induce a new
face-based a posteriori error estimator to drive space adaptivity. An efficient parallel implementation
of the new multiscale algorithm assesses theoretical results and is shown to scale on a petaflop
parallel computer through academic and realistic two and three-dimensional solar cells problems.

8.2.2. Inria International Partners
8.2.2.1. Informal International Partners

Prof. Kurt Busch, Humboldt-Universität zu Berlin, Institut für Physik, Theoretical Optics & Photon-
ics

Prof. Martijn Wubs, Technical University of Denmark (DTU), Structured Electromagnetic Materials
Theory group

Dr. Urs Aeberhard and Dr. Markus Ermes, Theory and Multiscale Simulation, IEK-5 Photovoltaik,
Forschungszentrum Jülich, Germany

8.3. International Research Visitors
8.3.1. Visits of International Scientists

Prof. Liang Li, School of Mathematical Sciences, University of Electronic Science and Technology
of China, Chengdu. From July to August 2018.

Stéphane Lanteri and Théophile Chaumont-Frelet at LNCC, Petropolis, Brazil, March 12-16, 2018.

Stéphane Lanteri and Claire Scheid at UAM and CSIC, Spain, May 29-30, 2018.

Stéphane Lanteri and Claire Scheid at Humboldt-Universität zu Berlin, Berlin, Germany, July 12-13,
2018.

Stéphane Lanteri at Barcelona Supercomputing Center, Barcelona, Spain, July 23-24, 2018.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. General Chair, Scientific Chair

Stéphane Lanteri has chaired the second workshop of the CLIPhTON (advanCed numericaL modelIng for
multiscale and multiphysics nanoPhoTONics) network that took place at Humboldt-Universität zu Berlin,
Berlin, Germany, July 12-13, 2018.

http://www.photom.lncc.br
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9.1.2. Invited Talks
Claire Scheid, "A Discontinuous Galerkin Time-Domain framework for nanoplasmonics", Topical
Workshop "Computational Aspects of Time Dependent Electromagnetic Wave Problems in Complex
Materials", ICERM, Brown University, Providence, USA, June 25-29, 2018

Stéphane Lanteri, "Discontinuous Galerkin solvers for the numerical modeling of nanoscale light-
matter interactions", MATHIAS 2018 - Computational Science Engineering & Data Science by
TOTAL, Paris, October 22-24, 2018

Stéphane Lanteri, "Rigorous modeling of light absorption in nanostructured materials using a parallel
high order finite element time-domain technique", Research Center for Advanced Science and
Technology, The University of Tokyo, Japan, July, 30 2018

Stéphane Lanteri, "An upscaled DGTD method for time-domain electromagnetics", Special Session
"Multiscale and multiphysics computation and applications", Progress In Electromagnetics Research
Symposium - PIERS 2018, Toyama, Japan, August 1-4, 2018

9.1.3. Scientific Expertise
Stéphane Lanteri is a member of the Scientific Committee of CERFACS.

9.1.4. Research Administration
Stéphane Lanteri is a member of the Project-team Committee’s Bureau of the Inria Sophia Antipolis-
Méditerranée research center.

Stéphane Lanteri is a member of the Sciences Fondamentales et Appliquées Doctoral School
Committee (until December 2018).

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Stéphane Descombes, Scientific computing, M1, 36 h, Université Côte d’Azur.

Stéphane Descombes, Principal components analysis, M2, 30 h, Université Côte d’Azur.

Stéphane Lanteri, High performance scientific computing, MAM5, 24 h, Polytech Nice Sophia.

Claire Scheid, Analyse Hibertienne et analyse de Fourier, Practical works, Master 1 MPA, 36h,
Université Côte d’Azur.

Claire Scheid, Option Math 2, Licence 1, 20h, Université Côte d’Azur.

Claire Scheid, Méthodes numériques en EDP, Lectures and practical works, Master 1 MPA and IM,
63h, Université Côte d’Azur.

Claire Scheid, Option Modélisation, Lectures and practical works, Master 2 Agrégation, 48h,
Université Côte d’Azur.

Claire Scheid, Analyse, Lecture and practical works, Master 2 Agrégation, 27h, Université Côte
d’Azur.

Claire Scheid, EDP et Différences Finies, Lectures and practical works, Master 1 MPA and IM, 72h,
Université Côte d’Azur.

9.2.2. Supervision
PhD in progress: Alexis Gobé, Multiscale hybrid-mixed methods for time-domain nanophotonics,
November 2016, Stéphane Lanteri.

PhD in progress: Georges Nehmetallah, Efficient finite element type solvers for the numerical mod-
eling of light transmission in nanostructured waveguides and cavities, November 2017, Stéphane
Descombes and Stéphane Lanteri.
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PhD defened in September 2018: Nikolai Schmitt, High-order simulation and calibration strategies
for spatially dispersive metals in nanophotonics, Stéphane Lanteri and Claire Scheid.
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