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2 Activity Report INRIA 2018

Elvis Dohmatob [Inria, until Feb 2018]
Thomas Moreau [Inria, from Mar 2018]

PhD Students
Pierre Ablin [Inria]
Thomas Bazeille [Inria, from Oct 2018]
Quentin Bertrand [Inria, from Oct 2018]
Patricio Cerda Reyes [Inria]
Hamza Cherkaoui [CEA]
Jerome-Alexis Chevalier [Inria]
Kamalaker Reddy Dadi [Inria]
Jérome Dockès [Inria]
Loubna El Gueddari [Ministère de l’Enseignement Supérieur et de la Recherche]
Valentin Iovene [Inria, from Jul 2018]
Hubert Jacob Banville [Interaxon, from Sep 2018]
Maeliss Jallais [Inria, from Nov 2018]
Hicham Janati [Inria]
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Mathurin Massias [Inria]
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Kshitij Chawla [Inria, from Jul 2018]
Pierre Glaser [Inria, from Sep 2018]
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Antoine Gauthier [Inria, from Sep 2018]
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Meyer Scetbon [Ecole Normale Supérieure Cachan, from Apr 2018 until Aug 2018]
Matias Schmit [Inria, from Mar 2018 until Aug 2018]

Administrative Assistant
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Visiting Scientists
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Lang Chen [Univ. Stanford, from Dec 2018]
Guillermo Gallardo [Univ Côte d’Azur, from Dec 2018]
Matt Higger [Harvard Medical School, from Dec 2018]

External Collaborators
Sergul Aydore [Stevens Institute of Technology, until Apr 2018]
Alexandre Boucaud [CNRS, until Sep 2018]
Danilo Bzdok [Univ. Aachen, from Jul 2018]
Michael Eickenberg [Univ. Berkeley]
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2. Overall Objectives

2.1. Overall Objectives
The Parietal team focuses on mathematical methods for modeling and statistical inference based on neu-
roimaging data, with a particular interest in machine learning techniques and applications of human functional
imaging. This general theme splits into four research axes:
• Modeling for neuroimaging population studies,
• Encoding and decoding models for cognitive imaging,
• Statistical and machine learning methods for large-scale data,
• Compressed-sensing for MRI.

Parietal is also strongly involved in open-source software development in scientific Python (machine learning)
and for neuroimaging applications.

3. Research Program

3.1. Inverse problems in Neuroimaging
Many problems in neuroimaging can be framed as forward and inverse problems. For instance, brain
population imaging is concerned with the inverse problem that consists in predicting individual information
(behavior, phenotype) from neuroimaging data, while the corresponding forward problem boils down to
explaining neuroimaging data with the behavioral variables. Solving these problems entails the definition
of two terms: a loss that quantifies the goodness of fit of the solution (does the model explain the data well
enough?), and a regularization scheme that represents a prior on the expected solution of the problem. These
priors can be used to enforce some properties on the solutions, such as sparsity, smoothness or being piece-wise
constant.
Let us detail the model used in typical inverse problem: Let X be a neuroimaging dataset as an
(nsubjects, nvoxels) matrix, where nsubjects and nvoxels are the number of subjects under study, and
the image size respectively, Y a set of values that represent characteristics of interest in the observed
population, written as (nsubjects, nfeatures) matrix, where nfeatures is the number of characteristics that are
tested, and w an array of shape (nvoxels, nfeatures) that represents a set of pattern-specific maps. In the first
place, we may consider the columns Y1, ..,Ynfeatures

of Y independently, yielding nfeatures problems to be
solved in parallel:

Yi = Xwi + εi,∀i ∈ {1, .., nfeatures},
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where the vector contains wi is the ith row of w. As the problem is clearly ill-posed, it is naturally handled in
a regularized regression framework:

ŵi = argminwi
‖Yi −Xwi‖2 + Ψ(wi), (1)

where Ψ is an adequate penalization used to regularize the solution:

Ψ(w;λ1, λ2, η1, η2) = λ1‖w‖1 + λ2‖w‖2 + η1‖∇w‖2,1 + η2‖∇w‖2,2 (2)

with λ1, λ2, η1, η2 ≥ 0 (this formulation particularly highlights the fact that convex regularizers are norms or
quasi-norms). In general, only one or two of these constraints is considered (hence is enforced with a non-zero
coefficient):

• When λ1 > 0 only (LASSO), and to some extent, when λ1, λ2 > 0 only (elastic net), the optimal
solution w is (possibly very) sparse, but may not exhibit a proper image structure; it does not fit well
with the intuitive concept of a brain map.

• Total Variation regularization (see Fig. 1) is obtained for (η1 > 0 only), and typically yields a piece-
wise constant solution. It can be associated with Lasso to enforce both sparsity and sparse variations.

• Smooth lasso is obtained with (η2 > 0 and λ1 > 0 only), and yields smooth, compactly supported
spatial basis functions.

Note that, while the qualitative aspect of the solutions are very different, the predictive power of these models
is often very close.

Figure 1. Example of the regularization of a brain map with total variation in an inverse problem. The problem here
is to predict the spatial scale of an object presented as a stimulus, given functional neuroimaging data acquired

during the presentation of an image. Learning and test are performed across individuals. Unlike other approaches,
Total Variation regularization yields a sparse and well-localized solution that also enjoys high predictive accuracy.

The performance of the predictive model can simply be evaluated as the amount of variance in Yi fitted by
the model, for each i ∈ {1, .., nfeatures}. This can be computed through cross-validation, by learning ŵi on
some part of the dataset, and then estimating ‖Yi −Xŵi‖2 using the remainder of the dataset.
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This framework is easily extended by considering

• Grouped penalization, where the penalization explicitly includes a prior clustering of the features, i.e.
voxel-related signals, into given groups. This amounts to enforcing structured priors on the solution.

• Combined penalizations, i.e. a mixture of simple and group-wise penalizations, that allow some vari-
ability to fit the data in different populations of subjects, while keeping some common constraints.

• Logistic and hinge regression, where a non-linearity is applied to the linear model so that it yields a
probability of classification in a binary classification problem.

• Robustness to between-subject variability to avoid the learned model overly reflecting a few outlying
particular observations of the training set. Note that noise and deviating assumptions can be present
in both Y and X

• Multi-task learning: if several target variables are thought to be related, it might be useful to constrain
the estimated parameter vector w to have a shared support across all these variables.
For instance, when one of the variables Yi is not well fitted by the model, the estimation of other
variables Yj , j 6= i may provide constraints on the support of wi and thus, improve the prediction
of Yi.

Y = Xw + ε, (3)

then

ŵ = argminw=(wi),i=1..nf

nf∑
i=1

‖Yi −Xwi‖2 + λ

nvoxels∑
j=1

√√√√ nf∑
i=1

w2
i,j (4)

3.2. Multivariate decompositions
Multivariate decompositions provide a way to model complex data such as brain activation images: for
instance, one might be interested in extracting an atlas of brain regions from a given dataset, such as regions
exhibiting similar activity during a protocol, across multiple protocols, or even in the absence of protocol
(during resting-state). These data can often be factorized into spatial-temporal components, and thus can be
estimated through regularized Principal Components Analysis (PCA) algorithms, which share some common
steps with regularized regression.
Let X be a neuroimaging dataset written as an (nsubjects, nvoxels) matrix, after proper centering; the model
reads

X = AD + ε, (5)

where D represents a set of ncomp spatial maps, hence a matrix of shape (ncomp, nvoxels), and A the
associated subject-wise loadings. While traditional PCA and independent components analysis (ICA) are
limited to reconstructing components D within the space spanned by the column of X, it seems desirable
to add some constraints on the rows of D, that represent spatial maps, such as sparsity, and/or smoothness,
as it makes the interpretation of these maps clearer in the context of neuroimaging. This yields the following
estimation problem:

minD,A‖X−AD‖2 + Ψ(D) s.t. ‖Ai‖ = 1 ∀i ∈ {1..nfeatures}, (6)

where (Ai), i ∈ {1..nfeatures} represents the columns of A. Ψ can be chosen such as in Eq. (2) in order to
enforce smoothness and/or sparsity constraints.
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The problem is not jointly convex in all the variables but each penalization given in Eq (2) yields a convex
problem on D for A fixed, and conversely. This readily suggests an alternate optimization scheme, where D
and A are estimated in turn, until convergence to a local optimum of the criterion. As in PCA, the extracted
components can be ranked according to the amount of fitted variance. Importantly, also, estimated PCA models
can be interpreted as a probabilistic model of the data, assuming a high-dimensional Gaussian distribution
(probabilistic PCA).

Ultimately, the main limitations to these algorithms is the cost due to the memory requirements: holding
datasets with large dimension and large number of samples (as in recent neuroimaging cohorts) leads to
inefficient computation. To solve this issue, online methods are particularly attractive [24].

3.3. Covariance estimation
Another important estimation problem stems from the general issue of learning the relationship between sets
of variables, in particular their covariance. Covariance learning is essential to model the dependence of these
variables when they are used in a multivariate model, for instance to study potential interactions among them
and with other variables. Covariance learning is necessary to model latent interactions in high-dimensional
observation spaces, e.g. when considering multiple contrasts or functional connectivity data.
The difficulties are two-fold: on the one hand, there is a shortage of data to learn a good covariance model from
an individual subject, and on the other hand, subject-to-subject variability poses a serious challenge to the use
of multi-subject data. While the covariance structure may vary from population to population, or depending
on the input data (activation versus spontaneous activity), assuming some shared structure across problems,
such as their sparsity pattern, is important in order to obtain correct estimates from noisy data. Some of the
most important models are:
• Sparse Gaussian graphical models, as they express meaningful conditional independence relation-

ships between regions, and do improve conditioning/avoid overfit.
• Decomposable models, as they enjoy good computational properties and enable intuitive interpre-

tations of the network structure. Whether they can faithfully or not represent brain networks is still
an open question.

• PCA-based regularization of covariance which is powerful when modes of variation are more
important than conditional independence relationships.

Adequate model selection procedures are necessary to achieve the right level of sparsity or regularization
in covariance estimation; the natural evaluation metric here is the out-of-sample likelihood of the associated
Gaussian model. Another essential remaining issue is to develop an adequate statistical framework to test
differences between covariance models in different populations. To do so, we consider different means of
parametrizing covariance distributions and how these parametrizations impact the test of statistical differences
across individuals.

4. Application Domains
4.1. Cognitive neuroscience
4.1.1. Macroscopic Functional cartography with functional Magnetic Resonance Imaging

(fMRI)
The brain as a highly structured organ, with both functional specialization and a complex network organi-
zation. While most of the knowledge historically comes from lesion studies and animal electophysiological
recordings, the development of non-invasive imaging modalities, such as fMRI, has made it possible to study
routinely high-level cognition in humans since the early 90’s. This has opened major questions on the in-
terplay between mind and brain , such as: How is the function of cortical territories constrained by anatomy
(connectivity) ? How to assess the specificity of brain regions ? How can one characterize reliably inter-subject
differences ?
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Figure 2. Example of functional connectivity analysis: The correlation matrix describing brain functional
connectivity in a post-stroke patient (lesion volume outlined as a mesh) is compared to a group of control subjects.

Some edges of the graphical model show a significant difference, but the statistical detection of the difference
requires a sophisticated statistical framework for the comparison of graphical models.

4.1.2. Analysis of brain Connectivity
Functional connectivity is defined as the interaction structure that underlies brain function. Since the beginning
of fMRI, it has been observed that remote regions sustain high correlation in their spontaneous activity, i.e.
in the absence of a driving task. This means that the signals observed during resting-state define a signature
of the connectivity of brain regions. The main interest of resting-state fMRI is that it provides easy-to-acquire
functional markers that have recently been proved to be very powerful for population studies.

4.1.3. Modeling of brain processes (MEG)
While fMRI has been very useful in defining the function of regions at the mm scale, Magneto-
encephalography (MEG) provides the other piece of the puzzle, namely temporal dynamics of brain
activity, at the ms scale. MEG is also non-invasive. It makes it possible to keep track of precise schedule of
mental operations and their interactions. It also opens the way toward a study of the rhythmic activity of the
brain. On the other hand, the localization of brain activity with MEG entails the solution of a hard inverse
problem.

4.1.4. Current challenges in human neuroimaging (acquisition+analysis)
Human neuroimaging targets two major goals: i) the study of neural responses involved in sensory, motor
or cognitive functions, in relation to models from cognitive psychology, i.e. the identification of neurophys-
iological and neuroanatomical correlates of cognition; ii) the identification of markers in brain structure and
function of neurological or psychiatric diseases. Both goals have to deal with a tension between
• the search for higher spatial 1 resolution to increase spatial specificity of brain signals, and clarify

the nature (function and structure) of brain regions. This motivates efforts for high-field imaging and
more efficient acquisitions, such as compressed sensing schemes, as well as better source localization
methods from M/EEG data.

• the importance of inferring brain features with population-level validity, hence, contaminated with
high variability within observed cohorts, which blurs the information at the population level and
ultimately limits the spatial resolution of these observations.

Importantly, the signal-to-noise ratio (SNR) of the data remains limited due to both resolution improvements
2 and between-subject variability. Altogether, these factors have led to realize that results of neuroimaging
studies were statistically weak, i.e. plagued with low power and leading to unreliable inference [70], and

1and to some extent, temporal, but for the sake of simplicity we focus here on spatial aspects.
2The SNR of the acquired signal is proportional to the voxel size, hence an improvement by a factor of 2 in image resolution along

each dimension is payed by a factor of 8 in terms of SNR.
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particularly so due to the typically number of subjects included in brain imaging studies (20 to 30, this number
tends to increase [71]): this is at the core of the neuroimaging reproducibility crisis. This crisis is deeply related
to a second issue, namely that only few neuroimaging datasets are publicly available, making it impossible to
re-assess a posteriori the information conveyed by the data. Fortunately, the situation improves, lead by projects
such as NeuroVault or OpenfMRI. A framework for integrating such datasets is however still missing.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

• Pierre Ablin got a best student paper award at the LVA-ICA conference for his paper [34].

• First PhD prize from STIC doctoral school for Tom Dupré la Tour.

6. New Software and Platforms

6.1. Mayavi
FUNCTIONAL DESCRIPTION: Mayavi is the most used scientific 3D visualization Python software. Mayavi
can be used as a visualization tool, through interactive command line or as a library. It is distributed under
Linux through Ubuntu, Debian, Fedora and Mandriva, as well as in PythonXY and EPD Python scientific
distributions. Mayavi is used by several software platforms, such as PDE solvers (fipy, sfepy), molecule
visualization tools and brain connectivity analysis tools (connectomeViewer).

• Contact: Gaël Varoquaux

• URL: http://mayavi.sourceforge.net/

6.2. MedInria
KEYWORDS: Visualization - DWI - Health - Segmentation - Medical imaging
SCIENTIFIC DESCRIPTION: medInria aims at creating an easily extensible platform for the distribution of
research algorithms developed at Inria for medical image processing. This project has been funded by the
D2T (ADT MedInria-NT) in 2010, renewed in 2012. A fast-track ADT was awarded in 2017 to transition
the software core to more recent dependencies and study the possibility of a consortium creation.The Visages
team leads this Inria national project and participates in the development of the common core architecture and
features of the software as well as in the development of specific plugins for the team’s algorithm.
FUNCTIONAL DESCRIPTION: MedInria is a free software platform dedicated to medical data visualization
and processing.

• Participants: Maxime Sermesant, Olivier Commowick and Théodore Papadopoulo

• Partners: HARVARD Medical School - IHU - LIRYC - NIH

• Contact: Olivier Commowick

• URL: http://med.inria.fr

6.3. Nilearn
NeuroImaging with scikit learn
KEYWORDS: Health - Neuroimaging - Medical imaging

http://neurovault.org
http://openfmri.org
http://mayavi.sourceforge.net/
http://med.inria.fr
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FUNCTIONAL DESCRIPTION: NiLearn is the neuroimaging library that adapts the concepts and tools of scikit-
learn to neuroimaging problems. As a pure Python library, it depends on scikit-learn and nibabel, the main
Python library for neuroimaging I/O. It is an open-source project, available under BSD license. The two key
components of NiLearn are i) the analysis of functional connectivity (spatial decompositions and covariance
learning) and ii) the most common tools for multivariate pattern analysis. A great deal of efforts has been put
on the efficiency of the procedures both in terms of memory cost and computation time.

• Participants: Alexandre Abraham, Alexandre Gramfort, Bertrand Thirion, Elvis Dohmatob, Fabian
Pedregosa Izquierdo, Gaël Varoquaux, Loïc Estève, Michael Eickenberg and Virgile Fritsch

• Contact: Bertrand Thirion

• URL: http://nilearn.github.io/

6.4. PyHRF
KEYWORDS: Medical imaging - Health - Brain - IRM - Neurosciences - Statistic analysis - FMRI
SCIENTIFIC DESCRIPTION: Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging technique
that allows the non-invasive study of brain function. It is based on the hemodynamic variations induced
by changes in cerebral synaptic activity following sensory or cognitive stimulation. The measured signal
depends on the variation of blood oxygenation level (BOLD signal) which is related to brain activity: a
decrease in deoxyhemoglobin concentration induces an increase in BOLD signal. The BOLD signal is delayed
with respect to changes in synaptic activity, which can be modeled as a convolution with the Hemodynamic
Response Function (HRF) whose exact form is unknown and fluctuates with various parameters such as age,
brain region or physiological conditions. In this work we propose to analyze fMRI data using a Joint Detection-
Estimation (JDE) approach. It jointly detects cortical activation and estimates the HRF. In contrast to existing
tools, PyHRF estimates the HRF instead of considering it as a given constant in the entire brain.
FUNCTIONAL DESCRIPTION: As part of fMRI data analysis, PyHRF provides a set of tools for addressing
the two main issues involved in intra-subject fMRI data analysis : (i) the localization of cerebral regions that
elicit evoked activity and (ii) the estimation of the activation dynamics also referenced to as the recovery of
the Hemodynamic Response Function (HRF). To tackle these two problems, PyHRF implements the Joint
Detection-Estimation framework (JDE) which recovers parcel-level HRFs and embeds an adaptive spatio-
temporal regularization scheme of activation maps.
NEWS OF THE YEAR: The framework to perform software tests has been further developed. Some unitary
tests have been set.

• Participants: Aina Frau Pascual, Christine Bakhous, Florence Forbes, Jaime Eduardo Arias Almeida,
Laurent Risser, Lotfi Chaari, Philippe Ciuciu, Solveig Badillo, Thomas Perret and Thomas Vincent

• Partners: CEA - NeuroSpin

• Contact: Florence Forbes

• Publications: Frontiers in Neuroinformatics Flexible multivariate hemodynamics fMRI data analyses
and simulations with PyHRF - Fast joint detection-estimation of evoked brain activity in event-
related fMRI using a variational approach - A Bayesian Non-Parametric Hidden Markov Random
Model for Hemodynamic Brain Parcellation

• URL: http://pyhrf.org

6.5. Scikit-learn
KEYWORDS: Regession - Clustering - Learning - Classification - Medical imaging
SCIENTIFIC DESCRIPTION: Scikit-learn is a Python module integrating classic machine learning algorithms in
the tightly-knit scientific Python world. It aims to provide simple and efficient solutions to learning problems,
accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and
engineering.

http://nilearn.github.io/
https://hal.inria.fr/hal-01084249
https://hal.inria.fr/hal-01084249
https://hal.inria.fr/inserm-00753873
https://hal.inria.fr/inserm-00753873
https://hal.inria.fr/hal-01426385
https://hal.inria.fr/hal-01426385
http://pyhrf.org
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FUNCTIONAL DESCRIPTION: Scikit-learn can be used as a middleware for prediction tasks. For example,
many web startups adapt Scikitlearn to predict buying behavior of users, provide product recommendations,
detect trends or abusive behavior (fraud, spam). Scikit-learn is used to extract the structure of complex data
(text, images) and classify such data with techniques relevant to the state of the art.

Easy to use, efficient and accessible to non datascience experts, Scikit-learn is an increasingly popular machine
learning library in Python. In a data exploration step, the user can enter a few lines on an interactive (but
non-graphical) interface and immediately sees the results of his request. Scikitlearn is a prediction engine .
Scikit-learn is developed in open source, and available under the BSD license.

• Participants: Alexandre Gramfort, Bertrand Thirion, Fabian Pedregosa Izquierdo, Gaël Varoquaux,
Loïc Estève, Michael Eickenberg and Olivier Grisel

• Partners: CEA - Logilab - Nuxeo - Saint Gobain - Tinyclues - Telecom Paris

• Contact: Olivier Grisel

• URL: http://scikit-learn.org

6.6. MODL
Massive Online Dictionary Learning
KEYWORDS: Pattern discovery - Machine learning
FUNCTIONAL DESCRIPTION: Matrix factorization library, usable on very large datasets, with optional sparse
and positive factors.

• Participants: Arthur Mensch, Gaël Varoquaux, Bertrand Thirion and Julien Mairal

• Contact: Arthur Mensch

• Publications: Subsampled online matrix factorization with convergence guarantees - Stochastic
Subsampling for Factorizing Huge Matrices

• URL: http://github.com/arthurmensch/modl

6.7. MNE
MNE-Python
KEYWORDS: Neurosciences - EEG - MEG - Signal processing - Machine learning
FUNCTIONAL DESCRIPTION: Open-source Python software for exploring, visualizing, and analyzing human
neurophysiological data: MEG, EEG, sEEG, ECoG, and more.

RELEASE FUNCTIONAL DESCRIPTION: http://martinos.org/mne/stable/what_new.html

• Partners: HARVARD Medical School - New York University - University of Washington - CEA -
Aalto university - Telecom Paris - Boston University - UC Berkeley

• Contact: Alexandre Gramfort

• URL: http://martinos.org/mne/

http://scikit-learn.org
https://hal.inria.fr/hal-01405058
https://hal.inria.fr/hal-01431618v3
https://hal.inria.fr/hal-01431618v3
http://github.com/arthurmensch/modl
http://martinos.org/mne/
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7. New Results

7.1. Reducing the number of samples in spatiotemporal dMRI acquisition
design
Acquisition time is a major limitation in recovering brain white matter microstructure with diffusion magnetic
resonance imaging. The aim of this work is to bridge the gap between growing demands on spatio-temporal
resolution of diffusion signal and the real-world time limitations. We introduce an acquisition scheme that
reduces the number of samples under adjustable quality loss. Finding a sampling scheme that maximizes
signal quality and satisfies given time constraints is NP-hard. Therefore, a heuristic method based on genetic
algorithm is proposed in order to find sub-optimal solutions in acceptable time. The analyzed diffusion signal
representation is defined in the qτ space, so that it captures both spacial and temporal phenomena. The
experiments on synthetic data and in vivo diffusion images of the C57Bl6 wild-type mouse corpus callosum
reveal the superiority of the proposed approach over random sampling and even distribution in the qτ space.
The use of genetic algorithm allows to find acquisition parameters that guarantee high signal reconstruction
accuracy under given time constraints. In practice, the proposed approach helps to accelerate the acquisition
for the use of q-dMRI signal representation.

More information can be found in [12]

7.2. Robust EEG-based cross-site and cross-protocol classification of states of
consciousness
Determining the state-of-consciousness in patients with disorders-of-consciousness (DOC) is a challenging
practical and theoretical problem. Recent findings suggest that multiple markers of brain activity extracted
from the electroencephalogram (EEG) may index the state of consciousness in the human brain. Furthermore,
machine learning has been found to optimize their capacity to discriminate different states of consciousness
in clinical practice. However, it is unknown how dependable these EEG-markers are in the face of signal
variability due to different EEG-configurations, EEG-protocols and subpopulations from different centers
encountered in practice. In our recent paper [11] we addressed the following questions: What is the impact of
the EEG configuration (selection of sensors, duration of EEG used)? Do models based on current EEG-markers
achieve prospective generalization on independent data from other EEG protocols and other hospitals? Are
single markers sufficiently powerful and when does multivariate classification provide the clearest advantage?
For summary of methods and approahc see Figure4. Our results highlight the effectiveness of classical well-
studied EEG-signatures such as alpha [8-12Hz] and theta [5-7Hz] frequency band oscillations for detecting
consciousness when combined with machine learning. While univariate predictive models achieved good
performance, multivariate models showed better generalization capacity and increased robustness to different
types of noise while mitigating the impact of the EEG-configuration. Our findings suggest that pooling data
over multiple centers for predictive modeling of DOC is a concrete possibility and can become a promising
alley for the field of cognitive neurology.

7.3. A deep learning architecture for temporal sleep stage classification using
multivariate and multimodal time series
Sleep stage classification constitutes an important preliminary exam in the diagnosis of sleep disorders. It is
traditionally performed by a sleep expert who assigns to each 30 s of signal a sleep stage, based on the visual
inspection of signals such as electroencephalograms (EEG), electrooculograms (EOG), electrocardiograms
(ECG) and electromyograms (EMG). We introduce here the first deep learning approach for sleep stage
classification that learns end-to-end without computing spectrograms or extracting hand-crafted features, that
exploits all multivariate and multimodal Polysomnography (PSG) signals (EEG, EMG and EOG), and that
can exploit the temporal context of each 30 s window of data. For each modality the first layer learns linear



12 Activity Report INRIA 2018

Figure 3. Exhaustive search results of the optimization by shells for the in silico experiment with nmax = 100. The
plots at the top present all the 658,008 feasible acquisition schemes arranged from best to worst, illustrating the
mean squared errors (MSEs) of signal reconstruction (top-left plot) and the normalized Hamming distances from

the global optimum ± 1 standard deviation (top-right). In order to visualize the analyzed (G, ∆) parameter space,
the percentiles pc = 0%, 1%, 10%, 50%, 90% are annotated on both plots, showing respectively the global

optimum, the top 1% solutions, the top 10% solutions, etc. The corresponding cumulative averages of acquisition
schemes are depicted in the heat maps at the bottom. The colors reflect the likelihood of a given (G, ∆) pair in the
scheme. The heat maps for pc ≤ 0% and pc ≤ 1% represent, respectively, the global optimum and its proximity.

The interval between pc = 10% and pc = 90% contains a huge spectrum of schemes with similar MSEs and almost
equally large distances from the global optimum.
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Figure 4. We probed the robustness and validity of EEG-markers of consciousness. Using the robust Extra-Trees
algorithm (Geurts, Ernst, & Wehenkel, 2006) we developed a classifier trained to differentiate UWS from MCS

patients. This classifier (named “DOC-forest”) was trained and tested using 28 potential EEG-markers of
consciousness (112 features) from 249 patients recorded at the Paris Pitié-Salpêtrière and 78 patients from the

University Hospital of Liège. We used the MNE-Python software for EEG processing and the scikit-learn package
for machine learning. Our results show that optimally combining multiple EEG-markers of states of consciousness
using machine learning enables robust generalization across EEG-configurations, EEG-protocols and sites. Our

recipe for extracting biomarkers is available on Github: https://nice-tools.github.io/nice. For a neuroscientific
discussion of our work see the accompanying commentary article by Sokoliuk and Cruse

(https://doi.org/10.1093/brain/awy267).

https://nice-tools.github.io/nice
https://doi.org/10.1093/brain/awy267
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spatial filters that exploit the array of sensors to increase the signal-to-noise ratio, and the last layer feeds the
learnt representation to a softmax classifier. Our model is compared to alternative automatic approaches based
on convolutional networks or decisions trees. Results obtained on 61 publicly available PSG records with up
to 20 EEG channels demonstrate that our network architecture yields state-of-the-art performance. Our study
reveals a number of insights on the spatio-temporal distribution of the signal of interest: a good trade-off
for optimal classification performance measured with balanced accuracy is to use 6 EEG with 2 EOG (left
and right) and 3 EMG chin channels. Also exploiting one minute of data before and after each data segment
offers the strongest improvement when a limited number of channels is available. As sleep experts, our system
exploits the multivariate and multimodal nature of PSG signals in order to deliver state-of-the-art classification
performance with a small computational cost.

Figure 5. Time distributed architecture to process a sequence of inputs Sk
t = {Xt−k, · · · , Xt, · · · , Xt+k} with k =

1. Xk stands for the multivariate input data over 30 s that is fed into the feature extractor Z. Features are extracted
from consecutive 30 s samples: Xt−k, ..., Xt, ..., Xt+k. Then the obtained features are aggregated

[zt−k, · · · , zt, · · · , zt+k]. The resulting aggregation of features is finally fed into a classifier to predict the label yt
associated with the sample Xt.

More information can be found in [8].

7.4. Individual Brain Charting, a high-resolution fMRI dataset for cognitive
mapping
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Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well
as higher-level cognitive functions. However, to date, no data collection has systematically addressed the
functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC)
project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward
a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing
many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the
underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed
description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high-
level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive
brain mapping.

More information can be found in [25]

7.5. Atlases of cognition with large-scale brain mapping
To map the neural substrate of mental function, cognitive neuroimaging relies on controlled psychological
manipulations that engage brain systems associated with specific cognitive processes. In order to build
comprehensive atlases of cognitive function in the brain, it must assemble maps for many different cognitive
processes, which often evoke overlapping patterns of activation. Such data aggregation faces contrasting goals:
on the one hand finding correspondences across vastly different cognitive experiments, while on the other hand
precisely describing the function of any given brain region. Here we introduce a new analysis framework
that tackles these difficulties and thereby enables the generation of brain atlases for cognitive function.
The approach leverages ontologies of cognitive concepts and multi-label brain decoding to map the neural
substrate of these concepts. We demonstrate the approach by building an atlas of functional brain organization
based on 30 diverse functional neuroimaging studies, totaling 196 different experimental conditions. Unlike
conventional brain mapping, this functional atlas supports robust reverse inference: predicting the mental
processes from brain activity in the regions delineated by the atlas. To establish that this reverse inference
is indeed governed by the corresponding concepts, and not idiosyncrasies of experimental designs, we show
that it can accurately decode the cognitive concepts recruited in new tasks. These results demonstrate that
aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations
between brain and cognition.

More information can be found in [28].

7.6. Celer: a Fast Solver for the Lasso with Dual Extrapolation
Convex sparsity-inducing regularizations are ubiquitous in high-dimensional machine learning, but solving
the resulting optimization problems can be slow. To accelerate solvers, state-of-the-art approaches consist
in reducing the size of the optimization problem at hand. In the context of regression, this can be achieved
either by discarding irrelevant features (screening techniques) or by prioritizing features likely to be included
in the support of the solution (working set techniques). Convex duality comes into play at several steps in
these techniques. Here, we propose an extrapolation technique starting from a sequence of iterates in the dual
that leads to the construction of improved dual points. This enables a tighter control of optimality as used in
stopping criterion, as well as better screening performance of Gap Safe rules. Finally, we propose a working
set strategy based on an aggressive use of Gap Safe screening rules. Thanks to our new dual point construction,
we show significant computational speedups on multiple real-world problems compared to alternative state-
of-the-art coordinate descent solvers.

More information can be found in [54]. Code can be found at https://mathurinm.github.io/celer/.

7.7. Multivariate Convolutional Sparse Coding for Electromagnetic Brain
Signals
Frequency-specific patterns of neural activity are traditionally interpreted as sustained rhythmic oscillations,
and related to cognitive mechanisms such as attention, high level visual processing or motor control. While

https://mathurinm.github.io/celer/
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Figure 6. Overview of information conveyed by activation maps resulting from a first-level analysis. (top) Global
effects of experimental subject condition, and phase-encoding direction. A per-voxel ANOVA breaks the variance of
the set of brain maps into subject, experimental condition, and phase-encoding direction values. All maps are given

in z-scale and thresholded at an FDR level of 0.05. (Bottom) Focusing on condition effect, the similarity between
condition-related maps, averaged across subjects (left) is clearly related to the dissimilarity of the conditions, when

these are characterized in terms of the Cognitive Atlas (right).
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Figure 7. Different functional atlases – Regions outlined using different functional mapping approaches, from left to
right: a. forward term mapping; b. forward inference with ontology contrasts (standard analysis); c. reverse

inference with logistic regression; d. NeuroSynth reverse inference; and e. our approach, mapping with decoding
and an ontology. The top part shows visual regions, and the lower one auditory regions in the left hemisphere.

Forward term mapping outlines overlapping regions, as brain responses capture side effects such as the stimulus
modality: for visual and auditory regions every cognitive term is represented in the corresponding primary cortex.
Forward mapping using contrasts removes the overlap in primary regions, but a large overlap persists in mid-level
regions, as control conditions are not well matched across studies. Standard reverse inference, specific to a term,
creates overly sparse regions though with little overlap. Reverse inference with Neurosynth also displays large

overlap in mid-level regions. Finally, ontology-based decoding maps recover known functional areas the visual and
auditory cortices.
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Figure 8. Times to solve the Lasso path to precision ε for 100 values of λ, from λmax to λmax/100, on the Finance
data. CELER outperforms BLITZ . Both safe and prune versions behave similarly.

alpha waves (8–12 Hz) are known to closely resemble short sinusoids, and thus are revealed by Fourier analysis
or wavelet transforms, there is an evolving debate that electromagnetic neural signals are composed of more
complex waveforms that cannot be analyzed by linear filters and traditional signal representations. In this work,
we propose to learn dedicated representations of such recordings using a multivariate convolutional sparse
coding (CSC) algorithm. Applied to electroencephalography (EEG) or magnetoencephalography (MEG) data,
this method is able to learn not only prototypical temporal waveforms, but also associated spatial patterns so
their origin can be localized in the brain. Our algorithm is based on alternated minimization and a greedy
coordinate descent solver that leads to state-of-the-art running time on long time series. To demonstrate the
implications of this method, we apply it to MEG data and show that it is able to recover biological artifacts.
More remarkably, our approach also reveals the presence of non-sinusoidal mu-shaped patterns, along with
their topographic maps related to the somatosensory cortex.

More information can be found in [52]. Code can be found at https://alphacsc.github.io/.

7.8. Stochastic Subsampling for Factorizing Huge Matrices
We present a matrix-factorization algorithm that scales to input matrices with both huge number of rows and
columns. Learned factors may be sparse or dense and/or non-negative, which makes our algorithm suitable for
dictionary learning, sparse component analysis, and non-negative matrix factorization. Our algorithm streams
matrix columns while subsampling them to iteratively learn the matrix factors. At each iteration, the row
dimension of a new sample is reduced by subsampling, resulting in lower time complexity compared to a
simple streaming algorithm. Our method comes with convergence guarantees to reach a stationary point of
the matrix-factorization problem. We demonstrate its efficiency on massive functional Magnetic Resonance
Imaging data (2 TB), and on patches extracted from hyperspectral images (103 GB). For both problems, which
involve different penalties on rows and columns, we obtain significant speed-ups compared to state-of-the-art
algorithms.

More information can be found in [24].

7.9. Text to brain: predicting the spatial distribution of neuroimaging
observations from text reports
Despite the digital nature of magnetic resonance imaging, the resulting observations are most frequently
reported and stored in text documents. There is a trove of information untapped in medical health records,

https://alphacsc.github.io/
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Figure 9. Comparison of state-of-the-art univariate (a, b) and multivariate (c, d) methods with our approach. (a)
Convergence plot with the objective function relative to the obtained minimum, as a function of computational time.
(b) Time taken to reach a relative precision of 10−3, for different regularization parameters λ. (c, d) Same as (a, b)

in the multivariate setting P=5.
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Figure 10. Stochastic subsampling further improves online matrix factorizationhandle datasets with large number
of columns and rows. X is the input p× n matrix, Dt and At are respectively the dictionary and code at time t.
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case reports, and medical publications. In this paper, we propose to mine brain medical publications to learn
the spatial distribution associated with anatomical terms. The problem is formulated in terms of minimization
of a risk on distributions which leads to a least-deviation cost function. An efficient algorithm in the dual then
learns the mapping from documents to brain structures. Empirical results using coordinates extracted from the
brain-imaging literature show that i) models must adapt to semantic variation in the terms used to describe a
given anatomical structure, ii) voxel-wise parameterization leads to higher likelihood of locations reported in
unseen documents, iii) least-deviation cost outperforms least-square. As a proof of concept for our method,
we use our model of spatial distributions to predict the distribution of specific neurological conditions from
text-only reports.

Figure 11. True probability density function (estimated with kernel density estimator) and the prediction for the
articles which obtained respectively the best and the first- quartile scores.

More information can be found in [37].

7.10. Similarity encoding for learning with dirty categorical variables
For statistical learning, categorical variables in a table are usually considered as discrete entities and encoded
separately to feature vectors, e.g., with one-hot encoding. "Dirty" non-curated data gives rise to categorical
variables with a very high cardinality but redundancy: several categories reflect the same entity. In databases,
this issue is typically solved with a deduplication step. We show that a simple approach that exposes the
redundancy to the learning algorithm brings significant gains. We study a generalization of one-hot encoding,
similarity encoding, that builds feature vectors from similarities across categories. We perform a thorough
empirical validation on non-curated tables, a problem seldom studied in machine learning. Results on seven
real-world datasets show that similarity encoding brings significant gains in prediction in comparison with
known encoding methods for categories or strings, notably one-hot encoding and bag of character n-grams.
We draw practical recommendations for encoding dirty categories: 3-gram similarity appears to be a good
choice to capture morphological resemblance. For very high-cardinality, dimensionality reduction significantly
reduces the computational cost with little loss in performance: random projections or choosing a subset of
prototype categories still outperforms classic encoding approaches.

More information can be found in [7].

8. Bilateral Contracts and Grants with Industry
8.1. Bilateral Contracts with Industry

In 2018, a CIFRE PhD thesis was launched with the Canadian company Interaxon https://choosemuse.com.
This contract supports the PhD thesis of Hubert Banville.

https://choosemuse.com
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Figure 12. Performance of different encoding methods in a gradient boosting classification task. Each box-plot
summarizes the prediction scores of 100 random splits (with 80% of the samples for training and 20% for testing).
For all datasets, the prediction score is upper bounded by 1 (a higher score means a better prediction). The right

side of the figure indicates the average ranking across datasets for each method. The vertical dashed line indicates
the median value of the one-hot encoding method.

9. Partnerships and Cooperations

9.1. Regional Initiatives
9.1.1. Inserm-Inria project

This project is funded by the joint Inserm and Inria program ‘médecine numérique’ and is conducted in
collaborations with our clinical partners from the Lariboisière hospital, Inserm uni U942 BioCANVAS
(Biomarkers in Cardio-Neuro-VAScular diseases). It supports the PhD thesis of David Sabbagh.

Participants:
• Denis Engemann [coordinator, co-advisor]
• Alexandre Gramfort [thesis director, co-advisor]
• Etienne Gayat [clinical collaborator, co-advisor]
• Fabrice Vallée [clinical collaborator]
• David Sabbagh [PhD Student]

Post-operative delirium (POD) is a potential complication of anesthesia during surgery. It is often associated
with adverse outcomes and is aggravated by aging. In elderly patients, post-operative complications have
been estimated to incur tens of million US dollars of costs each year in the United States by prolonging
hospitalization and potentially affecting health prognosis. Recent studies suggest that POD can already
be prevented by improving electrophysiological monitoring of anesthesia depth and individual dosage of
anesthetic agents. Doing so probably minimizes the time patients spend in a coma-like state that manifests
itself in isoelectric burst suppression, an electroencephalogram (EEG) pattern characterized by alternation
between quiescence and high-amplitude bursts, and causally linked to POD. However, such an enterprise,
currently, depends on the trained clinical electrophysiologist and guidance by commercially provided EEG
indices of states of consciousness. One such metric is the bispectral index (BIS), which, like other related
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metrics, does not explicitly take into account baseline changes related to normative aging and may therefore
be biased when used naively.

While electrophysiological signatures of aging (e.g. drop in Alpha and Gamma band power), states of
consciousness (e.g. drop in Theta band long-range connectivity) and drug response (e.g. anteriorization of
alpha band power in propofol anesthesia) have been separately investigated in the past years, their common
denominators are not known. It is therefore difficult to detect individual risk, choose the optimal dosage, and
automate anesthesia monitoring readily for any patient in any hospital.

The goal of this research project is to build statistical models that enable prediction of burst suppression and
subsequent POD by exploiting diverse EEG-signatures of states of consciousness in the context of aging.
We approach this challenge by recasting it as a problem of learning brain-age from the point of view of
electrophysiology of consciousness.

9.1.2. CoSmic project
Participants: Philippe Ciuciu [Correspondant], Carole Lazarus, Loubna El Gueddari.

This project is funded by CEA DRF-Impulsion.

This is a collaborative project with Jean-Luc Stark, (CEA) funded by the DRF-impulsion CEA program.

Compressed Sensing is a recent theory in maths that allows the perfect recovery of signals or images from
compressive acquisition scenarios. This approach has been popularized in MRI over the last decade as well
as in astrophysics (noticeably in radio-astronomy). So far, both of these fields have developed skills in CS
separately. The aim of the COSMIC project is to foster collaborations between CEA experts in MRI (Parietal
team within NeuroSpin) and in astrophysics (CosmoStat lab within the Astrophysics Department). These
interactions will allow us to share different expertise in order to improve image quality, either in MRI or
in radio-astronomy (thanks to the interferometry principle). In this field, given the data delivered by radio-
telescopes, the goal consists in extracting high temporal resolution information in order to study fast transient
events.

9.1.3. Metacog
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Jérome Dockès.

This project is funded by Digiteo.

This is a Digicosme project (2016-2019) and a collaboration with Fabian Suchanek (Telecom Paritech).

Understanding how cognition emerges from the billions of neurons that constitute the human brain is a
major open problem in science that could bridge natural science –biology– to humanities –psychology.
Psychology studies performed on humans with functional Magnetic Resonance Imaging (fMRI) can be used
to probe the full repertoire of high-level cognitive functions. While analyzing the resulting image data for
a given experiment is a relatively well-mastered process, the challenges in comparing data across multiple
datasets poses serious limitation to the field. Indeed, such comparisons require to pool together brain images
acquired under different settings and assess the effect of different experimental conditions that correspond to
psychological effects studied by neuroscientists.

Such meta-analyses are now becoming possible thanks to the development of public data resources
–OpenfMRI http://openfmri.org and NeuroVault http://neurovault.org. As many others, researchers of the Pari-
etal team understand these data sources well and contribute to them. However, in such open-ended context,
the description of experiments in terms of cognitive concepts is very difficult: there is no universal definition
of cognitive terms that could be employed consistently by neuroscientists. Hence meta-analytic studies loose
power and specificity. On the other hand, http://brainspell.org provide a set of curated annotation, albeit on
much less data, that can serve as a seed or a ground truth to define a consensual ontology of cognitive con-
cepts. Relating these terms to brain activity poses another challenge, of statistical nature, as brain patterns
form high-dimensional data in perspective with the scarcity and the noise of the data.

http://openfmri.org
http://neurovault.org
http://brainspell.org
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The purpose of this project is to learn a semantic structure in cognitive terms from their occurrence in brain
activation. This structure will simplify massive multi-label statistical-learning problems that arise in brain
mapping by providing compact representations of cognitive concepts while capturing the imprecision on the
definition these concepts.

9.1.4. HidimStat
Participants: Bertrand Thirion [Correspondant], Jerome-Alexis Chevalier, Joseph Salmon.

This project is funded by Digiteo.

This is a Digicosme project (2017-2020) and a collaboration with Joseph Salmon (Telecom Paritech).

The HiDimStat project aims at handling uncertainty in the challenging context of high dimensional regression
problem. Though sparse models have been popularized in the last twenty years in contexts where many features
can explain a phenomenon, it remains a burning issue to attribute confidence to the predictive models that they
produce. Such a question is hard both from the statistical modeling point of view, and from a computation
perspective. Indeed, in practical settings, the amount of features at stake (possibly up to several millions
in high resolution brain imaging) limit the application of current methods and require new algorithms to
achieve computational efficiency. We plan to leverage recent developments in sparse convex solvers as well
as more efficient reformulations of testing and confidence interval estimates to provide several communities
with practical software handling uncertainty quantification. Specific validation experiments will be performed
in the field of brain imaging.

9.1.5. Template estimation for arbitrary alignments: application to brain imaging.
Participants: Bertrand Thirion [Correspondant], Thomas Bazeille.

This project is funded by Digiteo.

In the recent years, the nature of scientific inference has shifted quite substantially from model-based to
predictive approaches, thanks to the generalization of powerful machine learning techniques. While this has
certainly improved scientific standards, this has also obscured the objects and concepts on which inference
is drawn. For instance, it is now possible –based on some initial data– to predict individual brain activity
topographies, yet the very notion of a standard brain template has become increasingly elusive. Given the
importance of establishing models for the progress of knowledge, we revisit the problem of model inference
on data with high variance. Specifically, in a context where almost arbitrary transformation can successfully
warp observations to each other with high accuracy, what is the common definition of a population model
underlying all these observations? What is the working definition of a template ? We plan to leverage recent
developments on optimal transport and multivariate analysis to build working definition of templates; we will
use them in a brain imaging context to build a novel generation of brain templates.

9.1.6. AMPHI project
Participants: Bertrand Thirion [Correspondant], Joseph Salmon, Antonio Andre Monteiro Manoel.

This is a Digicosme project (2017-2020) and a collaboration with Joseph Salmon (Telecom Paritech) and
Lenka Zdeborova (CEA, IPhT).

In many scientific fields, the data acquisition devices have benefited of hardware improvement to increase the
resolution of the observed phenomena, leading to ever larger datasets. While the dimensionality has increased,
the number of samples available is often limited, due to physical or financial limits. This is a problem when
these data are processed with estimators that have a large sample complexity, such as multivariate statistical
models. In that case it is very useful to rely on structured priors, so that the results reflect the state of knowledge
on the phenomena of interest. The study of the human brain activity through neuroimaging belongs among
these problems, with up to 106 features, yet a set of observations limited by cost and participant comfort. We
are missing fast estimators for multivariate models with structured priors, that furthermore provide statistical
control on the solution. Approximate message passing (AMP) methods are designed to work optimally with
low- sample-complexity, they accommodate rather generic class of priors and come with an estimation of
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statistical significance. They are therefore well suited for our purposes. We want to join forces to design a new
generation of inverse problem solvers that can take into account the complex structure of brain images and
provide guarantees in the low-sample-complexity regime. To this end, we will first adapt AMP to the brain
mapping setting, using first standard sparsity priors (e.g. Gauss-Bernoulli) on the model. We will then consider
more complex structured priors that control the variation of the learned image patterns in space. Crucial gains
are expected from the use of the EM algorithm for parameter setting, that comes naturally with AMP. We
will also examine the estimators provided by AMP for statistical significance. AMPHI will design a reference
inference toolbox released as a generic open source library. We expect a 3- to 10-fold improvement in CPU
time, that will benefit to large-scale brain mapping investigations.

9.1.7. CDS2
Participants: Bertrand Thirion [Correspondant], Gaël Varoquaux, Guillaume Lemaitre, Joris Van Den Boss-
che.

CDS2 is an "Strategic research initiative” of the Paris Saclay University Idex http://datascience-paris-saclay.fr.
Although it groups together many partners of the Paris Saclay ecosystem, Parietal has been deeply involved in
the project. It currently funds a post-doc for Guillaume Lemaitre and an engineer positions for Joris van den
Bossche. Alexandre Boucaud was funded till December as engineer.

9.2. National Initiatives
9.2.1. ANR
9.2.1.1. Neuroref: Mathematical Models of Anatomy / Neuroanatomy / Diffusion MRI

Participants: Demian Wassermann [Correspondant], Antonia Machlouzarides Shalit, Valentin Iovene.

While mild traumatic brain injury (mTBI) has become the focus of many neuroimaging studies, the under-
standing of mTBI, particularly in patients who evince no radiological evidence of injury and yet experience
clinical and cognitive symptoms, has remained a complex challenge. Sophisticated imaging tools are needed to
delineate the kind of subtle brain injury that is extant in these patients, as existing tools are often ill-suited for
the diagnosis of mTBI. For example, conventional magnetic resonance imaging (MRI) studies have focused
on seeking a spatially consistent pattern of abnormal signal using statistical analyses that compare average
differences between groups, i.e., separating mTBI from healthy controls. While these methods are successful
in many diseases, they are not as useful in mTBI, where brain injuries are spatially heterogeneous.

The goal of this proposal is to develop a robust framework to perform subject-specific neuroimaging analyses
of Diffusion MRI (dMRI), as this modality has shown excellent sensitivity to brain injuries and can locate
subtle brain abnormalities that are not detected using routine clinical neuroradiological readings. New
algorithms will be developed to create Individualized Brain Abnormality (IBA) maps that will have a number
of clinical and research applications. In this proposal, this technology will be used to analyze a previously
acquired dataset from the INTRuST Clinical Consortium, a multi-center effort to study subjects with Post-
Traumatic Stress Disorder (PTSD) and mTBI. Neuroimaging abnormality measures will be linked to clinical
and neuropsychological assessments. This technique will allow us to tease apart neuroimaging differences
between PTSD and mTBI and to establish baseline relationships between neuroimaging markers, and clinical
and cognitive measures.

9.2.1.2. DirtyData: Data integration and cleaning for statistical analysis
Participants: Gaël Varoquaux [Correspondant], Patricio Cerda Reyes, Pierre Glaser.

Machine learning has inspired new markets and applications by extracting new insights from complex and
noisy data. However, to perform such analyses, the most costly step is often to prepare the data. It entails
correcting errors and inconsistencies as well as transforming the data into a single matrix-shaped table that
comprises all interesting descriptors for all observations to study. Indeed, the data often results from merging
multiple sources of informations with different conventions. Different data tables may come without names on
the columns, with missing data, or with input errors such as typos. As a result, the data cannot be automatically
shaped into a matrix for statistical analysis.

http://datascience-paris-saclay.fr
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This proposal aims to drastically reduce the cost of data preparation by integrating it directly into the statistical
analysis. Our key insight is that machine learning itself deals well with noise and errors. Hence, we aim to
develop the methodology to do statistical analysis directly on the original dirty data. For this, the operations
currently done to clean data before the analysis must be adapted to a statistical framework that captures errors
and inconsistencies. Our research agenda is inspired from the data-integration state of the art in database
research combined with statistical modeling and regularization from machine learning.

Data integrating and cleaning is traditionally performed in databases by finding fuzzy matches or overlaps
and applying transformation rules and joins. To incorporate it in the statistical analysis, an thus propagate
uncertainties, we want to revisit those logical and set operations with statistical-learning tools. A challenge is
to turn the entities present in the data into representations well-suited for statistical learning that are robust to
potential errors but do not wash out uncertainty.

Prior art developed in databases is mostly based on first-order logic and sets. Our project strives to capture
errors in the input of the entries. Hence we formulate operations in terms of similarities. We address typing
entries, deduplication -finding different forms of the same entity- building joins across dirty tables, and
correcting errors and missing data.

Our goal is that these steps should be generic enough to digest directly dirty data without user-defined rules.
Indeed, they never try to build a fully clean view of the data, which is something very hard, but rather include
in the statistical analysis errors and ambiguities in the data.

The methods developed will be empirically evaluated on a variety of dataset, including the French public-data
repository, data.gouv.fr. The consortium comprises a company specialized in data integration, Data Publica,
that guides business strategies by cross-analyzing public data with market-specific data.

9.2.1.3. FastBig Project
Participants: Bertrand Thirion [Correspondant], Jerome-Alexis Chevalier, Tuan Binh Nguyen.

In many scientific applications, increasingly-large datasets are being acquired to describe more accurately
biological or physical phenomena. While the dimensionality of the resulting measures has increased, the
number of samples available is often limited, due to physical or financial limits. This results in impressive
amounts of complex data observed in small batches of samples.

A question that arises is then : what features in the data are really informative about some outcome of interest
? This amounts to inferring the relationships between these variables and the outcome, conditionally to all
other variables. Providing statistical guarantees on these associations is needed in many fields of data science,
where competing models require rigorous statistical assessment. Yet reaching such guarantees is very hard.

FAST-BIG aims at developing theoretical results and practical estimation procedures that render statistical
inference feasible in such hard cases. We will develop the corresponding software and assess novel inference
schemes on two applications : genomics and brain imaging.

9.2.1.4. MultiFracs project
Participant: Philippe Ciuciu [Correspondant].

The scale-free concept formalizes the intuition that, in many systems, the analysis of temporal dynamics cannot
be grounded on specific and characteristic time scales. The scale-free paradigm has permitted the relevant
analysis of numerous applications, very different in nature, ranging from natural phenomena (hydrodynamic
turbulence, geophysics, body rhythms, brain activity,...) to human activities (Internet traffic, population,
finance, art,...).

Yet, most successes of scale-free analysis were obtained in contexts where data are univariate, homogeneous
along time (a single stationary time series), and well-characterized by simple-shape local singularities. For
such situations, scale-free dynamics translate into global or local power laws, which significantly eases
practical analyses. Numerous recent real-world applications (macroscopic spontaneous brain dynamics, the
central application in this project, being one paradigm example), however, naturally entail large multivariate
data (many signals), whose properties vary along time (non-stationarity) and across components (non-
homogeneity), with potentially complex temporal dynamics, thus intricate local singular behaviors.

file:data.gouv.fr
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These three issues call into question the intuitive and founding identification of scale-free to power laws,
and thus make uneasy multivariate scale-free and multifractal analyses, precluding the use of univariate
methodologies. This explains why the concept of scale-free dynamics is barely used and with limited successes
in such settings and highlights the overriding need for a systematic methodological study of multivariate
scale-free and multifractal dynamics. The Core Theme of MULTIFRACS consists in laying the theoretical
foundations of a practical robust statistical signal processing framework for multivariate non homogeneous
scale-free and multifractal analyses, suited to varied types of rich singularities, as well as in performing
accurate analyses of scale-free dynamics in spontaneous and task-related macroscopic brain activity, to
assess their natures, functional roles and relevance, and their relations to behavioral performance in a timing
estimation task using multimodal functional imaging techniques.

This overarching objective is organized into 4 Challenges:
1. Multivariate scale-free and multifractal analysis,
2. Second generation of local singularity indices,
3. Scale-free dynamics, non-stationarity and non-homogeneity,
4. Multivariate scale-free temporal dynamics analysis in macroscopic brain activity.

9.3. European Initiatives
9.3.1. FP7 & H2020 Projects
9.3.1.1. Neurolang

Title: Accelerating Neuroscience Research by Unifying Knowledge Representation and Analysis
Through a Domain Specific Language
Programm: ERC Starting researcher
Duration: 01/03/2018 - 28/02/2023
Coordinator: Demian Wassermann
Inria contact: Demian Wassermann
Summary:

Neuroscience is at an inflection point. The 150-year old cortical specialization paradigm, in which
cortical brain areas have a distinct set of functions, is experiencing an unprecedented momentum
with over 1000 articles being published every year. However, this paradigm is reaching its limits.
Recent studies show that current approaches to atlas brain areas, like relative location, cellular
population type, or connectivity, are not enough on their own to characterize a cortical area and
its function unequivocally. This hinders the reproducibility and advancement of neuroscience.

Neuroscience is thus in dire need of a universal standard to specify neuroanatomy and function:
a novel formal language allowing neuroscientists to simultaneously specify tissue characteristics,
relative location, known function and connectional topology for the unequivocal identification of a
given brain region.

The vision of NeuroLang is that a unified formal language for neuroanatomy will boost our
understanding of the brain. By defining brain regions, networks, and cognitive tasks through a set
of formal criteria, researchers will be able to synthesize and integrate data within and across diverse
studies. NeuroLang will accelerate the development of neuroscience by providing a way to evaluate
anatomical specificity, test current theories, and develop new hypotheses.

NeuroLang will lead to a new generation of computational tools for neuroscience research. In doing
so, we will be shedding a novel light onto neurological research and possibly disease treatment and
palliative care. Our project complements current developments in large multimodal studies across
different databases. This project will bring the power of Domain Specific Languages to neuroscience
research, driving the field towards a new paradigm articulating classical neuroanatomy with current
statistical and machine learning-based approaches.
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9.3.1.2. SLAB (698)

Title: Signal processing and Learning Applied to Brain data

Programm: ERC Starting researcher

Duration: 01/04/2017 - 31/08/2021

Coordinator: Alexandre Gramfort

Partner: LTCI , Telecom ParisTech (France)

Inria contact: Alexandre Gramfort

Summary:

Understanding how the brain works in healthy and pathological conditions is considered as one of
the challenges for the 21st century. After the first electroencephalography (EEG) measurements in
1929, the 90’s was the birth of modern functional brain imaging with the first functional MRI and full
head magnetoencephalography (MEG) system. In the last twenty years, imaging has revolutionized
clinical and cognitive neuroscience.

After pioneering works in physics and engineering, the field of neuroscience has to face two major
challenges. The size of the datasets keeps growing. The answers to neuroscience questions are
limited by the complexity of the signals observed: non-stationarity, high noise levels, heterogeneity
of sensors, lack of accurate models. SLAB will provide the next generation of models and algorithms
for mining electrophysiology signals which offer unique ways to image the brain at a millisecond
time scale.

SLAB will develop dedicated machine learning and signal processing methods and favor the
emergence of new challenges for these fields. SLAB focuses on five objectives: 1) source localization
with M/EEG for brain imaging at high temporal resolution 2) representation learning to boost
statistical power and reduce acquisition costs 3) fusion of heterogeneous sensors 4) modeling of
non-stationary spectral interactions to identify functional coupling between neural ensembles 5)
development of fast algorithms easy to use by non-experts.

SLAB aims to strengthen mathematical and computational foundations of brain data analysis.
The methods developed will have applications across fields (computational biology, astronomy,
econometrics). Yet, the primary impact of SLAB will be on neuroscience. The tools and high quality
open software produced in SLAB will facilitate the analysis of electrophysiology data, offering
new perspectives to understand how the brain works at a mesoscale, and for clinical applications
(epilepsy, autism, tremor, sleep disorders).

9.3.1.3. Neuroimaging power (262)

Title: Neuroimaging power

Programm: Marie Curie Fellowhip

Duration: 01/11/2016 - 31/10/2019

Coordinator: Inria

Partner: BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY (United
States)

Inria contact: Bertrand Thirion

Summary:

There is an increasing concern about statistical power in neuroscience research. Critically, an
underpowered study has poor predictive power. Findings from a low-power study are unlikely to
be reproducible, and thus a power analysis is a critical component of any paper. This project aims to
promote and facilitate the use of power analyses.

A key component of a power analysis is the specification of an effect size. However, in neuroimaging,
there is no standardised way to communicate effect sizes, which makes the choice of an appropriate
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effect size a formidable task. The best way today to perform a power analysis is by collecting a
pilot data set, a very expensive practice. To eliminate the need for pilot data, we will develop a
standardised measure of effect size taking into account the spatial variance and the uncertainty of
the measurements. Communicating effect sizes in new publications will facilitate the use of power
analyses.

To further alleviate the need for pilot data, we will provide a library of effect sizes for different tasks
and contrasts, using open data projects in neuroimaging. We will integrate our effect size estimator
in open repositories NeuroVault and OpenfMRI. Consequently, these effect sizes can then serve as a
proxy for a pilot study, and as such, a huge cost in the design of an experiment is eliminated.

A new experiment will not be identical to the open data and as such the hypothesised parameters
might not be fully accurate. To address this issue, we present a flexible framework to analyse
data mid-way without harming the control of the type I error rate. Such a procedure will allow
re-evaluating halfway an experiment whether it is useful to continue a study, and how many more
subjects are needed for statistically sound inferences. To make our methods maximally available, we
will write a software suite including all these methods in different programming platforms and we
will provide a GUI to further increase the use of power analyses.

9.3.1.4. HBP SGA1

Title: Human Brain Project Specific Grant Agreement 1

Programm: FET Flagship

Duration: 01/04/2016 - 31/02/2020

Coordinator: Katrin Amunts

Partners: 150 european labs, please see https://www.humanbrainproject.eu/en/open-ethical-engaged/
contributors/partners

Inria contact: Bertrand Thirion

Summary

Understanding the human brain is one of the greatest scientific challenges of our time. Such an
understanding can provide profound insights into our humanity, leading to fundamentally new
computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern
ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique
strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified
multi-level understanding of the brain and diseases, and ultimately to emulate its computational
capabilities. The goal is to catalyze a global collaborative effort. During the HBP’s first Specific
Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a
tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community
with unique resources and capabilities. Partnering Projects will enable independent research groups
to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable
problems in neuroscience, computing and medicine in the future. In addition, collaborations with
other national, European and international initiatives will create synergies, maximizing returns on
research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to
achieving its ambitious Flagship Objectives.

9.3.1.5. HBP SGA2

Title: Interactive Computing E-Infrastructure for the Human Brain Project

Programm: FET Flagship

Duration: 01/04/2018 - 31/03/2020

Coordinator: Katrin Amunts

Partners: see https://www.humanbrainproject.eu/en/open-ethical-engaged/contributors/partners/

Inria contact: Bertrand Thirion

https://www.humanbrainproject.eu/en/open-ethical-engaged/contributors/partners
https://www.humanbrainproject.eu/en/open-ethical-engaged/contributors/partners
https://www.humanbrainproject.eu/en/open-ethical-engaged/contributors/partners/
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Summary:

The HBP Flagship was launched by the European Commission’s Future and Emerging Technologies
(FET) scheme in October 2013, and is scheduled to run for ten years. The Flagships, represent a new
partnering model for visionary, long-term European cooperative research in the European Research
Area, demonstrating the potential for common research efforts. The HBP has the following main
objectives:

• Create and operate a European scientific Research Infrastructure for brain research, cogni-
tive neuroscience, and other brain-inspired sciences

• Gather, organise and disseminate data describing the brain and its diseases

• Simulate the brain

• Build multi-scale scaffold theory and models for the brain

• Develop brain-inspired computing, data analytics and robotics

• Ensure that the HBP’s work is undertaken responsibly and that it benefits society.

More information on the HBP’s Flagship Objectives is available in the Framework Partnership
Agreement.

The timeline of the Project is split into multiple phases, each of which will be covered by a separate
funding agreement. The current phase is Specific Grant Agreement Two (SGA2), which spans the
two-year period from April 2018–April 2020. The HBP is funded via several sources. Total funding
is planned to be in the region of EUR 1 billion; around one half of which will be provided by the
European Union, and the other by Member States and private funding sources. The European Union
contributed EUR 54 million to the Project in the Ramp-Up Phase (October 2013 to March 2016),
EUR 89 million for the second phase (SGA1), and EUR 88 million for the current phase (SGA2).
The FET Flagships Staff Working Document provides further information on how Flagships are
funded.

9.4. International Initiatives
9.4.1. Inria International Labs

Inria@SiliconValley
Associate Team involved in the International Lab:

9.4.1.1. LargeBrainNets

Title: Characterizing Large-scale Brain Networks Using Novel Computational Methods for dMRI
and fMRI-based Connectivity

International Partner (Institution - Laboratory - Researcher):

Stanford Cognitive & Systems Neuroscience Lab, Stanford Medical School, USA. Con-
tact: Vinod Menon.

Start year: 2016

See also: http://www-sop.inria.fr/members/Demian.Wassermann/large-brain-nets.html

In the past two decades, brain imaging of neurotypical individuals and clinical populations has
primarily focused on localization of function and structures in the brain, revealing activation in
specific brain regions during performance of cognitive tasks through modalities such as functional
MRI. In parallel, technologies to identify white matter structures have been developed using
diffusion MRI. More recently, interest has shifted towards developing a deeper understanding of
the brain’s intrinsic architecture and its influence on cognitive and affective information processing.
Using for this resting state fMRI and diffusion MRI to build the functional and structural networks
of the human brain.

http://www-sop.inria.fr/members/Demian.Wassermann/large-brain-nets.html
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The human brain is a complex patchwork of interconnected regions, and graph-theoretical ap-
proaches have become increasingly useful for understanding how functionally connected systems
engender, and constrain, cognitive functions. The functional nodes of the human brain and their
structural inter-connectivity, collectively the "connectome", are, however, poorly understood. Crit-
ically, there is a dearth of computational methods for reliably identifying functional nodes of the
brain and their structural inter-connectivity in vivo, despite an abundance of high-quality data from
the Human Connectome Project (HCP). Devising and validating methods for investigating the hu-
man connectome has therefore taken added significance.

The first major goal of this project is to develop and validate appropriate sophisticated computational
and mathematical tools for identifying functional nodes at the whole-brain level and measuring
structural and functional connectivity between them, using state-of-the-art human brain imaging
techniques and open-source HCP data. To this end, we will first develop and validate novel
computational tools for (1) identifying stable functional nodes of the human brain using resting-
state functional MRI and (2) measuring structural connectivity between functional nodes of the
brain using multi-shell high-angular diffusion MRI. Due to the complementarity of the two imaging
techniques fMRI and dMRI, our novel computational methods methods, the synergy between the
two laboratories of this associate team will allow us to reveal in unprecedented detail the structural
and functional connectivity of the human brain.

The second major goal of this project is to use our newly developed computational tools to
characterize normal structural and functional brain networks in neurotypical adults.

Inria@SiliconValley
Associate Team involved in the International Lab:

9.4.1.2. Meta&Co

Title: Meta-Analysis of Neuro-Cognitive Associations

International Partner (Institution - Laboratory - Researcher):

Stanford (United States) - Psychology department. - Russel Poldrack

Start year: 2018

See also: http://team.inria.fr/parietal

Cognitive science and psychiatry describe mental operations: cognition, emotion, perception and
their dysfunction. Cognitive neuroimaging bridge these mental concepts to their implementation
in the brain, neural firing and wiring, by relying on functional brain imaging. Yet aggregating
results from experiments probing brain activity into a consistent description faces the roadblock
that cognitive concepts and brain pathologies are ill-defined. Separation between them is often
blurry. In addition, these concepts and subdivisions may not correspond to actual brain structures
or systems. To tackle this challenge, we propose to adapt data-mining techniques used to learn
relationships in computational linguistics. Natural language processing uses distributional semantics
to build semantic relationships and ontologies. New models are needed to learn relationships from
heterogeneous signals: functional magnetic resonance images (fMRI), on the one hand, combined
with related psychology and neuroimaging annotations or publications, on the other hand. Such a
joint effort will rely on large publicly-available fMRI databases shared by Podrack Lab, as well as
literature mining.

9.5. International Research Visitors
9.5.1. Visits of International Scientists

• June 2018: Prof. Lilianne Mujica-Parodi (Univ Stony-Brook, NY USA)

• April-June 2018: Dr Abderrahim Halimi (Edinburgh, UK)

• October 2018: Prof. Nikos Makris (Harvard Medical School)

http://team.inria.fr/parietal
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• December 2018: Dr. Lang Chen (Stanford Medical University)

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. General Chair, Scientific Chair

Bertrand Thirion co-organized the “Imagerie médicale et apprentissage automatique : vers une intelligence
artificielle ?” colloque at Collège de France on May, 2nd, 2018.

10.1.1.2. Member of the Organizing Committees

Demian Wassermann: MICCAI 2018

Gaël Varoquaux: PyParis 2018

10.1.2. Scientific Events Selection
10.1.2.1. Member of the Conference Program Committees

• Philippe Ciuciu: Chairman of scientific oral sessions in ISBI 2018 (Washington DC) and EUSIPCO
2018 (Roma)

• Bertrand Thirion: Member of Program Committee for the OHBM 2018 meeting (Singapore),

• Gaël Varoquaux: program committee of NIPS, ICML, ICLR.

• Alexandre Gramfort: program committee of NIPS, ICML, ICLR.

• Demian Wassermann: ISMRM 2018

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• Philippe Ciuciu: Associate Editor for EUSPICO 2018, Roma

• Philippe Ciuciu: Associate Editor for ISBI 2019, Venice

• Alexandre Gramfort: Editor, NeuroImage, Journal of Machine Learning Research (JMLR), Frontiers
in Brain Imaging Methods

• Bertrand Thirion: Editor, Frontiers in Brain Imaging Methods

10.1.3.2. Reviewer - Reviewing Activities

• Philippe Ciuciu is reviewer for Nature Communication, Biological Pysichiatry, Plos Computational
Biology, Scientific Reports, Journal of Neuroscience, IEEE Trans Signal Processing, IEEE Signal
Processing Letters, IEEE Trans Medical Imaging, Frontiers in Neuroscience, Magnetic Resonance
in Medicine, SIAM Imaging Science

• Gaël Varoquaux: Nature Methods, JMLR, PLOS Bio, NeuroImage, IEEE TBME, IEEE TMI, Annals
of Applied Statistics, Biological Psychiatry, MedIA, Science, GigaScience

• Alexandre Gramfort: JMLR, PLOS Computational Biology, NeuroImage, IEEE TBME, IEEE TMI,
IEEE TSP, MedIA, NIPS, ICML, ICLR, ICASSP, Scientific Reports, Frontiers in Brain Imaging
Methods, Journal of Neuroscience Methods

• Bertrand Thirion: Nature communications, Neuroimage, Medical Image Analysis, IEEE TMI,
PNAS, PLOS Comp Bio, Brain Structure and Function, NIPS, ICML, IPMI, OHBM, PRNI,
AISTATS
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• Denis Engemann PLOS Biology, PLOS Computational Biology, Scientific Reports, Neuroimage,
Neuroimage Clinical, Human Brain Mapping, Journal of Machine Learning Research, Brain Topog-
raphy, Brain Connectivity, Journal of Alzheimer’s Disease, Neuroscience of Consciousness, PLOS
ONE, Frontiers in Neuroscience, Journal of Computational Neuroscience, Psychiatry and Clinical
Neurosciences, Sensors

• Demian Wassermann: NeuroImage, MRM, JMRI, Brain Structure and Function, Cortex, MedIA.

10.1.4. Invited Talks
• Philippe Ciuciu, May 2018: Keynote Lecture at the 8th International Conference on New Com-

putational Methods for Inverse Problems, "Distribution-controlled and optimally spread sampling
trajectories for accelerated Magnetic Resonance Imaging" (http://complement.farman.ens-cachan.
fr/documents_web_NCMIP_2018/NCMIP_2018_program.pdf)

• Philippe Ciuciu, Nov 2018: Heriott-Watt University, "SPARKLING: variable-density k-space filling
curves for accelerated T2*-weighted MRI"

• Philippe Ciuciu, Dec 2018: SHFJ, CEA Orsay, "Recent Advances in Compressed Sensing MRI for
Highly Accelerated T2* -weighted Imaging"

• Denis Engemann, Dec 2018, ICM, Paris, MEG user day, ’Preparing data for source reconstruction:
dos and donts’

• Denis Engemann, Nov 2018, ICM, Paris, ’Machine Learning with MEG EEG in Cognitive Neurol-
ogy. Challenges and Opportunities’

• Denis Engemann, Nov 2018, Paris Machine Learning Meetup, invited talk, ’Random forest methods
for EEG-based diagnosis of disorders of consciousness’

• Denis Engemann, Oct 2018, CRNL, Lyon, invited talk, ’Large-Scale Analysis of MEG/EEG in
Cognitive Neurology. Challenges and Opportunities’

• Denis Engemann, Oct 2018, CRNL, Lyon, 3-day MNE-Python training workshop

• Denis Engemann, Apr 2018, Hôpital Erasme, Brussels, invited talk, ’The Challenge of Large-Scale
and Population Analysis using MEG/EEG’ LCFC

• Alexandre Gramfort, Fév 2018, invited talk, séminaire du Centre de Mathématiques Appliquées
(CMAP) de l’Ecole Polytechnique

• Alexandre Gramfort, Mars 2018, invited talk, conseil d’administration Institut National du Cancer
(INCA), Paris

• Alexandre Gramfort, Mars 2018, invited talk, Center for Data Science, Grenoble

• Alexandre Gramfort, June 2018, invited talk, ICML workshop of reproducibility in machine learn-
ing, Stockholm

• Alexandre Gramfort, June 2018, oral presentations, OHBM Conference, Singapore

• Alexandre Gramfort, June 2018, invited talk, DTU, Copenhagen

• Alexandre Gramfort, Aug 2018, oral presentations, Biomag International Conference, Philadelphia

• Alexandre Gramfort, Sept 2018, invited talk, Imperial College, UK

• Alexandre Gramfort, Sept 2018, invited talk, BCG Gamma FreshFromTheLabs Conference, Paris

• Alexandre Gramfort, Oct 2018, invited talk, Universität Heidelberg, Heidelberg

• Alexandre Gramfort, Nov 2018, oral presentation, Society for Neuroscience conference, San Diego

• Alexandre Gramfort, Nov 2018, invited talk, France is AI conference, Paris

• Alexandre Gramfort, Dec 2018, invited talk, Montreal Artificial Intelligence and Neuroscience
(MAIN) workshop, Montreal

• Bertrand Thirion, Jan 2018, IHES, Bures sur Yvette, ’Toward a rigorous statistical framework for
brain mapping’

http://complement.farman.ens-cachan.fr/documents_web_NCMIP_2018/NCMIP_2018_program.pdf
http://complement.farman.ens-cachan.fr/documents_web_NCMIP_2018/NCMIP_2018_program.pdf
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• Bertrand Thirion, June 2018, IPHT seminary, Gif sur Yvette, ’A rigorous causal framework for brain
mapping’

• Bertrand Thirion, May 2018, High Tech Peripherique conference, ’Large-scale machine learning for
medical imaging’

• Bertrand Thirion, April 2018, Tau seminary, Gif sur Yvette, ’Causal analysis for Brain Mapping’

• Bertrand Thirion, July 2018, JST workshop in Paris, ’Toward rigorous e-sciences: High-dimensional
statistical inference’

• Bertrand Thirion, Dec 2018, ESSI colloquium, Evry, ’High-dimensional statistical inference for e-
sciences’

• Demian Wassermann, Feb 2018, Stanford Medical School, ‘Microstructure Imaging with Diffusion
MRI’

• Demian Wassermann, June 2018, Harvard Medical School, ‘Random Effect Models for Structure
Connectivity-Based Cortical Clustering’

• Demian Wassermann, June 2018, New York University, ‘Recent advances in Micro and Macro scale
brain analysis with Diffusion MRI’

• Gaël Varoquaux, Sept 2018, IPAM (Institute for Pure and Applied Mathematics), UCLA, Long
Program Science at Extreme Scales: Where Big Data Meets Large-Scale Computing

• Gaël Varoquaux, August 2018, keynote speaker NeuroInformatics, Montreal

• Gaël Varoquaux, August 2018, invited talk MILA (Montreal Institute for Learning Algorithms),
Montreal

• Gaël Varoquaux, August 2018, invited talk MNI (Montréal Neurological Institute), Montréal

• Gaël Varoquaux, August 2018, invited talk Institut de Gériatrie, Montréal

• Gaël Varoquaux, June 2018, invited talk, BCG Gamma days, Paris

• Gaël Varoquaux, Nov 2018, invited talk, chair DAMI (Data, Analytics and Models for Insurance),
Paris

• Gaël Varoquaux, Feb 2018, invited talk, Gatsby institute for theoretical neuroscience, UCL, London

• Gaël Varoquaux, Dev 2018, invited talk, Journée Nationale de la Science Ouverte, Paris

• Gaël Varoquaux, Sept 2018, invited talk, MASES International Workshop on Machine Learning and
Software Engineering in Symbiosis, ASE (Automated Software Engineering), Montpellier

• Gaël Varoquaux, Sept 2018, invited talk, MICCAI workshop, Granada

• Gaël Varoquaux, June 2018, invited talk, Machine learning in the real world, Paris

• Gaël Varoquaux, July 2018, invited talk, DataIA–Japan Science and Technology agency, Paris

• Gaël Varoquaux, Feb 2018, invited talk, Pycon Belarus, Minsk

• Gaël Varoquaux, May 2018, invited talk, Brainhack Paris

• Gaël Varoquaux, Oct 2018, invited talk, Biomarker days, Toulouse

10.1.5. Leadership within the Scientific Community
• Demian Wassermann: Organising committee of the BrainHack community — Paris Chapter

• Demian Wassermann: ISMRM and MICCAI action organization towards reducing gender and
minority biases.

10.1.6. Scientific Expertise
• Philippe Ciuciu has been member of the 45th ANR Scientic Evaluation Committee in charge

of evaluating the projects dealing with maths, signal processing, computer science methods for
medicine and biology.
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• Alexandre Gramfort has been member of the 45th ANR Scientic Evaluation Committee (CE23)
in charge of evaluating the projects dealing with machine learning, data knowledge, statistics,
optimization.

• Demian Wassermann FET-OPEN ERCA Action

• Gaël Varoquaux was expert for the startup incubator agoranov

10.1.7. Research Administration
• In Nov 2018, Philippe Ciuciu Elected Vice-Chair of the SAT Biomedical Image & Signal Analytics

(EURASIP technical committee) for 2019-2020.

• In Dec 2018, Philippe Ciuciu has been Elected IEEE Signal Processing Society Representative at
the 2019 IEEE ISBI conference.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master: Alexandre Gramfort, Optimization for Data Science, 20h, Msc 2 Data Science Master Ecole
Polytechnique, France

Master: Alexandre Gramfort, DataCamp, 20h, Msc 2 Data Science Master Ecole Polytechnique,
France

Master: Alexandre Gramfort, Source Imaging with EEG and MEG, 7h, Msc 2 in Biomedical Imaging
at Télécom Paristech

Doctoral School: Alexandre Gramfort, Sparse Optimization, 4h, school at iTWIST workshop,
Marseille

Master: Bertrand Thirion, Functional neuroimaging and BCI, 12h, Master MVA, ENS Paris-Saclay,
France

Master: Philippe, fMRI course: From acquisition to data Analysis, 6h, Msc 2 in Biomedical Imaging,
Université Paris-Sud

Bachelor: Demian Wassermann, CSE201 class, 15h, C++ programming, Ecole Polytechnique

Extension: Demian Wassermann, Data Science, 20h, Ecole Polytechnique

Master: Gaël Varoquaux, Machine learning in Python, 3h, ENSAE

Master: Gaël Varoquaux, Functional brain connectivity, 7h, Msc 2 in Biomedical Imaging at Télécom
Paristech

10.2.2. Supervision
The following PhD defense have taken place

HdR : Gaël Varoquaux, Estimating brain functional connectivity and its variations from fMRI,
Université Paris VI, 25/03/2018

PhD : Stanislas Chambon, Learning from electrophysiology time series: From scoring to event
detection, Université Paris-Saclay, 14/12/2018, under the direction of Alexandre Gramfort

PhD : Tom Dupré La Tour, Non-linear models for neurophysiological time series, Université Paris-
Saclay, 26/11/2018, under the direction of Alexandre Gramfort

PhD : Yousra Bekhti, Contributions to sparse source localization for MEG/EEG brain imaging,
Université Paris-Saclay, 22/03/2018, under the direction of Alexandre Gramfort

PhD : Mainak Jas, Advances in automating analysis of neural time series data, Université Paris-
Saclay, 12/04/2018, under the direction of Alexandre Gramfort

PhD : Arthur Mensch, , Université Paris-Saclay, 30/09/2018, under the direction of Bertrand Thirion,
Gaël Varoquaux and Julien Mairal.
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PhD : Carole Lazarus, , Université Paris-Saclay, 30/09/2018, under the direction of Philippe Ciuciu.

PhD in progress : Pierre Ablin, , 01/10/2016, coadvised by Alexandre Gramfort and Jean-François
Cardoso,

PhD in progress : Mathurin Massias, , 01/10/2016, coadvised by Alexandre Gramfort and Joseph
Salmon,

PhD in progress : Hicham Janati, , 01/10/2017, , coadvised by Alexandre Gramfort and Marco Cuturi

PhD in progress : Quentin Bertrand, , 01/10/2018, coadvised by Alexandre Gramfort and Joseph
Salmon

PhD in progress : Hubert Banville, , 01/10/2018, coadvised by Alexandre Gramfort and Denis
Engemann

PhD in progress : David Sabbagh, , 01/10/2018, coadvised by Alexandre Gramfort and Denis
Engemann

PhD in progress : Jérôme-Alexis Chevalier, , 01/10/2017, coadvised by Bertrand Thirion and Joseph
Salmon

PhD in progress : Hugo Richard, , 01/10/2018, coadvised by Bertrand Thirion and Olivier Grisel

PhD in progress : Thomas Bazeille, , 01/10/2018, advised by Bertrand Thirion

PhD in progress : Tuan Binh Nguyen, , 01/10/2018, coadvised by Bertrand thirion and Sylvain Arlot

PhD in progress : Valentin Iovene, , 01/10/2018, advised by Demian Wassermann

PhD in progress : Antonia Machlouzarides Shalit, , 01/10/2018, coadvised by Demian Wassermann
and Bertrand Thirion

PhD in progress : Loubna El Gueddari, , 01/10/2016, coadvised by Philippe Ciuciu and Alexandre
Vignaud

PhD in progress : Hamza Cherkaoui, , 01/10/2017, advised by Philippe Ciuciu

PhD in progress : Patricio Cerda Reyes, , 01/10/2016, coadvised by Gaël Varoquaux and Balazs
Kegl

PhD in progress : Maeliss Jallais, , 01/10/2018, advised by Demian Wassermann

PhD in progress : Jerome Dockès, , 01/10/2016, coadvised by Fabian Shuchanek and Gaël Varoquaux

10.2.3. Juries
Alexandre Gramfort has been involved in the following PhD committees:

• Marine Le Morvan (Reviewer) / Mines ParisTech

• Jérémy Guillon (Examiner) / Inria Paris

• Rémi Leblond (Examiner) / Inria Paris

• Andreas Trier (Reviewer) / DTU, Copenhague

Alexandre Gramfort was involved in a hiring committee for Telecom ParisTech and a hiring committee for
Université Paris Diderot.

Bertrand Thirion has been involved in the following committees:

• PhD Sebastian Tarando / ESSI Evry

• PhD Guillermo Gallardo / Inria Sophia-Antipolis

• Habilitation Florent Meyniel / Université Paris VI

Bertrand Thirion was involved in a hiring committee for Centrale-Supelec.

Gaël Varoquaux was involved in a hiring committee for Centrale-Supelec and a hiring committee for Inria
Saclay.
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Demian Wassermann was involved in the following committees:

• PhD Guillermo Gallardo / Inria Sophia-Antipolis

• Habilitation Daniel Margullies / ICM – UPMC

10.3. Popularization
10.3.1. Internal or external Inria responsibilities

• Philippe Ciuciu has been member of the Inria Saclay scientific commission since 2016

• Alexandre Gramfort is member of the steering committee of the Paris-Saclay Center for Data
Science

• Alexandre is a Member of the technical development committee of Inria Saclay since Dec 2018

• Bertrand Thirion is Deputy head of reasearch of Inria Saclay research center

• Bertrand Thirion, Leader of the Datasense research axis of the Digicosme Labex

• Bertrand Thirion, Member of the steering committee of the Dataia Convergence Institute

• Bertrand Thirion, Member of the steering committee of the Computer Science Department of Paris
Saclay University.

• Gaël Varoquaux was Member of the technical development committee of Inria Saclay until Dec
2018

• Gaël Varoquaux is member of the doctoral monitoring committee of Inria Saclay

• Gaël Varoquaux is member of the steering committee of the Paris-Saclay Center for Data Science

10.3.2. Articles and contents
• Gaël Varoquaux was interviewed by ActuIA

• Alexandre Gramfort was interviewed by ActuIA

• Alexandre Gramfort was interviewed by Libération

• Alexandre Gramfort, Olivier Grisel Gaël Varoquaux are interviewed by Les Echos

10.3.3. Interventions
• Olivier Grisel gave an interview at the Paris Open Source Summit

10.3.4. Internal action
• In June 2018, Philippe Ciuciu did a training session on the DRF Impulsion funding mechanism at

the seminar of new hired CEA DRF scientists"

• In April 2018, Denis Engemann and Alexandre Gramfort gave a 2-day educational course for
cognitive neuroscientists at NeuroSpin on analysis of MEG and EEG data using Python.

10.3.5. Creation of media or tools for science outreach
Philippe Ciuciu made Two videos together with the CEA communication division on COSMIC project (funded
by CEA)

• Long version: https://www.youtube.com/watch?v=gQh6D_vpkSo&t=23s&fbclid=IwAR0OcU3JEy4KQmo6DD-
iN8otjlowyeXDkEF7ljniuzOkI-aWhGqyHhQzruo

• Short version: https://www.youtube.com/watch?v=p_KMEQGK-WA&fbclid=IwAR3xcf8e98M77lF9mpQSDWfKppjOt7pKV2rEt76oBiv1caeg0LlQBL70q9g

Gaël Varoquaux, Olivier Grisel, Alexandre Gramfort, Guillaume Lemaître, Joris van den Bossche participated
in a general-public movie about scikit-learn: https://www.youtube.com/watch?v=twqdXTCkeyk&t=9s

https://www.actuia.com/actualite/scikit-learn-interview-de-gael-varoquaux/
https://www.actuia.com/actualite/apprentissage-statistique-et-analyse-predictive-en-python-avec-scikit-learn-par-alexandre-gramfort/
https://www.liberation.fr/debats/2018/10/17/l-etoffe-des-neurones_1686075
https://www.lesechos.fr/18/09/2018/lesechos.fr/0302270125259_scikit-learn---des-mecenes-pour-l-ia-en-libre-acces.htm
https://www.youtube.com/watch?v=gQh6D_vpkSo&t=23s&fbclid=IwAR0OcU3JEy4KQmo6DD-iN8otjlowyeXDkEF7ljniuzOkI-aWhGqyHhQzruo
https://www.youtube.com/watch?v=gQh6D_vpkSo&t=23s&fbclid=IwAR0OcU3JEy4KQmo6DD-iN8otjlowyeXDkEF7ljniuzOkI-aWhGqyHhQzruo
https://www.youtube.com/watch?v=p_KMEQGK-WA&fbclid=IwAR3xcf8e98M77lF9mpQSDWfKppjOt7pKV2rEt76oBiv1caeg0LlQBL70q9g
https://www.youtube.com/watch?v=twqdXTCkeyk&t=9s
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