

[image: cover]

 WHISPER

 Well Honed Infrastructure Software for Programming Environments and Runtimes

 2018 Project-Team Activity Report
	

 Research centre:
 Paris

 Field: Networks, Systems and Services, Distributed Computing
Theme: Distributed Systems and middleware

 Computer Science and Digital Science:

 	A1. - Architectures, systems and networks

 	A1.1.1. - Multicore, Manycore

 	A2.1.6. - Concurrent programming

 	A2.1.10. - Domain-specific languages

 	A2.1.11. - Proof languages

 	A2.2.1. - Static analysis

 	A2.2.5. - Run-time systems

 	A2.3.1. - Embedded systems

 	A2.3.3. - Real-time systems

 	A2.4. - Formal method for verification, reliability, certification

 	A2.4.3. - Proofs

 	A2.5. - Software engineering

 	A2.6.1. - Operating systems

 	A2.6.2. - Middleware

 	A2.6.3. - Virtual machines

 Other Research Topics and Application Domains:

 	B5. - Industry of the future

 	B5.2.1. - Road vehicles

 	B5.2.3. - Aviation

 	B5.2.4. - Aerospace

 	B6.1. - Software industry

 	B6.1.1. - Software engineering

 	B6.1.2. - Software evolution, maintenance

 	B6.3.3. - Network Management

 	B6.5. - Information systems

 	B6.6. - Embedded systems

 Project-Team Whisper

 Team, Visitors, External Collaborators

 Overall Objectives

 Research Program	Scientific Foundations
	Research direction: Tools for improving legacy infrastructure software
	Research direction: developing infrastructure software using Domain Specific Languages

 Application Domains	Linux
	Device Drivers

 Highlights of the Year

 New Software and Platforms	Coccinelle
	Prequel
	Usuba

 New Results	Software engineering for infrastructure
software
	Trustworthy domain-specific compilers
	High-performance domain-specific compilers
	Multicore schedulers

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry
	Bilateral Grants with Industry

 Partnerships and Cooperations	Regional Initiatives
	National Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2014 May 15, updated into Project-Team: 2015 December 01
Section: Team, Visitors, External Collaborators
Research Scientists
Pierre-Évariste Dagand [CNRS, Researcher]
Julia Lawall [Inria, Senior Researcher]
Gilles Muller [Team Leader, Inria, Senior Researcher, HDR]
Faculty Member
Bertil Folliot [Univ Pierre et Marie Curie, Professor, HDR]
Post-Doctoral Fellow
Van-Anh Nguyen [Univ Pierre et Marie Curie, financed by
ANR ITrans]
PhD Students
Cédric Courtaud [Thales]
Redha Gouicem [Univ Pierre et Marie Curie]
Darius Mercadier [Univ Pierre et Marie Curie]
Lucas Serrano [Univ Pierre et Marie Curie]
Technical staff
Antoine Blin [Inria, until Oct 2018, granted by ORANGE SA]
Administrative Assistants
Nelly Maloisel [Inria]
Eugène Kamdem [UPMC, Assistant]

 Overall Objectives

 	
 Overall Objectives

 Section:
 Overall Objectives

 Overall Objectives

 The focus of Whisper is on how to develop (new) and improve
(existing) infrastructure software. Infrastructure software (also
called systems software) is the software that underlies all
computing. Such software allows applications to access resources and
provides essential services such as memory management, synchronization
and inter-process interactions. Starting bottom-up from the hardware,
examples include virtual machine hypervisors, operating systems,
managed runtime environments, standard libraries, and browsers, which
amount to the new operating system layer for Internet applications.
For such software, efficiency and correctness are fundamental. Any
overhead will impact the performance of all supported
applications. Any failure will prevent the supported applications from
running correctly. Since computing now pervades our society, with few
paper backup solutions, correctness of software at all levels is
critical. Formal methods are increasingly being applied to operating
systems code in the research
community [37], [42], [80].
Still, such efforts require a huge amount of manpower and a high
degree of expertise which makes this work difficult to replicate
in standard infrastructure-software development.

 In terms of methodology, Whisper is at the interface of the domains of
operating systems, software engineering and programming languages. Our
approach is to combine the study of problems in the development of
real-world infrastructure software with concepts in programming language
design and implementation, e.g., of domain-specific languages, and
knowledge of low-level system behavior. A focus of our work is on
providing support for legacy code, while taking the needs and competences
of ordinary system developers into account.

 We aim at providing solutions that can be easily learned and adopted
by system developers in the short term. Such solutions can be tools,
such as
Coccinelle [1], [8], [9]
for transforming C programs,
or domain-specific languages such as
Devil [7] and
Bossa [6] for designing drivers and kernel
schedulers. Due to the small size of the team, Whisper mainly
targets operating system kernels and runtimes for programming
languages. We put an emphasis on achieving measurable
improvements in performance and safety in practice, and on feeding
these improvements back to the infrastructure software developer
community.

 Research Program

 	Research Program	Scientific Foundations
	Research direction: Tools for improving legacy infrastructure software
	Research direction: developing infrastructure software using Domain Specific Languages

 Section:
 Research Program

 Scientific Foundations

 Program analysis

 A fundamental goal of the research in the Whisper team is to elicit and
exploit the knowledge found in existing code. To do this in a way that
scales to a large code base, systematic methods are needed to infer code
properties. We may build on either static
[28], [30], [32] or dynamic analysis
[51], [53], [59]. Static analysis consists of
approximating the behavior of the source code from the source code alone,
while dynamic analysis draws conclusions from observations of sample
executions, typically of test cases. While dynamic analysis can be more
accurate, because it has access to information about actual program
behavior, obtaining adequate test cases is difficult. This difficulty is
compounded for infrastructure software, where many, often obscure, cases
must be handled, and external effects such as timing can have a significant
impact. Thus, we expect to primarily use static analyses. Static analyses
come in a range of flavors, varying in the extent to which the analysis is
sound, i.e., the extent to which the results are guaranteed to
reflect possible run-time behaviors.

 One form of sound static analysis is abstract
interpretation [30]. In abstract interpretation, atomic
terms are interpreted as sound abstractions of their values, and operators
are interpreted as functions that soundly manipulate these abstract values.
The analysis is then performed by interpreting the program in a
compositional manner using these abstracted values and operators.
Alternatively, dataflow analysis [41] iteratively
infers connections between variable definitions and uses, in terms of local
transition rules that describe how various kinds of program constructs may
impact variable values. Schmidt has explored the relationship between
abstract interpretation and dataflow analysis [67].
More recently, more general forms of symbolic
execution [28] have emerged as a means of understanding
complex code. In symbolic execution, concrete values are used when
available, and these are complemented by constraints that are inferred from
terms for which only partial information is available. Reasoning about
these constraints is then used to prune infeasible paths, and obtain more
precise results. A number of works apply symbolic execution to operating
systems code [25], [26].

 While sound approaches are guaranteed to give correct results, they
typically do not scale to the very diverse code bases that are prevalent in
infrastructure software. An important insight of Engler et
al. [35] was that valuable information could be obtained
even when sacrificing soundness, and that sacrificing soundness could make
it possible to treat software at the scales of the kernels of the Linux or
BSD operating systems. Indeed, for certain types of problems, on certain
code bases, that may mostly follow certain coding conventions, it may
mostly be safe to e.g., ignore the effects of aliases, assume that
variable values are unchanged by calls to unanalyzed functions, etc. Real
code has to be understood by developers and thus cannot be too complicated,
so such simplifying assumptions are likely to hold in practice.
Nevertheless, approaches that sacrifice soundness also require the user to
manually validate the results. Still, it is likely to be much more
efficient for the user to perform a potentially complex manual analysis in
a specific case, rather than to implement all possible required analyses
and apply them everywhere in the code base. A refinement of unsound
analysis is the CEGAR approach [29], in which a highly
approximate analysis is complemented by a sound analysis that checks the
individual reports of the approximate analysis, and then any errors in
reasoning detected by the sound analysis are used to refine the approximate
analysis. The CEGAR approach has been applied effectively on device driver
code in tools developed at Microsoft [17]. The
environment in which the driver executes, however, is still represented by
possibly unsound approximations.

 Going further in the direction of sacrificing soundness for scalability,
the software engineering community has recently explored a number of
approaches to code understanding based on techniques developed in the areas
of natural language understanding, data mining, and information retrieval.
These approaches view code, as well as other software-reated artifacts,
such as documentation and postings on mailing lists, as bags of words
structured in various ways. Statistical methods are then used to collect
words or phrases that seem to be highly correlated, independently of the
semantics of the program constructs that connect them. The obliviousness
to program semantics can lead to many false positives (invalid
conclusions) [47], but can also highlight trends that
are not apparent at the low level of individual program statements. We
have previously explored combining such statistical methods with more traditional
static analysis in identifying faults in the usage of constants in Linux
kernel code [45].

 Domain Specific Languages

 Writing low-level infrastructure code is tedious and difficult, and
verifying it is even more so. To produce non-trivial programs, we
could benefit from moving up the abstraction stack to enable both
programming and proving as quickly as possible. Domain-specific
languages (DSLs), also known as little languages, are a means to
that end [5] [54].

 Traditional approach.

 Using little languages to aid in software development is a
tried-and-trusted technique [70] by which
programmers can express high-level ideas about the system at hand and
avoid writing large quantities of formulaic C boilerplate.

 This approach is typified by the Devil language for hardware
access [7]. An OS programmer describes the
register set of a hardware device in the high-level Devil language,
which is then compiled into a library providing C functions to read
and write values from the device registers. In doing so, Devil frees
the programmer from having to write extensive bit-manipulation macros
or inline functions to map between the values the OS code deals with,
and the bit-representation used by the hardware: Devil generates code
to do this automatically.

 However, DSLs are not restricted to being “stub” compilers from
declarative specifications. The Bossa language [6]
is a prime example of a DSL involving imperative code (syntactically
close to C) while offering a high-level of abstraction. This design of
Bossa enables the developer to implement new process scheduling
policies at a level of abstraction tailored to the application domain.

 Conceptually, a DSL both abstracts away low-level details and
justifies the abstraction by its semantics. In principle, it reduces
development time by allowing the programmer to focus on high-level
abstractions. The programmer needs to write less code, in a language
with syntax and type checks adapted to the problem at hand, thus
reducing the likelihood of errors.

 Embedding DSLs.

 The idea of a DSL has yet to realize its full potential in the OS
community. Indeed, with the notable exception of interface definition
languages for remote procedure call (RPC) stubs, most OS code is still
written in a low-level language, such as C. Where DSL code generators
are used in an OS, they tend to be extremely simple in both syntax and
semantics. We conjecture that the effort to implement a given DSL
usually outweighs its benefit. We identify several serious obstacles
to using DSLs to build a modern OS: specifying what the generated code
will look like, evolving the DSL over time, debugging generated code,
implementing a bug-free code generator, and testing the DSL compiler.

 Filet-o-Fish (FoF) [3] addresses these issues by
providing a framework in which to build correct code generators from
semantic specifications. This framework is presented as a Haskell
library, enabling DSL writers to embed their languages within
Haskell. DSL compilers built using FoF are quick to write, simple, and
compact, but encode rigorous semantics for the generated code. They
allow formal proofs of the run-time behavior of generated code, and
automated testing of the code generator based on randomized inputs,
providing greater test coverage than is usually feasible in a DSL.
The use of FoF results in DSL compilers that OS developers can quickly
implement and evolve, and that generate provably correct code. FoF
has been used to build a number of domain-specific languages used in
Barrelfish, [18] an OS for heterogeneous
multicore systems developed at ETH Zurich.

 The development of an embedded DSL requires a few supporting
abstractions in the host programming language. FoF was developed in
the purely functional language Haskell, thus benefiting from the type
class mechanism for overloading, a flexible parser offering convenient
syntactic sugar, and purity enabling a more algebraic approach based
on small, composable combinators. Object-oriented languages – such as
Smalltalk [36] and its descendant
Pharo [22] – or multi-paradigm languages – such
as the Scala programming language [56] – also
offer a wide range of mechanisms enabling the development of embedded
DSLs. Perhaps suprisingly, a low-level imperative language – such as
C – can also be extended so as to enable the development of embedded
compilers [19].

 Certifying DSLs.

 Whilst automated and interactive software verification tools are
progressively being applied to larger and larger programs, we have not
yet reached the point where large-scale, legacy software – such as
the Linux kernel – could formally be proved “correct”. DSLs enable
a pragmatic approach, by which one could realistically strengthen a
large legacy software by first narrowing down its critical
component(s) and then focus our verification efforts onto these
components.

 Dependently-typed languages, such as Coq or Idris, offer an ideal
environment for embedding DSLs [27], [23] in
a unified framework enabling verification. Dependent types support the
type-safe embedding of object languages and Coq's mixfix notation
system enables reasonably idiomatic domain-specific concrete syntax.
Coq's powerful abstraction facilities provide a flexible framework in
which to not only implement and verify a range of domain-specific
compilers [3], but also to combine them, and reason
about their combination.

 Working with many DSLs optimizes the “horizontal” compositionality
of systems, and favors reuse of building blocks, by contrast with the
“vertical” composition of the traditional compiler pipeline,
involving a stack of comparatively large intermediate languages that
are harder to reuse the higher one goes. The idea of building
compilers from reusable building blocks is a common one, of
course. But the interface contracts of such blocks tend to be complex,
so combinations are hard to get right. We believe that being able to
write and verify formal specifications for the pieces will make it
possible to know when components can be combined, and should help in
designing good interfaces.

 Furthermore, the fact that Coq is also a system for formalizing
mathematics enables one to establish a close, formal connection
between embedded DSLs and non-trivial domain-specific models. The
possibility of developing software in a truly “model-driven” way is
an exciting one. Following this methodology, we have implemented a
certified compiler from regular expressions to x86 machine
code [4]. Interestingly, our development
crucially relied on an existing Coq formalization, due to Braibant and
Pous, [24] of the theory of Kleene algebras.

 While these individual experiments seem to converge toward embedding
domain-specific languages in rich type theories, further experimental
validation is required. Indeed, Barrelfish is an extremely small
software compared to the Linux kernel. The challenge lies in scaling
this methodology up to large software systems. Doing so calls for a
unified platform enabling the development of a myriad of DSLs,
supporting code reuse across DSLs as well as providing support for
mechanically-verified proofs.

 Section:
 Research Program

 Research direction: Tools for improving legacy infrastructure software

 A cornerstone of our work on legacy infrastructure software is the
Coccinelle program matching and transformation tool for C code. Coccinelle
has been in continuous development since 2005. Today, Coccinelle is
extensively used in the context of Linux kernel development, as well as in
the development of other software, such as wine, python, kvm, and systemd.
Currently, Coccinelle is a mature software project, and no research is
being conducted on Coccinelle itself. Instead, we leverage Coccinelle
in other research
projects [20], [21], [57], [60], [64], [66], [68], [52], [46],
both for code exploration, to better understand at a large scale
problems in Linux development, and as an essential component in tools
that require program matching and transformation. The continuing
development and use of Coccinelle is also a source of visibility in
the Linux kernel developer community. We submitted the first patches
to the Linux kernel based on Coccinelle in 2007. Since then, over 5500
patches have been accepted into the Linux kernel based on the use of
Coccinelle, including around 3000 by over 500 developers from outside
our research group.

 Our recent work has focused on driver porting. Specifically, we have
considered the problem of porting a Linux device driver across versions,
particularly backporting, in which a modern driver needs to be used by a
client who, typically for reasons of stability, is not able to update their
Linux kernel to the most recent version. When multiple drivers need to be
backported, they typically need many common changes, suggesting that
Coccinelle could be applicable. Using Coccinelle, however, requires
writing backporting transformation rules. In order to more fully automate
the backporting (or symmetrically forward porting) process, these rules
should be generated automatically. We have carried out a preliminary study
in this direction with David Lo of Singapore Management University; this
work, published at ICSME 2016 [73], is limited to a
port from one version to the next one, in the case where the amount of
change required is limited to a single line of code. Whisper has been
awarded an ANR PRCI grant to collaborate with the
group of David Lo on scaling up the rule inference process and proposing a
fully automatic porting solution.

 Section:
 Research Program

 Research direction: developing infrastructure software using Domain Specific Languages

 We wish to pursue a declarative approach to developing
infrastructure software. Indeed, there exists a significant gap
between the high-level objectives of these systems and their
implementation in low-level, imperative programming languages. To
bridge that gap, we propose an approach based on domain-specific
languages (DSLs). By abstracting away boilerplate code, DSLs increase
the productivity of systems programmers. By providing a more
declarative language, DSLs reduce the complexity of code, thus the
likelihood of bugs.

 Traditionally, systems are built by accretion of several, independent
DSLs. For example, one might use Devil [7] to
interact with devices, Bossa [6] to implement the
scheduling policies. However, much effort is duplicated in
implementing the back-ends of the individual DSLs. Our long term goal is to
design a unified framework for developing and composing DSLs, following our
work on Filet-o-Fish [3]. By providing a single conceptual
framework, we hope to amortize the development cost of a myriad of DSLs
through a principled approach to reusing and composing them.

 Beyond the software engineering aspects, a unified platform brings us
closer to the implementation of mechanically-verified DSLs. Using the
Coq proof assistant as an x86
macro-assembler [4] is a step in that
direction, which belongs to a larger trend of hosting DSLs in
dependent type theories
[23], [27], [55]. A key benefit
of those approaches is to provide – by construction – a formal,
mechanized semantics to the DSLs thus developed. This semantics offers
a foundation on which to base further verification efforts, whilst
allowing interaction with non-verified code. We advocate a methodology
based on incremental, piece-wise verification. Whilst building
fully-certified systems from the top-down is a worthwhile endeavor
[42], we wish to explore a bottom-up approach by
which one focuses first and foremost on crucial subsystems and their
associated properties.

 Our current work on DSLs has two complementary goals: (i) the design of a
unified framework for developing and composing DSLs, following our work on
Filet-o-Fish, and (ii) the design of domain-specific languages for domains
where there is a critical need for code correctness, and corresponding
methodologies for proving properties of the run-time behavior of the
system.

 Application Domains

 	Application Domains	Linux
	Device Drivers

 Section:
 Application Domains

 Linux

 Linux is an open-source operating system that is used in settings ranging
from embedded systems to supercomputers. The most recent release of the
Linux kernel, v4.14, comprises over 16 million lines of code, and supports
30 different families of CPU architectures, around 50 file systems, and thousands
of device drivers. Linux is also in a rapid stage of development, with new
versions being released roughly every 2.5 months. Recent versions have
each incorporated around 13,500 commits, from around 1500 developers.
These developers have a wide range of expertise, with some providing
hundreds of patches per release, while others have contributed only one.
Overall, the Linux kernel is critical software, but software in which the
quality of the developed source code is highly variable. These features,
combined with the fact that the Linux community is open to contributions
and to the use of tools, make the Linux kernel an attractive target for
software researchers. Tools that result from research can be directly
integrated into the development of real software, where it can have a high,
visible impact.

 Starting from the work of Engler et al. [34], numerous
research tools have been applied to the Linux kernel, typically for finding
bugs [32], [50], [61], [72]
or for computing software metrics [39], [78]. In
our work, we have studied generic C bugs in Linux
code [9], bugs in function protocol
usage [43], [44], issues related to the
processing of bug reports [65] and crash
dumps [38], and the problem of
backporting [60], [73],
illustrating the variety of issues that can be explored on this code base.
Unique among research groups working in this area, we have furthermore
developed numerous contacts in the Linux developer community. These
contacts provide insights into the problems actually faced by developers
and serve as a means of validating the practical relevance of our work.

 Section:
 Application Domains

 Device Drivers

 Device drivers are essential to modern computing, to provide
applications with access, via the operating system, to physical
devices such as keyboards, disks, networks, and cameras. Development
of new computing paradigms, such as the internet of things, is
hampered because device driver development is challenging and
error-prone, requiring a high level of expertise in both the targeted
OS and the specific device. Furthermore, implementing just one driver
is often not sufficient; today's computing landscape is characterized
by a number of OSes, e.g., Linux, Windows, MacOS, BSD and many
real time OSes, and each is found in a wide range of variants and
versions. All of these factors make the development, porting,
backporting, and maintenance of device drivers a critical problem for
device manufacturers, industry that requires specific devices, and
even for ordinary users.

 The last fifteen years have seen a number of approaches directed towards
easing device driver development. Réveillère, who was supervised
by G. Muller, proposes Devil [7], a
domain-specific language for describing the low-level interface of a
device. Chipounov et al. propose
RevNic, [26] a template-based approach for
porting device drivers from one OS to another. Ryzhyk et
al. propose Termite, [62], [63] an approach
for synthesizing device driver code from a specification of an OS and a
device. Currently, these approaches have been successfully applied to only
a small number of toy drivers. Indeed, Kadav and
Swift [40] observe that these approaches make
assumptions that are not satisfied by many drivers; for example, the
assumption that a driver involves little computation other than the direct
interaction between the OS and the device. At the same time, a number of
tools have been developed for finding bugs in driver code. These tools
include SDV [17], Coverity [34],
CP-Miner, [49] PR-Miner [50], and
Coccinelle [8]. These approaches, however, focus
on analyzing existing code, and do not provide guidelines on structuring
drivers.

 In summary, there is still a need for a methodology that first helps the
developer understand the software architecture of drivers for commonly used
operating systems, and then provides tools for the
maintenance of existing drivers.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 The Whisper team published three papers at USENIX ATC, one of the major conferences of our domain:

 	
 Coccinelle: 10 Years of Automated Evolution in the Linux Kernel. J.
Lawall and G.Muller. [14]

 	
 DSAC: Effective Static Analysis of Sleep-in-Atomic-Context Bugs in
Kernel Modules. J.-J. Bai, Y.-P. Wang, J. Lawall,
S.-M. Hu. [12]

 	
 The Battle of the Schedulers: FreeBSD ULE vs. Linux CFS. J. Bouron,
S. Chevalley, B. Lepers, W. Zwaenepoel, R. Gouicem, J. Lawall, G. Muller,
J. Sopena. [13]

 Gilles Muller was co-PC chair of DSN 2018, the premier venue for dependable systems.

 Julia Lawall was co-PC chair of the ASE 2018 Tool Demo track, in
preparation for being the co-PC chair of the main ASE research paper track
in 2019.

 Awards

 The original work on Coccinelle “Documenting and automating collateral
evolutions in Linux device drivers” [8]
received an ACM EuroSys Test-of-Time award, recognizing it as the paper
from EuroSys 2008 that is having the most lasting and current impact
(http://eurosys2018.org/awards/).

 New Software and Platforms

 	New Software and Platforms	Coccinelle
	Prequel
	Usuba

 Section:
 New Software and Platforms

 Coccinelle

 Keywords: Code quality - Evolution - Infrastructure software

 Functional Description: Coccinelle is a tool for code search and transformation for C programs. It has been extensively used for bug finding and evolutions in Linux kernel code.

 	
 Participants: Gilles Muller, Julia Lawall, Nicolas Palix, Rene Rydhof Hansen and Thierry Martinez

 	
 Partners: LIP6 - IRILL

 	
 Contact: Julia Lawall

 	
 URL: http://coccinelle.lip6.fr

 Section:
 New Software and Platforms

 Prequel

 Keywords: Code search - Git

 Scientific Description: The commit history of a code base such as the Linux kernel is a gold mine of information on how evolutions should be made, how bugs should be fixed, etc. Nevertheless, the high volume of commits available and the rudimentary filtering tools provided mean that it is often necessary to wade through a lot of irrelevant information before finding example commits that can help with a specific software development problem. To address this issue, we propose Prequel (Patch Query Language), which brings the descriptive power of code matching to the problem of querying a commit history.

 Functional Description: Prequel is a tool for searching for complex patterns in the commits of software managed using git.

 	
 Participants: Gilles Muller and Julia Lawall

 	
 Partners: LIP6 - IRILL

 	
 Contact: Julia Lawall

 	
 URL: http://prequel-pql.gforge.inria.fr/

 Section:
 New Software and Platforms

 Usuba

 Keywords: Cryptography - Optimizing compiler - Synchorous language

 Functional Description: Usuba is a programming language for specifying block ciphers as well as a bitslicing compiler, for producing high-throughput and secure code.

 	
 Contact: Pierre-Evariste Dagand

 	
 Publication: Usuba, Optimizing & Trustworthy Bitslicing Compiler

 	
 URL: https://github.com/DadaIsCrazy/usuba/

 New Results

 	New Results	Software engineering for infrastructure
software
	Trustworthy domain-specific compilers
	High-performance domain-specific compilers
	Multicore schedulers

 Section:
 New Results

 Software engineering for infrastructure
software

 The most visible tool developed in the Whisper team is Coccinelle,
which this year marked the 10th anniversary of its release in open
source. The paper “Coccinelle: 10 Years of Automated Evolution in
the Linux Kernel,” published at USENIX ATC'18
[14], traced the history of Coccinelle, its
underlying design decisions and impact. The Coccinelle C-code
matching and transformation tool was first released in 2008 to
facilitate specification and automation in the evolution of Linux
kernel code. The novel contribution of Coccinelle was to allow
software developers to write code manipulation rules in terms of the
code structure itself, via a generalization of the patch syntax. Over
the years, Coccinelle has been extensively used in Linux kernel
development, resulting in over 6000 commits to the Linux kernel, and
has found its place as part of the Linux kernel development process.
The USENIX ATC paper studies the impact of Coccinelle on Linux kernel
development and the features of Coccinelle that have made it
possible. It provides guidance on how other research-based tools can
achieve practical impact in the open-source development community.
This work was also presented to Linux kernel developers at Kernel
Recipes and Open Source Summit Europe, and at the 8th
Inria/Technicolor Workshop On Systems.

 In a modern OS, kernel modules often use spinlocks and interrupt handlers
to monopolize a CPU core to execute concurrent code in atomic context. In
this situation, if the kernel module performs an operation that can sleep
at runtime, a system hang may occur. We refer to this kind of concurrency
bug as a sleep-in-atomic-context (SAC) bug. In practice, SAC bugs have
received insufficient attention and are hard to find, as they do not always
cause problems in real executions. In a paper published at USENIX ATC'18
[12], we propose a practical static approach named DSAC,
to effectively detect SAC bugs and automatically recommend patches to help
fix them. DSAC uses four key techniques: (1) a hybrid of flow-sensitive and
-insensitive analysis to perform accurate and efficient code analysis; (2)
a heuristics-based method to accurately extract kernel interfaces that can
sleep at runtime; (3) a path-check method to effectively filter out
repeated reports and false bugs; (4) a pattern-based method to
automatically generate recommended patches to help fix the bugs. We
evaluate DSAC on kernel modules (drivers, file systems, and network
modules) of the Linux kernel, and on the FreeBSD and NetBSD kernels, and in
total find 401 new real bugs. 272 of these bugs have been confirmed by the
relevant kernel maintainers, and 43 patches generated by DSAC have been
applied by kernel maintainers.

 Section:
 New Results

 Trustworthy domain-specific compilers

 To achieve safety and composability, we believe that an holistic
approach is called for, involving not only the design of a
domain-specific syntax but also of a domain-specific
semantics. Concretely, we are exploring the design of
certified domain-specific compilers that integrate, from the
ground up, a denotational and domain-specific semantics as part of the
design of a domain-specific language. This vision is illustrated by
our work on the safe compilation of Coq programs into secure OCaml
code [10]. It combines ideas from gradual typing
– through which types are compiled into run-time assertions – and
the theory of ornaments [31] – through which Coq
datatypes can be related to OCaml datatypes. Within this formal
framework, we enable a secure interaction, termed dependent
interoperability, between correct-by-construction software and
untrusted programs, be it system calls or legacy libraries. To do so,
we trade static guarantees for runtime checks, thus allowing OCaml
values to be safely coerced to dependently-typed Coq values and,
conversely, to expose dependently-typed Coq programs defensively as
OCaml programs. Our framework is developed in Coq: it is constructive
and verified in the strictest sense of the terms. It thus becomes
possible to internalize and hand-tune the extraction of
dependently-typed programs to interoperable OCaml programs within Coq
itself. This work is the result of a collaboration with Eric Tanter,
from the University of Chile, and Nicolas Tabareau, from the
Gallinette Inria project-team.

 Section:
 New Results

 High-performance domain-specific compilers

 As part of Darius Mercadier's PhD project, we are developing a
synchronous dataflow language targeting high-performance (and,
eventually, verified) implementations of bitsliced algorithms, with
application to cryptographical algorithms [33].
Using our Usuba language, cryptographers can specify a block cipher at
a very high level as a set of dataflow equations. From such a
description, our usubac compiler is able to generate
efficient, vectorized code exploiting the SIMD instruction sets of the
underlying architecture. We have demonstrated that our generated code
performs on par with hand-tuned assembly programs while, at the same
time, being able to target multiple CPU architectures as well as
multiple generations of SIMD instruction sets on each architecture.
This project illustrates perfectly our methodology: the design of
Usuba is driven by semantic considerations (bitslicing is only
meaningful for bit parallel operations) that are then structured using
types and subsequently reifed into syntactic artefacts. Our
preliminary results [15], published in an
international workshop, are encouraging.

 Section:
 New Results

 Multicore schedulers

 As a side-effect of our work on verification of schedulers
[48], we have contributed to an analysis of the
impact on application performance of the design and implementation choices
made in two widely used open-source schedulers: ULE, the default FreeBSD
scheduler, and CFS, the default Linux scheduler. In a paper published at
USENIX ATC'18 [13], we compare ULE and CFS in
otherwise identical circumstances. This work involves porting ULE to Linux,
and using it to schedule all threads that are normally scheduled by CFS. We
compare the performance of a large suite of applications on the modified
kernel running ULE and on the standard Linux kernel running CFS. The
observed performance differences are solely the result of scheduling
decisions, and do not reflect differences in other subsystems between
FreeBSD and Linux. We found that there is no overall winner. On many
workloads the two schedulers perform similarly, but for some workloads
there are significant and even surprising differences. ULE may cause
starvation, even when executing a single application with identical
threads, but this starvation may actually lead to better application
performance for some workloads. The more complex load balancing mechanism
of CFS reacts more quickly to workload changes, but ULE achieves better
load balance in the long run.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry
	Bilateral Grants with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 	
 Orange Labs, 2016-2018, 120 000 euros. The purpose of this contract is
to apply the techniques developed in the context of the PhD of Antoine
Blin to the domain of Software Defined Networks where network
functions are run using virtual machines on commodity multicore
machines.

 	
 Thales Research, 2016-2018, 45 000 euros. The purpose of this
contract is to enable the usage of multicore architectures in avionics
systems. The PhD of Cédric Courtaud is supported by a CIFRE
fellowship as part of this contract.

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Grants with Industry

 	
 Oracle, 2018-2019, 100 000 dollars. Operating system schedulers are
often a performance bottleneck on multicore architectures because in
order to scale, schedulers cannot make optimal decisions and instead
have to rely on heuristics. Detecting that performance degradation
comes from the scheduler level is extremely difficult because the
issue has not been recognized until recently, and with traditional
profilers, both the application and the scheduler affect the monitored
metrics in the same way.

 The first objective of this project is to produce a profiler that
makes it possible to find out whether a bottleneck during application
runtime is caused by the application itself, by suboptimal OS
scheduler behavior, or by a combination of the two. It will require
understanding, analyzing and classifying performance bottlenecks that
are caused by schedulers, and devising ways to detect them and to
provide enough information for the user to understand the root cause
of the issue. Following this, the second objective of this project is
to use the profiler to better understand which kinds of workloads
suffer from poor scheduling, and to propose new algorithms, heuristics
and/or a new scheduler design that will improve the situation.
Finally, the third contribution will be a methodology that makes it
possible to track scheduling bottlenecks in a specific workload using
the profiler, to understand them, and to fix them either at the
application or at the scheduler level. We believe that the combination
of these three contributions will make it possible to fully harness
the power of multicore architectures for any workload.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events Selection

 Chair of Conference Program Committees

 	
 Gilles Muller: DSN 2018

 	
 Julia Lawall: ASE 2018 Tool Demo track.

 Member of the Conference Program Committees

 	
 Gilles Muller: OSDI 2018, EuroSys 2018

 	
 Julia Lawall: EuroSys 2018, ICSE-NIER 2018, ASPLOS 2018 ERC, PEPM
2018, SCAM 2018, APSys 2018, USENIX ATC 2018, CARI 2018

 Journal

 Member of the Editorial Boards

 	
 Julia Lawall: Editorial board of Science of Computer Programing
(2008 - present).

 Reviewer - Reviewing Activities

 	
 Julia Lawall: Transactions on Software Engineering, Software:
Evolution and Process, IEEE Transactions on Reliability, ACM Transactions
on Embedded Computing Systems

 Invited Talks

 	
 Gilles Muller:

 	
 “Provably Work Conserving Multicore Schedulers”, University of Bordeaux, June 13, 2018.

 	
 “Safe multicore scheduling in a Linux cluster environment”, 3rd GDR RSD and ASF Winter School on Distributed Systems and Networks, Sept Laux, March 20, 2018.

 	
 Julia Lawall:

 	
 “Coccinelle: 10 Years of Automated Evolution in
the Linux Kernel”,
8th Inria/Technicolor Workshop On Systems, Rennes, December 11, 2018.

 	
 “Software evolution and bug finding using Coccinelle”, Lightweight
analysis and verification techniques, Verimag, Grenoble, December 11, 2018.

 	
 “Coccinelle: 10 Years of Automated Evolution in the Linux Kernel”,
Conférence d’informatique en Parallélisme, Architecture et Système
(COMPAS), Toulouse, July 3, 2018.

 	
 “Coccinelle: Practical Program Transformation
for the Linux Kernel”, EJCP 2018 : École Jeunes Chercheurs et Jeunes
Chercheuses en Programmation 2018, June 25, 2018.

 	
 “Introduction to Coccinelle and its usage in the Linux Kernel”,
Conférence MiNET, Telecom SudParis, May 24, 2018.

 	
 Pierre-Évariste Dagand gave a seminar at the Collège de France
entitled “Types dépendants : tout un programme” (November 28,
2018), as part of Xavier Leroy's chair “Sciences du logiciel”.

 	
 Lucas Serrano:
“Inference of Semantic Patches from Code Examples”,
The Seventh International Workshop on Software Mining, with ASE, September
3, 2018.

 	
 Cedric Courtaud
“Toward an Efficient Data Plane for Memory Systems Interference Regulation in COTS Multi-core Systems”,
The NExt Step TOwards multi-core Real-time systems workshop, ULB,
May 18, 2018.

 Scientific Expertise

 	
 Julia Lawall was part of the midterm review panel of the NSF
Expedition in Computing project DeepSpec.

 Research Administration

 	
 Julia Lawall:
IFIP TC secretary (2012 - present). Elected member of IFIP WG 2.11 (Program
Generation).

 Member of a hiring committee for a Maître de conférences position at
Université Paris Diderot

 Board member of Software Heritage (https://www.softwareheritage.org/).

 	
 Gilles Muller: Elected
member of IFIP WG 10.4 (Dependability), representative of Inria in
Sorbonne University's advisory committee for research, member
of the project committee board of the Inria Paris Center.

 	
 Bertil Folliot: Elected member of the IFIP WG10.3 working group (Concurrent systems)

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Professional Licence: Bertil Folliot, Programmation C, L2, UPMC, France

 	
 Professional Licence: Bertil Folliot, Lab projects, L2, UPMC, France

 	
 Master: Pierre-Évariste Dagand, Specification and Validation of Programs, M2, UPMC, France

 	
 Licence: Pierre-Évariste Dagand, INF311: Introduction to Programming, L1, École Polytechnique, France

 	
 Master: Pierre-Évariste Dagand, INF559: Computer Architecture and Operating Systems, M1, École Polytechnique, France

 Supervision

 	
 PhD : Mariem Saeid, soutenue le 25/9/2018, Jens Gustedt (Camus), Gilles Muller.

 	
 PhD in progress : Cédric Courtaud, CIFRE Thalès, 2016-2019, Gilles Muller, Julien Sopéna (Delys).

 	
 PhD in progress : Redha Gouicem, 2016-2019, Gilles Muller, Julien Sopéna (Delys).

 	
 PhD in progress : Darius Mercadier, 2017-2020, Pierre-Évariste Dagand, Gilles Muller.

 	
 PhD in progress : Lucas Serrano, 2017-2020, Julia Lawall.

 Juries

 	
 Julia Lawall: PhD juries of Ferdian Thung, SMU (reporter), Thibaut
Girka, Université Paris Diderot (president), Thomas Durieux, Lille
(examiner).

 Section:
 Dissemination

 Popularization

 	
 Julia Lawall: Coordinator of the Outreachy internship program for the
Linux kernel, until March 2018. Outreachy provides remote 3-month
internships twice a year for women and other underrepresented minorities
on open source projects. Julia Lawall also mentored Aishwarya Pant as
part of this program.

 	
 Julia Lawall, “Building Stable Trees with Machine Learning”,
Open Source Summit North America, August 2018, with Sasha Levin.
Open Source Summit Europe, October 2018, with Sasha Levin.
Linux Plumbers Conference, kernel summit track, November 2018, with Sasha
Levin.

 	
 Julia Lawall, “Coccinelle: 10 Years of Automated Evolution and Bug
Finding in the Linux Kernel”, Open Source Summit Europe, October 2018.

 	
 Julia Lawall, “Panel Discussion: Outreachy Kernel Internship
Report” (moderator), Open Source Summit Europe, October 2018.

 	
 Julia Lawall, “Panel Discussion: An Exploration of Insights & Issues
Related to Mentoring Programs” (participant), Open Source Summit Europe,
October 2018.

 	
 Julia Lawall, “Interprocedural Static Analysis Strategies for the
Linux Kernel: Detecting SAC Bugs as an Example (Work in Progress)”,
Linux Kernel Real
Time Summit, October 2018.

 	
 Julia Lawall, “Kernel Panel” (participant), Linux Plumbers Conference,
November 2018.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, G. Muller.
A foundation for flow-based program matching using temporal logic and model checking, in: POPL, Savannah, GA, USA, ACM, January 2009, pp. 114–126.

 	[2]

 	L. Burgy, L. Réveillère, J. L. Lawall, G. Muller.
Zebu: A Language-Based Approach for Network Protocol Message Processing, in: IEEE Trans. Software Eng., 2011, vol. 37, no 4, pp. 575-591.

 	[3]

 	P.-É. Dagand, A. Baumann, T. Roscoe.
Filet-o-Fish: practical and dependable domain-specific languages for OS development, in: Programming Languages and Operating Systems (PLOS), 2009, pp. 51–55.

 	[4]

 	A. Kennedy, N. Benton, J. B. Jensen, P.-É. Dagand.
Coq: The World's Best Macro Assembler?, in: PPDP, Madrid, Spain, ACM, 2013, pp. 13–24.

 	[5]

 	G. Muller, C. Consel, R. Marlet, L. P. Barreto, F. Mérillon, L. Réveillère.
Towards Robust OSes for Appliances: A New Approach Based on Domain-specific Languages, in: Proceedings of the 9th Workshop on ACM SIGOPS European Workshop: Beyond the PC: New Challenges for the Operating System, Kolding, Denmark, 2000, pp. 19–24.

 	[6]

 	G. Muller, J. L. Lawall, H. Duchesne.
A Framework for Simplifying the Development of Kernel Schedulers: Design and Performance Evaluation, in: HASE - High Assurance Systems Engineering Conference, Heidelberg, Germany, IEEE, October 2005, pp. 56–65.

 	[7]

 	F. Mérillon, L. Réveillère, C. Consel, R. Marlet, G. Muller.
Devil: An IDL for hardware programming, in: Proceedings of the Fourth Symposium on Operating Systems Design and Implementation (OSDI), San Diego, California, USENIX Association, October 2000, pp. 17–30.

 	[8]

 	Y. Padioleau, J. L. Lawall, R. R. Hansen, G. Muller.
Documenting and Automating Collateral Evolutions in Linux Device Drivers, in: EuroSys, Glasgow, Scotland, March 2008, pp. 247–260.

 	[9]

 	N. Palix, G. Thomas, S. Saha, C. Calvès, J. L. Lawall, G. Muller.
Faults in Linux 2.6, in: ACM Transactions on Computer Systems, June 2014, vol. 32, no 2, pp. 4:1–4:40.

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[10]

 	P.-E. Dagand, N. Tabareau, É. Tanter.
Foundations of Dependent Interoperability, in: Journal of Functional Programming, March 2018, vol. 28. [
DOI : 10.1017/S0956796818000011]
https://hal.inria.fr/hal-01629909

 	[11]

 	K. Narasimhan, C. Reichenbach, J. Lawall.
Cleaning up Copy-Paste Clones with Interactive Merging, in: Journal of Automated Software Engineering, August 2018, vol. 25, no 3, pp. 627-673. [
DOI : 10.1007/s10515-018-0238-5]
https://hal.inria.fr/hal-01853896

 International Conferences with Proceedings

 	[12]

 	J.-J. Bai, Y.-P. Wang, J. Lawall, S.-M. Hu.
DSAC: Effective Static Analysis of Sleep-in-Atomic-Context Bugs in Kernel Modules, in: 2018 USENIX Annual Technical Conference, Boston, MA, United States, July 2018.
https://hal.inria.fr/hal-01853268

 	[13]

 	J. Bouron, S. Chevalley, B. Lepers, W. Zwaenepoel, R. Gouicem, J. Lawall, G. Muller, J. Sopena.
The Battle of the Schedulers: FreeBSD ULE vs. Linux CFS, in: 2018 USENIX Annual Technical Conference, Boston, MA, United States, July 2018.
https://hal.inria.fr/hal-01853267

 	[14]

 	J. Lawall, G. Muller.
Coccinelle: 10 Years of Automated Evolution in the Linux Kernel, in: 2018 USENIX Annual Technical Conference, Boston, MA, United States, July 2018.
https://hal.inria.fr/hal-01853271

 	[15]

 	D. Mercadier, P.-É. Dagand, L. Lacassagne, G. Muller.
Usuba, Optimizing & Trustworthy Bitslicing Compiler, in: WPMVP’18 - Workshop on Programming Models for SIMD/Vector Processing, Vienna, Austria, ACM Press, February 2018. [
DOI : 10.1145/3178433.3178437]
https://hal.archives-ouvertes.fr/hal-01657259

 Other Publications

 	[16]

 	M. Martone, L. Iapichino, N. Hammer, J. Lawall.
Automating Data Layout Conversion in a Large Cosmological Simulation Code, September 2018, CoSaS 2018 - International Symposium on Computational Science at Scale, Poster.
https://hal.inria.fr/hal-01890314

 References in notes

 	[17]

 	T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani, A. Ustuner.
Thorough Static Analysis of Device Drivers, in: EuroSys, 2006, pp. 73–85.

 	[18]

 	A. Baumann, P. Barham, P.-É. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, A. Singhania.
The multikernel: A new OS architecture for scalable multicore systems, in: SOSP, 2009, pp. 29–44.

 	[19]

 	T. F. Bissyandé, L. Réveillère, J. L. Lawall, Y.-D. Bromberg, G. Muller.
Implementing an embedded compiler using program transformation rules, in: Software: Practice and Experience, 2013.

 	[20]

 	T. F. Bissyandé, L. Réveillère, J. Lawall, Y.-D. Bromberg, G. Muller.
Implementing an Embedded Compiler using Program Transformation Rules, in: Software: Practice and Experience, February 2015, vol. 45, no 2, pp. 177-196.
https://hal.archives-ouvertes.fr/hal-00844536

 	[21]

 	T. F. Bissyandé, L. Réveillère, J. Lawall, G. Muller.
Ahead of Time Static Analysis for Automatic Generation of Debugging Interfaces to the Linux Kernel, in: Automated Software Engineering, May 2014, pp. 1-39. [
DOI : 10.1007/s10515-014-0152-4]
https://hal.archives-ouvertes.fr/hal-00992283

 	[22]

 	A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet.
Pharo by Example, Square Bracket Associates, 2010.

 	[23]

 	E. Brady, K. Hammond.
Resource-Safe Systems Programming with Embedded Domain Specific Languages, in: 14th International Symposium on Practical Aspects of Declarative Languages (PADL), LNCS, Springer, 2012, vol. 7149, pp. 242–257.

 	[24]

 	T. Braibant, D. Pous.
An Efficient Coq Tactic for Deciding Kleene Algebras, in: 1st International Conference on Interactive Theorem Proving (ITP), LNCS, Springer, 2010, vol. 6172, pp. 163–178.

 	[25]

 	C. Cadar, D. Dunbar, D. R. Engler.
KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs, in: OSDI, 2008, pp. 209–224.

 	[26]

 	V. Chipounov, G. Candea.
Reverse Engineering of Binary Device Drivers with RevNIC, in: EuroSys, 2010, pp. 167–180.

 	[27]

 	A. Chlipala.
The Bedrock Structured Programming System: Combining Generative Metaprogramming and Hoare Logic in an Extensible Program Verifier, in: ICFP, 2013, pp. 391–402.

 	[28]

 	L. A. Clarke.
A system to generate test data and symbolically execute programs, in: IEEE Transactions on Software Engineering, 1976, vol. 2, no 3, pp. 215–222.

 	[29]

 	E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith.
Counterexample-guided abstraction refinement for symbolic model checking, in: J. ACM, 2003, vol. 50, no 5, pp. 752–794.

 	[30]

 	P. Cousot, R. Cousot.
Abstract Interpretation: Past, Present and Future, in: CSL-LICS, 2014, pp. 2:1–2:10.

 	[31]

 	P.-É. Dagand.
Reusability and Dependent Types, University of Strathclyde, 2013.

 	[32]

 	I. Dillig, T. Dillig, A. Aiken.
Sound, complete and scalable path-sensitive analysis, in: PLDI, June 2008, pp. 270–280.

 	[33]

 	D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Großschädl, A. Biryukov.
Triathlon of Lightweight Block Ciphers for the Internet of Things, 2015, Cryptology ePrint Archive, Report 2015/209.

 	[34]

 	D. R. Engler, B. Chelf, A. Chou, S. Hallem.
Checking System Rules Using System-Specific, Programmer-Written Compiler Extensions, in: OSDI, 2000, pp. 1–16.

 	[35]

 	D. R. Engler, D. Y. Chen, A. Chou, B. Chelf.
Bugs as Deviant Behavior: A General Approach to Inferring Errors in Systems Code, in: SOSP, 2001, pp. 57–72.

 	[36]

 	A. Goldberg, D. Robson.
Smalltalk-80: The Language and Its Implementation, Addison-Wesley, 1983.

 	[37]

 	L. Gu, A. Vaynberg, B. Ford, Z. Shao, D. Costanzo.
CertiKOS: A Certified Kernel for Secure Cloud Computing, in: Proceedings of the Second Asia-Pacific Workshop on Systems (APSys), 2011, pp. 3:1–3:5.

 	[38]

 	L. Guo, J. L. Lawall, G. Muller.
Oops! Where did that code snippet come from?, in: 11th Working Conference on Mining Software Repositories, MSR, Hyderabad, India, ACM, May 2014, pp. 52–61.

 	[39]

 	A. Israeli, D. G. Feitelson.
The Linux kernel as a case study in software evolution, in: Journal of Systems and Software, 2010, vol. 83, no 3, pp. 485–501.

 	[40]

 	A. Kadav, M. M. Swift.
Understanding modern device drivers, in: ASPLOS, 2012, pp. 87–98.

 	[41]

 	G. A. Kildall.
A Unified Approach to Global Program Optimization, in: POPL, 1973, pp. 194–206.

 	[42]

 	G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood.
seL4: formal verification of an OS kernel, in: SOSP, 2009, pp. 207–220.

 	[43]

 	J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, G. Muller.
WYSIWIB: Exploiting fine-grained program structure in a scriptable API-usage protocol-finding process, in: Software, Practice Experience, 2013, vol. 43, no 1, pp. 67–92.

 	[44]

 	J. L. Lawall, B. Laurie, R. R. Hansen, N. Palix, G. Muller.
Finding Error Handling Bugs in OpenSSL using Coccinelle, in: Proceeding of the 8th European Dependable Computing Conference (EDCC), Valencia, Spain, April 2010, pp. 191–196.

 	[45]

 	J. L. Lawall, D. Lo.
An automated approach for finding variable-constant pairing bugs, in: 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, September 2010, pp. 103–112.

 	[46]

 	J. Lawall, D. Palinski, L. Gnirke, G. Muller.
Fast and Precise Retrieval of Forward and Back Porting Information for Linux Device Drivers, in: 2017 USENIX Annual Technical Conference, Santa Clara, CA, United States, July 2017, 12 p.
https://hal.inria.fr/hal-01556589

 	[47]

 	C. Le Goues, W. Weimer.
Specification Mining with Few False Positives, in: TACAS, York, UK, Lecture Notes in Computer Science, March 2009, vol. 5505, pp. 292–306.

 	[48]

 	B. Lepers, W. Zwaenepoel, J.-P. Lozi, N. Palix, R. Gouicem, J. Sopena, J. Lawall, G. Muller.
Towards Proving Optimistic Multicore Schedulers, in: HotOS 2017 - 16th Workshop on Hot Topics in Operating Systems, Whistler, British Columbia, Canada, ACM SIGOPS, May 2017, 6 p. [
DOI : 10.1145/3102980.3102984]
https://hal.inria.fr/hal-01556597

 	[49]

 	Z. Li, S. Lu, S. Myagmar, Y. Zhou.
CP-Miner: A Tool for Finding Copy-paste and Related Bugs in Operating System Code, in: OSDI, 2004, pp. 289–302.

 	[50]

 	Z. Li, Y. Zhou.
PR-Miner: automatically extracting implicit programming rules and detecting violations in large software code, in: Proceedings of the 10th European Software Engineering Conference, 2005, pp. 306–315.

 	[51]

 	D. Lo, S. Khoo.
SMArTIC: towards building an accurate, robust and scalable specification miner, in: FSE, 2006, pp. 265–275.

 	[52]

 	J.-P. Lozi, F. David, G. Thomas, J. Lawall, G. Muller.
Fast and Portable Locking for Multicore Architectures, in: ACM Transactions on Computer Systems, January 2016. [
DOI : 10.1145/2845079]
https://hal.inria.fr/hal-01252167

 	[53]

 	S. Lu, S. Park, Y. Zhou.
Finding Atomicity-Violation Bugs through Unserializable Interleaving Testing, in: IEEE Transactions on Software Engineering, 2012, vol. 38, no 4, pp. 844–860.

 	[54]

 	M. Mernik, J. Heering, A. M. Sloane.
When and How to Develop Domain-specific Languages, in: ACM Comput. Surv., December 2005, vol. 37, no 4, pp. 316–344.
http://dx.doi.org/10.1145/1118890.1118892

 	[55]

 	G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, E. Gan.
RockSalt: better, faster, stronger SFI for the x86, in: PLDI, 2012, pp. 395-404.

 	[56]

 	M. Odersky, T. Rompf.
Unifying functional and object-oriented programming with Scala, in: Commun. ACM, 2014, vol. 57, no 4, pp. 76–86.

 	[57]

 	M. C. Olesen, R. R. Hansen, J. L. Lawall, N. Palix.
Coccinelle: Tool support for automated CERT C Secure Coding Standard certification, in: Science of Computer Programming, October 2014, vol. 91, no B, pp. 141–160.
https://hal.inria.fr/hal-01096185

 	[58]

 	K. Pavneet Singh, F. Thung, D. Lo, J. Lawall.
An Empirical Study on the Adequacy of Testing in Open Source Projects, in: 21st Asia-Pacific Software Engineering Conference, Jeju, South Korea, December 2014.
https://hal.inria.fr/hal-01096132

 	[59]

 	T. Reps, T. Ball, M. Das, J. Larus.
The Use of Program Profiling for Software Maintenance with Applications to the Year 2000 Problem, in: ESEC/FSE, 1997, pp. 432–449.

 	[60]

 	L. R. Rodriguez, J. Lawall.
Increasing Automation in the Backporting of Linux Drivers Using Coccinelle, in: 11th European Dependable Computing Conference - Dependability in Practice, Paris, France, 11th European Dependable Computing Conference - Dependability in Practice, November 2015.
https://hal.inria.fr/hal-01213912

 	[61]

 	C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau.
Error propagation analysis for file systems, in: PLDI, Dublin, Ireland, ACM, June 2009, pp. 270–280.

 	[62]

 	L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, G. Heiser.
Automatic device driver synthesis with Termite, in: SOSP, 2009, pp. 73–86.

 	[63]

 	L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm, M. Vij.
User-Guided Device Driver Synthesis, in: OSDI, 2014, pp. 661–676.

 	[64]

 	R. k. Saha, J. L. Lawall, S. Khurshid, D. E. Perry.
On the Effectiveness of Information Retrieval Based Bug Localization for C Programs, in: ICSME 2014 - 30th International Conference on Software Maintenance and Evolution, Victoria, Canada, IEEE, September 2014, pp. 161-170. [
DOI : 10.1109/ICSME.2014.38]
https://hal.inria.fr/hal-01086082

 	[65]

 	R. Saha, J. L. Lawall, S. Khurshid, D. E. Perry.
On the Effectiveness of Information Retrieval based Bug Localization for C Programs, in: International Conference on Software Maintenance and Evolution (ICSME), Victoria, BC, Canada, September 2014.

 	[66]

 	S. Saha, J.-P. Lozi, G. Thomas, J. Lawall, G. Muller.
Hector: Detecting resource-release omission faults in error-handling code for systems software, in: DSN 2013 - 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Budapest, Hungary, IEEE Computer Society, June 2013, pp. 1-12. [
DOI : 10.1109/DSN.2013.6575307]
https://hal.inria.fr/hal-00918079

 	[67]

 	D. A. Schmidt.
Data Flow Analysis is Model Checking of Abstract Interpretations, in: POPL, 1998, pp. 38–48.

 	[68]

 	P. Senna Tschudin, J. Lawall, G. Muller.
3L: Learning Linux Logging, in: BElgian-NEtherlands software eVOLution seminar (BENEVOL 2015), Lille, France, December 2015.
https://hal.inria.fr/hal-01239980

 	[69]

 	P. Senna Tschudin, L. Réveillère, L. Jiang, D. Lo, J. Lawall, G. Muller.
Understanding the genetic makeup of Linux device drivers, in: PLOS'13 - 7th Workshop on Programming Languages and Operating Systems, Nemacolin Woodlands Resort, Pennsylvania, United States, ACM, November 2013. [
DOI : 10.1145/2525528.2525536]
https://hal.inria.fr/hal-00927070

 	[70]

 	M. Shapiro.
Purpose-built languages, in: Commun. ACM, 2009, vol. 52, no 4, pp. 36–41.

 	[71]

 	P. Singh Kochhar, D. Lo, J. Lawall, N. Nagappan.
Code Coverage and Postrelease Defects: A Large-Scale Study on Open Source Projects, in: IEEE Transactions on Reliability, December 2017, vol. 66, no 4, pp. 1213 - 1228. [
DOI : 10.1109/TR.2017.2727062]
https://hal.inria.fr/hal-01653728

 	[72]

 	R. Tartler, D. Lohmann, J. Sincero, W. Schröder-Preikschat.
Feature consistency in compile-time-configurable system software: facing the Linux 10,000 feature problem, in: EuroSys, 2011, pp. 47–60.

 	[73]

 	F. Thung, D. X. B. Le, D. Lo, J. Lawall.
Recommending Code Changes for Automatic Backporting of Linux Device Drivers, in: 32nd IEEE International Conference on Software Maintenance and Evolution (ICSME), Raleigh, North Carolina, United States, IEEE, October 2016.
https://hal.inria.fr/hal-01355859

 	[74]

 	F. Thung, D. Lo, J. L. Lawall.
Automated library recommendation, in: WCRE 2013 - 20th Working Conference on Reverse Engineering, Koblenz, Germany, R. Lämmel, R. Oliveto, R. Robbes (editors), IEEE, October 2013, pp. 182-191. [
DOI : 10.1109/WCRE.2013.6671293]
https://hal.inria.fr/hal-00918076

 	[75]

 	F. Thung, S. Wang, D. Lo, J. Lawall.
Automatic recommendation of API methods from feature requests, in: ASE 2013 - 28th IEEE/ACM International Conference on Automated Software Engineering, Palo Alto, California, United States, E. Denney, T. Bultan, A. Zeller (editors), IEEE, November 2013.
https://hal.inria.fr/hal-00918828

 	[76]

 	Y. Tian, D. Lo, J. Lawall.
Automated construction of a software-specific word similarity database, in: 2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering, CSMR-WCRE, Antwerp, Belgium, IEEE, February 2014, pp. 44-53.
https://hal.inria.fr/hal-01086077

 	[77]

 	Y. Tian, D. Lo, J. Lawall.
SEWordSim: software-specific word similarity database, ACM, May 2014, pp. 568-571, ICSE Companion 2014 - Companion Proceedings of the 36th International Conference on Software Engineering, Poster. [
DOI : 10.1145/2591062.2591071]
https://hal.inria.fr/hal-01086079

 	[78]

 	W. Wang, M. Godfrey.
A Study of Cloning in the Linux SCSI Drivers, in: Source Code Analysis and Manipulation (SCAM), IEEE, 2011.

 	[79]

 	S. Wang, D. Lo, J. Lawall.
Compositional Vector Space Models for Improved Bug Localization, in: 30th International Conference on Software Maintenance and Evolution, Victoria, Canada, IEEE, September 2014, pp. 171-180.
https://hal.inria.fr/hal-01086084

 	[80]

 	J. Yang, C. Hawblitzel.
Safe to the Last Instruction: Automated Verification of a Type-safe Operating System, in: PLDI, 2010, pp. 99–110.

 OEBPS/uid51.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR

 		
 ITrans - awarded in 2016, duration 2017 - 2020

 		
 Members: LIP6 (Whisper), David Lo (Singapore Management University)

 		
 Coordinator: Julia Lawall

 		
 Whisper members: Julia Lawall, Gilles Muller, Lucas Serrano, Van-Anh Nguyen

 		
 Funding: ANR PRCI, 287,820 euros.

 		
 Objectives:

 Large, real-world software must continually change, to keep up with
evolving requirements, fix bugs, and improve performance, maintainability,
and security. This rate of change can pose difficulties for clients, whose
code cannot always evolve at the same rate. This project will target the
problems of forward porting, where one software component has to
catch up to a code base with which it needs to interact, and back
porting, in which it is desired to use a more modern component in a
context where it is necessary to continue to use a legacy code base,
focusing on the context of Linux device drivers. In this project, we will
take a history-guided source-code transformation-based approach,
which automatically traverses the history of the changes made to a software
system, to find where changes in the code to be ported are required,
gathers examples of the required changes, and generates change rules to
incrementally back port or forward port the code. Our approach will be a
success if it is able to automatically back and forward port a large number
of drivers for the Linux operating system to various earlier and later
versions of the Linux kernel with high accuracy while requiring minimal
developer effort. This objective is not achievable by existing techniques.

 		
 VeriAmos - awarded in 2018, duration 2018 - 2021

 		
 Members: Inria (Antique, Whisper), UGA (Erods)

 		
 Coordinator: Xavier Rival

 		
 Whisper members: Julia Lawall, Gilles Muller

 		
 Funding: ANR, 121,739 euros.

 		
 Objectives:

 General-purpose Operating Systems, such as Linux, are increasingly used to
support high-level functionalities in the safety-critical embedded systems
industry with usage in automotive, medical and cyber-physical
systems. However, it is well known that general purpose OSes suffer from
bugs. In the embedded systems context, bugs may have critical
consequences, even affecting human life. Recently, some major advances have
been done in verifying OS kernels, mostly employing interactive
theorem-proving techniques. These works rely on the formalization of the
programming language semantics, and of the implementation of a software
component, but require significant human intervention to supply the main
proof arguments. The VeriAmos project will attack this problem by building
on recent advances in the design of domain-specific languages and static
analyzers for systems code. We will investigate whether the restricted
expressiveness and the higher level of abstraction provided by the use of a
DSL will make it possible to design static analyzers that can statically
and fully automatically verify important classes of semantic properties on
OS code, while retaining adequate performance of the OS service. As a
specific use-case, the project will target I/O scheduling components.

OEBPS/uid76.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 		
 Patrick Schaumont of Virginia Tech visited LIP6 in July and November
2018, as part of the LIP6 Invited Professor program.

 		
 David Lo and Lingxiao Jiang of Singapore Management University
visited the Whisper team for two weeks in October 2018 as part of the ANR
ITrans project.

 		
 Michele Martone of the Leibniz Supercomputing Centre in Munich
Germany made two visits of one week each to the Whisper team in August
and December to work on applying Coccinelle to high performance computing
code.

 Internships

 		
 Jonathan Carroll of Oberlin College spent January 2018 working
on using machine learning to identify stable-relevant patches for the
Linux kernel.

 		
 David Bergvelt of the University of Illinois at Urbana-Champaign
spent May-August 2018 working on applying Verifiable C, developed at
Princeton, to verification of process schedulers.

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid65.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria International Labs

 		
 EPFL-Inria Lab Our work on scheduling
[13] and on the Ipanema DSL
[48] is done as part of the EPFL-Inria
Lab. Our direct partners, Willy Zwaenepoel and Baptiste Lepers, have
moved to the University of Sydney in September 2018. Therefore we have
migrated our cooperation.

 Inria International Partners

 Informal International Partners

 		
 We collaborate with David Lo and Lingxiao Jiang of Singapore
Management University, who are experts in software mining, clone
detection, and information retrieval techniques. Our work with Lo
and/or Jiang has led to 8 joint publications since 2013
[58], [69], [71], [74], [75], [76], [79], [77],
at conferences including ASE and ICSME. The ITrans ANR is a joint project
with them.

 		
 We collaborate with David Lo and James Hoang of Singapore Management
University and with Sasha Levin of Microsoft on the use of machine
learning to identify stable-relevant patches in the Linux kernel.
Preliminary results from this collaboration have been presented with
Sasha Levin at the Open Source Summit North America, the Open Source
Summit Europe, and the Linux Plumbers Conference kernel summit track.

 		
 Our previous collaboration with EPFL has been transfered to the
University of Sydney due to the moves of Willy Zwaenepoel and Baptiste
Lepers.

 		
 We collaborate with Christoph Reichenbach of the University of Lund and
Krishna Narasimhan of Itemis (Germany) on program transformation
and the design of tools for code clone
management [11].

 		
 We collaborate with Jia-Ju Bai of Tsinghua University on bug finding
in Linux kernel code, particularly focusing on issues requiring
interprocedural analysis [12].

 		
 As part of the LIP6 Invited Professor program, we have initiated a
collaboration between Karine Heydeman (ALSOC team – LIP6, France) and
Patrick Schaumont (Virginia Tech, US) on the development of
fault-resistant and side-channel attack resistant compilation
techniques.

OEBPS/uid49.html

 Section:
 Partnerships and Cooperations

 Regional Initiatives

 		
 City of Paris, 2016-2019, 100 000 euros. As part of the
“Émergence - young team” program the city of Paris is supporting
part of our work on domain-specific languages and trustworthy domain-specific compilers.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2018
Project-Team Whisper

Well Honed
Infrastructure Software
for Programming
Environments and
Runtimes

IN COLLABORATION WITH: Laboratoire dinformatiaue de Paris & (LIP)

