
IN PARTNERSHIP WITH:
Université de Strasbourg

Activity Report 2019

Project-Team CAMUS

Compiling Architectures of Multicores

IN COLLABORATION WITH: ICube

RESEARCH CENTER
Nancy - Grand Est

THEME
Architecture, Languages and Compi-
lation

Table of contents

1. Team, Visitors, External Collaborators . 1
2. Overall Objectives . 2
3. Research Program . 2

3.1. Research Directions 2
3.2. Static Parallelization and Optimization 3
3.3. Profiling and Execution Behavior Modeling 3
3.4. Dynamic Parallelization and Optimization, Virtual Machine 4
3.5. Proof of Program Transformations for Multicores 4

4. Application Domains .4
5. Highlights of the Year . 5
6. New Software and Platforms . 5

6.1. CLooG 5
6.2. OpenScop 5
6.3. ORWL 6
6.4. musl 6
6.5. Modular C 6
6.6. arbogast 7
6.7. CFML 7
6.8. SPETABARU 7
6.9. APAC 7
6.10. Dagpar 8
6.11. LetItBench 8
6.12. ACR 8
6.13. APOLLO 9

7. New Results . 9
7.1. The Polyhedral Model Beyond Loops 9
7.2. New release of Apollo 9
7.3. Uniform Random Sampling in Polyhedra 10
7.4. Runtime Multi-Versioning and Specialization 10
7.5. AutoParallel: Automatic parallelization and distributed execution of affine loop nests in Python

11
7.6. Combining Locking and Data Management Interfaces 11
7.7. Granularity Control for Parallel Programs 11
7.8. Program Verification and Formal Languages 12
7.9. Improvement of Schnaps on multi-GPU nodes using the LAHeteroprio Scheduler 12
7.10. Improving Parallel Executions by Increasing Task Granularity in Task-based Runtime Systems

using Acyclic DAG Clustering 12
7.11. FMM Kernel for the Integral Equation Formulation of the N-body Dielectric Spheres Problem

13
7.12. Automatic Task-Based Parallelization using Source to Source Transformations 13
7.13. Large Scale Particle Fusion Algorithm for Tracing Systems in Fluid Mechanics Applications 13
7.14. Pipelined Multithreaded Code Generation 13
7.15. Raster Image Processing (RIP) Optimization 14
7.16. Static Versus Dynamic Memory Allocation 14
7.17. Automatic Adaptive Approximation for Stencil Computations 14

8. Bilateral Contracts and Grants with Industry . 15
9. Partnerships and Cooperations . 15

9.1. Regional Initiatives 15
9.1.1. ADT SPETABARU-H 15

2 Activity Report INRIA 2019

9.1.2. Idex Prim’Eau 15
9.2. National Initiatives 16

9.2.1. ANR AJACS 16
9.2.2. ANR Vocal 16

9.3. European Initiatives 16
9.4. International Initiatives 17
9.5. International Research Visitors 17

10. Dissemination . 17
10.1. Promoting Scientific Activities 17

10.1.1. Scientific Events: Organisation 17
10.1.2. Scientific Events: Selection 17

10.1.2.1. Member of the Conference Program Committees 17
10.1.2.2. Reviewer 18

10.1.3. Journal 18
10.1.3.1. Member of the Editorial Boards 18
10.1.3.2. Reviewer - Reviewing Activities 18

10.1.4. Invited Talks 18
10.1.5. Scientific Expertise 18

10.1.5.1. Standardization 18
10.1.5.2. Expertise 18

10.1.6. Research Administration 18
10.2. Teaching - Supervision - Juries 19

10.2.1. Teaching 19
10.2.2. Supervision 20
10.2.3. Juries 20

10.3. Popularization 20
10.3.1. Articles and contents 20
10.3.2. Education 20
10.3.3. Interventions 21
10.3.4. Internal action 21

11. Bibliography .21

Project-Team CAMUS

Creation of the Team: 2009 July 01, updated into Project-Team: 2019 March 01
Keywords:

Computer Science and Digital Science:
A1.1.1. - Multicore, Manycore
A1.1.4. - High performance computing
A2.1.1. - Semantics of programming languages
A2.1.6. - Concurrent programming
A2.2.1. - Static analysis
A2.2.4. - Parallel architectures
A2.2.5. - Run-time systems
A2.2.6. - GPGPU, FPGA...
A2.2.7. - Adaptive compilation

Other Research Topics and Application Domains:
B4.5.1. - Green computing
B6.1.1. - Software engineering
B6.6. - Embedded systems

1. Team, Visitors, External Collaborators
Research Scientists

Bérenger Bramas [Inria, Researcher]
Arthur Charguéraud [Inria, Researcher]
Jens Gustedt [Inria, Senior Researcher, HDR]

Faculty Members
Philippe Clauss [Team leader, Univ de Strasbourg, Professor, HDR]
Cédric Bastoul [Univ de Strasbourg, Professor, HDR]
Alain Ketterlin [Univ de Strasbourg, Associate Professor]
Vincent Loechner [Univ de Strasbourg, Associate Professor]
Nicolas Magaud [Univ de Strasbourg, Associate Professor, until Mar 2019]
Julien Narboux [Univ de Strasbourg, Associate Professor, until Mar 2019]
Éric Violard [Univ de Strasbourg, Associate Professor, HDR]

Post-Doctoral Fellow
Damien Rouhling [Inria, from Oct 2019]

PhD Students
Paul Godard [Caldera]
Salwa Kobeissi [Inria]
Harenome Ranaivoarivony-Razanajato [Univ de Strasbourg]
Daniel Salas [INSERM, until Sep 2019]
Maxime Schmitt [Univ de Strasbourg, until Sep 2019]

Technical staff
Muthena Abdul-Wahab [Inria, Engineer, until Jan 2019]
Paul Cardosi [Inria, Engineer, from Nov 2019]

Interns and Apprentices

https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2019

Marek Felsoci [Univ de Strasbourg, from Feb 2019 until Aug 2019]
Garip Kusoglu [Univ de Strasbourg, from Sep 2019]

2. Overall Objectives
2.1. Overall Objectives

The CAMUS team is focusing on developing, adapting and extending automatic parallelization and optimiza-
tion techniques, as well as proof and certification methods, for the efficient use of current and future multicore
processors.

The team’s research activities are organized into four main issues that are closely related to reach the following
objectives: performance, correctness and productivity. These issues are: static parallelization and optimization
of programs (where all statically detected parallelisms are expressed as well as all “hypothetical” parallelisms
which would be eventually taken advantage of at runtime), profiling and execution behavior modeling (where
expressive representation models of the program execution behavior will be used as engines for dynamic
parallelizing processes), dynamic parallelization and optimization of programs (such transformation processes
running inside a virtual machine), and finally program transformation proofs (where the correctness of many
static and dynamic program transformations has to be ensured).

3. Research Program
3.1. Research Directions

The various objectives we are expecting to reach are directly related to the search of adequacy between the
sofware and the new multicore processors evolution. They also correspond to the main research directions
suggested by Hall, Padua and Pingali in [56]. Performance, correctness and productivity must be the users’
perceived effects. They will be the consequences of research works dealing with the following issues:

• Issue 1: Static Parallelization and Optimization
• Issue 2: Profiling and Execution Behavior Modeling
• Issue 3: Dynamic Program Parallelization and Optimization, Virtual Machine
• Issue 4: Proof of Program Transformations for Multicores

The development of efficient and correct applications for multicore processors requires stepping in every
application development phase, from the initial conception to the final run.

Upstream, all potential parallelism of the application has to be exhibited. Here static analysis and transfor-
mation approaches (issue 1) must be performed, resulting in multi-parallel intermediate code advising the
running virtual machine about all the parallelism that can be taken advantage of. However the compiler does
not have much knowledge about the execution environment. It obviously knows the instruction set, it can be
aware of the number of available cores, but it does not know the actual available resources at any time during
the execution (memory, number of free cores, etc.).

That is the reason why a “virtual machine” mechanism will have to adapt the application to the resources
(issue 3). Moreover the compiler will be able to take advantage only of a part of the parallelism induced by
the application. Indeed some program information (variables values, accessed memory adresses, etc.) being
available only at runtime, another part of the available parallelism will have to be generated on-the-fly during
the execution, here also, thanks to a dynamic mechanism.

This on-the-fly parallelism extraction will be performed using speculative behavior models (issue 2), such
models allowing to generate speculative parallel code (issue 3). Between our behavior modeling objectives,
we can add the behavior monitoring, or profiling, of a program version. Indeed, the complexity of current and
future architectures avoids assuming an optimal behavior regarding a given program version. A monitoring
process will make it possible to select on-the-fly the best parallelization.

Project-Team CAMUS 3

Figure 1. Steps for Automatic parallelization on multicore architectures.

These different parallelization steps are schematized in figure 1.

Our project relies on the conception of a production chain for efficient execution of an application on a
multicore architecture. Each link of this chain has to be formally verified in order to ensure correctness as
well as efficiency. More precisely, it has to be ensured that the compiler produces a correct intermediate code,
and that the virtual machine actually performs the parallel execution semantically equivalent to the source
code: every transformation applied to the application, either statically by the compiler or dynamically by the
virtual machine, must preserve the initial semantics. This must be proved formally (issue 4).

In the following, those different issues are detailed while forming our global, long term vision of what has to
be done.

3.2. Static Parallelization and Optimization
Participants: Vincent Loechner, Philippe Clauss, Éric Violard, Cédric Bastoul, Arthur Charguéraud, Bérenger
Bramas, Harenome Ranaivoarivony-Razanajato.

Static optimizations, from source code at compile time, benefit from two decades of research in automatic
parallelization: many works address the parallelization of loop nests accessing multi-dimensional arrays, and
these works are now mature enough to generate efficient parallel code [53]. Low-level optimizations, in the
assembly code generated by the compiler, have also been extensively dealt with for single-core and require
few adaptations to support multicore architectures. Concerning multicore specific parallelization, we propose
to explore two research directions to take full advantage of these architectures: adapting parallelization to
multicore architectures and expressing many potential parallelisms.

3.3. Profiling and Execution Behavior Modeling
Participants: Alain Ketterlin, Philippe Clauss, Salwa Kobeissi.

The increasing complexity of programs and hardware architectures makes it ever harder to characterize be-
forehand a given program’s run time behavior. The sophistication of current compilers and the variety of
transformations they are able to apply cannot hide their intrinsic limitations. As new abstractions like transac-
tional memories appear, the dynamic behavior of a program strongly conditions its observed performance. All
these reasons explain why empirical studies of sequential and parallel program executions have been consid-
ered increasingly relevant. Such studies aim at characterizing various facets of one or several program runs,
e.g., memory behavior, execution phases, etc. In some cases, such studies characterize more the compiler than

4 Activity Report INRIA 2019

the program itself. These works are of tremendous importance to highlight all aspects that escape static analy-
sis, even though their results may have a narrow scope, due to the possible incompleteness of their input data
sets.

3.4. Dynamic Parallelization and Optimization, Virtual Machine
Participants: Philippe Clauss, Salwa Kobeissi, Jens Gustedt, Alain Ketterlin, Muthena Abdul-Wahab, Daniel
Salas, Bérenger Bramas.

Dynamic parallelization and optimization has become essential with the advent of the new multicore archi-
tectures. When using a dynamic scheme, the performed instructions are not only dedicated to the application
functionalities, but also to its control and its transformation, and so in its own interest. Behaving like a com-
puter virus, such a scheme should rather be qualified as a “vitamin”. It perfectly knows the current charac-
teristics of the execution environment and owns some qualitative information thanks to a behavior modeling
process (issue 2). It provides a significant optimization ability compared to a static compiler, while observing
the evolution of the availability of live resources.

3.5. Proof of Program Transformations for Multicores
Participants: Éric Violard, Alain Ketterlin, Julien Narboux, Nicolas Magaud, Arthur Charguéraud.

Our main objective consists in certifying the critical modules of our optimization tools (the compiler and the
virtual machine). First we will prove the main loop transformation algorithms which constitute the core of our
system.

The optimization process can be separated into two stages: the transformations consisting in optimizing the
sequential code and in exhibiting parallelism, and those consisting in optimizing the parallel code itself. The
first category of optimizations can be proved within a sequential semantics. For the other optimizations, we
need to work within a concurrent semantics. We expect the first stage of optimization to produce data-race free
code. For the second stage of optimization we will first assume that the input code is data-race free. We will
prove those transformations using Appel’s concurrent separation logic [57]. Proving transformations involving
programs which are not data-race free will constitute a longer term research goal.

4. Application Domains

4.1. Application Domains
Computational performance being our main objective, our target applications are characterized by intensive
computation phases. Such applications are numerous in the domains of scientific computations, optimization,
data mining and multimedia.

Applications involving intensive computations are necessarily high energy consumers. However this consump-
tion can be significantly reduced thanks to optimization and parallelization. Although this issue is not our prior
objective, we can expect some positive effects for the following reasons:

• Program parallelization tries to distribute the workload equally among the cores. Thus an equivalent
performance, or even a better performance, to a sequential higher frequency execution on one single
core, can be obtained.

• Memory and memory accesses are high energy consumers. Lowering the memory consumption,
lowering the number of memory accesses and maximizing the number of accesses in the low levels
of the memory hierarchy (registers, cache memories) have a positive consequence on execution
speed, but also on energy consumption.

Project-Team CAMUS 5

5. Highlights of the Year

5.1. Highlights of the Year
One of the main challenges of parallelization is the selection of the appropriate granularity to balance between
the ideal degree of parallelism and the mitigation of the runtime system’s overhead. We have worked on the
granularity control for parallel applications focusing on two different paradigms. In the first one, which is the
tasks with spawn/sync mechanism, we combined the use of asymptotic complexity functions provided by the
programmer, with runtime measurements to predict the execution time of tasks with reasonable accuracy. This
estimation can then be used to select the proper task granularity, while making sure to put enough work inside
each task. In the second one, which is related to the tasks with dependencies paradigm, we have improved
an existing algorithm to cluster a graph of tasks to obtain a meta-graph with larger tasks. This approach was
used in an application in collaboration with the TONUS team, and we have demonstrated that it allows for a
significant speedup.

6. New Software and Platforms

6.1. CLooG
Code Generator in the Polyhedral Model

KEYWORDS: Polyhedral compilation - Optimizing compiler - Code generator

FUNCTIONAL DESCRIPTION: CLooG is a free software and library to generate code (or an abstract syntax tree
of a code) for scanning Z-polyhedra. That is, it finds a code (e.g. in C, FORTRAN...) that reaches each integral
point of one or more parameterized polyhedra. CLooG has been originally written to solve the code generation
problem for optimizing compilers based on the polyhedral model. Nevertheless it is used now in various
area e.g. to build control automata for high-level synthesis or to find the best polynomial approximation of a
function. CLooG may help in any situation where scanning polyhedra matters. While the user has full control
on generated code quality, CLooG is designed to avoid control overhead and to produce a very effective code.
CLooG is widely used (including by GCC and LLVM compilers), disseminated (it is installed by default by
the main Linux distributions) and considered as the state of the art in polyhedral code generation.

RELEASE FUNCTIONAL DESCRIPTION: It mostly solves building and offers a better OpenScop support.
• Participant: Cédric Bastoul
• Contact: Cédric Bastoul
• URL: http://www.cloog.org

6.2. OpenScop
A Specification and a Library for Data Exchange in Polyhedral Compilation Tools

KEYWORDS: Polyhedral compilation - Optimizing compiler

FUNCTIONAL DESCRIPTION: OpenScop is an open specification that defines a file format and a set of data
structures to represent a static control part (SCoP for short), i.e., a program part that can be represented in
the polyhedral model. The goal of OpenScop is to provide a common interface to the different polyhedral
compilation tools in order to simplify their interaction. To help the tool developers to adopt this specification,
OpenScop comes with an example library (under 3-clause BSD license) that provides an implementation of
the most important functionalities necessary to work with OpenScop.

• Participant: Cédric Bastoul
• Contact: Cédric Bastoul
• URL: http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/

http://www.cloog.org
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/

6 Activity Report INRIA 2019

6.3. ORWL
Ordered Read-Write Lock

KEYWORDS: Task scheduling - Deadlock detection

FUNCTIONAL DESCRIPTION: ORWL is a reference implementation of the Ordered Read-Write Lock tools.
The macro definitions and tools for programming in C99 that have been implemented for ORWL have been
separated out into a toolbox called P99.

• Participants: Jens Gustedt, Mariem Saied and Stéphane Vialle
• Contact: Jens Gustedt
• Publications: Iterative Computations with Ordered Read-Write Locks - Automatic, Abstracted

and Portable Topology-Aware Thread Placement - Resource-Centered Distributed Processing of
Large Histopathology Images - Automatic Code Generation for Iterative Multi-dimensional Stencil
Computations

6.4. musl
KEYWORDS: Standards - Library

SCIENTIFIC DESCRIPTION: musl provides consistent quality and implementation behavior from tiny embed-
ded systems to full-fledged servers. Minimal machine-specific code means less chance of breakage on minority
architectures and better success with “write once run everywhere” C development.

musl’s efficiency is unparalleled in Linux libc implementations. Designed from the ground up for static linking,
musl carefully avoids pulling in large amounts of code or data that the application will not use. Dynamic
linking is also efficient, by integrating the entire standard library implementation, including threads, math, and
even the dynamic linker itself into a single shared object, most of the startup time and memory overhead of
dynamic linking have been eliminated.

FUNCTIONAL DESCRIPTION: We participate in the development of musl, a re-implementation of the C library
as it is described by the C and POSIX standards. It is lightweight, fast, simple, free, and strives to be correct in
the sense of standards-conformance and safety. Musl is production quality code that is mainly used in the area
of embedded devices. It gains more market share also in other areas, e.g. there are now Linux distributions
that are based on musl instead of Gnu LibC.

• Participant: Jens Gustedt
• Contact: Jens Gustedt
• URL: http://www.musl-libc.org/

6.5. Modular C
KEYWORDS: Programming language - Modularity

FUNCTIONAL DESCRIPTION: The change to the C language is minimal since we only add one feature,
composed identifiers, to the core language. Our modules can import other modules as long as the import
relation remains acyclic and a module can refer to its own identifiers and those of the imported modules
through freely chosen abbreviations. Other than traditional C include, our import directive ensures complete
encapsulation between modules. The abbreviation scheme allows to seamlessly replace an imported module by
another one with an equivalent interface. In addition to the export of symbols, we provide parameterized code
injection through the import of “snippets”. This implements a mechanism that allows for code reuse, similar to
X macros or templates. Additional features of our proposal are a simple dynamic module initialization scheme,
a structured approach to the C library and a migration path for existing software projects.

• Author: Jens Gustedt
• Contact: Jens Gustedt
• Publications: Modular C - Arbogast: Higher order automatic differentiation for special functions

with Modular C - Futex based locks for C11’s generic atomics
• URL: http://cmod.gforge.inria.fr/

https://hal.inria.fr/inria-00330024
https://hal.inria.fr/hal-01621936
https://hal.inria.fr/hal-01621936
https://hal.inria.fr/hal-01325648
https://hal.inria.fr/hal-01325648
https://hal.inria.fr/hal-01337093
https://hal.inria.fr/hal-01337093
http://www.musl-libc.org/
https://hal.inria.fr/hal-01169491
https://hal.inria.fr/hal-01307750
https://hal.inria.fr/hal-01307750
https://hal.inria.fr/hal-01236734
http://cmod.gforge.inria.fr/

Project-Team CAMUS 7

6.6. arbogast
KEYWORD: Automatic differentiation

SCIENTIFIC DESCRIPTION: This high-level toolbox for the calculus with Taylor polynomials is named after
L.F.A. Arbogast (1759-1803), a French mathematician from Strasbourg (Alsace), for his pioneering work in
derivation calculus. Its modular structure ensures unmatched efficiency for computing higher order Taylor
polynomials. In particular it permits compilers to apply sophisticated vector parallelization to the derivation
of nearly unmodified application code.

FUNCTIONAL DESCRIPTION: Arbogast is based on a well-defined extension of the C programming language,
Modular C, and places itself between tools that proceed by operator overloading on one side and by rewriting,
on the other. The approach is best described as contextualization of C code because it permits the programmer
to place his code in different contexts – usual math or AD – to reinterpret it as a usual C function or as a
differential operator. Because of the type generic features of modern C, all specializations can be delegated to
the compiler.

• Author: Jens Gustedt

• Contact: Jens Gustedt

• Publications: Arbogast: Higher order automatic differentiation for special functions with Modular C
- Arbogast – Origine d’un outil de dérivation automatique

• URL: https://gforge.inria.fr/projects/arbo

6.7. CFML
Interactive program verification using characteristic formulae

KEYWORDS: Coq - Software Verification - Deductive program verification - Separation Logic

FUNCTIONAL DESCRIPTION: The CFML tool supports the verification of OCaml programs through interac-
tive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a specifica-
tion. They may also be used to formally establish bounds on the asymptotic complexity of the code. The tool is
made of two parts: on the one hand, a characteristic formula generator implemented as an OCaml program that
parses OCaml code and produces Coq formulae, and, on the other hand, a Coq library that provides notations
and tactics for manipulating characteristic formulae interactively in Coq.

• Participants: Arthur Charguéraud, Armaël Guéneau and François Pottier

• Contact: Arthur Charguéraud

• URL: http://www.chargueraud.org/softs/cfml/

6.8. SPETABARU
SPEculative TAsk-BAsed RUntime system

KEYWORDS: HPC - Parallel computing - Task-based algorithm

FUNCTIONAL DESCRIPTION: SPETABARU is a task-based runtime system for multi-core architectures that
includes speculative execution models. It is a pure C++11 product without external dependency. It uses
advanced meta-programming and allows for an easy customization of the scheduler. It is also capable to
generate execution traces in SVG to better understand the behavior of the applications.

• Contact: Bérenger Bramas

• URL: https://gitlab.inria.fr/bramas/spetabaru

6.9. APAC
KEYWORDS: Source-to-source compiler - Automatic parallelization - Parallelisation - Parallel programming

https://hal.inria.fr/hal-01307750
https://hal.inria.fr/hal-01313355
https://gforge.inria.fr/projects/arbo
http://www.chargueraud.org/softs/cfml/
https://gitlab.inria.fr/bramas/spetabaru

8 Activity Report INRIA 2019

SCIENTIFIC DESCRIPTION: APAC is a compiler for automatic parallelization that transforms C++ source
code to make it parallel by inserting tasks. It uses the tasks+dependencies paradigm and relies on OpenMP or
SPETABARU as runtime system. Internally, it is based on Clang-LLVM.

FUNCTIONAL DESCRIPTION: Automatic task-based parallelization compiler
• Participants: Bérenger Bramas, Stéphane Genaud and Garip Kusoglu
• Contact: Bérenger Bramas
• URL: https://gitlab.inria.fr/bramas/apac

6.10. Dagpar
KEYWORDS: Graph algorithmics - Clustering - Partitioning

SCIENTIFIC DESCRIPTION: This library is a clustering algorithm to create macro-tasks in a DAG of tasks. It
extends a clustering/partitioning strategy proposed by Rossignon et al. to speed up the parallel execution of
a task-based application. In this package, we provide two additional heuristics to this algorithm, which have
been validated on a large graph set. The objective of clustering the nodes of task graphs is to increase the
granularity of the tasks and thus obtain faster execution by mitigating the overhead from the management of
the dependencies. An important asset of this approach is that working at the graph level allows us to create a
generic method independent of the application and of what is done at the user level, but also independent of
the task-based runtime system that could be used underneath.

FUNCTIONAL DESCRIPTION: Acyclic Dag Partitioning.
• Participants: Bérenger Bramas and Alain Ketterlin
• Contact: Bérenger Bramas
• URL: https://gitlab.inria.fr/bramas/dagpar

6.11. LetItBench
Lenient to Errors, Transformations, Irregularities and Turbulence Benchmarks

KEYWORDS: Approximate computing - Benchmarking

FUNCTIONAL DESCRIPTION: LetItBench is a benchmark set to help evaluating works on approximate
compilation techniques. We propose a set of meaningful applications with an iterative kernel, that is not too
complex for automatic analysis and can be analyzed by polyhedral tools. The benchmark set called LetItBench
(Lenient to Errors, Transformations, Irregularities and Turbulence Benchmarks) is composed of standalone
applications written in C, and a benchmark runner based on CMake. The benchmark set includes fluid
simulation, FDTD, heat equations, game of life or K-means clustering. It spans various kind of applications
that are resilient to approximation.

• Contact: Cédric Bastoul
• URL: https://github.com/Syllo/LetItBench

6.12. ACR
Adaptive Code Refinement

KEYWORDS: Approximate computing - Optimizing compiler

FUNCTIONAL DESCRIPTION: ACR is to approximate programming what OpenMP is to parallel program-
ming. It is an API including a set of language extensions to provide the compiler with pertinent information
about how to approximate a code block, a high-level compiler to automatically generate the approximated
code, and a runtime library to exploit the approximation information at runtime according to the dataset prop-
erties. ACR is designed to provide approximate computing to non experts. The programmer may write a trivial
code without approximation, provide approximation information thanks to pragmas, and let the compiler gen-
erate an optimized code based on approximation.

• Contact: Cédric Bastoul
• URL: https://github.com/Syllo/acr

https://gitlab.inria.fr/bramas/apac
https://gitlab.inria.fr/bramas/dagpar
https://github.com/Syllo/LetItBench
https://github.com/Syllo/acr

Project-Team CAMUS 9

6.13. APOLLO
Automatic speculative POLyhedral Loop Optimizer

KEYWORD: Automatic parallelization

FUNCTIONAL DESCRIPTION: APOLLO is dedicated to automatic, dynamic and speculative parallelization
of loop nests that cannot be handled efficiently at compile-time. It is composed of a static part consisting of
specific passes in the LLVM compiler suite, plus a modified Clang frontend, and a dynamic part consisting
of a runtime system. It can apply on-the-fly any kind of polyhedral transformations, including tiling, and can
handle nonlinear loops, as while-loops referencing memory through pointers and indirections.

• Participants: Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Manuel Selva and
Philippe Clauss

• Contact: Philippe Clauss

• URL: http://apollo.gforge.inria.fr

7. New Results

7.1. The Polyhedral Model Beyond Loops
Participants: Salwa Kobeissi, Philippe Clauss.

There may be a huge gap between the statements outlined by programmers in a program source code and
instructions that are actually performed by a given processor architecture when running the executable code.
This gap is due to the way the input code has been interpreted, translated and transformed by the compiler
and the final processor hardware. Thus, there is an opportunity for efficient optimization strategies, that are
dedicated to specific control structures and memory access patterns, to be applied as soon as the actual runtime
behavior has been discovered, even if they could not have been applied on the original source code.

We develop this idea by identifying code excerpts that behave as polyhedral-compliant loops at runtime,
while not having been outlined at all as loops in the original source code. In particular, we are interested
in recursive functions whose runtime behavior can be modeled as polyhedral loops. Therefore, the scope of
this study exclusively includes recursive functions whose control flow and memory accesses exhibit an affine
behavior, which means that there exists a semantically equivalent affine loop nest, candidate for polyhedral
optimizations. Accordingly, our approach is based on analyzing early executions of a recursive program using
a Nested Loop Recognition (NLR) algorithm [3], performing the affine loop modeling of the original program
runtime behavior, which is then used to generate an equivalent iterative program, finally optimized using the
polyhedral compiler Polly. We present some preliminary results showing that this approach brings recursion
optimization techniques into a higher level in addition to widening the scope of the polyhedral model to include
originally non-loop programs.

This work is the topic of Salwa Kobeissi’s PhD. A first paper has been published at the 9th International
Workshop on Polyhedral Compilation Techniques [22].

7.2. New release of Apollo
Participants: Muthena Abdul-Wahab, Philippe Clauss.

Apollo has been updated to use LLVM/Clang version 6.0.1. The unmodified sources are now included, as
tar-files, in the APOLLO distribution.

http://apollo.gforge.inria.fr

10 Activity Report INRIA 2019

Regarding the build system:

• All components of APOLLO are now installed into the installation directory. Once installed,
APOLLO does not need the build directory to be kept.

• The RPATH on APOLLO libraries has been set to the installation directory. This allows APOLLO
to be run without having to set up library paths.

• APOLLO_BUILD_JOBS has been introduced to specify the maximum number of build jobs to use.
The replaces NB_JOBS which is still supported but deprecated.

• The sources for external dependencies are now included in the APOLLO distribution. They are no
longer downloaded during a build.

• A new build target ’check’ has been added to run the testsuite. This is supported by Makefiles (’make
check’) and Ninja (’ninja check’).

• The build type (Debug/Release) for LLVM/Clang is now the same as the rest of APOLLO. New
build variable APOLLO_LLVM_BUILD_TYPE can be used to specify a separate build type for
LLVM/Clang.

Regarding bug fixes:

• Valid code using floating point types (float or double) could make APOLLO stop with an message
about unsupported scalars. This has been fixed by removing the Loop Invariant Code Motion (LICM)
pass in such cases, preventing floating-point scalars to be generated.

• Code containing try-catch blocks could make APOLLO crash. This has been fixed.

• Dynamic loop bounds were no more instrumented and interpolated. This has been fixed.

7.3. Uniform Random Sampling in Polyhedra
Participant: Philippe Clauss.

We propose a method for generating uniform samples among a domain of integer points defined by a
polyhedron in a multi-dimensional space. The method extends to domains defined by parametric polyhedra, in
which a subset of the variables are symbolic. We motivate this work by a list of applications for the method in
computer science. The proposed method relies on polyhedral ranking functions, as well as a recent inversion
method for them, named trahrhe expressions. This work has been accomplished in collaboration with Benoît
Meister from Reservoir Labs, New York, USA, and has been published at the 10th International Workshop on
Polyhedral Compilation Techniques, January 2020.

7.4. Runtime Multi-Versioning and Specialization
Participant: Philippe Clauss.

We have developped an extension of APOLLO that implements code multi-versioning and specialization to
optimize and parallelize loop kernels that are invoked many times with varying parameters. These parameters
may influence the code structure, the touched memory locations, the workload, and the runtime performance.
They may also impact the validity of the parallelizing and optimizing polyhedral transformations that are
applied on-the-fly.

For a target loop kernel and its associated parameters, a different optimizing and parallelizing transformation
is evaluated at each invocation, among a finite set of transformations (multi-versioning and specialization).
The best performing transformed code version is stored and indexed using its associated parameters. When
every optimizing transformation has been evaluated, the best performing code version regarding the current
parameters, which has been stored, is relaunched at next invocations (memoization).

This work has been accomplished in collaboration with Raquel Lazcano and Eduardo Juarez of the Universidad
Politécnica de Madrid, Spain, and has been published at the ACM SIGPLAN 2020 International Conference
on Compiler Construction (CC 2020).

Project-Team CAMUS 11

7.5. AutoParallel: Automatic parallelization and distributed execution of affine
loop nests in Python
Participant: Philippe Clauss.

The last improvements in programming languages and models have focused on simplicity and abstraction;
leading Python to the top of the list of the programming languages. However, there is still room for
improvement when preventing users from dealing directly with distributed and parallel computing issues.
We propose AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of
affine loop nests to execute them in parallel in a distributed computing infrastructure. This parallelization
can also include the building of data blocks to increase tasks’ granularity in order to achieve a good
execution performance. Moreover, AutoParallel is based on sequential programming and only contains a small
annotation in the form of a Python decorator so that anyone with intermediate-level programming skills can
scale up an application to hundreds of cores.

This work has been accomplished in collaboration with Cristian Ramon-Cortes, Ramon Amela, Jorge Ejarque
and Rosa M. Badia of the Barcelona Supercomputing Center (BSC), Spain. A journal paper is in preparation.

7.6. Combining Locking and Data Management Interfaces
Participants: Jens Gustedt, Daniel Salas.

Handling data consistency in parallel and distributed settings is a challenging task, in particular if we want to
allow for an easy to handle asynchronism between tasks. Our publication [2] shows how to produce deadlock-
free iterative programs that implement strong overlapping between communication, IO and computation.

An implementation (ORWL) of our ideas of combining control and data management in C has been under-
taken, see Section 6.3. In previous work it has demonstrated its efficiency for a large variety of platforms.

In the framework of the ASNAP project we have used ordered read-write locks (ORWL) as a model to
dynamically schedule a pipeline of parallel tasks that realize a parallel control flow of two nested loops;
an outer iteration loop and an inner data traversal loop. Other than dataflow programming, for each individual
data object we conserve the same modification order as the sequential algorithm. As a consequence the
visible side effects on any object can be guaranteed to be identical to a sequential execution. Thus the set of
optimizations that are performed are compatible with C’s abstract state machine and compilers could perform
them, in principle, automatically and unobserved. See [16] for first results.

In the context of the Prim’Eau project (see 9.1.2) we use ORWL to integrate parallelism into an already
existing Fortran application that computes floods in the region that is subject to the study. A first step of such
a parallelization has been started by using ORWL on a process level. Our final goal will be to extend it to the
thread level and to use the application structure for automatic placement on compute nodes. A first step to this
goal has been a specific decomposition of geological data, see [21].

Within the framework of the thesis of Daniel Salas we have successfully applied ORWL to process large
histopathology images. We are now able to treat such images distributed on several machines or shared in an
accelerator (Xeon Phi) transparently for the user. This year, Daniel has successfully defended his thesis, see
[7].

7.7. Granularity Control for Parallel Programs
Participant: Arthur Charguéraud.

Arthur Charguéraud studied the development of techniques for controlling granularity in parallel programs.
Granularity control is an essential problem because creating too many tasks may induce overwhelming
overheads, while creating too few tasks may harm the ability to process tasks in parallel. Granularity control
turns out to be especially challenging for nested parallel programs, i.e., programs in which parallel constructs
such as fork-join or parallel-loops can be nested arbitrarily.

12 Activity Report INRIA 2019

The proposed approach combines the use of asymptotic complexity functions provided by the programmer,
with runtime measurements to estimate the constant factors that apply. Exploiting these two sources of
information makes it possible to predict with reasonable accuracy the execution time of tasks. Such predictions
may be used to guide the generation of tasks, by sequentializing computations of sufficiently small size. An
analysis is developed, establishing that task creation overheads are indeed bounded to a small fraction of the
total runtime. These results extend prior work by the same authors [52], extending them with a carefully-
designed algorithm for ensuring convergence of the estimation of the constant factors deduced from the
measures, even in the face of noise and cache effects, which are taken into account in the analysis. The
approach is demonstrated on a range of benchmarks taken from the state-of-the-art PBBS benchmark suite.
These results have been accepted for publication at PPoPP’19 [14].

7.8. Program Verification and Formal Languages
Participant: Arthur Charguéraud.

• Armaël Guéneau, a PhD student advised by A. Charguéraud and F. Pottier (Cambium), has developed
a formal proof of the functional correctness and the asymptotic complexity of a state-of-the-art
incremental cycle detection algorithm due to Bender, Fineman, Gilbert, and Tarjan. This work
moreover proposes a simple change that allows the algorithm to be regarded as genuinely online.
The verification proof is carried out by exploiting Separation Logic with Time Credits, in the CFML
tool, to simultaneously verify the correctness and the worst-case amortized asymptotic complexity
of the modified algorithm. This work was published at ITP’19 [17]. It leverages previous work on
the extension of the CFML verification tool to allow the specification of the asymptotic complexity
of higher-order, imperative programs [55], and shows that this framework scales up to larger, more
complex programs.

• Arthur Charguéraud, together with Jean-Christophe Filliâtre and Cláudio Lourenço (CNRS, Inria and
Université Paris Saclay), and Mário Pereira (NOVA LINCS & DI, Universidade Nova de Lisboa),
developed a behavioral specification language for OCaml, called GOSPEL. It is designed to enable
modular verification of data structures and algorithms. Compared with writing specifications directly
in Separation Logic, it provides a high-level syntax that greatly improves conciseness and makes it
accessible to programmers with no familiarity with Separation Logic. GOSPEL is applied to the
development of a formally verified library of general-purpose OCaml data structures. This work was
published at the World Congress on Formal Methods (FM) 2019 [15].

7.9. Improvement of Schnaps on multi-GPU nodes using the LAHeteroprio
Scheduler
Participant: Bérenger Bramas.

The TONUS team has developed Schnaps, a discontinuous finite element solver with OpenCL and StarPU.
The team members have been facing challenges in the scalability of their application when using more than
one GPU. This has been the starting point of a collaboration in which Bérenger Bramas has participated in
the development of Schnaps and plugged its StarPU scheduler called LAHeteroprio [9]. The improvements
obtained were significant and included in a paper [50] (currently under revision).

The potential of LAHeteroprio is now demonstrated. However, setting up this scheduler remains a complicated
task. Therefore, we plan to work on its automatic configuration, which will require us to perform on the fly
analysis of the graph of tasks.

7.10. Improving Parallel Executions by Increasing Task Granularity in
Task-based Runtime Systems using Acyclic DAG Clustering
Participants: Bérenger Bramas, Alain Ketterlin.

Project-Team CAMUS 13

Bérenger Bramas and Alain Ketterlin collaborate with the TONUS team in the development of a parallel
solver for the resolution of conservative hyperbolic upwind kinetic of unstructured tokamaks [49]. In their
methods, they must solve the transport equation on an unstructured mesh, which can be seen as having a
wave propagating from neighbor-to-neighbor. The resulting computation can be represented using a direct
acyclic graph (DAG) of operations, where each operation is a tiny task. Therefore, Bérenger Bramas and
Alain Ketterlin contributed mainly on two aspects. First, they have proposed a highly optimized lock-free
parallel implementation of the solution based on atomic instructions. Second, they have improved an existing
algorithm from the literature to cluster a DAG of tasks with the aim of increasing the granularity of the tasks
and to reduce the overhead of the parallelization consequently. This new approach has been accepted in a
dedicated paper (accepted but not yet published).

7.11. FMM Kernel for the Integral Equation Formulation of the N-body
Dielectric Spheres Problem
Participant: Bérenger Bramas.

Bérenger Bramas worked with Benjamin Stamm and Muhammad Hassan (RWTH) to create a kernel for the
fast multipole method (FMM). The kernel relies on the previously developed kernel with spherical harmonics
and accelerated by rotations. It has been extended to accept spherical harmonics (with orders different from
the ones used in the kernel) instead of points as input. The kernel allowed us to accelerate the computation and
was used for a complexity analysis that has been submitted [54].

7.12. Automatic Task-Based Parallelization using Source to Source
Transformations
Participants: Bérenger Bramas, Garip Kusolgu.

Bérenger Bramas and Garip Kusolgu worked on a new approach to parallelize automatically any application
written in an object-oriented language. The main idea is to parallelize a code as an HPC expert would do it
using the task-based method. With this aim, they created a new source-to-source compiler on top of CLang-
LLVM called APAC. APAC is able to insert tasks in a source-code by evaluating data accesses and thus
generating the correct dependencies. An important and challenging part of the work consists in managing the
granularity, which requires to work both statically on the code but also by delegating decisions at runtime.

7.13. Large Scale Particle Fusion Algorithm for Tracing Systems in Fluid
Mechanics Applications
Participant: Bérenger Bramas.

Bérenger Bramas worked with Michael Wilczek and Cristian Lalescu (Max Planck Institute for Dynamics and
Self-Organization) in designing a new method to merge particles in a large scale application (i.e., designed to
run on thousands of computing nodes). In this context, the particles are originally used in a tracing system to
extract information from a vector field in fluid mechanics. However, the physicists are now interested having
the particles interacting and even fusioning. Due to the constraints of large scale computing, the system tries to
reduce the number and amount of communications. This development has been done in the TurTLE application
(not publicly available) and is currently under evaluation.

7.14. Pipelined Multithreaded Code Generation
Participants: Cédric Bastoul, Vincent Loechner, Harenome Ranaivoarivony-Razanajato.

State-of-the-art automatic polyhedral parallelizers extract and express parallelism as isolated parallel loops.
For example, the Pluto high-level compiler generates and annotates loops with #pragma omp parallel

for directives. In this work, we took advantage of pipelined multithreading, a parallelization strategy that
can address a wider class of codes, currently not handled by automatic parallelizers. Pipelined multithreading
requires interlacing iterations of some loops in a controlled way that enables the parallel execution of these
iterations.

14 Activity Report INRIA 2019

This work has been accepted for presentation at the International Workshop on Polyhedral Compilation
Techniques (IMPACT 2020), in conjunction with HiPEAC ’20 (Jan. 2020, Bologna, Italy).

7.15. Raster Image Processing (RIP) Optimization
Participants: Cédric Bastoul, Paul Godard, Vincent Loechner.

In the context of our collaboration with the Caldera company, we are interested in original challenges for the
computer systems in charge of driving very wide printer farms and very fast digital presses.

We explored new approaches inspired by the high performance computing field to speedup the graphics
processing (RIP) necessary to digital printing. To achieve this goal, we developed a distributed system
which provides the adequate flexibility and performance by exploiting and optimizing both processing
and synchronization techniques. Our architecture meets the specific constraints on generating streams for
printing purpose. We performed an evaluation of our solution and provided experimental evidence of its
great performance and viability. This work has been presented at the 2019 IEEE International Parallel and
Distributed Processing Symposium Workshop (IPDPSW): PDSEC ’19, in May 2019, Rio de Janeiro.

The second topic we worked on during this collaboration is an out-of-core and out-of-place rectangular matrix
transposition and rotation algorithm. An originality of our processing algorithm is to rely on an optimized
use of the page cache mechanism. It is parallel, optimized by several levels of tiling and independent of any
disk block size. We evaluated our approach on four common storage configurations: HDD, hybrid HDD-SSD,
SSD and software RAID 0 of several SSDs. We showed that it brings significant performance improvement
over a hand-tuned optimized reference implementation developed by the Caldera company and we confront it
against the roofline speed of a straight file copy. This work is under submission in the IEEE Transaction on
Computers.

Paul Godard has defended his PhD thesis on Dec. 16th, 2019.

7.16. Static Versus Dynamic Memory Allocation
Participant: Vincent Loechner.

Vincent Loechner and Toufik Baroudi (PhD student, Univ. Batna, Algeria) compared the performance of linear
algebra kernels using different array allocation modes: as static declared arrays or as dynamically allocated
arrays of pointers. They studied the possible reasons of the difference in performance of parallelized or
sequential linear algebra kernels on two different architectures: an AMD (Magny-Cours) and an Intel Xeon
(Haswell-EP). Static or dynamic memory allocation has an impact on performance in many cases. Both the
processor architecture and the compiler can provoke significant and sometimes surprising variations in the
number of cache misses and vectorization opportunities taken by the compiler.

This work has been accepted for presentation at the International Workshop on Polyhedral Compilation
Techniques (IMPACT 2020), in conjunction with HiPEAC ’20 (Jan. 2020, Bologna, Italy).

7.17. Automatic Adaptive Approximation for Stencil Computations
Participants: Maxime Schmitt, Cédric Bastoul.

This work has been done in collaboration with Philippe Helluy (TONUS).

Approximate computing is necessary to meet deadlines in some compute-intensive applications like simu-
lation. Building them requires a high level of expertise from the application designers as well as a signifi-
cant development effort. Some application programming interfaces greatly facilitate their conception but they
still heavily rely on the developer’s domain-specific knowledge and require many modifications to success-
fully generate an approximate version of the program. In this work we designed new techniques to semi-
automatically discover relevant approximate computing parameters. We believe that superior compiler-user
interaction is the key to improved productivity. After pinpointing the region of interest to optimize, the devel-
oper is guided by the compiler in making the best implementation choices. Static analysis and runtime moni-
toring are used to infer approximation parameter values for the application. We evaluated these techniques on
multiple application kernels that support approximation and show that with the help of our method, we achieve
similar performance as non-assisted, hand-tuned version while requiring minimal intervention from the user.

Project-Team CAMUS 15

These techiques and the underlying compiler infrastructure are a significant output of collaboration with the
Inria Nancy - Grand Est team TONUS, specialized on applied mathematics (contact: Philippe Helluy), to bring
models and techniques from this field to compilers. A paper presenting these extensions has been accepted to
the CC international conference [18].

Maxime Schmitt has defended his PhD thesis on Sep. 30th, 2019 [8].

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. Caldera

Participants: Cédric Bastoul, Vincent Loechner.

Duration : 2016 - 2019

Caldera (www.caldera.com) is a company specialized in software development for wide image processing.
The goal of this collaboration is the development of a parallel and scalable image processing pipeline for
industrial printing. The project started in September 2016 and it includes the industrial thesis (CIFRE) of Paul
Godard, defended in Dec. 2019.

9. Partnerships and Cooperations

9.1. Regional Initiatives
9.1.1. ADT SPETABARU-H

Participants: Bérenger Bramas, Vincent Loechner, Paul Cardosi.

Duration: 2019 - 2021

The SPETABARU task-based runtime system is now being developed in CAMUS. This tool is the first runtime
system build on the tasks and dependencies paradigm that supports speculative execution. It is at the same time
a robust runtime system that could be used for high-performance applications, and the central component to
perform research in parallelization, speculation and scheduling.

The SPETABARU-H project started in November 2019 for 2 years aims in improving SPETABARU on several
aspects:

• Implement a generic speculative execution model based on the team’s research;
• Implement the mechanisms to make SPETABARU supporting GPUs (and heterogeneous computing

nodes in general);
• Split the management of the workers and the management of the graph of tasks to allow multiple

independent graphs to be used on a single node;
• Use SPETABARU in the Complexes++ application, which is a bio-physic software for protein

simulation;
• Maintain and update the code to keep it modern and up to date.

9.1.2. Idex Prim’Eau
Participant: Jens Gustedt [contact].

In the framework of the Prim’Eau project of the University of Strasbourg, we study surface runoff for
hydrological periods of several days. We use an efficient domain decomposition method that we apply to a
real world example of Mutterbach (Moselle) with geological and flood data from the years 1920, 1940 and
2017. As the time and memory usage for these computations is important, we aim to parallelize them.

file:www.caldera.com

16 Activity Report INRIA 2019

9.2. National Initiatives
9.2.1. ANR AJACS

Participant: Arthur Charguéraud.

The AJACS research project is funded by the programme “Société de l’information et de la communication”
of the ANR, from October 2014, until March 2019 http://ajacs.inria.fr/.

The goal of the AJACS project is to provide strong security and privacy guarantees on the client side for web
application scripts implemented in JavaScript, the most widely used language for the Web. The proposal is
to prove correct analyses for JavaScript programs, in particular information flow analyses that guarantee no
secret information is leaked to malicious parties. The definition of sub-languages of JavaScript, with certified
compilation techniques targeting them, will allow us to derive more precise analyses. Another aspect of the
proposal is the design and certification of security and privacy enforcement mechanisms for web applications,
including the APIs used to program real-world applications. Arthur Charguéraud focuses on the description of
a formal semantics for JavaScript, and the development of tools for interactively executing programs step-by-
step according to the formal semantics.

Partners: team Celtique (Inria Rennes - Bretagne Atlantique), team Prosecco (Inria Paris), team Indes (Inria
Sophia Antipolis - Méditerranée), and Imperial College (London).

9.2.2. ANR Vocal
Participant: Arthur Charguéraud.

The Vocal research project is funded by the programme “Société de l’information et de la communication” of
the ANR, from October 2015 until October 2020 https://vocal.lri.fr/.

The goal of the Vocal project is to develop the first formally verified library of efficient general-purpose data
structures and algorithms. It targets the OCaml programming language, which allows for fairly efficient code
and offers a simple programming model that eases reasoning about programs. The library will be readily
available to implementers of safety-critical OCaml programs, such as Coq, Astrée, or Frama-C. It will provide
the essential building blocks needed to significantly decrease the cost of developing safe software. The project
intends to combine the strengths of three verification tools, namely Coq, Why3, and CFML. It will use Coq to
obtain a common mathematical foundation for program specifications, as well as to verify purely functional
components. It will use Why3 to verify a broad range of imperative programs with a high degree of proof
automation. Finally, it will use CFML for formal reasoning about effectful higher-order functions and data
structures making use of pointers and sharing.

Partners: team Gallium (Inria Paris), team DCS (Verimag), TrustInSoft, and OCamlPro.

9.3. European Initiatives
9.3.1. Collaborations with Major European Organizations

Benjamin Stamm and Muhammad Hassan: Université d’Aix-la-Chapelle RWTH, MATHCCES
(Germany). An integral equation formulation of the N-body dielectricspheres problem.

Michael Wilczek and Cristian Lalescu: Max Planck Institute for Dynamics and Self-Organization
(Germany). Pseudospectral direct numerical simulations (DNS) of the incompressible Navier-Stokes
equations.

Juergen Koefinger: Max Planck Institute of Biophysics, Theoretical Biophysics (Germany). Monte-
Carlo simulation for coarse grained protein models.

Pavel Kus: Czech Academy of Sciences, Institute of Mathematics (Tchequia). Direct solver for
several matrices at a time.

http://ajacs.inria.fr/
https://vocal.lri.fr/

Project-Team CAMUS 17

9.4. International Initiatives
9.4.1. Informal International Partners

The CAMUS team has collaborated with the following entities in 2019:

• Reservoir Labs, New York, NY, USA (See subsection 7.3)

• University of Batna, Algeria (See subsection 7.16)

• Universidad Politécnica de Madrid, Spain (See subsection 7.4)

• Barcelona Supercomputing Center, Barcelona, Spain (See subsection 7.5)

9.5. International Research Visitors
9.5.1. Visits of International Scientists
9.5.1.1. Internships

Toufik Baroudi is a PhD student under the supervision of Rachid Seghir at the University of Batna (Algeria).
He is co-advised by Vincent Loechner, and has been visiting our team as an intern for one year from Nov.
2018 to Nov. 2019, founded by the Algerian Programme National Exceptionnel (PNE). His PhD defense is
planned at the beginning of 2020.
Raquel Lazcano is a PhD student under the supervision of Eduardo Juárez Martínez at the University of
Madrid. She is also co-advised by Philippe Clauss and has been visiting our team as an intern for three months,
from February to April 2019. Her PhD defense is planned at the beginning of 2020.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Organisation
10.1.1.1. Member of the Organizing Committees

Philippe Clauss organized the Special Session on Compiler Architecture, Design and Optimization (CADO)
of the 17th International Conference on High Performance Computing & Simulation (HPCS 2019), July 2019,
Dublin, Ireland.
Philippe Clauss will organize the 10th edition of the International Workshop on Polyhedral Compilation
Techniques, held in conjunction with HiPEAC 2020, January 22, 2020, Bologna, Italy.
Cédric Bastoul co-organized HIP3ES 2019 (International Workshop on High Performance Energy Efficient
Embedded Systems), in conjunction with the international conference HiPEAC 2019.
Arthur Charguéraud co-organized the summer school École des Jeunes Chercheurs en Programmation (EJCP),
June 2019, Strasbourg, France.

10.1.2. Scientific Events: Selection
10.1.2.1. Member of the Conference Program Committees

Vincent Loechner has been member of the program committees of HIP3ES 2019, PDP 2020, IMPACT 2020.
Philippe Clauss has been part of the program committees of: CC 2020 (ACM SIGPLAN International Confer-
ence on Compiler Construction); ICPP 2020 (49th International Conference on Parallel Processing); IPDRM
2019 (Third Annual Workshop on Emerging Parallel and Distributed Runtime Systems and Middleware, held
in conjunction with the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 19).
Arthur Charguéraud has been member of the program committees of ITP 2019, POPL 2020, OOPSLA 2019.

18 Activity Report INRIA 2019

Cédric Bastoul has been part of the program committee of HiPC 2019 (IEEE International Conference on High
Performance Computing, Data and Analytics), HIP3ES 2019 (International Workshop on High Performance
Energy Efficient Embedded Systems), IMPACT 2019 (International Workshop on Polyhedral Compilation
Techniques), CADO 2019 (Special Session on Compiler Architecture, Design and Optimization of the 17th
International Conference on High Performance Computing & Simulation - HPCS 2019).

10.1.2.2. Reviewer
Bérenger Bramas has been a reviewer for COMPAS 2019 and PDP 2020.
Arthur Charguéraud has been a reviewer for FOSSACS 2020 and ESOP 2020.

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

Since October 2001, J. Gustedt is the Editor-in-Chief of the journal Discrete Mathematics and Theoretical
Computer Science (DMTCS).

10.1.3.2. Reviewer - Reviewing Activities
Bérenger Bramas has been a reviewer for the following journals: Journal of Parallel Computing (Elsevier),
Journal of Parallel and Distributed Computing (Elsevier), Journal of Computer Science and Technology
(Springer), Parallel Processing Letters (World Scientific), Software: Practice and Experience (Wiley).
Philippe Clauss has been a reviewer for the Journal of Software: Practice and Experience (Wiley).

10.1.4. Invited Talks
Cédric Bastoul delivered the invited talk "Loop Optimization: A Matter of Art and Science" at the Huawei
Symposium on Foundations of Software 2019.

10.1.5. Scientific Expertise
10.1.5.1. Standardization

Since Nov. 2014, Jens Gustedt has been a member of the ISO working group SC22-WG14 for the standard-
ization of the C programming language and serves as a co-editor of the standards document, see [46], [47],
[40], [33]. He participates actively in the clarification report processing, the planning of future versions of the
standard and in a subgroup that discusses the improvement of the C memory model, see [45], [35], [48].

He was one of the main forces behind the elaboration of C17, the new version of the C standard that has been
published by ISO in 2018 [51] and contributes to the future standard "C2x" in various ways. In particular
he proposed the removal of the so-called K&R definitions [27], the reform of sign representation [25], [26],
maximum width integers [44], keywords [31], [41], [36], [36], null pointer constants [34], timing interfaces
[37], [30], [30], atomicity and synchronization [42], [32], [39], and function error conventions [28]. Most of
these are either integrated in the latest draft or have been adopted subject to reformulations and adaptations.

10.1.5.2. Expertise
Philippe Clauss has been a reviewer for a promotion case to Full Professor in a US University.
Cédric Bastoul has been an expert for the French research ministry and the French finance ministry for the
research tax credit programme.

10.1.6. Research Administration
Cédric Bastoul, Philippe Clauss and Vincent Loechner are members of the Comité d’Experts (section 27,
informatique) of the Université de Strasbourg, providing their scientific and teaching expertise to the university
and to the academy. In particular, this committee is involved in the recruitment of researchers and teachers in
computer science. Philippe Clauss has been the Vice President of the committee since April 2019.
Jens Gustedt is the head of the ICPS team for the ICube lab, and in that function a member of the board of
directors of the lab. He is also a member of the local recruitment committee for PhD students and postdocs of
Inria Center Nancy — Grand Est.
Philippe Clauss and Cédric Bastoul are members of the Collegium Sciences of the University of Strasbourg,
which is a group of representative scientists providing advice regarding the funding of projects.

http://dmtcs.episciences.org/

Project-Team CAMUS 19

Philippe Clauss is a member of the Bureau du Comité des Projets of the Inria Center Nancy — Grand Est.
This group of scientists provides scientific expertise to the Director of the Center.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master: Bérenger Bramas, Compilation and Performance, 39h, M2, Université de Strasbourg,
France

Master: Bérenger Bramas, Compilation, 30h, M1, Université de Strasbourg, France

Licence: Vincent Loechner, responsable pédagogique de la licence professionnelle ASSR-ARS, L3,
Université de Strasbourg, France

Licence: Vincent Loechner, algorithmique et programmation, 168h, L1, Université de Strasbourg,
France

Licence: Vincent Loechner, administration système et internet, 45h, L3, Université de Strasbourg,
France

Licence: Vincent Loechner, programmation parallèle, 23h, L3, Université de Strasbourg, France

Master: Vincent Loechner, programmation temps réel, 10h, M2, Université de Strasbourg, France

Master: Vincent Loechner, calcul parallèle, 20h, 3ième année école d’ingénieur (TPS), Université de
Strasbourg, France

Licence: Philippe Clauss, Computer architecture, 18h, L2, Université de Strasbourg, France

Licence: Philippe Clauss, Bases of computer architecture, 22h, L1, Université de Strasbourg, France

Master: Philippe Clauss, Compilation, 84h, M1, Université de Strasbourg, France

Master: Philippe Clauss, Real-time programming and system, 37h, M1, Université de Strasbourg,
France

Master: Philippe Clauss, Code optimization and transformation, 31h, M1, Université de Strasbourg,
France

Licence (Math-Info): Alain Ketterlin, Algorithmique et programmation, L1, 96h, Université de
Strasbourg, France

Licence (Math-Info): Alain Ketterlin, Architecture des systèmes d’exploitation, L3, 38h, Université
de Strasbourg, France

Licence (Math-Info): Alain Ketterlin, Programmation système, L2, 40h, Université de Strasbourg,
France

Master (Informatique): Alain Ketterlin, Preuves assistées par ordinateur, 18h, Université de Stras-
bourg, France

Licence: Éric Violard, Modèles de Calcul, 29h, L1, Université de Strasbourg, France

Licence: Éric Violard, Programmation fonctionnelle, 162h, L1, Université de Strasbourg, France

Licence: Éric Violard, Bases de l’architecture informatique, 62h, L1, Université de Strasbourg,
France

Licence: Éric Violard, Architecture des ordinateurs, 45h, L2, Université de Strasbourg, France

Licence: Éric Violard, Systèmes concurrents, 9h, L3, Université de Strasbourg, France

Licence: Cédric Bastoul, Computer architecture, 78h, L1, Université de Strasbourg, France, and 25h,
L1, UFAZ Azerbaijani-French University, Azerbaijan

Licence: Cédric Bastoul, Parallel programming, 20h, L3, Université de Strasbourg, France, and 25h,
L3, UFAZ Azerbaijani-French University, Azerbaijan

Master: Cédric Bastoul, Compiler Design, 48h, M1, Université de Strasbourg, France

20 Activity Report INRIA 2019

Master: Cédric Bastoul, Project Management, 16h, M1, Université de Strasbourg, France
Master: Cédric Bastoul, Introduction to Research, 3h, L2+M1, Université de Strasbourg, France

10.2.2. Supervision
PhD: Armaël Géneau, Formal verification of complexity analyses, co-advised by Arthur Charguéraud
and François Pottier, defended on December 16th, 2019.
PhD: Paul Godard, Parallélisation et passage à l’échelle durable d’une chaîne de traitement
graphique pour l’impression professionnelle, Université de Strasbourg, Dec. 16, 2019. Cédric
Bastoul and Vincent Loechner.
PhD: Maxime Schmitt, Génération automatique de codes adaptatifs, Université de Strasbourg, Sept.
30, 2019. Cédric Bastoul and Philippe Helluy.
PhD: Daniel Salas, Parallélisation hybride d’une application de détection de noyaux cellulaires,
Université de Strasbourg, Sept. 10, 2019. Jens Gustedt.
PhD in progress: Harenome Ranaivoarivony-Razanajato, Hierarchical Parallelization and Optimiza-
tion, Oct. 2016, Cédric Bastoul and Vincent Loechner.
PhD in progress: Salwa Kobeissi, Dynamic parallelization of recursive functions by transformation
into loops, since Sept. 2017, Philippe Clauss.

10.2.3. Juries
Philippe Clauss participated in the following PhD committees in 2019:
Date Candidate Place Role

Jan. 28 Hugo Brunie Université de Bordeaux Reviewer
Oct. 25 Ksander EJJAAOUANI Université de Strasbourg President
Dec. 9 Arif Ali

ANAPPARAKKAL
Université de Rennes Examiner

Dec. 19 Hang YU Université Grenoble Alpes Reviewer

Cédric Bastoul participated in the following PhD committees in 2019:
Date Candidate Place Role

Mar. 29 Pierre Huchant Université de Bordeaux Reviewer
Jun. 21 Chandan Reddy École Normale Supérieure Reviewer

10.3. Popularization
• A. Charguéraud is a co-organizer of the Concours Castor informatique. The purpose of the Concours

Castor in to introduce pupils (from CM1 to Terminale) to computer sciences. More than 700,000
teenagers played with the interactive exercises in November 2019. More information on: http://
castor-informatique.fr/.

10.3.1. Articles and contents
• Jens Gustedt authored the book Modern C [24], which since the first publication of an online draft

in 2016 has become one of the major references for the C programming language.
• Jens Gustedt is blogging about efficient programming, in particular about the C programming

language. He also is an active member of the stackoverflow community, a technical Q&A site for
programming and related subjects.

10.3.2. Education
• Cédric Bastoul participated in the training of high school teachers involved in the forthcoming

optional Computer Science course for high school students. Specifically, he produced lectures and
materials to teach Computer Architecture to high school students.

http://castor-informatique.fr/
http://castor-informatique.fr/
http://gustedt.wordpress.com/
http://gustedt.wordpress.com/
http://stackoverflow.com/questions/tagged/c

Project-Team CAMUS 21

10.3.3. Interventions
• Vincent Loechner has been organizing a hub for the Google Hashcode programming contest (online

qualification round) at Université de Strasbourg in Feb. 2019. More than 30 students and colleagues
were hosted in the university classrooms to participate to this event.

• Cédric Bastoul delivered a presentation on program optimization at "Journée des licences" ("Bache-
lor Day") in June 2019.

10.3.4. Internal action
• Bérenger Bramas, Jens Gustedt and other members of the scientific computing group (axe transverse

calcul scientifique) organized two software corners at the ICube laboratory. A software corner is
a meeting where researchers exchange about programming best practices, existing and upcoming
tools, and their own experiences.

11. Bibliography
Major publications by the team in recent years

[1] P. CLAUSS, E. ALTINTAS, M. KUHN. Automatic Collapsing of Non-Rectangular Loops, in "Parallel and
Distributed Processing Symposium (IPDPS), 2017", Orlando, United States, IEEE International, May 2017,
pp. 778 - 787 [DOI : 10.1109/IPDPS.2017.34], https://hal.inria.fr/hal-01581081

[2] P.-N. CLAUSS, J. GUSTEDT. Iterative Computations with Ordered Read-Write Locks, in "Journal of Parallel
and Distributed Computing", 2010, vol. 70, no 5, pp. 496–504 [DOI : 10.1016/J.JPDC.2009.09.002], https://
hal.inria.fr/inria-00330024

[3] A. KETTERLIN, P. CLAUSS. Prediction and trace compression of data access addresses through nested
loop recognition, in "6th annual IEEE/ACM international symposium on Code generation and optimization",
Boston, USA, ACM, April 2008, pp. 94-103, http://dx.doi.org/10.1145/1356058.1356071

[4] A. KETTERLIN, P. CLAUSS. Profiling Data-Dependence to Assist Parallelization: Framework, Scope, and
Optimization, in "MICRO-45, The 45th Annual IEEE/ACM International Symposium on Microarchitecture",
Vancouver, Canada, December 2012, https://hal.inria.fr/hal-00780782

[5] J. M. MARTINEZ CAAMANO, M. SELVA, P. CLAUSS, A. BALOIAN, W. WOLFF. Full runtime polyhedral
optimizing loop transformations with the generation, instantiation, and scheduling of code-bones, in "Con-
currency and Computation: Practice and Experience", June 2017, vol. 29, no 15 [DOI : 10.1002/CPE.4192],
https://hal.inria.fr/hal-01581093

[6] A. SUKUMARAN-RAJAM, P. CLAUSS. The Polyhedral Model of Nonlinear Loops, in "ACM Transactions on
Architecture and Code Optimization", January 2016, vol. 12, no 4 [DOI : 10.1145/2838734], https://hal.
inria.fr/hal-01244464

Publications of the year
Doctoral Dissertations and Habilitation Theses

[7] D. SALAS. Hybrid parallellization of a cell nuclei detection application, Université de Strasbourg, September
2019, https://tel.archives-ouvertes.fr/tel-02384725

https://hal.inria.fr/hal-01581081
https://hal.inria.fr/inria-00330024
https://hal.inria.fr/inria-00330024
http://dx.doi.org/10.1145/1356058.1356071
https://hal.inria.fr/hal-00780782
https://hal.inria.fr/hal-01581093
https://hal.inria.fr/hal-01244464
https://hal.inria.fr/hal-01244464
https://tel.archives-ouvertes.fr/tel-02384725

22 Activity Report INRIA 2019

[8] M. SCHMITT. Automatic Generation of Adaptive Codes, Université de Strasbourg, September 2019, https://
hal.inria.fr/tel-02327764

Articles in International Peer-Reviewed Journals

[9] B. BRAMAS. Impact study of data locality on task-based applications through the Heteroprio scheduler, in
"PeerJ Computer Science", May 2019 [DOI : 10.7717/PEERJ-CS.190], https://hal.inria.fr/hal-02120736

[10] B. BRAMAS. Increasing the degree of parallelism using speculative execution in task-based runtime systems,
in "PeerJ Computer Science", 2019, vol. 5, e183 p. [DOI : 10.7717/PEERJ-CS.183], https://hal.inria.fr/hal-
02070576

[11] B. BRAMAS, A. KETTERLIN. Improving parallel executions by increasing task granularity in task-
based runtime systems using acyclic DAG clustering, in "PeerJ Computer Science", January 2020
[DOI : 10.7717/PEERJ-CS.247], https://hal.inria.fr/hal-02436826

[12] A. CHARGUÉRAUD, F. POTTIER. Verifying the Correctness and Amortized Complexity of a Union-Find
Implementation in Separation Logic with Time Credits, in "Journal of Automated Reasoning", March 2019,
vol. 62, no 3, pp. 331–365 [DOI : 10.1007/S10817-017-9431-7], https://hal.inria.fr/hal-01652785

Invited Conferences

[13] B. BRAMAS. SPETABARU: A Task-based Runtime System with Speculative Execution Capability, in "SIAM
CSE 2019 - SIAM Conference on Computational Science and Engineering", Spokane, United States, February
2019, https://hal.inria.fr/hal-02050190

International Conferences with Proceedings

[14] U. A. ACAR, V. AKSENOV, A. CHARGUÉRAUD, M. RAINEY. Provably and Practically Efficient Granularity
Control, in "PPoPP 2019 - Principles and Practice of Parallel Programming", Washington DC, United States,
February 2019 [DOI : 10.1145/3293883.3295725], https://hal.inria.fr/hal-01973285

[15] A. CHARGUÉRAUD, J.-C. FILLIÂTRE, C. LOURENÇO, M. PEREIRA. GOSPEL -Providing OCaml with a
Formal Specification Language, in "FM 2019 - 23rd International Symposium on Formal Methods", Porto,
Portugal, October 2019, https://hal.inria.fr/hal-02157484

[16] J. GUSTEDT, M. MOGÉ. Memory access classification for vertical task parallelism, in "PDP 2019 - 27th
Euromicro International Conference on Parallel, Distributed and Network-Based Processing", Pavia, Italy,
IEEE, February 2019, https://hal.inria.fr/hal-02046105

[17] A. GUÉNEAU, J.-H. JOURDAN, A. CHARGUÉRAUD, F. POTTIER. Formal Proof and Analysis of an
Incremental Cycle Detection Algorithm : (extended version), in "Interactive Theorem Proving", Portland,
United States, J. HARRISON, J. O’LEARY, A. TOLMACH (editors), Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, September 2019, no 141, https://hal.inria.fr/hal-02167236

[18] M. SCHMITT, P. HELLUY, C. BASTOUL. Automatic adaptive approximation for stencil computations, in "CC
2019 - 28th International Conference on Compiler Construction", Washington, United States, ACM Press,
February 2019, pp. 170-181 [DOI : 10.1145/3302516.3307348], https://hal.inria.fr/hal-02072737

https://hal.inria.fr/tel-02327764
https://hal.inria.fr/tel-02327764
https://hal.inria.fr/hal-02120736
https://hal.inria.fr/hal-02070576
https://hal.inria.fr/hal-02070576
https://hal.inria.fr/hal-02436826
https://hal.inria.fr/hal-01652785
https://hal.inria.fr/hal-02050190
https://hal.inria.fr/hal-01973285
https://hal.inria.fr/hal-02157484
https://hal.inria.fr/hal-02046105
https://hal.inria.fr/hal-02167236
https://hal.inria.fr/hal-02072737

Project-Team CAMUS 23

Conferences without Proceedings

[19] P. GODARD. Échanges non bloquants de données ordonnées entre producteurs multiples et consommateur
unique, in "COMPAS’2019", Anglet, France, June 2019, https://hal.archives-ouvertes.fr/hal-02381769

[20] P. GODARD, V. LOECHNER, C. BASTOUL, F. SOULIER, G. MULLER. A Flexible and Distributed Runtime
System for High-Throughput Constrained Data Streams Generation, in "IPDPSW 2019 - IEEE International
Symposium on Parallel and Distributed Processing, Workshops and Phd Forum", Rio de Janeiro, Brazil,
IEEE, May 2019, pp. 718-728 [DOI : 10.1109/IPDPSW.2019.00120], https://hal.archives-ouvertes.fr/hal-
02381750

[21] S. HARIRI, S. WEILL, J. GUSTEDT, I. CHARPENTIER. Pairing GIS and distributed hydrological models
using Matlab 2, in "CAJG - 2nd Conference of the Arabian Journal of Geosiences", Sousse, Tunisia, November
2019, https://hal.archives-ouvertes.fr/hal-02333260

[22] S. KOBEISSI, P. CLAUSS. The Polyhedral Model Beyond Loops Recursion Optimization and Parallelization
Through Polyhedral Modeling, in "IMPACT 2019 - 9th International Workshop on Polyhedral Compilation
Techniques, In conjunction with HiPEAC 2019", Valencia, Spain, January 2019, https://hal.inria.fr/hal-
02059558

[23] B. MEISTER, P. CLAUSS. Uniform Random Sampling in Polyhedra, in "10th International Workshop on
Polyhedral Compilation Techniques", Bologna, Italy, January 2020, https://hal.inria.fr/hal-02425752

Scientific Books (or Scientific Book chapters)

[24] J. GUSTEDT. Modern C, Manning, November 2019, https://hal.inria.fr/hal-02383654

Research Reports

[25] J.-F. BASTIEN, J. GUSTEDT. Moving to two’s complement sign representation, ISO JCT1/SC22/WG14,
January 2019, no N2330, https://hal.inria.fr/hal-02046444

[26] J.-F. BASTIEN, J. GUSTEDT. Two’s complement sign representation for C2x, ISO JCT1/SC22/WG14, August
2019, N2412 p. , https://hal.inria.fr/hal-02311453

[27] L. G. BJØNNES, J. GUSTEDT. Remove support for function definitions with identifier lists, ISO
JCT1/SC22/WG14, September 2019, no N2432, https://hal.inria.fr/hal-02311466

[28] N. DOUGLAS, J. GUSTEDT. Function failure annotation, ISO JCT1/SC22/WG14, September 2019, no

N2429, https://hal.inria.fr/hal-02311462

[29] J. GUSTEDT. Add an interface to query resolution of time bases : Proposal for C2x, ISO JTC1/SC22/WG14,
November 2019, no N2459, https://hal.inria.fr/hal-02378605

[30] J. GUSTEDT. Add new optional time bases v3 Proposal for C2x, ISO JCT1/SC22/WG14, November 2019, no

N2460, https://hal.inria.fr/hal-02378645

[31] J. GUSTEDT. Align spelling of keywords with C++ and make them feature tests proposal for C2x, ISO
JCT1/SC22/WG14, April 2019, no n2368, https://hal.inria.fr/hal-02089925

https://hal.archives-ouvertes.fr/hal-02381769
https://hal.archives-ouvertes.fr/hal-02381750
https://hal.archives-ouvertes.fr/hal-02381750
https://hal.archives-ouvertes.fr/hal-02333260
https://hal.inria.fr/hal-02059558
https://hal.inria.fr/hal-02059558
https://hal.inria.fr/hal-02425752
https://hal.inria.fr/hal-02383654
https://hal.inria.fr/hal-02046444
https://hal.inria.fr/hal-02311453
https://hal.inria.fr/hal-02311466
https://hal.inria.fr/hal-02311462
https://hal.inria.fr/hal-02378605
https://hal.inria.fr/hal-02378645
https://hal.inria.fr/hal-02089925

24 Activity Report INRIA 2019

[32] J. GUSTEDT. Clean up atomics, non-normative changes : proposal for integration to C2x, ISO
JTC1/SC22/WG14, June 2019, no N2389, https://hal.inria.fr/hal-02167823

[33] J. GUSTEDT. Contain the floating point naming explosion, ISO JCT1/SC22/WG14, September 2019, no

N2426, https://hal.inria.fr/hal-02311460

[34] J. GUSTEDT. Introduce the nullptr constant, ISO JTC1/SC22/WG14, June 2019, no N2394, https://hal.inria.
fr/hal-02167929

[35] J. GUSTEDT. Introduce the term storage instance, ISO JTC1/SC22/WG14, June 2019, no N2388, A previous
version of this document was N2328, https://hal.inria.fr/hal-02046329

[36] J. GUSTEDT. Make false and true first-class language features : proposal for C2x, ISO JTC1/SC22/WG14,
November 2019, no N2458, https://hal.inria.fr/hal-02167916

[37] J. GUSTEDT. Modernize time.h functions, ISO JCT1/SC22/WG14, September 2019, no N2417, https://hal.
inria.fr/hal-02311454

[38] J. GUSTEDT. Out-of-band bit for exceptional return and errno replacement, ISO JCT1/SC22/WG14, April
2019, no N2361, https://hal.inria.fr/hal-02089873

[39] J. GUSTEDT. Remove ATOMIC VAR INIT, ISO JTC1/SC22/WG14, June 2019, no N2390, https://hal.inria.fr/
hal-02167838

[40] J. GUSTEDT. Remove conditional "WANT" macros from numbered clauses proposal for C2x, ISO
JTC1/SC22/WG14, April 2019, no N2359, https://hal.inria.fr/hal-02089861

[41] J. GUSTEDT. Revise spelling of keywords : proposal for C2x, ISO JTC1/SC22/WG14, June 2019, no N2457,
https://hal.inria.fr/hal-02167870

[42] J. GUSTEDT. Synchronization at thread and execution termination : proposal for integration to C2x, ISO
JTC1/SC22/WG14, September 2019, no N2461, https://hal.inria.fr/hal-02167850

[43] J. GUSTEDT. Unify string representation functions, ISO JCT1/SC22/WG14, April 2019, https://hal.inria.fr/
hal-02089868

[44] J. GUSTEDT. intmax_t, a way out, ISO JCT1/SC22/WG14, September 2019, no N2425, https://hal.inria.fr/
hal-02311457

[45] J. GUSTEDT, P. SEWELL, K. MEMARIAN, V. B. F. GOMES, M. UECKER. Moving to a provenance-aware
memory object model for C: proposal for C2x, ISO JCT1/SC22/WG14, April 2019, no N2362, https://hal.
inria.fr/hal-02089889

[46] L. JONES, J. GUSTEDT. ISO/IEC 9899 editor report March 2019, ISO JCT1/SC22/WG14, March 2019, no

N2348, https://hal.inria.fr/hal-02089676

[47] L. JONES, J. GUSTEDT. ISO/IEC 9899 editor report November 2019, ISO JCT1/SC22/WG14, November
2019, no N2456, https://hal.inria.fr/hal-02378784

https://hal.inria.fr/hal-02167823
https://hal.inria.fr/hal-02311460
https://hal.inria.fr/hal-02167929
https://hal.inria.fr/hal-02167929
https://hal.inria.fr/hal-02046329
https://hal.inria.fr/hal-02167916
https://hal.inria.fr/hal-02311454
https://hal.inria.fr/hal-02311454
https://hal.inria.fr/hal-02089873
https://hal.inria.fr/hal-02167838
https://hal.inria.fr/hal-02167838
https://hal.inria.fr/hal-02089861
https://hal.inria.fr/hal-02167870
https://hal.inria.fr/hal-02167850
https://hal.inria.fr/hal-02089868
https://hal.inria.fr/hal-02089868
https://hal.inria.fr/hal-02311457
https://hal.inria.fr/hal-02311457
https://hal.inria.fr/hal-02089889
https://hal.inria.fr/hal-02089889
https://hal.inria.fr/hal-02089676
https://hal.inria.fr/hal-02378784

Project-Team CAMUS 25

[48] P. SEWELL, K. MEMARIAN, V. B. F. GOMES, J. GUSTEDT, M. UECKER. C provenance semantics:
examples, ISO JCT1/SC22/WG14, April 2019, no N2363, https://hal.inria.fr/hal-02089907

Other Publications

[49] M. BOILEAU, B. BRAMAS, E. FRANCK, P. HELLUY, L. NAVORET. Parallel lattice-boltzmann transport
solver in complex geometry, December 2019, working paper or preprint, https://hal.archives-ouvertes.fr/hal-
02404082

[50] B. BRAMAS, P. HELLUY, L. MENDOZA, B. WEBER. Optimization of a discontinuous finite element solver
with OpenCL and StarPU, July 2019, working paper or preprint, https://hal.archives-ouvertes.fr/hal-01942863

References in notes

[51] JTC1/SC22/WG14 (editor). Programming languages - C, ISO, 2018, no ISO/IEC 9899

[52] U. A. ACAR, A. CHARGUÉRAUD, M. RAINEY. Oracle-Guided Scheduling for Controlling Granular-
ity in Implicitly Parallel Languages, in "Journal of Functional Programming", November 2016, vol. 26
[DOI : 10.1017/S0956796816000101], https://hal.inria.fr/hal-01409069

[53] C. BASTOUL. Code Generation in the Polyhedral Model Is Easier Than You Think, in "PACT’13 IEEE
International Conference on Parallel Architecture and Compilation Techniques", Juan-les-Pins, France, 2004,
pp. 7–16, https://hal.archives-ouvertes.fr/ccsd-00017260

[54] B. BRAMAS, M. HASSAN, B. STAMM. An Integral Equation Formulation of the N -body Dielectric Spheres
Problem. Part II: Complexity Analysis, 2019

[55] A. GUÉNEAU, A. CHARGUÉRAUD, F. POTTIER. A Fistful of Dollars: Formalizing Asymptotic Complexity
Claims via Deductive Program Verification, in "ESOP 2018 - 27th European Symposium on Programming",
Thessaloniki, Greece, A. AHMED (editor), LNCS - Lecture Notes in Computer Science, Springer, April 2018,
vol. 10801, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018
[DOI : 10.1007/978-3-319-89884-1_19], https://hal.inria.fr/hal-01926485

[56] M. HALL, D. PADUA, K. PINGALI. Compiler research: the next 50 years, in "Commun. ACM", 2009, vol.
52, no 2, pp. 60–67, http://doi.acm.org/10.1145/1461928.1461946

[57] A. HOBOR, A. W. APPEL, F. Z. NARDELLI. Oracle Semantics for Concurrent Separation Logic, in "ESOP",
2008, pp. 353-367

https://hal.inria.fr/hal-02089907
https://hal.archives-ouvertes.fr/hal-02404082
https://hal.archives-ouvertes.fr/hal-02404082
https://hal.archives-ouvertes.fr/hal-01942863
https://hal.inria.fr/hal-01409069
https://hal.archives-ouvertes.fr/ccsd-00017260
https://hal.inria.fr/hal-01926485
http://doi.acm.org/10.1145/1461928.1461946

