

[image: cover]

 PROSECCO

 Programming securely with cryptography

 2019 Project-Team Activity Report
	

 Research centre:
 Paris

 Field: Algorithmics, Programming, Software and Architecture
Theme: Security and Confidentiality

 Computer Science and Digital Science:

 	A1.1. - Architectures

 	A1.1.8. - Security of architectures

 	A1.2. - Networks

 	A1.2.8. - Network security

 	A1.3. - Distributed Systems

 	A2. - Software

 	A2.1. - Programming Languages

 	A2.1.1. - Semantics of programming languages

 	A2.1.4. - Functional programming

 	A2.1.7. - Distributed programming

 	A2.1.11. - Proof languages

 	A2.2. - Compilation

 	A2.2.1. - Static analysis

 	A2.2.5. - Run-time systems

 	A2.4. - Formal method for verification, reliability, certification

 	A2.4.2. - Model-checking

 	A2.4.3. - Proofs

 	A2.5. - Software engineering

 	A4. - Security and privacy

 	A4.3. - Cryptography

 	A4.3.3. - Cryptographic protocols

 	A4.5. - Formal methods for security

 	A4.6. - Authentication

 	A4.8. - Privacy-enhancing technologies

 Other Research Topics and Application Domains:

 	B6. - IT and telecom

 	B6.1. - Software industry

 	B6.1.1. - Software engineering

 	B6.3. - Network functions

 	B6.3.1. - Web

 	B6.3.2. - Network protocols

 	B6.4. - Internet of things

 	B9. - Society and Knowledge

 	B9.10. - Privacy

 Project-Team Prosecco

 Team, Visitors, External Collaborators

 Overall Objectives	Programming securely
with cryptography

 Research Program	Symbolic verification of cryptographic applications
	Computational verification of cryptographic applications
	F*: A Higher-Order Effectful Language for Program Verification
	Efficient Formally Secure Compilers to a Tagged Architecture
	Provably secure web applications
	Design and Verification of next-generation protocols: identity, blockchains, and messaging

 Application Domains	Cryptographic Protocol Libraries
	Hardware-based security APIs
	Web application security

 Highlights of the Year

 New Software and Platforms	Cryptosense Analyzer
	CryptoVerif
	F*
	miTLS
	ProVerif
	HACL*

 New Results	Verification of security protocols
	Verified Software for Cryptographic Web Applications
	Journey beyond full abstraction
	Principles of Program Verification
for Arbitrary Monadic Effects
	Meta-F*: Proof automation
with SMT, Tactics, and Metaprograms

 Bilateral Contracts and Grants with Industry	Bilateral Grants with Industry

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2012 January 01, updated into Project-Team: 2012 July 01
Section: Team, Visitors, External Collaborators
Research Scientists
Karthikeyan Bhargavan [Team leader, Inria, Senior Researcher, HDR]
Bruno Blanchet [Inria, Senior Researcher, HDR]
Harry Halpin [Inria, Advanced Research Position, until Aug 2019]
Catalin Hritcu [Inria, Researcher, HDR]
Prasad Naldurg [Inria, Advanced Research Position]
Exequiel Rivas Gadda [Inria, Starting Research Position, from Mar 2019]
Eric Tanter [Inria, Advanced Research Position]
Post-Doctoral Fellow
Roberto Blanco Martinez [Inria, Post-Doctoral Fellow]
PhD Students
Carmine Abate [Inria, PhD Student]
Benjamin Beurdouche [Inria, PhD Student, granted by FP7 ERC CIRCUS project]
Natalia Kulatova [Inria, PhD Student]
Benjamin Lipp [Inria, PhD Student]
Kenji Maillard [Ecole Normale Supérieure Paris, PhD Student, until Nov 2019]
Denis Merigoux [Inria, PhD Student]
Marina Polubelova [Inria, PhD Student]
Jérémy Thibault [Inria, PhD Student]
Technical staff
Cezar Constantin Andrici [Inria, Engineer, from Aug 2019 until Nov 2019]
Iness Ben Guirat [Inria, Engineer, until Apr 2019]
Adrien Durier [Inria, Engineer, from Sep 2019]
Florian Groult [Inria, Engineer]
Theo Laurent [Inria, Engineer]
Ramkumar Ramachandra [Inria, Engineer, from Aug 2019]
Antoine Van Muylder [Inria, Engineer, from Nov 2019]
Interns and Apprentices
Guillaume Gette [Inria, from Apr 2019 until Sep 2019]
Elisabeth Labrada Deniz [Inria, until Jan 2019]
Antoine Van Muylder [Inria, from May 2019 until Sep 2019]
Mikhail Volkhov [Inria, from Apr 2019 until Aug 2019]
Administrative Assistants
Christelle Guiziou [Inria, Administrative Assistant]
Mathieu Mourey [Inria, Administrative Assistant]
External Collaborators
Victor Dumitrescu [Nomadic Labs]
Guido Martinez [CIFASIS-CONICET Rosario]
Jonathan Protzenko [Microsoft Research]
Eric Tanter [University of Chile, from
Mar 2019 until Aug 2019]
Jean-Karim Zinzindohoué [Ministère de l'Intérieur, until Jun 2019]

 Overall Objectives

 	Overall Objectives	Programming securely
with cryptography

 Section:
 Overall Objectives

 Programming securely
with cryptography

 In recent years, an increasing amount of sensitive data is being generated,
manipulated, and accessed online, from bank accounts to health records.
Both national security and individual privacy have come to rely on the security
of web-based software applications.
But even a single design flaw or implementation bug in
an application may be exploited by a malicious criminal to steal, modify, or forge
the private records of innocent users.
Such attacks are becoming increasingly common and now affect millions of users every year.

 The risks of deploying insecure software are too great to tolerate anything less than mathematical proof,
but applications have become too large for security experts to examine by hand,
and automated verification tools do not scale.
Today, there is not a single widely-used web application for which we can give a proof of security, even against a small class of attacks.
In fact, design and implementation flaws are still found in widely-distributed and thoroughly-vetted security libraries designed and implemented by experts.

 Software security is in crisis.
A focused research effort is needed if security programming and analysis techniques are to keep up
with the rapid development and deployment of security-critical distributed applications based on new
cryptographic protocols and secure hardware devices.
The goal of our team Prosecco is to draw upon our expertise in
cryptographic protocols and program verification to make decisive contributions in this direction.

 Our vision is that, over its lifetime, Prosecco will contribute to making the use of formal techniques when programming with cryptography as natural
as the use of a software debugger.
To this end, our long-term goals are to design and implement programming language abstractions, cryptographic models, verification tools,
and verified security libraries that developers can use to deploy provably secure distributed applications.
Our target applications include cryptographic protocol implementations, hardware-based security APIs,
smartphone- and browser-based web applications, and cloud-based web services.
In particular, we aim to verify the full application: both the cryptographic core and the high-level application code.
We aim to verify implementations, not just models. We aim to account for computational cryptography, not just its symbolic abstraction.

 We identify five key focus areas for our research in the short- to medium term.

 New programming languages for verified software

 Building realistic verified applications requires new programming
languages that enable the systematic development of efficient software
hand-in-hand with their proofs of correctness. Our current focus is on
designing and implementing the programming language F*, in
collaboration with Microsoft Research. F* (pronounced F star) is a
general-purpose functional programming language with effects aimed at
program verification. Its type system includes polymorphism, dependent types,
monadic effects, refinement types, and a weakest precondition
calculus. Together, these features allow expressing precise and
compact specifications for programs, including functional correctness
and security properties. The F* type-checker aims to prove that
programs meet their specifications using a combination of SMT solving
and interactive proofs. Programs written in F* can be translated to
efficient OCaml, F#, or C for execution. The main ongoing use case of
F* is building a verified, drop-in replacement for the whole HTTPS
stack in Project Everest (a larger collaboration with Microsoft
Research). This includes verified implementations of TLS 1.2 and 1.3
and of the underlying cryptographic primitives.

 Symbolic verification of cryptographic applications

 We aim to develop our own security verification tools for models
and implementations of cryptographic protocols and security APIs using
symbolic cryptography. Our starting point is the tools we have
previously developed: the specialized cryptographic prover ProVerif,
the reverse engineering and formal test tool Tookan,
and the F* verification system. These tools
are already used to verify industrial-strength cryptographic protocol
implementations and commercial cryptographic hardware. We plan to
extend and combine these approaches to capture more sophisticated
attacks on applications consisiting of protocols, software, and
hardware, as well as to prove symbolic security properties for such
composite systems.

 Computational verification of cryptographic applications

 We aim to develop our own cryptographic application verification tools
that use the computational model of cryptography. The tools include
the computational prover CryptoVerif, and the F* verification system.
Working together, we plan to extend these tools to analyze, for the first
time, cryptographic protocols, security APIs, and their
implementations under fully precise cryptographic assumptions. We also
plan to pursue links between symbolic and computational verification,
such as computational soundness results that enable computational
proofs by symbolic techniques.

 Efficient formally secure compilers for tagged architectures

 We aim to leverage emerging hardware capabilities for fine-grained
protection to build the first, efficient secure compilation chains for
realistic low-level programming languages (the C language, and Low* a
safe subset of C embedded in F* for verification). These compilation
chains will provide a secure semantics for all programs and will
ensure that high-level abstractions cannot be violated even when
interacting with untrusted low-level code. To achieve this level of
security without sacrificing efficiency, our secure compilation chains
target a tagged architecture, which associates a metadata tag to each
word and efficiently propagates and checks tags according to
software-defined rules.

 Building provably secure web applications

 We aim to develop analysis tools and verified libraries to help
programmers build provably secure web applications. The tools will
include static and dynamic verification tools for client- and
server-side JavaScript web applications, their verified deployment
within HTML5 websites and browser extensions, as well as
type-preserving compilers from high-level applications written in F*
to JavaScript. In addition, we plan to model new security APIs in
browsers and smartphones and develop the first formal semantics for
various HTML5 web standards. We plan to combine these tools and
models to analyze the security of multi-party web applications,
consisting of clients on browsers and smartphones, and servers in the
cloud.

 Research Program

 	Research Program	Symbolic verification of cryptographic applications
	Computational verification of cryptographic applications
	F*: A Higher-Order Effectful Language for Program Verification
	Efficient Formally Secure Compilers to a Tagged Architecture
	Provably secure web applications
	Design and Verification of next-generation protocols: identity, blockchains, and messaging

 Section:
 Research Program

 Symbolic verification of cryptographic applications

 Despite decades of experience, designing and implementing
cryptographic applications remains dangerously error-prone, even for experts. This is partly because cryptographic security is an inherently hard problem, and partly because automated verification tools require carefully-crafted inputs and are not widely applicable. To take just the example of TLS, a widely-deployed and well-studied cryptographic protocol designed, implemented, and verified by security experts, the lack of a formal proof about all its details has regularly led to the discovery of major attacks (including several in Prosecco) on both the protocol and its implementations, after many years of unsuspecting use.

 As a result, the automated verification for cryptographic applications is an active area of research, with a wide variety of tools being employed for verifying different kinds of applications.

 In previous work, we have developed the following three approaches:

 	
 ProVerif: a symbolic prover for cryptographic protocol models

 	
 Tookan: an attack-finder for PKCS#11 hardware security devices

 	
 F*: a new language that enables the verification of cryptographic applications

 Verifying cryptographic protocols with ProVerif

 Given a model of a cryptographic protocol, the problem is to verify that an active attacker, possibly with access to some cryptographic keys but unable to guess other secrets, cannot thwart security goals such as authentication and secrecy [53]; it has motivated a serious research effort on the formal analysis of cryptographic protocols, starting with [49] and eventually leading to effective verification tools, such as our tool ProVerif.

 To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus,
and ProVerif abstracts it to a set of generalized Horn clauses.
This abstraction is a small approximation: it just ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than, say, tree automata-based techniques. The price to pay for this precision is that ProVerif does not always terminate; however, it terminates in most cases in practice, and it always terminates on the interesting class of tagged protocols [44]. ProVerif can handle a wide variety of cryptographic primitives, defined by rewrite rules or by some equations, and prove a wide variety of security properties: secrecy [42], [30], correspondences (including authentication) [43], and observational equivalences [41]. Observational equivalence means that an adversary cannot distinguish two processes (protocols); equivalences can be used to formalize a wide range of properties, but they are particularly difficult to prove. Even if the class of equivalences that ProVerif can prove is limited to equivalences between processes that differ only by the terms they contain, these equivalences are useful in practice and ProVerif has long been the only tool that proves equivalences for an unbounded number of sessions. (Maude-NPA in 2014 and Tamarin in 2015 adopted ProVerif's approach to proving equivalences.)

 Using ProVerif, it is now possible to verify large parts of industrial-strength protocols,
such as TLS [36], Signal [51], JFK [31], and Web Services Security [40], against powerful adversaries that can run an unlimited number of protocol sessions, for strong security properties expressed as correspondence queries or equivalence assertions. ProVerif is used by many teams at the international level, and has been used in more than 120 research papers (references available at http://proverif.inria.fr/proverif-users.html).

 Verifying security APIs using Tookan

 Security application programming interfaces (APIs) are interfaces that
provide access to functionality while also enforcing a security policy,
so that even if a malicious program makes calls to the interface,
certain security properties will continue to hold. They are used, for
example, by cryptographic devices such as smartcards and Hardware
Security Modules (HSMs) to manage keys and provide access to
cryptographic functions whilst keeping the keys secure. Like security
protocols, their design is security critical and very difficult to get
right. Hence formal techniques have been adapted from security
protocols to security APIs.

 The most widely used standard for cryptographic APIs is RSA
PKCS#11, ubiquitous in devices from smartcards to HSMs. A 2003 paper
highlighted possible flaws in PKCS#11 [46], results
which were extended by formal analysis work using a Dolev-Yao style
model of the standard [47]. However at this point it was
not clear to what extent these flaws affected real commercial devices,
since the standard is underspecified and can be implemented in many
different ways. The Tookan tool, developed by Steel in collaboration
with Bortolozzo, Centenaro and Focardi, was designed to address this
problem. Tookan can reverse engineer the particular configuration of
PKCS#11 used by a device under test by sending a carefully designed
series of PKCS#11 commands and observing the return codes. These
codes are used to instantiate a Dolev-Yao model of the device's
API. This model can then be searched using a security protocol model
checking tool to find attacks. If an attack is found, Tookan converts
the trace from the model checker into the sequence of PKCS#11 queries
needed to make the attack and executes the commands directly on the
device. Results obtained by Tookan are remarkable: of 18 commercially available
PKCS#11 devices tested, 10 were found to be susceptible to at least
one attack.

 Verifying cryptographic applications using F*

 Verifying the implementation of a protocol has traditionally been considered
much harder than verifying its model. This is mainly because implementations
have to consider real-world details of the protocol, such as message
formats [55], that models typically ignore. So even a
protocol has been proved secure in theory, its implementation may be buggy
and insecure. However, with recent advances in both program verification
and symbolic protocol verification tools, it has become possible to verify fully
functional protocol implementations in the symbolic model.
One approach is to extract a symbolic protocol model from an implementation
and then verify the model, say, using ProVerif. This approach has been quite successful,
yielding a verified implementation of TLS in F# [39].
However, the generated models are typically quite large and whole-program
symbolic verification does not scale very well.

 An alternate approach is to develop a verification method directly for
implementation code, using well-known program verification techniques.
Our current focus is on designing and implementing the programming
language F* [57], [34], [52], in
collaboration with Microsoft Research. F* (pronounced F star) is an
ML-like functional programming language aimed at program
verification. Its type system includes polymorphism, dependent types,
monadic effects, refinement types, and a weakest precondition
calculus. Together, these features allow expressing precise and
compact specifications for programs, including functional correctness
and security properties. The F* type-checker aims to prove that
programs meet their specifications using a combination of SMT solving
and interactive proofs[23].
Programs written in F* can be translated to
efficient OCaml, F#, or C for execution [54].
The main ongoing use case of F* is building a verified, drop-in
replacement for the whole HTTPS stack in Project
Everest [37] (a larger collaboration with Microsoft
Research). This includes a verified implementation of TLS 1.2 and
1.3 [38] and of the underlying cryptographic
primitives [58].

 Section:
 Research Program

 Computational verification of cryptographic applications

 Proofs done by cryptographers in the computational model are mostly
manual. Our goal is to provide computer support to build or verify
these proofs. In order to reach this goal, we have designed
the automatic tool CryptoVerif, which generates proofs by sequences of
games. We already applied it to important protocols such as
TLS [36] and
Signal [51] but more work is still needed in order to develop this approach,
so that it is easier to apply to more protocols. We also design and
implement techniques for proving implementations of protocols secure
in the computational model. In particular, CryptoVerif can generate implementations from CryptoVerif
specifications that have been proved secure [45]. We plan to continue working on this approach.

 A different approach is to directly verify cryptographic applications
in the computational model by typing. A recent work [50] shows
how to use refinement typechecking in F7 to prove computational security
for protocol implementations. In this method, henceforth referred to as computational F7,
typechecking is used as the main step to justify a classic game-hopping proof of computational security.
The correctness of this method is based on a probabilistic semantics of F# programs
and crucially relies on uses of type abstraction and parametricity to establish strong security properties,
such as indistinguishability.

 In principle, the two approaches, typechecking and game-based proofs, are complementary. Understanding how
to combine these approaches remains an open and active topic of research.

 An alternative to direct computation proofs is to identify the
cryptographic assumptions under which symbolic proofs, which are
typically easier to derive automatically, can be mapped to
computational proofs. This line of research is sometimes called
computational soundness and the extent of its applicability to
real-world cryptographic protocols is an active area of investigation.

 Section:
 Research Program

 F*: A Higher-Order Effectful Language for Program Verification

 F* [57], [34]
is a verification system for effectful programs developed
collaboratively by Inria and Microsoft Research.
It puts together the automation of an SMT-backed deductive
verification tool with the expressive power of a proof assistant based
on dependent types. After verification, F* programs can be extracted
to efficient OCaml, F#, or C code [54]. This enables
verifying the functional correctness and security of realistic applications.
F*'s type system includes dependent types, monadic effects, refinement
types, and a weakest precondition calculus. Together, these features
allow expressing precise and compact specifications for programs,
including functional correctness and security properties. The F*
type-checker aims to prove that programs meet their specifications
using a combination of SMT solving and interactive proofs.
The main ongoing use case of F* is building a verified, drop-in
replacement for the whole HTTPS stack in Project Everest. This
includes verified implementations of TLS 1.2 and
1.3 [38] and of the underlying cryptographic
primitives [58].

 Section:
 Research Program

 Efficient Formally Secure Compilers to a Tagged Architecture

 Severe low-level vulnerabilities abound in today’s computer systems,
allowing cyber-attackers to remotely gain full control. This happens
in big part because our programming languages, compilers, and
architectures were designed in an era of scarce hardware resources and
too often trade off security for efficiency. The semantics of
mainstream low-level languages like C is inherently insecure, and even
for safer languages, establishing security with respect to a
high-level semantics does not guarantee the absence of low-level
attacks. Secure compilation using the coarse-grained protection
mechanisms provided by mainstream hardware architectures would be too
inefficient for most practical scenarios.

 We aim to leverage emerging hardware capabilities for fine-grained
protection to build the first, efficient secure compilation chains for
realistic low-level programming languages (the C language, and Low* a
safe subset of C embedded in F* for verification [54]).
These compilation
chains will provide a secure semantics for all programs and will
ensure that high-level abstractions cannot be violated even when
interacting with untrusted low-level code. To achieve this level of
security without sacrificing efficiency, our secure compilation chains
target a tagged architecture [35],
which associates a metadata tag to each
word and efficiently propagates and checks tags according to
software-defined rules. We hope to experimentally evaluate and
carefully optimize the efficiency of our secure compilation chains on
realistic workloads and standard benchmark suites. We are also using
property-based testing and formal verification to provide high
confidence that our compilation chains are indeed secure. Formally, we
are constructing machine-checked proofs of a new security criterion we
call robustly safe compilation, which is defined as the preservation
of safety properties even against an adversarial context [32], [33]. This strong
criterion complements compiler correctness and ensures that no
machine-code attacker can do more harm to securely compiled components
than a component already could with respect to a secure source-level semantics.

 Section:
 Research Program

 Provably secure web applications

 Web applications are fast becoming the dominant programming platform for new software, probably because they
offer a quick and easy way for developers to deploy and sell their apps to a large number of customers.
Third-party web-based apps for Facebook, Apple, and Google, already number in the hundreds of thousands and are likely to grow in number.
Many of these applications store and manage private user data, such as health information, credit card data, and GPS locations.
To protect this data, applications tend to use an ad hoc combination of cryptographic primitives and protocols.
Since designing cryptographic applications is easy to get wrong even for experts, we believe this is an opportune
moment to develop security libraries and verification techniques to help web application programmers.

 As a typical example, consider commercial password managers, such as
LastPass, RoboForm, and 1Password.
They are implemented as browser-based web applications that, for a monthly fee, offer to store a user's passwords securely on the web
and synchronize them across all of the user's computers and smartphones. The passwords are encrypted using a master password (known only to the user) and stored in the cloud.
Hence, no-one except the user should ever be able to read her passwords. When the user visits a web page that has a login form, the password manager
asks the user to decrypt her password for this website and automatically fills in the login form. Hence, the user no longer has to remember passwords (except her master password) and all
her passwords are available on every computer she uses.

 Password managers are available as browser extensions for mainstream browsers such as Firefox, Chrome, and Internet Explorer, and as downloadable apps for Android and Apple phones.
So, seen as a distributed application, each password manager application consists of a web service (written in PHP or Java),
some number of browser extensions (written in JavaScript), and some smartphone apps (written in Java or Objective C).
Each of these components uses a different cryptographic library to encrypt and decrypt password data.
How do we verify the correctness of all these components?

 We propose three approaches. For client-side web applications and browser extensions written in JavaScript, we propose to build a static and dynamic program analysis framework
to verify security invariants. To this end, we have developed two security-oriented type systems for JavaScript, Defensive JavaScript [48] and TS* [56], and used them to guarantee security properties for a number of JavaScript applications. For Android smartphone apps and web services written in Java, we propose to develop annotated JML cryptography libraries that can be used with static analysis tools like ESC/Java to verify the security of application code. For clients and web services written in F# for the .NET platform, we propose to use F* to verify their correctness. We also propose to translate verified F* web applications to JavaScript via a
verified compiler that preserves the semantics of F* programs in JavaScript.

 Section:
 Research Program

 Design and Verification of next-generation protocols: identity, blockchains, and messaging

 Building on our work on verifying and re-designing pre-existing
protocols like TLS and Web Security in general, with the resources
provided by the NEXTLEAP project, we are working on both designing and
verifying new protocols in rapidly emerging areas like identity,
blockchains, and secure messaging. These are all areas where existing
protocols, such as the heavily used OAuth protocol, are in need of
considerable re-design in order to maintain privacy and security
properties. Other emerging areas, such as blockchains and secure
messaging, can have modifications to existing pre-standard proposals
or even a complete 'clean slate' design. As shown by Prosecco's work,
newer standards, such as IETF OAuth, W3C Web Crypto, and W3C Web
Authentication API, can have vulnerabilities fixed before
standardization is complete and heavily deployed. We hope that the
tools used by Prosecco can shape the design of new protocols even
before they are shipped to standards bodies.
We have seen considerable
progress in identity with the UnlimitID design and with messaging via the
IETF MLS effort, with new work on blockchain technology underway.

 Application Domains

 	Application Domains	Cryptographic Protocol Libraries
	Hardware-based security APIs
	Web application security

 Section:
 Application Domains

 Cryptographic Protocol Libraries

 Cryptographic protocols such as TLS, SSH, IPSec, and Kerberos are
the trusted base on which the security of modern distributed systems
is built. Our work enables the analysis and verification of such
protocols, both in their design and implementation. Hence, for
example, we build and verify models and reference implementations
for well-known protocols such as TLS and SSH, as well as analyze
their popular implementations such as OpenSSL.

 Section:
 Application Domains

 Hardware-based security APIs

 Cryptographic devices such as Hardware Security Modules (HSMs) and
smartcards are used to protect long- terms secrets in tamper-proof
hardware, so that even attackers who gain physical access to the
device cannot obtain its secrets. These devices are used in a
variety of scenarios ranging from bank servers to transportation
cards (e.g. Navigo). Our work investigates the security of
commercial cryptographic hardware and evaluates the APIs they seek
to implement.

 Section:
 Application Domains

 Web application security

 Web applications use a variety of cryptographic techniques to
securely store and exchange sensitive data for their users. For
example, a website may serve pages over HTTPS, authenticate users
with a single sign-on protocol such as OAuth, encrypt user files on
the server-side using XML encryption, and deploy client-side
cryptographic mechanisms using a JavaScript cryptographic
library. The security of these applications depends on the public
key infrastructure (X.509 certificates), web browsers'
implementation of HTTPS and the same origin policy (SOP), the
semantics of JavaScript, HTML5, and their various associated
security standards, as well as the correctness of the specific web
application code of interest. We build analysis tools to find bugs
in all these artifacts and verification tools that can analyze
commercial web applications and evaluate their security against
sophisticated web-based attacks.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 	
 We published 12 papers at top-tier conferences and journals such as
S&P (1), POPL (2), Euro S&P (2), ICFP (3), CSF (1), ESOP (1)

 	
 Our cryptographic library HACL* was incorporated within the Linux
kernel, Microsoft WinQuic, mbedTLS, and Concordium, in addition to the
prior deployments in Mozilla Firefox and Tezos Blockchain

 	
 Catalin Hritcu served as Program Chair of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP)

 Awards

 	
 EU Horizon Impact Award 2019 for Karthikeyan Bhargavan
for his research on TLS 1.3.

 	
 Distinguished Paper Award at CSF'19 for “Journey Beyond Full
Abstraction”

 	
 Distinguished Paper Award at POPL'19 for “Gradual Parametricity,
Revisited”

 Best Papers Awards:

 [17]

 	

 	C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani, J. Thibault.
Journey Beyond Full Abstraction: Exploring Robust Property Preservation for Secure Compilation, in: CSF 2019 - 32nd IEEE Computer Security Foundations Symposium, Hoboken, United States, IEEE, June 2019, pp. 256-271, https://arxiv.org/abs/1807.04603. [
DOI : 10.1109/CSF.2019.00025]
https://hal.archives-ouvertes.fr/hal-02398915

 [16]

 	

 	M. Toro, E. Labrada, É. Tanter.
Gradual Parametricity, Revisited, in: Proceedings of the ACM on Programming Languages, 2019, vol. 3, no POPL, https://arxiv.org/abs/1807.04596. [
DOI : 10.1145/3290330]
https://hal.archives-ouvertes.fr/hal-01960553

 New Software and Platforms

 	New Software and Platforms	Cryptosense Analyzer
	CryptoVerif
	F*
	miTLS
	ProVerif
	HACL*

 Section:
 New Software and Platforms

 Cryptosense Analyzer

 Scientific Description: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool for cryptographic devices such as smartcards, security tokens and Hardware Security Modules that support the most widely-used industry standard interface, RSA PKCS#11. Each device implements PKCS#11 in a slightly different way since the standard is quite open, but finding a subset of the standard that results in a secure device, i.e. one where cryptographic keys cannot be revealed in clear, is actually rather tricky. Cryptosense Analyzer analyses a device by first reverse engineering the exact implementation of PKCS#11 in use, then building a logical model of this implementation for a model checker, calling a model checker to search for attacks, and in the case where an attack is found, executing it directly on the device. It has been used to find at least a dozen previously unknown flaws in commercially available devices.

 Functional Description: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool for cryptographic devices such as smartcards,

 	
 Participants: Graham Steel and Romain Bardou

 	
 Contact: Graham Steel

 	
 URL: https://cryptosense.com/

 Section:
 New Software and Platforms

 CryptoVerif

 Cryptographic protocol verifier in the computational model

 Keywords: Security - Verification - Cryptographic protocol

 Functional Description: CryptoVerif is an automatic protocol prover sound in the computational model. In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine. CryptoVerif can prove secrecy and correspondences, which include in particular authentication. It provides a generic mechanism for specifying the security assumptions on cryptographic primitives, which can handle in particular symmetric encryption, message authentication codes, public-key encryption, signatures, hash functions, and Diffie-Hellman key agreements. It also provides an explicit formula that gives the probability of breaking the protocol as a function of the probability of breaking each primitives, this is the exact security framework.

 News Of The Year: We implemented the following features in CryptoVerif:

 1) We added to the library of cryptographic primitives several variants of the PRF-ODH (pseudo-random function oracle Diffie-Hellman) assumption, pre-image resistant and second-preimage resistant hash functions, IND-CPA encryption with a nonce, IND-CPA and INT-CTXT encryption with a nonce, encryption schemes that satisfy IND$-CPA instead of IND-CPA.

 2) To facilitate modular proofs, we allow querying indistinguishability properties with exactly the same syntax as the one used to specify indistinguishability assumptions on primitives.

 3) To simplify declarations of assumptions on primitives, replications (which model any number of copies of processes or oracles) can be omitted at the root of indistinguishability assumptions. CryptoVerif adds them internally, thus inferring the assumption for N independent copies from the assumption for one copy. For instance, it infers the assumption for encryption with N keys from the assumption for encryption with a single key.

 4) When we delay random number generations, we allow the user to specify expressions for which it is not necessary to generate the random value, so that the generation of the moved random value can be delayed further. In particular, we used this extension to prove that the OAEP scheme is IND-CCA2 assuming the underlying permutation is partial-domain one-way (a famous cryptographic result).

 5) CryptoVerif can now remove parts of the code cannot be executed in case the adversary wins the game, by replacing them with event "AdversaryLoses". That is specially helpful in order to deal with complex cases of key compromise, e.g. for forward secrecy, by proving authentication by ignoring the compromise, showing that authentication is preserved in case the key is compromised (because the adversary never wins against the considered authentication property in case of compromise), and using the authentication to prove secrecy even in case of compromise. For instance, that allows us to show that the PSK-DHE handshake of TLS 1.3 preserves forward secrecy in case of compromise of the PSK.

 6) After a cryptographic transformation, CryptoVerif expands terms into processes, which leads to duplicating code until the end of the protocol for each test that is expanded. The cryptographic transformation and the expansion were initially considered as a single transformation. There are now considered as separate transformations, so that other transformations can be performed in between, in particular to cut some branches of the code and reduce the code duplication.

 These changes are included in CryptoVerif version 2.02 available at https://cryptoverif.inria.fr.

 	
 Participants: Bruno Blanchet and David Cadé

 	
 Contact: Bruno Blanchet

 	
 Publications: Composition Theorems for CryptoVerif and Application to TLS 1.3 -
Composition Theorems for CryptoVerif and Application to TLS 1.3 -
A Mechanised Cryptographic Proof of the WireGuard Virtual Private Network Protocol -
A Mechanised Cryptographic Proof of the WireGuard Virtual Private Network Protocol -
Proved Implementations of Cryptographic Protocols in the Computational Model -
Proved Generation of Implementations from Computationally Secure Protocol Specifications -
Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate -
Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate -
Symbolic and Computational Mechanized Verification of the ARINC823 Avionic Protocols -
Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic and Computational Approach

 	
 URL: http://cryptoverif.inria.fr/

 Section:
 New Software and Platforms

 F*

 FStar

 Keywords: Programming language - Software Verification

 Functional Description: F* is a new higher order, effectful programming language (like ML) designed with program verification in mind. Its type system is based on a core that resembles System Fw (hence the name), but is extended with dependent types, refined monadic effects, refinement types, and higher kinds. Together, these features allow expressing precise and compact specifications for programs, including functional correctness properties. The F* type-checker aims to prove that programs meet their specifications using an automated theorem prover (usually Z3) behind the scenes to discharge proof obligations. Programs written in F* can be translated to OCaml, F#, or JavaScript for execution.

 	
 Participants: Antoine Delignat-Lavaud, Catalin Hritcu, Cedric Fournet, Chantal Keller, Karthikeyan Bhargavan and Pierre-Yves Strub

 	
 Contact: Catalin Hritcu

 	
 URL: https://www.fstar-lang.org/

 Section:
 New Software and Platforms

 miTLS

 Keywords: Cryptographic protocol - Software Verification

 Functional Description: miTLS is a verified reference implementation of the TLS protocol. Our code fully supports its wire formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts and errors, and data fragmentation, as prescribed in the RFCs, it interoperates with mainstream web browsers and servers. At the same time, our code is carefully structured to enable its modular, automated verification, from its main API down to computational assumptions on its cryptographic algorithms.

 	
 Participants: Alfredo Pironti, Antoine Delignat-Lavaud, Cedric Fournet, Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Pierre-Yves Strub and Santiago Zanella

 	
 Contact: Karthikeyan Bhargavan

 	
 URL: https://github.com/mitls/mitls-fstar

 Section:
 New Software and Platforms

 ProVerif

 Keywords: Security - Verification - Cryptographic protocol

 Functional Description: ProVerif is an automatic security protocol verifier in the symbolic model (so called Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

 It can verify various security properties (secrecy, authentication, process equivalences).

 It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

 It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded message space.

 News Of The Year: Vincent Cheval and Bruno Blanchet worked on several extensions of ProVerif: 1) support for integer counters, with incrementation and inequality tests, 2) lemmas and axioms to give intermediate results to ProVerif, which it exploits to help proving subsequent queries, by deriving additional information in the Horn clauses that it uses to perform the proofs, 3) proofs by induction on the length of the trace, by giving as lemma the property to prove, but obviously for strictly shorter traces. Detailed soundness proofs for these extensions are in progress. These features are not released yet.

 	
 Participants: Bruno Blanchet, Marc Sylvestre and Vincent Cheval

 	
 Contact: Bruno Blanchet

 	
 Publications: Automated reasoning for equivalences in the applied pi calculus with barriers -
Automated Reasoning for Equivalences in the Applied Pi Calculus with Barriers -
Automated reasoning for equivalences in the applied pi calculus with barriers -
Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif -
Automatic Verification of Security Protocols in the Symbolic Model: The Verifier ProVerif -
Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate -
Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate -
Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic and Computational Approach -
Symbolic and Computational Mechanized Verification of the ARINC823 Avionic Protocols -
Symbolic and Computational Mechanized Verification of the ARINC823 Avionic Protocols

 	
 URL: http://proverif.inria.fr/

 Section:
 New Software and Platforms

 HACL*

 High Assurance Cryptography Library

 Keywords: Cryptography - Software Verification

 Functional Description: HACL* is a formally verified cryptographic library in F*, developed by the Prosecco team at Inria Paris in collaboration with Microsoft Research, as part of Project Everest.

 HACL stands for High-Assurance Cryptographic Library and its design is inspired by discussions at the HACS series of workshops. The goal of this library is to develop verified C reference implementations for popular cryptographic primitives and to verify them for memory safety, functional correctness, and secret independence.

 	
 Contact: Karthikeyan Bhargavan

 	
 URL: https://github.com/mitls/hacl-star

 New Results

 	New Results	Verification of security protocols
	Verified Software for Cryptographic Web Applications
	Journey beyond full abstraction
	Principles of Program Verification
for Arbitrary Monadic Effects
	Meta-F*: Proof automation
with SMT, Tactics, and Metaprograms

 Section:
 New Results

 Verification of security protocols

 Participants :
	Bruno Blanchet, Karthikeyan Bhargavan, Benjamin Lipp.

 Our verification of the WireGuard
open source Virtual Private Network (VPN) with CryptoVerif appears at
EuroS&P 2019 [22], [27].

 We continued the development of our protocol verification tools
ProVerif and CryptoVerif. The new features of this year are
detailed in the section on software.

 In the setting of the ANR AnaStaSec project, we worked on the
verification of avionic security protocols. More specifically, in
2015, we had verified the protocol of the Secure Dialog Service using
ProVerif and CryptoVerif and recommended many changes to the
specification. The ICAO started to take into account our remarks, and
this year we analyzed a new version of the specification. Our analysis
showed that many recommendations still need to be taken into
account. Additionally, we also commented on the recent choice of using
DTLS over UDP to secure the future ATN/IPS (Aeronautical
Telecommunication Network / Internet Protocol Suite) network, which
seems very positive. The details of these results are still
confidential; they have been provided to ANR.

 Section:
 New Results

 Verified Software for Cryptographic Web Applications

 Participants :
	Karthikeyan Bhargavan, Benjamin Beurdouche, Denis Merigoux, Jonathan Protzenko.

 WebAssembly in a new language runtime that is now supported by all
major web browsers and web application frameworks. We developed a
compiler from the Low* subset of the F* programming language to
WebAssembly and used this compiler to translate our HACL* verified
cryptographic library to WebAssembly, hence obtaining the first
verified cryptographic library for the Web. We also used this
framework to develop and verify an implementation of the Signal
protocol in WebAssembly, and demonstrated how this implementation can
be used as a drop-in replacement for the libsignal-protocol library
used in mainstream messaging applications like Signal, WhatsApp, and
Skype.

 Our work was published at the IEEE Security and Privacy
conference [24]. Our WebAssembly version of
HACL* and our verified Signal implementation were publicly released as
open source on GitHub.

 Section:
 New Results

 Journey beyond full abstraction

 Participants :
	Carmine Abate, Roberto Blanco, Deepak Garg [MPI-SWS] , Catalin Hritcu, Marco Patrignani [Stanford and CISPA] , Jérémy Thibault.

 Even for safe languages, all guarantees are lost when interacting with
low-level code, for instance when using low-level libraries.
A compromised or malicious library that gets linked in can easily read
and write data and code, jump to arbitrary instructions, or smash the
stack, blatantly violating any source-level abstraction and breaking
any guarantee obtained by source-level reasoning.
Our goal is to build formally secure compartmentalizing compilation
chains that defend against such attacks. We started by investigating
what it means for a compilation chain to provide secure
interoperability between a safe source language and linked
target-level code that is adversarial. In this model, a secure
compilation chain ensures that even linked adversarial target-level
code cannot break the security properties of a compiled program any
more than some linked source-level code could. However, the precise
class of security properties one chooses to preserve crucially impacts
not only the supported security goals and the strength of the attacker
model, but also the kind of protections the compilation chain has to
introduce and the kind of proof techniques one can use to make sure
that the protections are watertight. We are the first to thoroughly
explore a large space of secure compilation criteria based on the
preservation against adversarial contexts of various classes of trace
properties such as safety, of hyperproperties such as noninterference,
and of relational hyperproperties such as trace
equivalence [17], [10].

 Section:
 New Results

 Principles of Program Verification
for Arbitrary Monadic Effects

 Participants :
	Kenji Maillard, Danel Ahman [University of Ljubljana] , Robert Atkey [University of Strathclyde] , Guido Martinez, Catalin Hritcu, Exequiel Rivas, Éric Tanter, Antoine Van Muylder, Cezar Andrici.

 We devised a principled semantic framework for verifying programs with
arbitrary monadic effects in a generic way with respect to expressive
specifications.
The starting point are Dijkstra monads, which are monad-like structures that
classify effectful computations satisfying a specification drawn from a
monad. Dijkstra monads have already proven valuable in practice for verifying
effectful code, and in particular, they allow the F* program verifier to
compute verification conditions.

 We provide the first semantic investigation of the algebraic structure
underlying Dijkstra monads [13], [11]
and unveil a close relationship between Dijkstra monads and effect observations,
i.e., mappings between a computational and a specification monad that respect
their monadic structure.
Effect observations are flexible enough to provide various interpretations of
effects, for instance total vs partial correctness, or angelic vs demonic
nondeterminism.
Our semantic investigation relies on a general theory of specification monads
and effect observations, using an enriched notion of relative monads and
relative monad morphisms.
We moreover show that a large variety of specification monads can be obtained by
applying monad transformers to various base specification monads, including
predicate transformers and Hoare-style pre- and postconditions. For defining
correct monad transformers, we design a language inspired by the categorical
analysis of the relationship between monad transformers and algebras for a monad.

 We also adapt our framework to relational
verification [14], [11], i.e., proving
relational properties between multiple runs of one or more programs, such as
noninterference or program equivalence. For this we extend specification monads
and effect observations to the relational setting and use them to derive the
semantics and core rules of a relational program logic generically for any
monadic effect. Finally, we identify and overcome conceptual challenges that
prevented previous relational program logics from properly dealing with effects
such as exceptions, and are the first to provide a proper semantic foundation
and a relational program logic for exceptions.

 Section:
 New Results

 Meta-F*: Proof automation
with SMT, Tactics, and Metaprograms

 Participants :
	Guido Martinez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis [Princeton University] , Chris Hawblitzel [Microsoft Research] , Catalin Hritcu, Monal Narasimhamurthy [University of Colorado Boulder] , Zoe Paraskevopoulou [Princeton University] , Clément Pit-Claudel [MIT] , Jonathan Protzenko [Microsoft Research] , Tahina Ramananandro [Microsoft Research] , Aseem Rastogi [Microsoft Research] , Nikhil Swamy [Microsoft Research] .

 We introduced Meta-F*[23], a tactics and
metaprogramming framework for the F* program verifier. The main
novelty of Meta-F* is allowing to use tactics and metaprogramming to
discharge assertions not solvable by SMT, or to just simplify them
into well-behaved SMT fragments. Plus, Meta-F* can be used to
generate verified code automatically.

 Meta-F* is implemented as an F* effect, which, given the powerful
effect system of F*, heavily increases code reuse and even enables
the lightweight verification of metaprograms. Metaprograms can be
either interpreted, or compiled to efficient native code that can
be dynamically loaded into the F* type-checker and can interoperate
with interpreted code. Evaluation on realistic case studies shows
that Meta-F* provides substantial gains in proof development,
efficiency, and robustness.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Grants with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Grants with Industry

 Evolution, Semantics, and Engineering of the F* Verification System

 	
 Grant from Nomadic Labs - Inria

 	
 PIs: Catalin Hritcu and Exequiel Rivas

 	
 Duration: March 2019 - April 2023

 	
 Abstract: While the F* verification system shows great promise in
practice, many challenging conceptual problems remain to be solved, many of
which can directly inform the further evolution and design of the language.
Moreover, many engineering challenges remain in order
to build a truly usable verification system.
This proposal promises to help address this by focusing on the
following 5 main topics:
(1) Generalizing Dijkstra monads, i.e.,
a program verification technique for arbitrary monadic effects;
(2) Relational reasoning in F*: devising scalable
verification techniques for properties of multiple program
executions (e.g., confidentiality, noninterference) or of multiple
programs (e.g., program equivalence);
(3) Making F*'s effect system more flexible,
by supporting tractable forms of effect polymorphism and allowing
some of the effects of a computation to be hidden if they do not
impact the observable behavior;
(4) Working out more of the F* semantics and metatheory;
(5) Solving the engineering challenges of building a usable
verification system.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events: Organisation

 General Chair, Scientific Chair

 	
 Catalin Hritcu is the Steering Committee Chair of the Workshop on
Principles of Secure Compilation (PriSC)

 	
 Catalin Hritcu is the main organizer a Dagstuhl Seminar on Secure Compilation
(20201)

 	
 Karthikeyan Bhargavan co-chaired the Workshop on Secure Messaging at EUROCRYPT 2019

 Member of the Organizing Committees

 	
 Catalin Hritcu is a Steering Committee Member of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP)

 Scientific Events: Selection

 Chair of Conference Program Committees

 	
 Catalin Hritcu served as Program Chair of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP)

 Member of the Conference Program Committees

 	
 Karthikeyan Bhargavan was PC member of CCS 2019

 	
 Bruno Blanchet was PC member of CSF 2019

 	
 Catalin Hritcu was PC member of RV 2019, SecDev 2019, CSF 2020

 Journal

 Member of the Editorial Boards

 	Associate Editor

 	

 	
 of the International Journal of Applied Cryptography (IJACT) – Inderscience Publishers: Bruno Blanchet

 Invited Talks

 	
 Karthikeyan Bhargavan gave invited talks at ERCIM Rome, FSTTCS Mumbai, ICISS Hyderabad,

 	
 Catalin Hritcu gave invited talks at EPFL Lausanne, Ruhr University Bochum,
MPI-SWS, and Chalmers University;

 Leadership within the Scientific Community

 	
 Catalin Hritcu served as the Artifact Evaluation Co-Chair for
POPL 2018 and POPL 2019

 Scientific Expertise

 	
 Bruno Blanchet is a member of the specialized temporary scientific committee of ANSM (Agence nationale de sécurité du médicament et des produits de santé), on the cybersecurity of software medical devices.

 	
 Bruno Blanchet was a scientific consultant for Nomadic Labs, regarding the development of the blockchain Tezos.

 	
 Karthikeyan Bhargavan was scientific consultant for Nomadic Labs, regarding verified cryptographic software.

 Research Administration

 	
 Bruno Blanchet was a member of the hiring scientific jury for Inria researchers (chargé de recherche) of the Inria Paris center.

 	
 Bruno Blanchet was a representative of Inria Paris at the DIM RFSI
(Domaine d’Intérêt Majeur, Réseau Francilien en Sciences Informatiques).

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Master: Bruno Blanchet, Cryptographic protocols: formal and computational
proofs, 18h equivalent TD, master M2 MPRI, université Paris VII

 	
 Master: Karthikeyan Bhargavan, Cryptographic protocols: formal and
computational proofs, 18h equivalent TD, master M2 MPRI, université Paris VII

 	
 PhD: Karthikeyan Bhargavan, Verified Crypto for Verified Protocols,
Sibenik Summer School on real-world crypto and privacy, 17-21 June, 2019

 	
 PhD: Catalin Hritcu, Program Verification with F* course at Summer School
on Verification Technology, Systems, and Applications, VSTA 2019, 1-5 July
2019 at University of Luxembourg

 	
 PhD: Catalin Hritcu, Writing and Verifying Functional Programs in Coq
course at Summer School on Cryptography, Blockchain, and Program Verification,
Mathinfoly 2019, 24-31 August 2019 at INSA, Lyon

 Supervision

 	
 PhD in progress: Benjamin Lipp, On Mechanised Cryptographic
Proofs of Protocols and their Link with Verified Implementations,
ENS Paris, since October 2018, supervised by Bruno Blanchet and
Karthikeyan Bhargavan.

 	
 PhD in progress: Benjamin Beurdouche, Formal Verification for Real-World Cryptographic Protocols, PSL, since September 2016, supervised by Karthikeyan Bhargavan.

 	
 PhD in progress: Natalia Kulatova, Formal Analysis of Security Devices, PSL, since September 2017, supervised by Karthikeyan Bhargavan and Graham Steel.

 	
 PhD in progress: Marina Polubelova, Formal Verification of a Cryptographic Library, PSL, since September 2017, supervised by Karthikeyan Bhargavan.

 	
 PhD in progress: Denis Merigoux, Verification framework for performance-oriented memory-safe programming languages, since September 2018, supervised by Karthikeyan Bhargavan and Jonathan Protzenko.

 	
 PhD: Kenji Maillard, on Principles of Program Verification for Arbitrary
Monadic Effects, started January 2017, supervised by Catalin Hritcu

 	
 PhD in progress: Carmine Abate, The Formal Foundations of Secure
Compilation, since June 2018, advised by Catalin Hritcu

 	
 PhD in progress: Jérémy Thibault, Secure Compartmentalizing
Compilation to a Tagged Architecture, from August 2018, advised by
Catalin Hritcu

 	
 PhD in progress: Guido Martínez (CIFASIS-CONICET Rosario),
Metatheory for Semi-Automatic Verification of Effectful Programs,
from April 2017, advised by
Mauro Jaskelioff (CIFASIS-CONICET Rosario) and Catalin Hritcu

 Juries

 	
 Bruno Blanchet was member of the PhD jury of Adrien Koutsos (ENS
Paris-Saclay).

 	
 Karthikeyan Bhargavan was member of the PhD jury of Joseph Lallemand (Univ. Lorraine)
and Guido Martinez (Univ Stuttgart).

 	
 Catalin Hritcu was a discussion leader for the Licentiate defense of Maximilian Algehed
(Chalmers University);

 Section:
 Dissemination

 Popularization

 Articles and contents

 	
 Catalin Hritcu contributed an article on Secure Compilation to the SIGPLAN PL Perspectives blog

 	
 Karthikeyan Bhargavan published a paper in Communications of the ACM

 Bibliography

 Major publications by the team in recent years

 	[1]

 	M. Abadi, B. Blanchet, C. Fournet.
The Applied Pi Calculus: Mobile Values, New Names, and Secure Communication, in: Journal of the ACM (JACM), October 2017, vol. 65, no 1, pp. 1 - 103. [
DOI : 10.1145/3127586]
https://hal.inria.fr/hal-01636616

 	[2]

 	C. Abate, A. Azevedo de Amorim, R. Blanco, A. N. Evans, G. Fachini, C. Hriţcu, T. Laurent, B. C. Pierce, M. Stronati, A. Tolmach.
When Good Components Go Bad: Formally Secure Compilation Despite Dynamic Compromise, in: 25th ACM Conference on Computer and Communications Security (CCS), Toronto, Canada, ACM, October 2018, pp. 1351–1368, https://arxiv.org/abs/1802.00588. [
DOI : 10.1145/3243734.3243745]
https://hal.archives-ouvertes.fr/hal-01949202

 	[3]

 	K. Bhargavan, B. Blanchet, N. Kobeissi.
Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate, in: 38th IEEE Symposium on Security and Privacy, San Jose, United States, May 2017, pp. 483 - 502. [
DOI : 10.1109/SP.2017.26]
https://hal.inria.fr/hal-01575920

 	[4]

 	K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, P.-Y. Strub.
Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS, in: IEEE Symposium on Security and Privacy (Oakland), 2014, pp. 98–113.
https://hal.inria.fr/hal-01102259

 	[5]

 	B. Blanchet.
Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif, in: Foundations and Trends in Privacy and Security, October 2016, vol. 1, no 1–2, pp. 1–135.
https://hal.inria.fr/hal-01423760

 	[6]

 	M. Isaakidis, H. Halpin, G. Danezis.
UnlimitID: Privacy-Preserving Federated Identity Management Using Algebraic MACs, in: Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, New York, NY, USA, WPES '16, ACM, 2016, pp. 139–142. [
DOI : 10.1145/2994620.2994637]
https://hal.inria.fr/hal-01426847

 	[7]

 	N. Kobeissi, K. Bhargavan, B. Blanchet.
Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic and Computational Approach, in: 2nd IEEE European Symposium on Security and Privacy, Paris, France, April 2017, pp. 435 - 450. [
DOI : 10.1109/EuroSP.2017.38]
https://hal.inria.fr/hal-01575923

 	[8]

 	N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J. K. Zinzindohoué, S. Zanella-Béguelin.
Dependent Types and Multi-Monadic Effects in F*, in: 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), ACM, January 2016, pp. 256-270.
https://hal.inria.fr/hal-01265793

 	[9]

 	J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, B. Beurdouche.
HACL*: A Verified Modern Cryptographic Library, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 1789–1806.
https://hal.inria.fr/hal-01588421

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[10]

 	C. Hriţcu.
The Quest for Formally Secure Compartmentalizing Compilation, ENS Paris ; PSL Research University, January 2019, Habilitation à diriger des recherches.
https://tel.archives-ouvertes.fr/tel-01995823

 	[11]

 	K. Maillard.
Principles of Program Verification for Arbitrary Monadic Effects, ENS Paris - Ecole Normale Supérieure de Paris, November 2019.
https://hal.archives-ouvertes.fr/tel-02416788

 Articles in International Peer-Reviewed Journals

 	[12]

 	J. Eremondi, É. Tanter, R. Garcia.
Approximate normalization for gradual dependent types, in: Proceedings of the ACM on Programming Languages, July 2019, vol. 3, no ICFP, pp. 1-30. [
DOI : 10.1145/3341692]
https://hal.archives-ouvertes.fr/hal-02399594

 	[13]

 	K. Maillard, D. Ahman, R. Atkey, G. Martínez, C. Hriţcu, E. Rivas, É. Tanter.
Dijkstra monads for all, in: Proceedings of the ACM on Programming Languages, July 2019, vol. 3, no ICFP, pp. 1-29, https://arxiv.org/abs/1903.01237. [
DOI : 10.1145/3341708]
https://hal.archives-ouvertes.fr/hal-02398919

 	[14]

 	K. Maillard, C. Hriţcu, E. Rivas, A. Van Muylder.
The Next 700 Relational Program Logics, in: Proceedings of the ACM on Programming Languages, 2019, vol. 4, no POPL, https://arxiv.org/abs/1907.05244, forthcoming.
https://hal.archives-ouvertes.fr/hal-02398927

 	[15]

 	P.-M. Pédrot, N. Tabareau, H. J. Fehrmann, É. Tanter.
A Reasonably Exceptional Type Theory, in: Proceedings of the ACM on Programming Languages, August 2019, vol. 3, pp. 1-29. [
DOI : 10.1145/3341712]
https://hal.inria.fr/hal-02189128

 	[16]Best Paper

 	M. Toro, E. Labrada, É. Tanter.
Gradual Parametricity, Revisited, in: Proceedings of the ACM on Programming Languages, 2019, vol. 3, no POPL, https://arxiv.org/abs/1807.04596. [
DOI : 10.1145/3290330]
https://hal.archives-ouvertes.fr/hal-01960553

 International Conferences with Proceedings

 	[17]Best Paper

 	C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani, J. Thibault.
Journey Beyond Full Abstraction: Exploring Robust Property Preservation for Secure Compilation, in: CSF 2019 - 32nd IEEE Computer Security Foundations Symposium, Hoboken, United States, IEEE, June 2019, pp. 256-271, https://arxiv.org/abs/1807.04603. [
DOI : 10.1109/CSF.2019.00025]
https://hal.archives-ouvertes.fr/hal-02398915

 	[18]

 	R. Blanco, D. Miller, A. Momigliano.
Property-Based Testing via Proof Reconstruction, in: PPDP 2019 - 21st International Symposium on Principles and Practice of Programming Languages, Porto, Portugal, ACM Press, October 2019, pp. 1-13. [
DOI : 10.1145/3354166.3354170]
https://hal.inria.fr/hal-02368931

 	[19]

 	R. Cruz, É. Tanter.
Polymorphic Relaxed Noninterference, in: SecDev 2019 : IEEE Secure Development Conference, McLean, VA, United States, IEEE, 2019, pp. 101-113. [
DOI : 10.1109/SecDev.2019.00021]
https://hal.archives-ouvertes.fr/hal-02399576

 	[20]

 	T. Díaz, F. Olmedo, É. Tanter.
A Mechanized Formalization of GraphQL, in: CPP 2020 - 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, New Orleans, United States, January 2020. [
DOI : 10.1145/3372885.3373822]
https://hal.archives-ouvertes.fr/hal-02422532

 	[21]

 	N. Kobeissi, G. Nicolas, K. Bhargavan.
Noise Explorer: Fully Automated Modeling and Verification for Arbitrary Noise Protocols, in: EuroS&P 2019 - 4th IEEE European Symposium on Security and Privacy, Stockholm, Sweden, June 2019.
https://hal.inria.fr/hal-01948964

 	[22]

 	B. Lipp, B. Blanchet, K. Bhargavan.
A Mechanised Cryptographic Proof of the WireGuard Virtual Private Network Protocol, in: 4th IEEE European Symposium on Security and Privacy, Stockholm, Sweden, IEEE Computer Society, June 2019, pp. 231-246.
https://hal.inria.fr/hal-02396640

 	[23]

 	G. Martínez, D. Ahman, V. Dumitrescu, N. Giannarakis, C. Hawblitzel, C. Hriţcu, M. Narasimhamurthy, Z. Paraskevopoulou, C. Pit-Claudel, J. Protzenko, T. Ramananandro, A. Rastogi, N. Swamy.
Meta-F*: Proof automation with SMT, Tactics, and Metaprograms, in: ESOP'19 - European Symposium on Programming, Prague, Czech Republic, April 2019, https://arxiv.org/abs/1803.06547.
https://hal.archives-ouvertes.fr/hal-01995376

 	[24]

 	J. Protzenko, B. Beurdouche, D. Merigoux, K. Bhargavan.
Formally Verified Cryptographic Web Applications in WebAssembly, in: SP 2019 - 40th IEEE Symposium on Security and Privacy, San Francisco, United States, IEEE, May 2019, pp. 1256-1274. [
DOI : 10.1109/SP.2019.00064]
https://hal.inria.fr/hal-02294935

 National Conferences with Proceedings

 	[25]

 	D. Merigoux, R. Monat, C. Gaie.
Étude formelle de l'implémentation du code des impôts, in: 31ème Journées Francophones des Langages Applicatifs, Gruissan, France, January 2020.
https://hal.inria.fr/hal-02320347

 Internal Reports

 	[26]

 	K. Bhargavan, B. Beurdouche, P. Naldurg.
Formal Models and Verified Protocols for Group Messaging: Attacks and Proofs for IETF MLS, Inria Paris, December 2019.
https://hal.inria.fr/hal-02425229

 	[27]

 	B. Lipp, B. Blanchet, K. Bhargavan.
A Mechanised Cryptographic Proof of the WireGuard Virtual Private Network Protocol, Inria Paris, April 2019, no RR-9269, 49 p.
https://hal.inria.fr/hal-02100345

 Other Publications

 	[28]

 	B. Beurdouche.
MLS Architecture: analysis of the security, privacy and functional requirements, January 2020, working paper or preprint.
https://hal.inria.fr/hal-02439526

 	[29]

 	E. Rivas, M. Jaskelioff.
Monads with merging, June 2019, working paper or preprint.
https://hal.inria.fr/hal-02150199

 References in notes

 	[30]

 	M. Abadi, B. Blanchet.
Analyzing Security Protocols with Secrecy Types and Logic Programs, in: Journal of the ACM, January 2005, vol. 52, no 1, pp. 102–146.
http://prosecco.gforge.inria.fr/personal/bblanche/publications/AbadiBlanchetJACM7037.pdf

 	[31]

 	M. Abadi, B. Blanchet, C. Fournet.
Just Fast Keying in the Pi Calculus, in: ACM Transactions on Information and System Security (TISSEC), July 2007, vol. 10, no 3, pp. 1–59.
http://prosecco.gforge.inria.fr/personal/bblanche/publications/AbadiBlanchetFournetTISSEC07.pdf

 	[32]

 	C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani, J. Thibault.
Journey Beyond Full Abstraction: Exploring Robust Property Preservation for Secure Compilation, in: 32nd IEEE Computer Security Foundations Symposium (CSF), IEEE, June 2019, pp. 256-271. [
DOI : 10.1109/CSF.2019.00025]
https://arxiv.org/abs/1807.04603

 	[33]

 	C. Abate, A. Azevedo de Amorim, R. Blanco, A. N. Evans, G. Fachini, C. Hriţcu, T. Laurent, B. C. Pierce, M. Stronati, A. Tolmach.
When Good Components Go Bad: Formally Secure Compilation Despite Dynamic Compromise, in: 25th ACM Conference on Computer and Communications Security (CCS), ACM, October 2018, pp. 1351–1368.
https://arxiv.org/abs/1802.00588

 	[34]

 	D. Ahman, C. Hriţcu, K. Maillard, G. Martínez, G. Plotkin, J. Protzenko, A. Rastogi, N. Swamy.
Dijkstra Monads for Free, in: 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), ACM, January 2017, pp. 515-529. [
DOI : 10.1145/3009837.3009878]
https://www.fstar-lang.org/papers/dm4free/

 	[35]

 	A. Azevedo de Amorim, M. Dénès, N. Giannarakis, C. Hritcu, B. C. Pierce, A. Spector-Zabusky, A. Tolmach.
Micro-Policies: Formally Verified, Tag-Based Security Monitors, in: 36th IEEE Symposium on Security and Privacy (Oakland S&P), IEEE Computer Society, May 2015, pp. 813–830. [
DOI : 10.1109/SP.2015.55]
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf

 	[36]

 	K. Bhargavan, B. Blanchet, N. Kobeissi.
Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate, in: 38th IEEE Symposium on Security and Privacy, San Jose, United States, May 2017, pp. 483 - 502. [
DOI : 10.1109/SP.2017.26]
https://hal.inria.fr/hal-01575920

 	[37]

 	K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet, C. Hawblitzel, C. Hriţcu, S. Ishtiaq, M. Kohlweiss, R. Leino, J. Lorch, K. Maillard, J. Pan, B. Parno, J. Protzenko, T. Ramananandro, A. Rane, A. Rastogi, N. Swamy, L. Thompson, P. Wang, S. Zanella-Béguelin, J. K. Zinzindohoué.
Everest: Towards a Verified, Drop-in Replacement of HTTPS, in: 2nd Summit on Advances in Programming Languages (SNAPL), May 2017.
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf

 	[38]

 	K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Pan, J. Protzenko, A. Rastogi, N. Swamy, S. Zanella-Béguelin, J. K. Zinzindohoué.
Implementing and Proving the TLS 1.3 Record Layer, in: IEEE Symposium on Security and Privacy (Oakland), 2017.

 	[39]

 	K. Bhargavan, C. Fournet, R. Corin, E. Zalinescu.
Verified Cryptographic Implementations for TLS, in: ACM Transactions Inf. Syst. Secur., March 2012, vol. 15, no 1, pp. 3:1–3:32.
http://doi.acm.org/10.1145/2133375.2133378

 	[40]

 	K. Bhargavan, C. Fournet, A. D. Gordon, N. Swamy.
Verified implementations of the information card federated identity-management protocol, in: ACM Symposium on Information, Computer and Communications Security (ASIACCS), 2008, pp. 123-135.

 	[41]

 	B. Blanchet, M. Abadi, C. Fournet.
Automated Verification of Selected Equivalences for Security Protocols, in: Journal of Logic and Algebraic Programming, February–March 2008, vol. 75, no 1, pp. 3–51.
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetAbadiFournetJLAP07.pdf

 	[42]

 	B. Blanchet.
An Efficient Cryptographic Protocol Verifier Based on Prolog Rules, in: 14th IEEE Computer Security Foundations Workshop (CSFW'01), 2001, pp. 82–96.

 	[43]

 	B. Blanchet.
Automatic Verification of Correspondences for Security Protocols, in: Journal of Computer Security, July 2009, vol. 17, no 4, pp. 363–434.
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetJCS08.pdf

 	[44]

 	B. Blanchet, A. Podelski.
Verification of Cryptographic Protocols: Tagging Enforces Termination, in: Theoretical Computer Science, March 2005, vol. 333, no 1-2, pp. 67–90, Special issue FoSSaCS'03..
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetPodelskiTCS04.html

 	[45]

 	D. Cadé, B. Blanchet.
Proved Generation of Implementations from Computationally Secure Protocol Specifications, in: Journal of Computer Security, 2015, vol. 23, no 3, pp. 331–402.

 	[46]

 	J. Clulow.
On the Security of PKCS#11, in: CHES, 2003, pp. 411-425.

 	[47]

 	S. Delaune, S. Kremer, G. Steel.
Formal Analysis of PKCS#11 and Proprietary Extensions, in: Journal of Computer Security, November 2010, vol. 18, no 6, pp. 1211-1245. [
DOI : 10.3233/JCS-2009-0394]
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DKS-jcs09.pdf

 	[48]

 	A. Delignat-Lavaud, K. Bhargavan, S. Maffeis.
Language-Based Defenses Against Untrusted Browser Origins, in: Proceedings of the 22th USENIX Security Symposium, 2013.
http://prosecco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrusted-origins-sec13.pdf

 	[49]

 	D. Dolev, A. Yao.
On the security of public key protocols, in: IEEE Transactions on Information Theory, 1983, vol. IT–29, no 2, pp. 198–208.

 	[50]

 	C. Fournet, M. Kohlweiss, P.-Y. Strub.
Modular Code-Based Cryptographic Verification, in: ACM Conference on Computer and Communications Security, 2011.

 	[51]

 	N. Kobeissi, K. Bhargavan, B. Blanchet.
Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic and Computational Approach, in: 2nd IEEE European Symposium on Security and Privacy, Paris, France, April 2017, pp. 435 - 450. [
DOI : 10.1109/EuroSP.2017.38]
https://hal.inria.fr/hal-01575923

 	[52]

 	K. Maillard, D. Ahman, R. Atkey, G. Martínez, C. Hriţcu, E. Rivas, É. Tanter.
Dijkstra Monads for All, in: PACMPL, 2019, vol. 3, no ICFP, pp. 104:1–104:29. [
DOI : 10.1145/3341708]
https://arxiv.org/abs/1903.01237

 	[53]

 	R. Needham, M. Schroeder.
Using encryption for authentication in large networks of computers, in: Communications of the ACM, 1978, vol. 21, no 12, pp. 993–999.

 	[54]

 	J. Protzenko, J. K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhargavan, C. Fournet, N. Swamy.
Verified Low-Level Programming Embedded in F*, in: PACMPL, September 2017, vol. 1, no ICFP, pp. 17:1–17:29. [
DOI : 10.1145/3110261]
http://arxiv.org/abs/1703.00053

 	[55]

 	T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Chajed, N. Kobeissi, J. Protzenko.
EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats, in: 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, N. Heninger, P. Traynor (editors), USENIX Association, 2019, pp. 1465–1482.
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud

 	[56]

 	N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P.-Y. Strub, G. M. Bierman.
Gradual typing embedded securely in JavaScript, in: 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), 2014, pp. 425-438.
http://prosecco.inria.fr/personal/karthik/pubs/tsstar-popl14.pdf

 	[57]

 	N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J. K. Zinzindohoué, S. Zanella-Béguelin.
Dependent Types and Multi-Monadic Effects in F*, in: 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), ACM, January 2016, pp. 256-270.
https://www.fstar-lang.org/papers/mumon/

 	[58]

 	J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, B. Beurdouche.
HACL*: A Verified Modern Cryptographic Library, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 1789–1806.
http://doi.acm.org/10.1145/3133956.3134043

 OEBPS/uid75.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR

 AnaStaSec

 		
 Title: Static Analysis for Security Properties
(ANR générique 2014.)

 		
 Other partners: Inria Paris/EPI Antique, Inria Rennes/EPI Celtique, Airbus Operations SAS, AMOSSYS, CEA-LIST, TrustInSoft

 		
 Duration: January 2015 - September 2019.

 		
 Coordinator: Jérôme Féret, EPI Antique, Inria Paris (France)

 		
 Participant: Bruno Blanchet

 		
 Abstract:
The project aims at using automated static analysis techniques for
verifying security and confidentiality properties of critical
avionics software.

 AJACS

 		
 Title: AJACS: Analyses of JavaScript Applications: Certification and Security

 		
 Other partners: Inria-Rennes/Celtique, Inria-Saclay/Toccata, Inria-Sophia Antipolis/INDES, Imperial College London

 		
 Duration: October 2014 - March 2019.

 		
 Coordinator: Alan Schmitt, Inria (France)

 		
 Participants: Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi

 		
 Abstract: The goal of the AJACS project is to provide strong security and privacy guarantees
for web application scripts. To this end, we propose to define a mechanized semantics of the full JavaScript language, the most
widely used language for the Web, to develop and prove correct analyses for JavaScript programs, and to design and certify security
and privacy enforcement mechanisms.

 SafeTLS

 		
 Title: SafeTLS: La sécurisation de l'Internet du futur avec TLS 1.

 		
 Other partners: Université Rennes 1, IRMAR, Inria Sophia Antipolis, SGDSN/ANSSI

 		
 Duration: October 2016 - September 2020

 		
 Coordinator: Pierre-Alain Fouque, Université de Rennes 1 (France)

 		
 Participants: Karthikeyan Bhargavan

 		
 Abstract: Our project, SafeTLS, addresses the security of both
TLS 1.3 and of TLS 1.2 as they are (expected to be) used, in three
important ways: (1) A better understanding: We will provide a better
understanding of how TLS 1.2 and 1.3 are used in real-world
applications; (2) Empowering clients: By developing a tool that will
show clients the quality of their TLS connection and inform them of
potential security and privacy risks; (3) Analyzing implementations: We
will analyze the soundness of current TLS 1.2 implementations and
use automated verification to provide a backbone of a secure TLS 1.3
implementation.

 TECAP

 		
 Title: TECAP: Protocol Analysis - Combining Existing Tools
(ANR générique 2017.)

 		
 Other partners: Inria Nancy/EPI PESTO, Inria Sophia Antipolis/EPI MARELLE, IRISA, LIX, LSV - ENS Cachan.

 		
 Duration: January 2018 - December 2021

 		
 Coordinator: Vincent Cheval, EPI PESTO, Inria Nancy (France)

 		
 Participants: Bruno Blanchet, Benjamin Lipp

 		
 Abstract: A large variety of automated verification tools have been developed to prove or find attacks on security protocols. These tools differ in their scope, degree of automation, and attacker models. The aim of this project is to get the best of all these tools, meaning, on the one hand, to improve the theory and implementations of each individual tool towards the strengths of the others and, on the other hand, build bridges that allow the cooperations of the methods/tools. We will focus in this project on the tools CryptoVerif, EasyCrypt, Scary, ProVerif, Tamarin, AKiSs and APTE.

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/iTunesArtwork.png
Activity Report 2019
Project-Team Prosecco

Programming securely
with cryptography

OEBPS/uid148.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 		
 Éric Tanter (University of Chile) joined Inria as a Visiting Professor
from Jul 2018 to March 2019 and from August to December 2019; he gave various
seminars at Inria including one entitled “Gradual Parametricity, Revisited”;

 		
 Li-yao Xia (University of Pennsylvania) visited Prosecco on 7 January and
gave a talk entitled “From C to Interaction Trees”;

 		
 Matías Toro (University of Chile) visited Prosecco on 9 January and
gave a talk entitled “Type-Driven Gradual Security with References”;

 		
 Deepak Garg (MPI-SWS) visited Prosecco on 29 January and 20 November;

 		
 Gilles Barthe (MPI-SP) visited Prosecco on various occasions:
29 January, 3–6 June, 9–13 Sept, and 7–9 October 2019;

 		
 Jeremy Siek (Indiana University) visited Prosecco on 21 February
and gave a seminar entitled “Toward Efficient Gradual Typing”;

 		
 Andrew Tolmach (Portland State University) visted Prosecco on 8–12 April
and gave a seminar on “Enforcing C-level security policies using
machine-level tags”;

 		
 Guido Martinez (CIFASIS-CONICET Rosario) visited Prosecco on various
occasions: April 15–19, ICFP, 30 September to 12 October

 		
 Nikos Vasilakis (University of Pennsylvania) visited Prosecco on 15–19
July and gave a seminar on “Retrofitting Security, Module by Module”;

 		
 Clement Pit-Claudel (MPI) visited Prosecco on 14 August;

 		
 Kevin Liao (MPI-SP) visited Prosecco on various occasions and gave a
seminar on “ILC: A Calculus for Composable, Computational Cryptography”;

 		
 Tahina Ramananandro (Microsoft Research) visited Prosecco on 30 September
to 15 October and gave a seminar on “EverParse”;

 		
 Nik Swamy (Microsoft Research) and Aymeric Fromherz (CMU) visited Prosecco
from 7–11 October and gave a seminar on “Verifying a mixture of C and
assembly code with Low* and Vale”;

 		
 Jonathan Protzenko (Microsoft Research) visited Prosecco on 30 September
to 15 October and gave a seminar on “The EverCrypt verified
cryptographic provider”;

 		
 Jakob von Raumer (University of Nottingham) visited Prosecco on 23 October
and gave a seminar on “Indexed Inductive Types”;

 		
 Bas Spitters (COBRA, Aarhus University) visited Prosecco on 25–29
November and gave a seminar on “ConCert: A Smart Contract Certification
Framework in Coq”;

 		
 Adrien Koutsos (MPI-SP) visited Prosecco on 5 November and gave a talk on
“5G-AKA authentication protocol privacy”;

 		
 Akram El-Korashy (MPI-SWS) visited Prosecco on 20 November;

 		
 Shin-ya Katsumata (NII, Tokyo, Japan) visited Prosecco on 25–28 November;

 		
 Ian Miers (Johns Hopkins University) visited Prosecco on 29 November and
gave a seminar on “Zcash, Blockchains, and the possibilities for formal
verification with zero-knowledge”;

 Internships

 		
 Antoine Van Muylder (Paris 7): from April to September 2019 –
advised by Catalin Hritcu, Exequiel Rivas, and Kenji Maillard

 		
 Guillaume Gette: from April to September 2019 –
advised by Karthikeyan Bhargavan

 		
 Mikhail Volkhov: from April to August 2019 –
advised by Karthikeyan Bhargavan and Prasad Naldurg

 Visits to International Teams

 		
 Catalin Hritcu visited EPFL Lausanne on 25–27 September;

 		
 Catalin Hritcu, Carmine Abate, Roberto Blanco, and Jeremy Thibault
visited MPI-SWS in Saarbrücken on 18–22 October and 1–3 December;

 		
 Catalin Hritcu visited Chalmers University in Gothenburg on 4–6 December;

OEBPS/uid105.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 ERC Consolidator Grant: CIRCUS

 		
 Title: CIRCUS: An end-to-end verification architecture for building Certified Implementations of Robust, Cryptographically Secure web applications

 		
 Duration: April 2016 - March 2021

 		
 Coordinator: Karthikeyan Bhargavan, Inria

 		
 The security of modern web applications depends on a variety
of critical components including cryptographic libraries,
Transport Layer Security (TLS), browser security mechanisms, and
single sign-on protocols. Although these components are widely
used, their security guarantees remain poorly understood, leading
to subtle bugs and frequent attacks. Rather than fixing one
attack at a time, we advocate the use of formal security
verification to identify and eliminate entire classes of
vulnerabilities in one go.

 CIRCUS proposes to take on this challenge, by verifying the
end-to-end security of web applications running in mainstream
software. The key idea is to identify the core security
components of web browsers and servers and replace them by
rigorously verified components that offer the same functionality
but with robust security guarantees.

 ERC Starting Grant: SECOMP

 		
 Title: SECOMP: Efficient Formally Secure Compilers to a Tagged Architecture

 		
 Duration: Jan 2017 - December 2021

 		
 Coordinator: Catalin Hritcu, Inria

 		
 Abstract: The SECOMP project is aimed at leveraging emerging
hardware capabilities for fine-grained protection to build the
first, efficient secure compilation chains for realistic
low-level programming languages (the C language, and Low* a safe
subset of C embedded in F* for verification). These compilation
chains will provide a secure semantics for all programs and will
ensure that high-level abstractions cannot be violated even when
interacting with untrusted low-level code. To achieve this level
of security without sacrificing efficiency, our secure
compilation chains target a tagged architecture, which associates
a metadata tag to each word and efficiently propagates and checks
tags according to software-defined rules. We will use
property-based testing and formal verification to provide high
confidence that our compilers are indeed secure.

 NEXTLEAP (304)

 		
 Title: NEXTLEAP: NEXT generation Legal Encryption And Privacy

 		
 Programm: H2020

 		
 Duration: January 2016 - December 2018

 		
 Coordinator: Harry Halpin, Inria

 		
 Other partners: IMDEA, University College London, CNRS, IRI, and Merlinux

 		
 The objective of the NEXTLEAP project is to build the fundamental interdisciplinary internet science necessary to create decentralized, secure, and rights-preserving protocols for the next generation of collective awareness platforms. The long-term goal of NEXTLEAP is to have Europe take the “next leap ahead” of the rest of the world by solving the fundamental challenge of determining how both to scientifically build and how to help citizens and institutions adopt open-source decentralized and privacy-preserving digital social platforms in contrast to proprietary centralized cloud-based services and pervasive surveillance that function at the expense of rights and technological sovereignty.

OEBPS/uid124.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria International Partners

 Informal International Partners

 We have a range of long- and short-term collaborations with various
universities and research labs. We summarize them by project:

 		
 TLS analysis: Microsoft Research (Cambridge), Mozilla, University of Rennes

 		
 F*: Microsoft Research (Redmond, Cambridge, Bangalore),
MSR-Inria, CMU, MIT, University of Ljubljana, Nomadic Labs, Zen
Protocol, Princeton University

 		
 SECOMP: MPI-SWS, CISPA, Stanford University, CMU,
University of Pennsylvania, Portland State
University, University of Virginia, University of Iași

 		
 Micro-Policies: University of Pennsylvania, Portland State
University, MIT, Draper Labs, Dover Microsystems

 Participation in Other International Programs

 SSITH/HOPE

 		
 Title: Advanced New Hardware Optimized for Policy Enforcement, A New HOPE

 		
 Program: DARPA SSITH

 		
 Duration: December 2017 - February 2021

 		
 Coordinator: Charles Stark Draper Laboratory

 		
 Other Participants: Inria Paris, University of Pennsylvania, MIT,
Portland State University, Dover Microsystems, DornerWorks

 		
 Participants from Inria Prosecco:
Catalin Hritcu, Roberto Blanco, Jérémy Thibault

 		
 Abstract: A New HOPE builds on results from the Inherently
Secure Processor (ISP) project that has been internally funded at
Draper. Recent architectural improvements decouple the tagged
architecture from the processor pipeline to improve performance
and flexibility for new processors. HOPE securely maintains
metadata for each word in application memory and checks every
instruction against a set of installed security policies. The HOPE
security architecture exposes tunable parameters that support
Performance, Power, Area, Software compatibility and Security
(PPASS) search space exploration. Flexible software-defined
security policies cover all 7 SSITH CWE vulnerability classes, and
policies can be tuned to meet PPASS requirements; for example, one
can trade granularity of security checks against performance using
different policy configurations. HOPE will design and formalize a
new high-level domain-specific language (DSL) for defining
security policies, based on previous research and on extensive
experience with previous policy languages. HOPE will formally
verify that installed security policies satisfy system-wide
security requirements. A secure boot process enables policies to
be securely updated on deployed HOPE systems. Security policies
can adapt based on previously detected attacks. Over the
multi-year, multi-million dollar Draper ISP project, the tagged
security architecture approach has evolved from early prototypes
based on results from the DARPA CRASH program towards easier
integration with external designs, and is better able to scale
from micro to server class implementations. A New HOPE team is led
by Draper and includes faculty from University of Pennsylvania
(Penn), Portland State University (PSU), Inria, and MIT, as well
as industry collaborators from DornerWorks and Dover
Microsystems. In addition to Draper's in-house expertise in
hardware design, cyber-security (defensive and offensive, hardware
and software) and formal methods, the HOPE team includes experts
from all domains relevant to SSITH, including (a) computer
architecture: DeHon (Penn), Shrobe (MIT); (b) formal methods
including programming languages and security: Pierce (Penn),
Tolmach (PSU), Hritcu (Inria); and (c) operating system
integration (DornerWorks). Dover Microsystems is a spin-out from
Draper that will commercialize concepts from the Draper ISP project.

 Everest Expedition

 		
 Program: Microsoft Expedition and MSR-Inria Collaborative Research Project

 		
 Expedition Participants: Microsoft Research (Cambridge, Redmond, Bangalore),
Inria, MSR-Inria, CMU, University of Edinburgh

 		
 Duration of current MSR-Inria Project: October 2017 – October 2020

 		
 Participants from Inria Prosecco:
Karthikeyan Bhargavan, Catalin Hritcu,
Danel Ahman, Benjamin Beurdouche, Victor Dumitrescu, Nadim Kobeissi,
Théo Laurent, Guido Martínez, Denis Merigoux, Marina Polubelova,
Jean-Karim Zinzindohoué

 		
 Participants from other Inria teams:
David Pichardie (Celtique),
Jean-Pierre Talpin (TEA)

 		
 Abstract: The HTTPS ecosystem (HTTPS and TLS protocols, X.509
public key infrastructure, crypto algorithms) is the foundation on
which Internet security is built. Unfortunately, this ecosystem is
brittle, with headline-grabbing attacks such as FREAK and LogJam
and emergency patches many times a year.

 Project Everest addresses this problem by constructing a
high-performance, standards-compliant, formally verified
implementation of components in HTTPS ecosystem, including TLS,
the main protocol at the heart of HTTPS, as well as the main
underlying cryptographic algorithms such as AES, SHA2 or X25519.

 At the TLS level, for instance, we are developing new
implementations of existing and forthcoming protocol standards and
formally proving, by reduction to cryptographic assumptions on
their core algorithms, that our implementations provide a
secure-channel abstraction between the communicating
endpoints. Implementations of the core algorithms themselves are
also verified, producing performant portable C code or highly
optimized assembly language.

 We aim for our verified components to be drop-in replacements
suitable for use in mainstream web browsers, servers, and other
popular tools and are actively working with the community at large
to improve the ecosystem.

 		

 https://project-everest.github.io

