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2. Overall Objectives

2.1. Scientific Context
Critical problems of the 21st century like the search for highly energy efficient or even carbon-neutral, and
cost-efficient systems, or the design of new molecules against extensively drug-resistant bacteria crucially
rely on the resolution of challenging numerical optimization problems. Such problems typically depend on
noisy experimental data or involve complex numerical simulations such that derivatives are not useful or not
available and the function is seen as a black-box.

https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/OtherResearchTopicsandApplicationDomains.html
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Many of those optimization problems are in essence multiobjective—one needs to optimize simultaneously
several conflicting objectives like minimizing the cost of an energy network and maximizing its reliabil-
ity—and most of the challenging black-box problems are non-convex, non-smooth and combine difficulties
related to ill-conditioning, non-separability, and ruggedness (a term that characterizes functions that can be
non-smooth but also noisy or multi-modal). Additionally the objective function can be expensive to evaluate,
that is one function evaluation can take several minutes to hours (it can involve for instance a CFD simulation).

In this context, the use of randomness combined with proper adaptive mechanisms that particularly satisfy
several invariance properties (affine invariance, invariance to monotonic transformations) has proven to be one
key component for the design of robust global numerical optimization algorithms [35], [25].
The field of adaptive stochastic optimization algorithms has witnessed some important progress over the past
15 years. On the one hand, subdomains like medium-scale unconstrained optimization may be considered as
“solved” (particularly, the CMA-ES algorithm, an instance of Evolution Strategy (ES) algorithms, stands out
as state-of-the-art method) and considerably better standards have been established in the way benchmarking
and experimentation are performed. On the other hand, multiobjective population-based stochastic algorithms
became the method of choice to address multiobjective problems when a set of some best possible compro-
mises is thought for. In all cases, the resulting algorithms have been naturally transferred to industry (the
CMA-ES algorithm is now regularly used in companies such as Bosch, Total, ALSTOM, ...) or to other aca-
demic domains where difficult problems need to be solved such as physics, biology [38], geoscience [31], or
robotics [33]).

Very recently, ES algorithms attracted quite some attention in Machine Learning with the OpenAI article
Evolution Strategies as a Scalable Alternative to Reinforcement Learning. It is shown that the training time
for difficult reinforcement learning benchmarks could be reduced from 1 day (with standard RL approaches)
to 1 hour using ES [36]. 1 A few years ago, another impressive application of CMA-ES, how “Computer Sim
Teaches Itself To Walk Upright” (published at the conference SIGGRAPH Asia 2013) was presented in the
press in the UK.

Several of those important advances around adaptive stochastic optimization algorithms are relying to a great
extent on works initiated or achieved by the founding members of RandOpt particularly related to the CMA-ES
algorithm and to the Comparing Continuous Optimizer (COCO) platform.
Yet, the field of adaptive stochastic algorithms for black-box optimization is relatively young compared to the
“classical optimization” field that includes convex and gradient-based optimization. For instance, the state-of-
the art algorithms for unconstrained gradient based optimization like quasi-Newton methods (e.g. the BFGS
method) date from the 1970s [24] while the stochastic derivative-free counterpart, CMA-ES dates from the
early 2000s [26]. Consequently, in some subdomains with important practical demands, not even the most
fundamental and basic questions are answered:

• This is the case of constrained optimization where one needs to find a solution x∗ ∈ Rn minimizing
a numerical function minx∈Rn f(x) while respecting a number of constraintsm typically formulated
as gi(x∗) ≤ 0 for i = 1, ...,m. Only recently, the fundamental requirement of linear convergence 2,
as in the unconstrained case, has been clearly stated [16].

1The key behind such an improvement is the parallelization of the algorithm (on thousands of CPUs) that is done in such a way that the
communication between the different workers is reduced to only exchanging a vector of permutation of small length (typically less than
100) containing the ranking of candidate solutions on the function to be optimized. In contrast, parallelization of backpropagation requires
to exchange the gradient vector of the size of the problem (of the order of 106). This reduced communication time is an important factor
for the important speedup.

2In optimization, linear convergence for an algorithm whose estimate of the optimum x∗ of f at iteration t is denoted xt,
refers to a convergence where after a certain time (usually once the initialization is forgotten) the following typically holds:
‖xt+1 − x∗‖ ≤ c‖xt − x∗‖ where c < 1. This type of convergence is also called geometric. In the case of stochastic algorithms,
there exist different definitions of linear convergence (depending on whether we consider the expectation of the sequence or we want a
statement that holds with high probability) not strictly equivalent but that always translate the idea that the distance to the optimum at
iteration t+ 1 is a fraction of the distance to the optimum at iteration t.

https://blog.openai.com/evolution-strategies/
http://www.huffingtonpost.co.uk/2014/01/14/computer-program-teaches-itself-to-walk_n_4594125.html
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• In multiobjective optimization, most of the research so far has been focusing on how to select
candidate solutions from one iteration to the next one. The difficult question of how to generate
effectively new solutions is not yet answered in a proper way and we know today that simply
applying operators from single-objective optimization may not be effective with the current best
selection strategies. As a comparison, in the single-objective case, the question of selection of
candidate solutions was already solved in the 1980s and 15 more years were needed to solve the
trickier question of an effective adaptive strategy to generate new solutions.

• With the current demand to solve larger and larger optimization problems (e.g. in the domain of deep
learning), optimization algorithms that scale linearly (in terms of internal complexity, memory and
number of function evaluations to reach an ε-ball around the optimum) with the problem dimension
are nowadays needed. Only recently, first proposals of how to reduce the quadratic scaling of CMA-
ES have been made without a clear view of what can be achieved in the best case in practice. These
later variants apply to optimization problems with thousands of variables. The question of designing
randomized algorithms capable to handle efficiently problems with one or two orders of magnitude
more variables is still largely open.

• For expensive optimization, standard methods are so called Bayesian optimization (BO) algorithms
often based on Gaussian processes. Commonly used examples of BO algorithms are EGO [30],
SMAC [28], Spearmint [37], or TPE [19] which are implemented in different libraries. Yet, our
experience with a popular method like EGO is that many important aspects to come up with a good
implementation rely on insider knowledge and are not standard across implementations. Two EGO
implementations can differ for example in how they perform the initial design, which bandwidth for
the Gaussian kernel is used, or which strategy is taken to optimize the expected improvement.

Additionally, the development of stochastic adaptive methods for black-box optimization has been mainly
driven by heuristics and practice—rather than a general theoretical framework—validated by intensive
computational simulations. Undoubtedly, this has been an asset as the scope of possibilities for design was
not restricted by mathematical frameworks for proving convergence. In effect, powerful stochastic adaptive
algorithms for unconstrained optimization like the CMA-ES algorithm emerged from this approach. At the
same time, naturally, theory strongly lags behind practice. For instance, the striking performances of CMA-
ES empirically observed contrast with how little is theoretically proven on the method. This situation is clearly
not satisfactory. On the one hand, theory generally lifts performance assessment from an empirical level to a
conceptual one, rendering results independent from the problem instances where they have been tested. On the
other hand, theory typically provides insights that change perspectives on some algorithm components. Also
theoretical guarantees generally increase the trust in the reliability of a method and facilitate the task to make
it accepted by wider communities.

Finally, as discussed above, the development of novel black-box algorithms strongly relies on scientific
experimentation, and it is quite difficult to conduct proper and meaningful experimental analysis. This is
well known for more than two decades now and summarized in this quote from Johnson in 1996

“the field of experimental analysis is fraught with pitfalls. In many ways, the implementation of an algorithm
is the easy part. The hard part is successfully using that implementation to produce meaningful and valuable

(and publishable!) research results.” [29]

Since then, quite some progress has been made to set better standards in conducting scientific experiments
and benchmarking. Yet, some domains still suffer from poor benchmarking standards and from the generic
problem of the lack of reproducibility of results. For instance, in multiobjective optimization, it is (still) not
rare to see comparisons between algorithms made by solely visually inspecting Pareto fronts after a fixed
budget. In Bayesian optimization, good performance seems often to be due to insider knowledge not always
well described in papers.
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2.2. Overall Objectives
In the context of black-box numerical optimization previously described, the scientific positioning of the
RandOpt ream is at the intersection between theory, algorithm design, and applications. Our vision is that the
field of stochastic black-box optimization should reach the same level of maturity than gradient-based convex
mathematical optimization. This entails major algorithmic developments for constrained, multiobjective
and large-scale black-box optimization and major theoretical developments for analyzing current methods
including the state-of-the-art CMA-ES.

The specificity in black-box optimization is that methods are intended to solve problems characterized by
a non-property—non-convex, non-linear, non-smooth. This contrasts with gradient-based optimization and
poses on the one hand some challenges when developing theoretical frameworks but also makes it compulsory
to complement theory with empirical investigations.

Our ultimate goal is to provide software that is useful for practitioners. We see that theory is a means for this
end (rather than an end in itself) and it is also our firm belief that parameter tuning is part of the designer’s
task.

This shapes, on the one hand, four main scientific objectives for our proposed team:

1. develop novel theoretical frameworks for guiding (a) the design of novel black-box methods and
(b) their analysis, allowing to

2. provide proofs of key features of stochastic adaptive algorithms including the state-of-the-art
method CMA-ES: linear convergence and learning of second order information.

3. develop stochastic numerical black-box algorithms following a principled design in domains
with a strong practical need for much better methods namely constrained, multiobjective, large-
scale and expensive optimization. Implement the methods such that they are easy to use. And
finally, to

4. set new standards in scientific experimentation, performance assessment and benchmarking
both for optimization on continuous or combinatorial search spaces. This should allow in particular
to advance the state of reproducibility of results of scientific papers in optimization.

On the other hand, the above motivates our objectives with respect to dissemination and transfer:

1. develop software packages that people can directly use to solve their problems. This means having
carefully thought out interfaces, generically applicable setting of parameters and termination condi-
tions, proper treatment of numerical errors, catching properly various exceptions, etc.;

2. have direct collaborations with industrials;

3. publish our results both in applied mathematics and computer science bridging the gap between very
often disjoint communities.

3. Research Program

3.1. Introduction
The lines of research we intend to pursue is organized along four axis namely developing novel theoretical
framework, developing novel algorithms, setting novel standards in scientific experimentation and benchmark-
ing and applications.
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3.2. Developing Novel Theoretical Frameworks for Analyzing and Designing
Adaptive Stochastic Algorithms
Stochastic black-box algorithms typically optimize non-convex, non-smooth functions. This is possible
because the algorithms rely on weak mathematical properties of the underlying functions: the algorithms do
not use the derivatives—hence the function does not need to be differentiable—and, additionally, often do not
use the exact function value but instead how the objective function ranks candidate solutions (such methods
are sometimes called function-value-free).(To illustrate a comparison-based update, consider an algorithm that
samples λ (with λ an even integer) candidate solutions from a multivariate normal distribution. Let x1, ..., xλ
in Rn denote those λ candidate solutions at a given iteration. The solutions are evaluated on the function f to
be minimized and ranked from the best to the worse:

f(x1:λ) ≤ ... ≤ f(xλ:λ) .

In the previous equation i :λ denotes the index of the sampled solution associated to the i-th best solution.
The new mean of the Gaussian vector from which new solutions will be sampled at the next iteration can be
updated as

m←− 1

λ

λ/2∑
i=1

xi:λ .

The previous update moves the mean towards the λ/2 best solutions. Yet the update is only based on
the ranking of the candidate solutions such that the update is the same if f is optimized or g ◦ f where
g : Im(f)→ R is strictly increasing. Consequently, such algorithms are invariant with respect to strictly
increasing transformations of the objective function. This entails that they are robust and their performances
generalize well.)

Additionally, adaptive stochastic optimization algorithms typically have a complex state space which encodes
the parameters of a probability distribution (e.g. mean and covariance matrix of a Gaussian vector) and other
state vectors. This state-space is a manifold. While the algorithms are Markov chains, the complexity of the
state-space makes that standard Markov chain theory tools do not directly apply. The same holds with
tools stemming from stochastic approximation theory or Ordinary Differential Equation (ODE) theory where
it is usually assumed that the underlying ODE (obtained by proper averaging and limit for learning rate to
zero) has its critical points inside the search space. In contrast, in the cases we are interested in, the critical
points of the ODEs are at the boundary of the domain.

Last, since we aim at developing theory that on the one hand allows to analyze the main properties of state-
of-the-art methods and on the other hand is useful for algorithm design, we need to be careful not to use
simplifications that would allow a proof to be done but would not capture the important properties of the
algorithms. With that respect one tricky point is to develop theory that accounts for invariance properties.
To face those specific challenges, we need to develop novel theoretical frameworks exploiting invariance
properties and accounting for peculiar state-spaces. Those frameworks should allow researchers to analyze
one of the core properties of adaptive stochastic methods, namely linear convergence on the widest possible
class of functions.
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We are planning to approach the question of linear convergence from three different complementary angles,
using three different frameworks:
• the Markov chain framework where the convergence derives from the analysis of the stability of a

normalized Markov chain existing on scaling-invariant functions for translation and scale-invariant
algorithms [18]. This framework allows for a fine analysis where the exact convergence rate can
be given as an implicit function of the invariant measure of the normalized Markov chain. Yet it
requires the objective function to be scaling-invariant. The stability analysis can be particularly tricky
as the Markov chain that needs to be studied writes as Φt+1 = F (Φt,Wt+1) where {Wt : t > 0}
are independent identically distributed and F is typically discontinuous because the algorithms
studied are comparison-based. This implies that practical tools for analyzing a standard property like
irreducibility, that rely on investigating the stability of underlying deterministic control models [34],
cannot be used. Additionally, the construction of a drift to prove ergodicity is particularly delicate
when the state space includes a (normalized) covariance matrix as it is the case for analyzing the
CMA-ES algorithm.

• The stochastic approximation or ODE framework. Those are standard techniques to prove the con-
vergence of stochastic algorithms when an algorithm can be expressed as a stochastic approximation
of the solution of a mean field ODE [20], [21], [32]. What is specific and induces difficulties for
the algorithms we aim at analyzing is the non-standard state-space since the ODE variables cor-
respond to the state-variables of the algorithm (e.g. Rn × R>0 for step-size adaptive algorithms,
Rn × R>0 × Sn++ where Sn++ denotes the set of positive definite matrices if a covariance matrix is
additionally adapted). Consequently, the ODE can have many critical points at the boundary of its
definition domain (e.g. all points corresponding to σt = 0 are critical points of the ODE) which is
not typical. Also we aim at proving linear convergence, for that it is crucial that the learning rate
does not decrease to zero which is non-standard in ODE method.

• The direct framework where we construct a global Lyapunov function for the original algorithm from
which we deduce bounds on the hitting time to reach an ε-ball of the optimum. For this framework as
for the ODE framework, we expect that the class of functions where we can prove linear convergence
are composite of g ◦ f where f is differentiable and g : Im(f)→ R is strictly increasing and that
we can show convergence to a local minimum.

We expect those frameworks to be complementary in the sense that the assumptions required are different.
Typically, the ODE framework should allow for proofs under the assumptions that learning rates are small
enough while it is not needed for the Markov chain framework. Hence this latter framework captures better
the real dynamics of the algorithm, yet under the assumption of scaling-invariance of the objective functions.
Also, we expect some overlap in terms of function classes that can be studied by the different frameworks
(typically convex-quadratic functions should be encompassed in the three frameworks). By studying the
different frameworks in parallel, we expect to gain synergies and possibly understand what is the most
promising approach for solving the holy grail question of the linear convergence of CMA-ES. We foresee
for instance that similar approaches like the use of Foster-Lyapunov drift conditions are needed in all the
frameworks and that intuition can be gained on how to establish the conditions from one framework to another
one.

3.3. Algorithmic developments
We are planning on developing algorithms in the subdomains with strong practical demand for better methods
of constrained, multiobjective, large-scale and expensive optimization.

Many of the algorithm developments, we propose, rely on the CMA-ES method. While this seems to
restrict our possibilities, we want to emphasize that CMA-ES became a family of methods over the years
that nowadays include various techniques and developments from the literature to handle non-standard
optimization problems (noisy, large-scale, ...). The core idea of all CMA-ES variants—namely the mechanism
to adapt a Gaussian distribution—has furthermore been shown to derive naturally from first principles with
only minimal assumptions in the context of derivative-free black-box stochastic optimization [35], [25]. This
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is a strong justification for relying on the CMA-ES premises while new developments naturally include new
techniques typically borrowed from other fields. While CMA-ES is now a full family of methods, for visibility
reasons, we continue to refer often to “the CMA-ES algorithm”.

3.3.1. Constrained optimization
Many (real-world) optimization problems have constraints related to technical feasibility, cost, etc. Con-
straints are classically handled in the black-box setting either via rejection of solutions violating the con-
straints—which can be quite costly and even lead to quasi-infinite loops—or by penalization with respect
to the distance to the feasible domain (if this information can be extracted) or with respect to the constraint
function value [22]. However, the penalization coefficient is a sensitive parameter that needs to be adapted in
order to achieve a robust and general method [23]. Yet, the question of how to handle properly constraints
is largely unsolved. The latest constraints handling for CMA-ES is an ad-hoc technique driven by many
heuristics [23]. Also, it is particularly only recently that it was pointed out that linear convergence properties
should be preserved when addressing constraint problems [16].

Promising approaches though, rely on using augmented Lagrangians [16], [17]. The augmented Lagrangian,
here, is the objective function optimized by the algorithm. Yet, it depends on coefficients that are adapted
online. The adaptation of those coefficients is the difficult part: the algorithm should be stable and the
adaptation efficient. We believe that the theoretical frameworks developed (particularly the Markov chain
framework) will be useful to understand how to design the adaptation mechanisms. Additionally, the question
of invariance will also be at the core of the design of the methods: augmented Lagrangian approaches break the
invariance to monotonic transformation of the objective functions, yet understanding the maximal invariance
that can be achieved seems to be an important step towards understanding what adaptation rules should satisfy.

3.3.2. Large-scale Optimization
In the large-scale setting, we are interested to optimize problems with the order of 103 to 104 variables. For
one to two orders of magnitude more variables, we will talk about a “very large-scale” setting.

In this context, algorithms with a quadratic scaling (internal and in terms of number of function evaluations
needed to optimize the problem) cannot be afforded. In CMA-ES-type algorithms, we typically need to
restrict the model of the covariance matrix to have only a linear number of parameters to learn such that
the algorithms scale linearly in terms of internal complexity, memory and number of function evaluations to
solve the problem. The main challenge is thus to have rich enough models for which we can efficiently design
proper adaptation mechanisms. Some first large-scale variants of CMA-ES have been derived. They include
the online adaptation of the complexity of the model [15], [14]. Yet so far they fail to optimize functions
whose Hessian matrix has some small eigenvalues (say around 10−4) some eigenvalues equal to 1 and some
very large eigenvalue (say around 104), that is functions whose level sets have short and long axis.

Another direction, we want to pursue, is exploring the use of large-scale variants of CMA-ES to solve
reinforcement learning problems [36].

Last, we are interested to investigate the very-large-scale setting. One approach consists in doing optimization
in subspaces. This entails the efficient identification of relevant spaces and the restriction of the optimization
to those subspaces.

3.3.3. Multiobjective Optimization
Multiobjective optimization, i.e., the simultaneous optimization of multiple objective functions, differs from
single-objective optimization in particular in its optimization goal. Instead of aiming at converging to the
solution with the best possible function value, in multiobjective optimization, a set of solutions 3 is sought. This
set, called Pareto-set, contains all trade-off solutions in the sense of Pareto-optimality—no solution exists that
is better in all objectives than a Pareto-optimal one. Because converging towards a set differs from converging
to a single solution, it is no surprise that we might lose many good convergence properties if we directly
apply search operators from single-objective methods. However, this is what has typically been done so far

3Often, this set forms a manifold of dimension one smaller than the number of objectives.



8 Activity Report INRIA 2019

in the literature. Indeed, most of the research in stochastic algorithms for multiobjective optimization focused
instead on the so called selection part, that decides which solutions should be kept during the optimization—a
question that can be considered as solved for many years in the case of single-objective stochastic adaptive
methods.

We therefore aim at rethinking search operators and adaptive mechanisms to improve existing methods. We
expect that we can obtain orders of magnitude better convergence rates for certain problem types if we choose
the right search operators. We typically see two angles of attack: On the one hand, we will study methods based
on scalarizing functions that transform the multiobjective problem into a set of single-objective problems.
Those single-objective problems can then be solved with state-of-the-art single-objective algorithms. Classical
methods for multiobjective optimization fall into this category, but they all solve multiple single-objective
problems subsequently (from scratch) instead of dynamically changing the scalarizing function during the
search. On the other hand, we will improve on currently available population-based methods such as the first
multiobjective versions of the CMA-ES. Here, research is needed on an even more fundamental level such as
trying to understand success probabilities observed during an optimization run or how we can introduce non-
elitist selection (the state of the art in single-objective stochastic adaptive algorithms) to increase robustness
regarding noisy evaluations or multi-modality. The challenge here, compared to single-objective algorithms,
is that the quality of a solution is not anymore independent from other sampled solutions, but can potentially
depend on all known solutions (in the case of three or more objective functions), resulting in a more noisy
evaluation as the relatively simple function-value-based ranking within single-objective optimizers.

3.3.4. Expensive Optimization
In the so-called expensive optimization scenario, a single function evaluation might take several minutes or
even hours in a practical setting. Hence, the available budget in terms of number of function evaluation calls
to find a solution is very limited in practice. To tackle such expensive optimization problems, it is needed to
exploit the first few function evaluations in the best way. To this end, typical methods couple the learning of a
surrogate (or meta-model) of the expensive objective function with traditional optimization algorithms.

In the context of expensive optimization and CMA-ES, which usually shows its full potential when the number
n of variables is not too small (say larger than 3) and if the number of available function evaluations is about
100n or larger, several research directions emerge. The two main possibilities to integrate meta-models into
the search with CMA-ES type algorithms are (i) the successive injection of the minimum of a learned meta-
model at each time step into the learning of CMA-ES’s covariance matrix and (ii) the use of a meta-model
to predict the internal ranking of solutions. While for the latter, first results exist, the former idea is entirely
unexplored for now. In both cases, a fundamental question is which type of meta-model (linear, quadratic,
Gaussian Process, ...) is the best choice for a given number of function evaluations (as low as one or two
function evaluations) and at which time the type of the meta-model shall be switched.

3.4. Setting novel standards in scientific experimentation and benchmarking
Numerical experimentation is needed as a complement to theory to test novel ideas, hypotheses, the stability of
an algorithm, and/or to obtain quantitative estimates. Optimally, theory and experimentation go hand in hand,
jointly guiding the understanding of the mechanisms underlying optimization algorithms. Though performing
numerical experimentation on optimization algorithms is crucial and a common task, it is non-trivial and easy
to fall in (common) pitfalls as stated by J. N. Hooker in his seminal paper [27].

In the RandOpt team we aim at raising the standards for both scientific experimentation and benchmarking.

On the experimentation aspect, we are convinced that there is common ground over how scientific experimen-
tation should be done across many (sub-)domains of optimization, in particular with respect to the visualization
of results, testing extreme scenarios (parameter settings, initial conditions, etc.), how to conduct understand-
able and small experiments, how to account for invariance properties, performing scaling up experiments and
so forth. We therefore want to formalize and generalize these ideas in order to make them known to the entire
optimization community with the final aim that they become standards for experimental research.
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Extensive numerical benchmarking, on the other hand, is a compulsory task for evaluating and comparing the
performance of algorithms. It puts algorithms to a standardized test and allows to make recommendations
which algorithms should be used preferably in practice. To ease this part of optimization research, we
have been developing the Comparing Continuous Optimizers platform (COCO) since 2007 which allows
to automatize the tedious task of benchmarking. It is a game changer in the sense that the freed time
can now be spent on the scientific part of algorithm design (instead of implementing the experiments,
visualization, statistical tests, etc.) and it opened novel perspectives in algorithm testing. COCO implements a
thorough, well-documented methodology that is based on the above mentioned general principles for scientific
experimentation.

Also due to the freely available data from 300+ algorithms benchmarked with the platform, COCO became a
quasi-standard for single-objective, noiseless optimization benchmarking. It is therefore natural to extend the
reach of COCO towards other subdomains (particularly constrained optimization, many-objective optimiza-
tion) which can benefit greatly from an automated benchmarking methodology and standardized tests without
(much) effort. This entails particularly the design of novel test suites and rethinking the methodology for mea-
suring performance and more generally evaluating the algorithms. Particularly challenging is the design of
scalable non-trivial testbeds for constrained optimization where one can still control where the solutions lies.
Other optimization problem types, we are targeting are expensive problems (and the Bayesian optimization
community in particular, see our AESOP project), optimization problems in machine learning (for example
parameter tuning in reinforcement learning), and the collection of real-world problems from industry.

Another aspect of our future research on benchmarking is to investigate the large amounts of benchmarking
data, we collected with COCO during the years. Extracting information about the influence of algorithms on
the best performing portfolio, clustering algorithms of similar performance, or the automated detection of
anomalies in terms of good/bad behavior of algorithms on a subset of the functions or dimensions are some of
the ideas here.

Last, we want to expand the focus of COCO from automatized (large) benchmarking experiments towards
everyday experimentation, for example by allowing the user to visually investigate algorithm internals on the
fly or by simplifying the set up of algorithm parameter influence studies.

4. Application Domains

4.1. Application Domains
Applications of black-box algorithms occur in various domains. Industry but also researchers in other academic
domains have a great need to apply black-box algorithms on a daily basis. We do not target a specific
application domain and are interested in possible black-box applications stemming from various origins.
This is for us intrinsic to the nature of the methods we develop that are general purpose algorithms. Hence
our strategy with respect to applications can be seen as opportunistic and our main selection criteria when
approached by colleagues who want to develop a collaboration around an application is whether we judge the
application interesting: that is the application brings new challenges and/or gives us the opportunity to work
on topics we already intended to work on.

The concrete applications related to industrial collaborations we are currently dealing with are:

• With Thales for the theses of Konstantinos Varelas and Paul Dufossé (DGA-CIFRE theses) related to
the design of radars (shape optimization of the wave form). Those theses investigate the development
of large-scale variants of CMA-ES and constrained-handling for CMA-ES.

• With Storengy, a subsidiary of Engie specialized in gas storage for the thesis of Cheikh Touré.
Different multiobjective applications are considered in this context but the primary motivation of
Storengy is to get at their disposal a better multiobjective variant of CMA-ES which is the main
objective of the developments within the thesis.
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• With PSA in the context of the OpenLab and the thesis of Marie-Ange Dahito for the design of part
of a car body.

• With Onera in the context of the thesis of Alann Cheral related to the optimization of the choice of
hyperspectral bandwidth.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

• Cheikh Touré received the 2nd prize for the student best paper award at the conference EMO 2019
for the paper “On Bi-Objective convex-quadratic problems” by Cheikh Touré, Anne Auger, Dimo
Brockhoff, Nikolaus Hansen

• Nikolaus Hansen received the ENUM best paper award at the ACM-GECCO 2019 conference (see
https://gecco-2019.sigevo.org/index.html/Best+Paper+Awards) for the paper “A global Surrogate
Assisted CMA-ES”

BEST PAPERS AWARDS:

[6]
C. TOURÉ, A. AUGER, D. BROCKHOFF, N. HANSEN. On Bi-Objective convex-quadratic problems, in "10th
International Conference on Evolutionary Multi-Criterion Optimization", East Lansing, Michigan, United
States, March 2019, https://arxiv.org/abs/1812.00289 , https://hal.inria.fr/hal-01942159

[5]
N. HANSEN. A Global Surrogate Assisted CMA-ES, in "GECCO 2019 - The Genetic and
Evolutionary Computation Conference", Prague, Czech Republic, ACM, 2019, pp. 664-672
[DOI : 10.1145/3321707.3321842], https://hal.inria.fr/hal-02143961

6. New Software and Platforms

6.1. COCO
COmparing Continuous Optimizers

KEYWORDS: Benchmarking - Numerical optimization - Black-box optimization - Stochastic optimization

SCIENTIFIC DESCRIPTION: COmparing Continuous Optimisers (COCO) is a tool for benchmarking algo-
rithms for black-box optimisation. COCO facilitates systematic experimentation in the field of continuous
optimization. COCO provides: (1) an experimental framework for testing the algorithms, (2) post-processing
facilities for generating publication quality figures and tables, including the easy integration of data from
benchmarking experiments of 300+ algorithm variants, (3) LaTeX templates for scientific articles and HTML
overview pages which present the figures and tables.

The COCO software is composed of two parts: (i) an interface available in different programming languages
(C/C++, Java, Matlab/Octave, Python, external support for R) which allows to run and log experiments on
several function test suites (unbounded noisy and noiseless single-objective functions, unbounded noiseless
multiobjective problems, constrained problems) are provided (ii) a Python tool for generating figures and
tables that can be looked at in every web browser and that can be used in the provided LaTeX templates to
write scientific papers.

https://gecco-2019.sigevo.org/index.html/Best+Paper+Awards
https://arxiv.org/abs/1812.00289
https://hal.inria.fr/hal-01942159
https://hal.inria.fr/hal-02143961
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FUNCTIONAL DESCRIPTION: The Coco platform aims at supporting the numerical benchmarking of blackbox
optimization algorithms in continuous domains. Benchmarking is a vital part of algorithm engineering and a
necessary path to recommend algorithms for practical applications. The Coco platform releases algorithm
developers and practitioners alike from (re-)writing test functions, logging, and plotting facilities by providing
an easy-to-handle interface in several programming languages. The Coco platform has been developed since
2007 and has been used extensively within the “Blackbox Optimization Benchmarking (BBOB)” workshop
series since 2009. Overall, 300+ algorithms and algorithm variants by contributors from all over the world
have been benchmarked on the platform’s supported test suites so far. The most recent extension has been
towards large-scale problems and was used for the BBOB-2019 workshop at the ACM-GECCO conference.

• Participants: Anne Auger, Asma Atamna, Dejan Tusar, Dimo Brockhoff, Marc Schoenauer, Niko-
laus HANSEN, Ouassim Ait Elhara, Raymond Ros, Tea Tusar, Thanh-Do Tran, Umut Batu and
Konstantinos Varelas

• Partners: TU Dortmund University - Charles University Prague - Jozef Stefan Institute (JSI)

• Contact: Dimo Brockhoff

• URL: https://github.com/numbbo/coco

6.2. CMA-ES
Covariance Matrix Adaptation Evolution Strategy

KEYWORDS: Numerical optimization - Black-box optimization - Stochastic optimization

SCIENTIFIC DESCRIPTION: The CMA-ES is considered as state-of-the-art in evolutionary computation and
has been adopted as one of the standard tools for continuous optimisation in many (probably hundreds of)
research labs and industrial environments around the world. The CMA-ES is typically applied to unconstrained
or bounded constraint optimization problems, and search space dimensions between three and a hundred.
The method should be applied, if derivative based methods, e.g. quasi-Newton BFGS or conjugate gradient,
(supposedly) fail due to a rugged search landscape (e.g. discontinuities, sharp bends or ridges, noise, local
optima, outliers). If second order derivative based methods are successful, they are usually faster than the
CMA-ES: on purely convex-quadratic functions, f(x)=xTHx, BFGS (Matlabs function fminunc) is typically
faster by a factor of about ten (in terms of number of objective function evaluations needed to reach a
target function value, assuming that gradients are not available). On the most simple quadratic function
f(x)=||x||2=xTx BFGS is faster by a factor of about 30.

FUNCTIONAL DESCRIPTION: The CMA-ES is an evolutionary algorithm for difficult non-linear non-convex
black-box optimisation problems in continuous domain.

• Participant: Nikolaus HANSEN

• Contact: Nikolaus HANSEN

• URL: http://cma.gforge.inria.fr/cmaes_sourcecode_page.html

7. New Results

7.1. A multiobjective algorithm framework and the COMO-CMA-ES
algorithm
One classical way to solve multiobjective optimization problems is to transform the multiple objective
functions into a single one, also known as scalarization, and to solve multiple versions of such scalarizations
to achieve multiple trade-off points. Another approach, coming from the field of evolutionary multiobjective
optimization is to formulate a single-objective set problem via indicators: the goal here is to find the set of
solutions (of a given size) that maximizes a certain quality. The hypervolume indicator has been regularly used
to define the quality of the solution set because it has favorable theoretical properties.

https://github.com/numbbo/coco
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html
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The “classical” definition of the hypervolume indicator and how it is used in multiobjective solvers, however,
has some disadvantages: (i) the resulting single-objective problem is of high dimension and the gradient of the
hypervolume indicator is zero in dominated areas of the search space—not giving a solver enough information
about where to search for good solutions. In [7], we discussed and visualized these disadvantages and proposed
a new quality criterion which is based on the hypervolume indicator but solves the mentioned disadvantages.
The implementation of this idea and its combination with the single-objective solver CMA-ES resulted in the
COMO-CMA-ES which shows improved performance over several existing multiobjective solvers on a wide
range of convex quadratic functions.

7.2. A mixed-integer benchmark testbed for single and multiobjective
black-box optimization
We have introduced two suites of mixed-integer benchmark problems to be used for analyzing and comparing
black-box optimization algorithms. They contain problems of diverse difficulties that are scalable in the
number of decision variables. The bbob-mixint suite is designed by partially discretizing the established BBOB
(Black-Box Optimization Benchmarking) problems. The bi-objective problems from the bbob-biobj-mixint
suite are, on the other hand, constructed by using the bbob-mixint functions as their separate objectives. We
explain the rationale behind our design decisions and show how to use the suites within the COCO (Comparing
Continuous Optimizers) platform. Analyzing two chosen functions in more detail, we also provide some
unexpected findings about their properties [8].

7.3. A large-scale optimization testbed for the COCO framework
We have finalized a large scale testbed built to model well-known difficulties in continuous optimization and
to test the scaling behavior of algorithms. It contrasts with current test suites used for benchmarking solvers.

The test suite contains 24 single-objective functions in continuous domain and extends the well-known single-
objective noiseless bbob test suite. A core contribution is to reduce the computational demand of the orthogonal
search space transformations, that appear in the bbob test suite, while retaining some desired properties using
previously introduced permuted block diagonal orthogonal matrices.

The paper discusses the implementation details, particularly the normalization and scaling to obtain backwards
compatibility with the bbob test suite. Additionally, a guide for using the test suite within the COCO platform,
as well as a description of the postprocessed output is presented [12].

7.4. Diagonal Acceleration for Covariance Matrix Adaptation Evolution
Strategies
In [1], we have introduced an acceleration for the covariance matrix adaptation evolution strategies (CMA-
ES) by means of adaptive diagonal decoding (dd-CMA). This diagonal acceleration endows the default CMA-
ES with the advantages of separable CMA-ES without inheriting its drawbacks. Technically, we introduce a
diagonal matrix that expresses coordinate-wise variances of the sampling distribution. The diagonal matrix
can learn a rescaling of the problem in the coordinates within linear number of function evaluations. Diagonal
decoding can also exploit separability of the problem, but, crucially, does not compromise the performance
on non-separable problems. The latter is accomplished by modulating the learning rate for the diagonal
matrix based on the condition number of the underlying correlation matrix. dd-CMA-ES not only combines
the advantages of default and separable CMA-ES, but may achieve overadditive speedup: it improves the
performance, and even the scaling, of the better of default and separable CMA-ES on classes of non-separable
test functions that reflect, arguably, a landscape feature commonly observed in practice. The paper makes two
further secondary contributions: we introduce two different approaches to guarantee positive definiteness of the
covariance matrix with active CMA, which is valuable in particular with large population size; we revise the
default parameter setting in CMA-ES, proposing accelerated settings in particular for large dimension. All our
contributions can be viewed as independent improvements of CMA-ES, yet they are also complementary and
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can be seamlessly combined. In numerical experiments with dd-CMA-ES up to dimension 5120, we observe
remarkable improvements over the original covariance matrix adaptation on functions with coordinate-wise
ill-conditioning. The improvement is observed also for large population sizes up to about dimension squared.

7.5. A global surrogate assisted CMA-ES
In the paper [5], we have explored the arguably simplest way to build an effective surrogate fitness model in
continuous search spaces. The model complexity is linear or diagonal-quadratic or full quadratic, depending
on the number of available data. The model parameters are computed from the Moore-Penrose pseudoinverse.
The model is used as a surrogate fitness for CMA-ES if the rank correlation between true fitness and surrogate
value of recently sampled data points is high. Otherwise, further samples from the current population are
successively added as data to the model. We empirically compare the IPOP scheme of the new model assisted
lq-CMA-ES with a variety of previously proposed methods and with a simple portfolio algorithm using SLSQP
and CMA-ES. We conclude that a global quadratic model and a simple portfolio algorithm are viable options
to enhance CMA-ES. The model building code is available as part of the pycma Python module on Github and
PyPI.

7.6. Benchmarking and Understanding Optimizers
Benchmarking is an important task in optimization in order to understand the working principles behind
existing solvers, to find out about weaknesses of them and to finally recommend good ones. The COCO
platform, developed in the Randopt team since 2007, aims at automatizing these numerical benchmarking
experiments and the visual presentation of their results. We regularly use the platform to initiate workshop
papers during the ACM-GECCO conference and also held a workshop this year 4.

In this context, several workshop papers have been published by members of the team and we also proposed
some extensions of the platform and updated its documentation.

Two papers addressed single-objective unconstrained problems. One paper investigated the impact of the
sample volume of a simple random search on the bbob test suite of COCO [2] and the other paper benchmarked
all solvers available in the scipy.optimize module of Python [9], re-discovering SLSQP as a very well-
performing solver for small budgets.

Two additional papers addressed multiobjective problems in the context of the bbob-biobj test suite of
COCO: “Benchmarking Algorithms from the platypus Framework on the Biobjective bbob-biobj Testbed” [3]
compared several baseline algorithms from the literature such as NSGA-II, MOEA/D, SPEA2, and IBEA and
“Benchmarking MO-CMA-ES and COMO-CMA-ES on the Bi-objective bbob-biobj Testbed” [4] compared
our new COMO-CMA-ES solver with its previous version MO-CMA-ES.

As to extensions of the COCO platform, we released new test suites this year as described earlier. For the
large-scale test suite of [12], 11 algorithm variants of the CMA-ES and L-BFGS solvers have been compared
in the paper “Benchmarking Large Scale Variants of CMA-ES and L-BFGS-B on the bbob-largescale Testbed”
[10].

Overall, we collected 54 new algorithm data sets within the COCO platform in 2019—the highest number in
a single year since the release of COCO.

Finally, we updated our documentation on the biobjective test suite, we introduced in 2019. The corresponding
journal paper “Using Well-Understood Single-Objective Functions in Multiobjective Black-Box Optimization
Test Suites” [11] is now under revision for the Evolutionary Computation journal.

4See numbbo.github.io/workshops/BBOB-2019/
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8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
• Contract with the company Storengy partially funding the PhD thesis of Cheikh Touré (2017–2020)

• Contract with Thales in the context of the CIFRE PhD thesis of Konstantinos Varelas (2017–2020)

• Contract with PSA in the context of the CIFRE PhD thesis of Marie-Ange Dahito (2019–2022)

• Pending contract for the thesis of Paul Dufossé with Thales (2020–2022)

9. Partnerships and Cooperations

9.1. Regional Initiatives
• PGMO/FMJH project “AESOP: Algorithms for Expensive Simulation-Based Optimization”,

7kEUR, 2017–2019

9.2. National Initiatives
9.2.1. ANR

• ANR project “Big Multiobjective Optimization (BigMO)”, Dimo Brockhoff participates in this
project through the Inria team BONUS in Lille (2017–2020)

9.3. International Initiatives
9.3.1. Inria International Partners
9.3.1.1. Informal International Partners

• Youhei Akimoto, Tsukuba University, Japan

• Tobias Glasmachers, Ruhr University, Bochum, Germany

• Tea Tušar, Jozef Stefan Institute, Ljubljana, Slovenia

9.4. International Research Visitors
9.4.1. Visits to International Teams
9.4.1.1. Research Stays Abroad

Anne Auger and Dimo Brockhoff visited Tea Tušar (Jozef Stefan Institute, Slovenia) for two weeks in April
2019
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10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Organisation
10.1.1.1. General Chair, Scientific Chair

• Anne Auger: general chair of the ACM-GECCO 2019 conference that took place in July in Prague
and welcomed ca. 700 participants.

10.1.1.2. Member of the Organizing Committees

• Dimo Brockhoff: co-organizer of the Lorentz Center Workhop “MACODA: Many Criteria Opti-
mization and Decision Analysis“, September 2019, Leiden, The Netherlands, 42 participants

• Anne Auger, Dimo Brockhoff, Nikolaus Hansen, and Konstantinos Varelas: co-organizers of the
Black-Box Optimization Benchmarking workshop (BBOB) at the ACM-GECCO 2019 conference.

• Anne Auger: Organizer of an invited session on Recent Advances on Randomized Derivative Free
Optimization at the EURO conference, Dublin.

10.1.2. Scientific Events: Selection
10.1.2.1. Reviewer

• Dimo Brockhoff and Nikolaus Hansen: ACM-GECCO 2019

10.1.3. Dagstuhl seminar invitations
• Anne Auger, Dimo Brockhoff and Nikolaus Hansen invited at the Dagstuhl Seminar 19431 on

“Theory of Randomized Optimization Heuristics”, October 2019

• Dimo Brockhoff invited at the Dagstuhl Seminar 20031 on “Scalability in Multiobjective Optimiza-
tion”, January 2020

10.1.4. Journal
10.1.4.1. Member of the Editorial Boards

• Anne Auger, Dimo Brockhoff and Nikolaus Hansen: Associate Editor of the ACM Transactions on
Evolutionary Learning and Optimization

• Anne Auger and Nikolaus Hansen: Associate Editor of the Evolutionary Computation Journal

• Anne Auger is guest editor of an Algorithmica special issue of papers selected from the ACM-
GECCO’2018 theory track

• Anne Auger is guest editor of the IEEE Transactions on Evolutionary Computation special issue on
Theoretical Foundations of Evolutionary Computation

10.1.4.2. Reviewer - Reviewing Activities

• Dimo Brockhoff: reviewed papers for IEEE Transactions on Evolutionary Computation (IEEETEC),
European Journal of Operational Research (EJOR), Evolutionary Computation, and Journal of
Global Optimization

10.1.5. Invited Talks
• Dimo Brockhoff: “Quality Indicator Maximization in Multiobjective Optimization Via Single-

Objective Solvers: Unflattened Hypervolume Improvement in the Sofomore Framework”, Jozef
Stefan Institute, Ljubljana, Slovenia, April 2019

• Nikolaus Hansen: “How to Evolve Gradient Descent into Evolution Strategies and CMA-ES”,
Journée de Rentrée du CMAP, Ecole polytechnique, Paris, October 2019
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• Nikolaus Hansen: “How to Evolve Gradient Descent into Evolution Strategies and CMA-ES”,
Symposium on Evolutionary Algorithms: Back to the Future and Beyond—Traversing the Ever-
Evolving Landscape of Evolutionary Algorithms, Delft, The Netherlands, September 2019

• Nikolaus Hansen: Keynote lecture at the Workshop on Machine-Learning-Assisted Image Formation
entitled “From Gradient-Based to Evolutionary Optimization”, Nice, France, June 2019

• Anne Auger: Convergence Results of Adaptive Evolution Strategies: an Overview, Lifeware seminar,
January 2019

• Anne Auger: COMO-CMA-ES a linearly convergent multi-objective solver, ICCOP conference,
Berlin

10.1.6. Leadership within the Scientific Community
• Anne Auger, Elected Member of the ACM-SIGEVO executive board

• Dimo Brockhoff: member of the International Advisory Committee for EMO-2019 in East Lansing,
USA

• Anne Auger, member of the conseil de laboratoire of the CMAP, Ecole Polytechnique.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master: Anne Auger, “Optimization without gradients”, 22.5h ETD, niveau M2 (Optimization
Master of Paris-Saclay)

Master: Dimo Brockhoff, “Algorithms and Complexity”, 36h ETD, niveau M1/M2 (joint MSc with
ESSEC “Data Sciences & Business Analytics”), CentraleSupelec, France

Master: Anne Auger and Dimo Brockhoff, “Introduction to Optimization”, 31.5h ETD, niveau
M2 (MSc Informatique - Parcours Apprentissage, Information et Contenu (AIC)), U. Paris-Saclay,
France

Master: Anne Auger and Dimo Brockhoff, “Advanced Optimization”, 31.5h ETD, niveau M2 (MSc
Informatique - Parcours Apprentissage, Information et Contenu (AIC)), U. Paris-Saclay, France

10.2.2. Tutorials
• Dimo Brockhoff: tutorial on Evolutionary Multiobjective Optimization, 3h ETD, niveau PhD, ACM-

GECCO conference, Czech Republic

• Nikolaus Hansen: tutorial “A Practical Guide to Experimentation”, 3h ETD, niveau PhD, ACM-
GECCO conference, Czech Republic

• Nikolaus Hansen: tutorial on “CMA-ES and Advanced Adaptation Mechanisms”, 3h ETD, niveau
PhD, ACM-GECCO conference, Czech Republic, with Youhei Akimoto

10.2.3. Supervision
• PhD in progress: Konstantinos Varelas, “Large-Scale Optimization, CMA-ES and Radar Applica-

tions”, Dec. 2017, Anne Auger and Dimo Brockhoff

• PhD in progress: Cheikh Touré, “Linearly Convergent Multi-objective Stochastic Optimizers”, Dec.
2017, Anne Auger and Dimo Brockhoff

• PhD in progress: Paul Dufossé, “Constrained Optimization and Radar Applications”, Oct. 2018,
Nikolaus Hansen

• PhD in progress: Marie-Ange Dahito, “Mixed-Integer Blackbox Optimization for Multiobjective
Problems in the Automotive Industry”, Jan 2019, Dimo Brockhoff and Nikolaus Hansen

• PhD in progress: Eugénie Marescaux, Theoretical Analysis of convergence of multi-objective solvers
(2019–), supervisor A. Auger
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• PhD in progress: Alann Cheral, “Black-box optimization for the optimization of hyperspectral
bandwidth for anomaly detection” (2019–), supervisor A. Auger

• Jingyun Yang, Ecole Polytechnique, since September 2019
• Eugenie Marescaux, ENSTA, April–September 2019
• Julien Bonneville, U. Versailles, March–August 2019

10.2.4. Juries
• Anne Auger: member of the PGMO PhD award scientific committee. Representing the committee

for the PGMO PhD award ceremony at the PGMO days
• Dimo Brockhoff: jury member for the PhD thesis of David Gaudrie, École des Mines de Saint-

Étienne, October 2019

10.3. Popularization
• Scientific mediation by Cheikh Touré: presentation on poker in the context of the visit of college and

high school students to Inria Saclay

10.3.1. Internal or external Inria responsibilities
• Anne Auger: member of the BCEP of Saclay.
• Dimo Brockhoff: member of the CDT committee of Saclay (since February 2019).
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