
Activity Report 2019

Project-Team STAMP

Safety Techniques based on Formalized
Mathematical Proofs

RESEARCH CENTER
Sophia Antipolis - Méditerranée

THEME
Proofs and Verification

Table of contents

1. Team, Visitors, External Collaborators . 1
2. Overall Objectives . 2
3. Research Program . 2
4. Application Domains .3

4.1. Mathematical Components 3
4.2. Proofs in cryptography 4
4.3. Proofs for robotics 4

5. New Software and Platforms . 4
5.1. Coq 4
5.2. Math-Components 5
5.3. Semantics 6
5.4. Easycrypt 6
5.5. ELPI 6
5.6. Coq-elpi 7
5.7. AutoGnP 8
5.8. MaskComp 8
5.9. Jasmin 8
5.10. MaskVerif 8
5.11. CoqEAL 8
5.12. math-comp-analysis 9
5.13. math-comp-finmap 9
5.14. math-comp-real-closed 9

6. New Results . 9
6.1. Hol-Light and Elpi 9
6.2. Generating equality tests for inductive types 9
6.3. Re-designing the state machine of Coq 10
6.4. Formal proofs on session types 10
6.5. Formal proofs of an axiomatization of graphs with tree-width two 10
6.6. Formal study of double-word arithmetic algorithms 10
6.7. Approximations using Chebyshev polynomials 10
6.8. Formalizing computational analysis 10
6.9. Formal study of probabilistic programs 11
6.10. Security of a key management service 11
6.11. High-assurance and high-speed SHA-3 11
6.12. A domain-specific language for timing sensitive computation 12
6.13. Proving equivalence between probabilistic programs 12
6.14. MaskVerif: automated verification of higher-order masking in presence of physical defaults 12
6.15. Frame type theory 12
6.16. Automated refinements on algorithms in Lean 13
6.17. Parametricity in Template Coq 13
6.18. A hierarchy builder 13
6.19. Adding measure theory to mathematical components analysis 13
6.20. A formal description of exact real arithmetic 13
6.21. Formal study of a triangulation algorithm 13
6.22. Formal study of Voronoi diagrams and Fortune’s algorithm 14
6.23. Formal study of a cell-decomposition algorithm 14
6.24. A guide to use Coq for security evaluations 14
6.25. Formalization of the Poincaré disk model in Isabelle 14
6.26. Integration of the GeoCoq library to Logipedia 14

2 Activity Report INRIA 2019

6.27. Performance improvements for a reflective tactic in the GeoCoq library 15
6.28. Mutual interpretability of cartesian planes with Tarski’s system of geometry 15
6.29. Simplification of a constructive version of Tarski’s system of geometry 15
6.30. Formal proofs of Tarjan’s strongly connected components algorithm 15

7. Partnerships and Cooperations . 16
7.1. National Initiatives 16

7.1.1. ANR 16
7.1.2. FUI 16

7.2. European Initiatives 16
7.2.1. Collaborations in European Programs, Except FP7 & H2020 16
7.2.2. Collaborations with Major European Organizations 17

7.3. International Initiatives 17
7.4. International Research Visitors 17

8. Dissemination . 17
8.1. Promoting Scientific Activities 17

8.1.1. Scientific Events: Organisation 17
8.1.2. Scientific Events: Selection 17

8.1.2.1. Member of the Conference Program Committees 17
8.1.2.2. Reviewer 17

8.1.3. Journal 18
8.1.4. Invited Talks 18
8.1.5. Scientific Expertise 18
8.1.6. Research Administration 18

8.2. Teaching - Supervision - Juries 18
8.2.1. Teaching 18
8.2.2. Supervision 18
8.2.3. Juries 18

8.3. Popularization 19
9. Bibliography .19

Project-Team STAMP

Creation of the Project-Team: 2019 November 01

Keywords:

Computer Science and Digital Science:
A2.1.11. - Proof languages
A2.4.3. - Proofs
A4.5. - Formal methods for security
A5.10.3. - Planning
A7.2. - Logic in Computer Science
A7.2.3. - Interactive Theorem Proving
A7.2.4. - Mechanized Formalization of Mathematics
A8.3. - Geometry, Topology
A8.4. - Computer Algebra
A8.10. - Computer arithmetic

Other Research Topics and Application Domains:
B6.1. - Software industry
B9.5.1. - Computer science
B9.5.2. - Mathematics

1. Team, Visitors, External Collaborators
Research Scientists

Yves Bertot [Team leader, Inria, Senior Researcher, HDR]
Cyril Cohen [Inria, Researcher]
Benjamin Grégoire [Inria, Researcher]
José Grimm [Inria, Researcher, until September 2019 (deceased)]
Laurence Rideau [Inria, Researcher]
Enrico Tassi [Inria, Researcher]
Laurent Théry [Inria, Researcher]

Post-Doctoral Fellow
Pierre Boutry [Inria, Post-Doctoral Fellow, from Sep 2019]

PhD Students
Cécile Baritel-Ruet [Inria, PhD Student]
Sophie Bernard [Univ de Nice - Sophia Antipolis, PhD Student, until Sep 2019]
Mohamad El Laz [Inria, PhD Student]
Damien Rouhling [Ministère de l’Enseignement Supérieur et de la Recherche, PhD Student, until Sep 2019]

Interns and Apprentices
Ahmed Khulaif A Alharbi [Inria, from Mar 2019 until Jun 2019]
Julien Lamiroy [École Normale Supérieure de Paris, from Jun 2019 until Jul 2019]

Administrative Assistant
Nathalie Bellesso [Inria, Administrative Assistant]

Visiting Scientists
Reynald Affeldt [AIST, Japan, from Oct 2019]

https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2019

Manuel Barbosa [University of Porto, from Jun 2019 until Jul 2019]
Christian Doczkal [Univ. Côte d’Azur, from Oct 2019]
Kazuhiko Sakaguchi [University of Tsukuba, Japan]

External Collaborators
Gilles Barthe [Max Planck Institute, Bochum, Germany, HDR]
Loïc Pottier [Ministère de l’Education Nationale, HDR]

2. Overall Objectives

2.1. Overall Objectives
Computers and programs running on these computers are powerful tools for many domains of human activities.
In some of these domains, program errors can have enormous consequences. It will become crucial for all
stakeholders that the best techniques are used when designing these programs.

We advocate using higher-order logic proof assistants as tools to obtain better quality programs and designs.
These tools make it possible to build designs where all decisive arguments are explicit, ambiguity is alleviated,
and logical steps can be verified precisely. In practice, we are intensive users of the Coq system and we
participate actively to the development of this tool, in collaboration with other teams at Inria, and we also take
an active part in advocating its usage by academics and industrial users around the world.

Many domains of modern computer science and engineering make a heavy use of mathematics. If we wish to
use proof assistants to avoid errors in designs, we need to develop corpora of formally verified mathematics that
are adapted to these domains. Developing libraries of formally verified mathematics is the main motivation
for our research. In these libraries, we wish to capture not only the knowledge that is usualy recorded in
definitions and theorems, but also the practical knowledge that is recorded in mathematical practice, idoms,
and work habits. Thus, we are interested in logical facts, algorithms, and notation habits. Also, the very process
of developing an ambitious library is a matter of organisation, with design decisions that need to be evaluated
and improved. Refactoring of libraries is also an important topic. Among all higher-order logic based proof
assistants, we contend that those based on Type theory are the best suited for this work on libraries, thanks to
to they strong capabilities for abstraction and modular re-use.

The interface between mathematics, computer science and engineering is large. To focus our activities, we will
concentrate our activity on applications of proof assistants to two main domains: cryptography and robotics.
We also develop specific tools for proofs in cryptography, mainly around a proof tool named EasyCrypt.

3. Research Program

3.1. Theoretical background
The proof assistants that we consider provide both a programming language, where users can describe
algorithms performing tasks in their domain of interest, and a logical language to reason about the programs,
thus making it possible to ensure that the algorithms do solve the problems for which they were designed.
trustability is gained because algorithms and logical statements provide multiple views of the same topic, thus
making it possible to detect errors coming from mismatch between expected and established properties. The
verification process is itself a logical process, where the computer can bring rigor in aligning expectations and
guarantees.

The foundations of proof assistants rest on the very foundations of mathematics. As a consequence, all aspects
of reasoning must be made completely explicit in the process of formally verifying an algorithm. All aspects
of the formal verification of an algorithm are expressed in a discourse whose consistency is verified by the
computer, so that unclear or intuitive arguments need to be replaced by precise logical inferences.

Project-Team STAMP 3

One of the foundational features on which we rely extensively is Type Theory. In this approach a very simple
programming language is equiped with a powerful discipline to check the consistency of usage: types represent
sets of data with similar behavior, functions represent algorithms mapping types to other types, and the
consistency can be verified by a simple computer program, a type-checker. Although they can be verified
by a simple program, types can express arbitrary complex objects or properties, so that the verification work
lives in an interesting realm, where verifying proofs is decidable, but finding the proofs is undecidable.

This process for producing new algorithms and theorems is a novelty in the development of mathematical
knowledge or algorithms, and new working methods must be devised for it to become a productive approach
to high quality software development. Questions that arise are numerous. How do we avoid requiring human
assistance to work on mundane aspects of proofs? How do we take advantage of all the progress made in
automatic theorem proving? How do we organize the maintenance of ambitious corpora of formally verified
knowledge in the long term?

To acquire hands-on expertise, we concentrate our activity on three aspects. The first one is foundational:
we develop and maintain a library of mathematical facts that covers many aspects of algebra. In the past, we
applied this library to proofs in group theory, but it is increasingly used for many different areas of mathematics
and by other teams around the world, from combinatorics to elliptic cryptography, for instance. The second
aspect is applicative: we develop a specific tool for proofs in cryptography, where we need to reason on the
probability that opponents manage to access information we wish to protect. For this activity, we develop a
specific proof system, relying on a wider set of automatic tools, with the objective of finding the tools that
are well adapted to this domain and to attract users that are initially specialists in cryptography but not in
formal verification. The third domain is robotics, as we believe that the current trend towards more an more
autonomous robots and vehicles will raise questions of safety and trustability where formal verification can
bring significant added value.

4. Application Domains

4.1. Mathematical Components
The Mathematical Components is the main by-product of an effort started almost two decades ago to provide a
formally verified proof for a major theorem in group theory. Because this major theorem had a proof published
in books of several hundreds of pages, with elements coming from character theory, other coming from algebra,
and some coming from real analysis, it was an exercice in building a large library, with results in many
domains, and in establishing clear guidelines for further increase and data search.

This library has proved to be a useful repository of mathematical facts for a wide area of applications, so that
it has a growing community of users in many contries (Denmark, France, Germany, Japan, Singapore, Spain,
Sweden, UK, USA, at the time of writing these lines in 2019) and for a wide variety of topics (transcendental
number theory, elliptic curve cryptography, articulated robot kinematics, recently block chain foundations).

Interesting questions on this library range around the importance of decidability and proof irrelevance, the
way to structure knowledge to automatically inherit theorems from one topic to another, the way to generate
infrastructure to make this automation efficient and predictable. In particular, we want to concentrate on adding
a new mathematical topic to this library: real analysis and then complex analysis (Mathematical Components
Analysis).

On the front of automation, we are convinced that a higher level language is required to describe similarities
between theories, to generate theorems that are immediate consequences of structures, etc, and for this reason,
we invest in the development of a new language on top of the proof assistant (ELPI).

4 Activity Report INRIA 2019

4.2. Proofs in cryptography
When we work on cryptography, we are interested in the formal verification of proofs showing that some
cryptographic primitives provide good guarantees against unwanted access to information. Over the years
we have developed a technique for this kind of reasoning that relies on a programing logic (close to Hoare
logic) with probabilistic apsects and the capability to establish relations between several implementations of a
problem. The resulting programming logic is called probabilistic relational Hoare logic. In more recent work,
we have also started to study questions of side-channel attacks, where we wish to guarantee that opponents
cannot gain access to protected knowledge, even if they observe specific features of execution, like execution
time (to which the answer lies in constant-time execution) or partial access to memory bits (to which the
answer lies in masking).

For this domain of application, we choose to work with a specific proof tool (EasyCrypt), which combines
powerful first-order reasoning and uses of automatic tools, with a specific support for probabilistic relational
Hoare Logic. The development of this EasyCrypt proof tool is one of the objectives of our team.

When it comes to formal proofs of resistance to side-channel attack, we contend that it is necessary to verify
formally that the compiler used in the production of actually running code respects the resistance properties
that were established in formally verified proofs. One of our objectives is to describe such a compiler (Jasmin)
and show its strength on a variety of applications.

4.3. Proofs for robotics
Robots are man-made artifacts where numerous design decisions can be argued based on logical or mathe-
matical principles. For this reason, we wish to use this domain of application as a focus for our investigations.
The questions for which we are close to providing answers involve precision issues in numeric computation,
obstacle avoidance and motion planning (including questions of graph theory), articulated limb cinematics and
dynamics, and balance and active control.

From the mathematical perspective, these topics require that we improve our library to cover real algebraic
geometry, computational geometry, real analysis, graph theory, and refinement relations between abstract
algorithms and executable programs.

In the long run, we hope to exhibit robots where pieces of software and part of the design has been subject to
formal verification.

5. New Software and Platforms
5.1. Coq

The Coq Proof Assistant

KEYWORDS: Proof - Certification - Formalisation

SCIENTIFIC DESCRIPTION: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and co-inductive
families, an impredicative sort and a hierarchy of predicative universes, making it a very expressive logic. The
calculus allows to formalize both general mathematics and computer programs, ranging from theories of finite
structures to abstract algebra and categories to programming language metatheory and compiler verification.
Coq is organised as a (relatively small) kernel including efficient conversion tests on which are built a set of
higher-level layers: a powerful proof engine and unification algorithm, various tactics/decision procedures, a
transactional document model and, at the very top an IDE.

FUNCTIONAL DESCRIPTION: Coq provides both a dependently-typed functional programming language and
a logical formalism, which, altogether, support the formalisation of mathematical theories and the specification
and certification of properties of programs. Coq also provides a large and extensible set of automatic or semi-
automatic proof methods. Coq’s programs are extractible to OCaml, Haskell, Scheme, ...

Project-Team STAMP 5

RELEASE FUNCTIONAL DESCRIPTION: Coq version 8.10 contains two major new features: support for
a native fixed-precision integer type and a new sort SProp of strict propositions. It is also the result of
refinements and stabilization of previous features, deprecations or removals of deprecated features, cleanups
of the internals of the system and API, and many documentation improvements. This release includes many
user-visible changes, including deprecations that are documented in the next subsection, and new features that
are documented in the reference manual.

Version 8.10 is the fifth release of Coq developed on a time-based development cycle. Its development spanned
6 months from the release of Coq 8.9. Vincent Laporte is the release manager and maintainer of this release.
This release is the result of 2500 commits and 650 PRs merged, closing 150+ issues.

See the Zenodo citation for more information on this release: https://zenodo.org/record/3476303#.
Xe54f5NKjOQ

NEWS OF THE YEAR: Coq 8.10.0 contains:

- some quality-of-life bug fixes,

- a critical bug fix related to template polymorphism,

- native 63-bit machine integers,

- a new sort of definitionally proof-irrelevant propositions: SProp,

- private universes for opaque polymorphic constants,

- string notations and numeral notations,

- a new simplex-based proof engine for the tactics lia, nia, lra and nra,

- new introduction patterns for SSReflect,

- a tactic to rewrite under binders: under,

- easy input of non-ASCII symbols in CoqIDE, which now uses GTK3.

All details can be found in the user manual.
• Participants: Yves Bertot, Frédéric Besson, Maxime Denes, Emilio Jesús Gallego Arias, Gaëtan

Gilbert, Jason Gross, Hugo Herbelin, Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond,
Pierre-Marie Pédrot, Michael Soegtrop, Matthieu Sozeau, Enrico Tassi, Laurent Théry, Théo Zim-
mermann, Theo Winterhalter, Vincent Laporte, Arthur Charguéraud, Cyril Cohen, Christian Doczkal
and Chantal Keller

• Partners: CNRS - Université Paris-Sud - ENS Lyon - Université Paris-Diderot
• Contact: Matthieu Sozeau
• URL: http://coq.inria.fr/

5.2. Math-Components
Mathematical Components library

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: The Mathematical Components library is a set of Coq libraries that cover the
prerequiste for the mechanization of the proof of the Odd Order Theorem.

RELEASE FUNCTIONAL DESCRIPTION: This releases is compatible with Coq 8.9 and Coq 8.10 it adds many
theorems for finite function, prime numbers, sequences, finite types, bigo operations, natural numbers, cycles
in graphs.

• Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi,
François Garillot, Georges Gonthier, Ioana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry,
Russell O’Connor, Sidi Ould Biha, Stéphane Le Roux and Yves Bertot

• Contact: Assia Mahboubi
• URL: http://math-comp.github.io/math-comp/

https://zenodo.org/record/3476303#.Xe54f5NKjOQ
https://zenodo.org/record/3476303#.Xe54f5NKjOQ
http://coq.inria.fr/
http://math-comp.github.io/math-comp/

6 Activity Report INRIA 2019

5.3. Semantics
KEYWORDS: Semantic - Programming language - Coq

FUNCTIONAL DESCRIPTION: A didactical Coq development to introduce various semantics styles. Shows
how to derive an interpreter, a verifier, or a program analyser from formal descriptions, and how to prove their
consistency.

This is a library for the Coq system, where the description of a toy programming language is presented. The
value of this library is that it can be re-used in classrooms to teach programming language semantics or the Coq
system. The topics covered include introductory notions to domain theory, pre and post-conditions, abstract
interpretation, and the proofs of consistency between all these point of views on the same programming
language. Standalone tools for the object programming language can be derived from this development.

• Participants: Christine Paulin and Yves Bertot
• Contact: Yves Bertot
• URL: http://www-sop.inria.fr/members/Yves.Bertot/proofs/semantics_survey.tgz

5.4. Easycrypt
KEYWORDS: Proof assistant - Cryptography

FUNCTIONAL DESCRIPTION: EasyCrypt is a toolset for reasoning about relational properties of probabilistic
computations with adversarial code. Its main application is the construction and verification of game-based
cryptographic proofs. EasyCrypt can also be used for reasoning about differential privacy.

• Participants: Benjamin Grégoire, Gilles Barthe and Pierre-Yves Strub
• Contact: Gilles Barthe
• URL: https://www.easycrypt.info/trac/

5.5. ELPI
Embeddable Lambda Prolog Interpreter

KEYWORDS: Constraint Programming - Programming language - Higher-order logic

SCIENTIFIC DESCRIPTION: The programming language has the following features

- Native support for variable binding and substitution, via an Higher Order Abstract Syntax (HOAS) embed-
ding of the object language. The programmer needs not to care about De Bruijn indexes.

- Native support for hypothetical context. When moving under a binder one can attach to the bound variable
extra information that is collected when the variable gets out of scope. For example when writing a type-
checker the programmer needs not to care about managing the typing context.

- Native support for higher order unification variables, again via HOAS. Unification variables of the meta-
language (lambdaProlog) can be reused to represent the unification variables of the object language. The
programmer does not need to care about the unification-variable assignment map and cannot assign to a
unification variable a term containing variables out of scope, or build a circular assignment.

- Native support for syntactic constraints and their meta-level handling rules. The generative semantics of
Prolog can be disabled by turning a goal into a syntactic constraint (suspended goal). A syntactic constraint
is resumed as soon as relevant variables gets assigned. Syntactic constraints can be manipulated by constraint
handling rules (CHR).

- Native support for backtracking. To ease implementation of search.

- The constraint store is extensible. The host application can declare non-syntactic constraints and use custom
constraint solvers to check their consistency.

- Clauses are graftable. The user is free to extend an existing program by inserting/removing clauses, both at
runtime (using implication) and at "compilation" time by accumulating files.

http://www-sop.inria.fr/members/Yves.Bertot/proofs/semantics_survey.tgz
https://www.easycrypt.info/trac/

Project-Team STAMP 7

Most of these feature come with lambdaProlog. Constraints and propagation rules are novel in ELPI.

FUNCTIONAL DESCRIPTION: ELPI implements a variant of lambdaProlog enriched with Constraint Handling
Rules, a programming language well suited to manipulate syntax trees with binders and unification variables.

ELPI is a research project aimed at providing a programming platform for the so called elaborator component
of an interactive theorem prover.

ELPI is designed to be embedded into larger applications written in OCaml as an extension language. It comes
with an API to drive the interpreter and with an FFI for defining built-in predicates and data types, as well as
quotations and similar goodies that come in handy to adapt the language to the host application.

RELEASE FUNCTIONAL DESCRIPTION: improvement to the parser (parsing negative numbers) improvement
to the foreign function interface (accepting ternary comparison, instead of equality) adds ternary comparisons
to the standard library provides a builtin comparison cmp_term provides a builtin to check whether a term is
ground

NEWS OF THE YEAR: There were 7 releases in 2019. Work done mostly in these areas:

- consolidation (documentation, bug fixes, test suits)

- API and FFI (making it easier to export host applications to ELPI)

- standard library

• Participant: Claudio Sacerdoti Coen

• Contact: Enrico Tassi

• Publications: ELPI: fast, Embeddable, λProlog Interpreter - Implementing Type Theory in Higher
Order Constraint Logic Programming - Deriving proved equality tests in Coq-elpi: Stronger induc-
tion principles for containers in Coq

• URL: https://github.com/lpcic/elpi/

5.6. Coq-elpi
KEYWORDS: Metaprogramming - Extension

SCIENTIFIC DESCRIPTION: Coq-elpi provides a Coq plugin that embeds ELPI. It also provides a way to
embed Coq’s terms into lambdaProlog using the Higher-Order Abstract Syntax approach (HOAS) and a way
to read terms back. In addition to that it exports to ELPI a set of Coq’s primitives, e.g. printing a message,
accessing the environment of theorems and data types, defining a new constant and so on. For convenience it
also provides a quotation and anti-quotation for Coq’s syntax in lambdaProlog. E.g. {{nat}} is expanded to the
type name of natural numbers, or {{A -> B}} to the representation of a product by unfolding the -> notation.
Finally it provides a way to define new vernacular commands and new tactics.

FUNCTIONAL DESCRIPTION: Coq plugin embedding ELPI

RELEASE FUNCTIONAL DESCRIPTION: Minor relase for extra API for global reference data types

NEWS OF THE YEAR: Releases 1.0, 1.1, and 1.2 were made in 2019, they constitute the first public release
with tutorials and examples.

Work done in 2019 is mostly in these areas:

- expose a complete set of API to script Coq’s vernacular language

- take advantage or recent ELPI API and FFI to convert back and forth terms containing existential variables
(Evars)

• Contact: Enrico Tassi

• Publications: Deriving proved equality tests in Coq-elpi: Stronger induction principles for containers
in Coq - Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi λProlog dialect)

https://hal.inria.fr/hal-01176856
https://hal.inria.fr/hal-01410567
https://hal.inria.fr/hal-01410567
https://hal.inria.fr/hal-01897468
https://hal.inria.fr/hal-01897468
https://github.com/lpcic/elpi/
https://hal.inria.fr/hal-01897468
https://hal.inria.fr/hal-01897468
https://hal.inria.fr/hal-01637063

8 Activity Report INRIA 2019

5.7. AutoGnP
KEYWORDS: Formal methods - Security - Cryptography

FUNCTIONAL DESCRIPTION: autoGnP is an automated tool for analyzing the security of padding-based
public-key encryption schemes (i.e. schemes built from trapdoor permutations and hash functions). This years
we extended the tool to be able to deal with schemes based on cyclic groups and bilinear maps.

• Participants: Benjamin Grégoire, Gilles Barthe and Pierre-Yves Strub

• Contact: Gilles Barthe

• URL: https://github.com/ZooCrypt/AutoGnP

5.8. MaskComp
KEYWORD: Masking

FUNCTIONAL DESCRIPTION: MaskComp is a compiler generating masked implémentation protected against
side channel attack based on differential power analysis. It take a unmasked program in a syntaxe close to
C and generate a new C protected program. We did not claim that the generate C program will be secure
after compilation (C compiler can break protection), but it provide a good support for generating masked
implementation.

• Contact: Benjamin Grégoire

• URL: https://sites.google.com/site/maskingcompiler/home

5.9. Jasmin
Jasmin compiler and analyser

KEYWORDS: Cryptography - Static analysis - Compilers

FUNCTIONAL DESCRIPTION: Analysing the execution time of a cryptographic code can be a way to discover
the secret protected by this code. To avoid this pitfall, Jasmin proposes a high-level language and an analyzer
for this language that makes it possible to predict when the execution of this code will happen in constant time
and thus does not unveil the secret (for instance, the cryptographic key). Once the Jasmin code is valid with
respect to the analyzer, the compiler produces assembly code that still preserves this property of constant time.

• Contact: Benjamin Grégoire

5.10. MaskVerif
KEYWORDS: Masking - Hardware and Software Platform

FUNCTIONAL DESCRIPTION: MaskVerif is a tool to verify the security of implementations protected against
side channel attacks, in particular differential power analysis. It allows to check different security notions
in the probing model: - Probing security - Non Interference - Strong Non Interference. The tool is able to
analyse software implementations and hardware implementations (written in Verilog). It can prove the different
security notions in presence of glitch or transition.

• Contact: Benjamin Grégoire

• URL: https://sites.google.com/view/maskverif/home

5.11. CoqEAL
The Coq Effective Algebra Library

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: This library contains formal developments in algebra and optimized algorithms
on mathcomp data structures and a framework to ease change of data representation during a proof.

https://github.com/ZooCrypt/AutoGnP
https://sites.google.com/site/maskingcompiler/home
https://sites.google.com/view/maskverif/home

Project-Team STAMP 9

RELEASE FUNCTIONAL DESCRIPTION: First release

• Contact: Cyril Cohen

5.12. math-comp-analysis
Mathematical Components Analysis

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: This library adds definitions and theorems for real numbers and their mathe-
matical structures

RELEASE FUNCTIONAL DESCRIPTION: Compatible with mathcomp 1.8.0, 1.9.0, and 1.10.0

NEWS OF THE YEAR: In 2019, there were 3 releases.

• Partners: Ecole Polytechnique - AIST Tsukuba

• Contact: Cyril Cohen

• Publication: Formalization Techniques for Asymptotic Reasoning in Classical Analysis

• URL: https://github.com/math-comp/analysis

5.13. math-comp-finmap
Finite maps and ordered types library

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: Support for reasoning about finite maps and ordered types

RELEASE FUNCTIONAL DESCRIPTION: This release is solely an update of order.v and set.v in order to
integrate the changes in math-comp/math-comp#270

• Contact: Cyril Cohen

5.14. math-comp-real-closed
Real Closed Fields

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: Theorems for real closed fields

RELEASE FUNCTIONAL DESCRIPTION: First release

• Contact: Cyril Cohen

• URL: https://github.com/math-comp/real-closed

6. New Results

6.1. Hol-Light and Elpi
Participants: Enrico Tassi, Marco Maggesi [University of Florence, Italy].

We implemented an elaborator for HOL-Light in Elpi. In particular the new elaborator supports coercions and
overloaded notations for algebraic structures.

6.2. Generating equality tests for inductive types
Participant: Enrico Tassi.

https://hal.inria.fr/hal-01719918
https://github.com/math-comp/analysis
https://github.com/math-comp/real-closed

10 Activity Report INRIA 2019

We show how to derive in a modular fashion equality tests for a wide variety of inductive type definitions.
This makes an instrumental use of parametricity. This work has been published in an international conference
[10]. This is also an interesting case study for the Elpi language [2].

6.3. Re-designing the state machine of Coq
Participants: Enrico Tassi, Maxime Dénès.

We redesigned the state machine of Coq to improve its support for LSP-based user interfaces 1. In particular,
we decoupled the representation of the document as seen by the User-Interface and the structured document
as used by the STM to decide what to compute and how (in which order).

6.4. Formal proofs on session types
Participants: Enrico Tassi, Cinzia Di Giusto [University of Nice], Marco Giunti [New University of Lisbon],
Kirstin Peters [University of Darmstadt], Antonio Ravara [New University of Lisbon].

We formalized in Coq and Isabelle a linear, monadic Pi calculus, its labelled transition system, and type
system. We proved the properties of subject reduction and absence of linearity violation. These are based on
De Bruijn levels and Nominals with the objective of comparing the approaches and provide automation for
recurrent goals. This is done in Project PROSE (Provers for Sessions).

6.5. Formal proofs of an axiomatization of graphs with tree-width two
Participants: Christian Doczkal, Damien Pous [CNRS, ENS de lyon].

We finished the formalization of a completeness proof for an axiomatization of graphs of treewidth at most two
in Coq+MathComp. This work was submitted for publication in a conference [11]. We are also revising the
article presenting our proof of the Minor-Exclusion property for Treewidth-Two graphs [15] for publication in
a journal. Most of the formal proofs are available from the following web-site https://perso.ens-lyon.fr/damien.
pous/covece/graphs/.

6.6. Formal study of double-word arithmetic algorithms
Participants: Laurence Rideau, Jean-Michel Muller [CNRS, ENS de Lyon].

We finished the formalization of double-word arithmetic algorithms, described in the article Tight and
rigourous error bounds for basic building blocks of double-word arithmetic [16].

Thanks to the formalization, errors were found in the proofs, but the stated results (correction of algorithms
and error limits) were proven correct. On the other hand, for the purposes of this formalization, we had to
develop a more general version of the proof of the Fast2Sum algorithm, which should soon be integrated into
the Flocq library.

An article describing this work of formalisation is being written.

6.7. Approximations using Chebyshev polynomials
Participants: Laurent Théry, Florian Steinberg [Inria Saclay, Toccata project-team].

Florian Steinberg and Laurent Théry have been working on polynomial approximations using Chebyshev
polynomials. This works has been presented at the ANR FastRelax final meeting (Lyon, June 2019) and is
available as a library at https://github.com/FlorianSteinberg/Cheby.

6.8. Formalizing computational analysis
Participants: Laurent Théry, Florian Steinberg [Inria Saclay, Toccata project-team], Holger Thies [Kyushu
University, Fukuoka].

1LSP stands for Language Server Protocol

https://perso.ens-lyon.fr/damien.pous/covece/graphs/
https://perso.ens-lyon.fr/damien.pous/covece/graphs/
https://github.com/FlorianSteinberg/Cheby

Project-Team STAMP 11

Florian Steinberg, Holger Thies, and Laurent Théry have been working on formalizing computational analysis.
This work is described in a paper to be submitted for publication [13]. A shorter version was published in a
conference [9].

6.9. Formal study of probabilistic programs
Participants: Cécile Baritel-Ruet, Benjamin Grégoire, José Bacelar Almeida [INESC TEC], Manuel Barbosa
[INESC TEC], Gilles Barthe [IMDEA], Sonia Belaïd [CryptoExpert], Matthew Campagna [AWS], Gaëtan
Cassiers [UCL], Sunjay Cauligi [UC San Diego], Ernie Cohen [AWS], François Dupressoir [University of
Surrey], Pierre-Alain Fouque [Université Rennes 1], Charlie Jacomme [LSV], Steve Kremer [Inria Nancy
Grand-Est, PESTO project Team], Adrien Koutsos [LSV], Vincent Laporte [Inria], Tiago Oliveira [INESC
TEC], Vitor Pereira [INESC TEC], Bernardo Portela [INESC TEC], Alley Stoughton [Boston University],
François-Xavier Standaert [UCL], Deian Stefan [UC San Diego], Pierre-Yves Strub [Ecole Polytechnique],
Serdar Tasiran [AWS].

We provide two differents tools:
• EasyCrypt (see http://www.easycrypt.info/) is a toolset for reasoning about relational properties

of probabilistic computations with adversarial code. Its main application is the construction and
verification of game-based cryptographic proofs.

• Jasmin (see https://github.com/jasmin-lang/jasmin) is certified compiler to generate high-speed and
high-assurance cryptographic code.

6.10. Security of a key management service
Participants: Benjamin Grégoire, José Bacelar Almeida [INESC TEC], Manuel Barbosa [INESC TEC],
Gilles Barthe [IMDEA], Matthew Campagna [AWS], Vitor Pereira [INESC TEC], Bernardo Portela [INESC
TEC], Pierre-Yves Strub [Ecole Polytechnique], Serdar Tasiran [AWS].

We have developed a machine-checked proof of security for the domain management protocol of Amazon
Web Services’ KMS (Key Management Service) a critical security service used throughout AWS and by AWS
customers. Domain management is at the core of AWS KMS; it governs the toplevel keys that anchor the
security of encryption services at AWS. We show that the protocol securely implements an ideal distributed
encryption mechanism under standard cryptographic assumptions. The proof is machine-checked in the
EasyCrypt proof assistant and is the largest EasyCrypt development to date. This work corresponds to a
contract with AWS and has been published in a major computer security conference [3].

6.11. High-assurance and high-speed SHA-3
Participants: Cécile Baritel-Ruet, Benjamin Grégoire, José Bacelar Almeida [INESC TEC], Manuel Barbosa
[INESC TEC], Gilles Barthe [IMDEA], François Dupressoir [University of Surrey], Vincent Laporte [Inria],
Tiago Oliveira [INESC TEC], Alley Stoughton [Boston University], Pierre-Yves Strub [Ecole Polytechnique].

We have developed a high-assurance and high-speed implementation of the SHA-3 hash function. Our imple-
mentation is written in the Jasmin programming language, and is formally verified for functional correctness,
provable security and timing attack resistance in the EasyCrypt proof assistant. Our implementation is the
first to achieve simultaneously the four desirable properties (efficiency, correctness, provable security, and
side-channel protection) for a non-trivial cryptographic primitive. Concretely, our mechanized proofs show
that:

1. The SHA-3 hash function is indifferentiable from a random oracle, and thus is resistant against
collision, first and second preimage attacks;

2. The SHA-3 hash function is correctly implemented by a vectorized x86 implementation.

Furthermore, the implementation is provably protected against timing attacks in an idealized model of timing
leaks. The proofs include new EasyCrypt libraries of independent interest for programmable random oracles
and modular indifferentiability proofs. This work has been published at an international conference [4].

http://www.easycrypt.info/
https://github.com/jasmin-lang/jasmin

12 Activity Report INRIA 2019

6.12. A domain-specific language for timing sensitive computation
Participants: Benjamin Grégoire, Sunjay Cauligi [UC San Diego], Gilles Barthe [IMDEA], Deian Stefan
[UC San Diego].

Real-world cryptographic code is often written in a subset of C intended to execute in constant-time, thereby
avoiding timing side channel vulnerabilities. This C subset eschews structured programming as we know
it: if-statements, looping constructs, and procedural abstractions can leak timing information when handling
sensitive data. The resulting obfuscation has led to subtle bugs, even in widely-used high profile libraries
like OpenSSL. To address the challenge of writing constant-time cryptographic code, we have participate to
the development of FaCT, a crypto DSL that provides high-level but safe language constructs. The FaCT
compiler uses a secrecy type system to automatically transform potentially timing-sensitive high-level code
into low-level, constant-time LLVM bitcode. While the language and the type system has been developed
by our collaborator, we have formalized the constant-time transformation. We have performed an empirical
evaluation that uses FaCT to implement core crypto routines from several open-source projects including
OpenSSL, libsodium, and curve25519-donna. Our evaluation shows that FaCT’s design makes it possible
to write readable, high-level cryptographic code, with efficient, constant-time behavior. This work has been
published at an international conference [7].

6.13. Proving equivalence between probabilistic programs
Participants: Benjamin Grégoire, Gilles Barthe [IMDEA], Steve Kremer [Inria Nancy Grand-Est, PESTO
project Team], Pierre-Yves Strub [Ecole Polytechnique].

We have developed principled methods for proving equivalence between probabilistic programs that operate
over finite fields and related algebraic structures. We have focused on three essential properties: program equiv-
alence, information flow, and uniformity. We give characterizations of these properties based on deducibility
and other notions from symbolic cryptography. We use (sometimes improve) tools from symbolic cryptog-
raphy to obtain decision procedures or sound proof methods for program equivalence, information flow, and
uniformity. A partial implementation of our approach is integrated in EasyCrypt and in MaskVerif. This work
has been published at an international conference [6].

6.14. MaskVerif: automated verification of higher-order masking in presence
of physical defaults
Participants: Benjamin Grégoire, Gilles Barthe [IMDEA], Sonia Belaïd [CryptoExpert], Gaëtan Cassiers
[UCL], Pierre-Alain Fouque [Université Rennes 1], François-Xavier Standaert [UCL].

Power and electromagnetic based side-channel attacks are serious threats against the security of cryptographic
embedded devices. In order to mitigate these attacks, implementations use countermeasures, among which
masking is currently the most investigated and deployed choice. Unfortunately, commonly studied forms
of masking rely on underlying assumptions that are difficult to satisfy in practice. This is due to physical
defaults, such as glitches or transitions, which can recombine the masked data in a way that concretely reduces
an implementation’s security. We have developed and implemented an automated approach for verifying
security of masked implementations in presence of physical defaults (glitches or transitions). Our approach
helps to recover the main strengths of masking: rigorous foundations, composability guarantees, automated
verification under more realistic assumptions. This work contributes to demonstrate the benefits of language-
based approaches (specifically probabilistic information flow) for masking. This work was published at an
international conference [5].

6.15. Frame type theory
Participants: Cyril Cohen, Assia Mahboubi [Inria Rennes Bretagne Atlantique, Gallinette project-team],
Xavier Montillet [University of Nantes].

Project-Team STAMP 13

Writing modular programs in proof assistants is notoriously difficult. A significant literature and implementa-
tion effort is devoted to the topic, with approaches ranging from adding new constructions to the underlying
logic, to adding features to the proof assistant. However, all current options (including records, sections and
modules) are unsatisfactory in one way or another. In this work in progress we aim at reconciling several op-
tions using frames. The central idea is to consider records where some fields do not have a value yet. We will
call these generalized records frames, and will say that a field is a definition (resp. abstraction) if it has (resp.
does not have) a value. Frames can also be thought of as a reification of the contexts of CiC, as presented in
the Coq manual.

6.16. Automated refinements on algorithms in Lean
Participants: Cyril Cohen, Tobias Grosser [ETH Zurich], Utz Haus [CRAY EMEA Research Lab], Chris
Hughes [Imperial college].

We have experimented with Applying manual and automated program refinements techniques to a simple
algorithm, in Lean, with Tobias Grosser, Utz Haus and Chris Hughes, in Zürich. Experiments on this topic are
available at the following address https://github.com/ChrisHughes24/LP.

This work also includes investigations on parametricity in Lean as visible at the following address https://
github.com/CohenCyril/mathlib/tree/param.

6.17. Parametricity in Template Coq
Participants: Cyril Cohen, Damien Rouhling, Assia Mahboubi [Inria Rennes Bretagne Atlantique, Gallinette
project team], Nicolas Tabareau [Inria Rennes Bretagne Atlantique, Gallinette project team].

We study the implementation of parametricity in Template Coq and improve on the work proposed the article
Equivalence for free! [17]. This work is available at https://github.com/CoqHott/parametricity-a-la-carte.

6.18. A hierarchy builder
Participants: Kazuhiko Sakaguchi, Cyril Cohen.

We are studying how to generate mathematical structures from their axioms using the high-level language
provided by the Coq-Elpi experiment. Ongoing experiments are visible at the following address https://github.
com/math-comp/hierarchy-builder.

6.19. Adding measure theory to mathematical components analysis
Participants: Cyril Cohen, Damien Rouhling, Laurence Rideau, Reynald Affeldt [AIST, Japan], Georges
Gonthier [Inria Saclay Ile de France, Specfun project team], Marie Kerjean [Inria Rennes Bretagne Atlantique,
Gallinette project team], Assia Mahboubi [Inria Rennes Bretagne Atlantique, Gallinette project team], Pierre-
Yves Strub [Ecole Polytechnique].

We started extending mathematical components analysis [14] with measure theory and Lebesgue-Stieljes
integral. We are taking inspiration from work done on Coquelicot and in the MILC project (DIM-RFSI).

6.20. A formal description of exact real arithmetic
Participants: Yves Bertot, Nicolas Magaud [University of Strasbourg].

We revisited an old package available in the contributions to the Coq system, where algorithms to perform real
number computations were described. This package was using primitives described using axioms. We showed
that these axioms were faulty and proposed solutions to salvage the package and make it more safely usable
in the future.

6.21. Formal study of a triangulation algorithm
Participant: Yves Bertot.

https://github.com/ChrisHughes24/LP
https://github.com/CohenCyril/mathlib/tree/param
https://github.com/CohenCyril/mathlib/tree/param
https://github.com/CoqHott/parametricity-a-la-carte
https://github.com/math-comp/hierarchy-builder
https://github.com/math-comp/hierarchy-builder

14 Activity Report INRIA 2019

We wish to describe a triangulation algorithm in a way that respects both a high level of abstraction and a
precise account of pointer manipulations. Using refinements approaches as in CoqEAL, we hope that this can
lead to efficient implementation that are derived from the formal description.

6.22. Formal study of Voronoi diagrams and Fortune’s algorithm
Participants: Ahmed Khulaif A Alharbi, Yves Bertot.

Voronoi diagrams are an example of data that can be used to solve problems in robot motion planning. In this
experiment, we provided a formal description of Fortune’s algorithm to compute such diagrams, together with
a framework to animate this algorithm. Formal proofs of correctness will be the next step.

6.23. Formal study of a cell-decomposition algorithm
Participants: Julien Lamiroy, Yves Bertot.

To solve robot motion planning problems, a simple approach is to decompose the available space into obstacle-
free cells and to more from one cell to another only by boundaries that are also obstacle free. We developed
a formal description of an algorithm producing this kind of decomposition, with the aim of providing formal
proofs of correctness in the long run.

6.24. A guide to use Coq for security evaluations
Participants: Maxime Dénès, Yves Bertot, Vincent Laporte, Arnaud Fontaine [ANSSI], Thomas Letan
[ANSSI].

Common Criteria are an international standard for computer security certification. Evaluations are rated with
Evaluation Assurance Levels, from 1 to 7. Eal6 and EAL7 require developers to conduct a formal analysis of
their product with respect to certain security properties.

In France, the Certification Body (the entity emitting Common Criteria certificates) is part of the ANSSI
(l’Agence Nationale de la Sécurité des Systèmes d’Information, also referred to as the French Cybersecurity
Agency), and is one of the few emitters of EAL6 and EAL7 certificates.

Coq has already been used to support Common Criteria formal analysis. The ANSSI and Inria have been
collaborating on an authoritative document to introduce guidelines and rules for formal analyses supported by
Coq, in order to make these developments easier to read and evaluate.

6.25. Formalization of the Poincaré disk model in Isabelle
Participants: Pierre Boutry, Danijela Simić [University of Belgrade], Filip Marić [University of Belgrade].

The Poincaré disk model is a model that can be shown to satisfy all axioms of Tarski’s system of geometry
at the exception of the parallel postulate. We developed a formal proof of this fact in the Isabelle system and
submitted an article for publication. Reviewers suggested that we add a proof that the postulate of the existence
of limiting parallels does hold. This completes neatly the work on this topic, as it allows us to exhibit that the
Poincaré disk model is not only a counter-model for the parallel postulate but also a model of hyperbolic
geometry. An improved version of the article will be submitted soon.

6.26. Integration of the GeoCoq library to Logipedia
Participants: Pierre Boutry, Gaspard Ferey [Inria Saclay Ile de France, Deducteam project team].

Project-Team STAMP 15

We have proofs of independence of the parallel postulate for several models of hyperbolic geometry (among
which the Poincaré disk model). An objective is to provide formal proofs that these models are actually
isomorphic. An issue for this objective is the question of re-usability, because the formal proofs that we have
so far exist in the realms of different theorem provers. The Logipedia effort is an attempt to make proofs from
different proofs systems work together, by using a tool called Dedukti as a go-between. A particular point is to
be able to translate proofs already done in Coq, namely the GeoCoq library, into proofs verifiable by Dedukti.
This requires handling tactics based on internal computation (reflective tactics), that we used intensively in our
Coq proof. However, handling reflective tactics is currently not well supported by Dedukti. This is our current
point of attention.

6.27. Performance improvements for a reflective tactic in the GeoCoq library
Participants: Pierre Boutry, Benjamin Grégoire, Enrico Tassi.

The GeoCoq library relies on a reflective tactic. It is an interesting topic to understand how to make such a
tactic more efficient. A first pass on the algorithm makes that we manage to gain 15% of performance for
the whole library and several orders of magnitude on specific subgoals. Another area of the tactic can also be
improved by relying on Coq-Elpi.

6.28. Mutual interpretability of cartesian planes with Tarski’s system of
geometry
Participants: Pierre Boutry, Cyril Cohen.

A previous result by Pierre Boutry is that cartesian planes over pythagorean ordered fields are mutually
interpretable with Tarski’s system of geometry without the continuity axiom. This result can be extended
by linking cartesian planes over real closed fields and the full Tarski system of geometry, understanding the
continuity axiom as an implementation of Dedekind cuts. On the one hand, this requires a new proof that is not
already found in the literature, on the other hand, this will result in a verified quantifier elimination procedure
for Tarski’s system of geometry, thus extending previous work by Cyril Cohen.

6.29. Simplification of a constructive version of Tarski’s system of geometry
Participant: Pierre Boutry.

Our long term project is to show the independence of all thirteen axioms in a variant of Tarski’s system of
geometry. In the current situation, ten axioms have been checked to be independent using counter-models.
Specific questions arise around the continuity axiom and decidability of equality between points. This is
related to investigations concerning mutual interpretability with cartesian planes and an alternative system
proposed by Michael Beeson.

6.30. Formal proofs of Tarjan’s strongly connected components algorithm
Participants: Cyril Cohen, Laurent Théry, Ran Chen [Institute of Software, Chinese Academy of Science,
Beijing], Jean-Jacques Lévy [Inria Paris, π.r2 project-team], Stephan Merz [Inria Nancy Grand Est, Veridis
project-team].

Comparing provers on a formalization of the same problem is always a valuable exercise. In this work, we
present the formal proof of correctness of a non-trivial algorithm from graph theory that was carried out in
three proof assistants: Why3, Coq, and Isabelle. This was published in an international conference [8].

16 Activity Report INRIA 2019

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR

• FastRelax, "Fast and Reliable Approximations", started on October 1st, 2014, for 60 months (ending
in September 2019), with a grant of 75 kEuros for Marelle. Other partners are Inria Grenoble
(ARIC project-team), LAAS-CNRS (Toulouse), Inria Saclay (Toccata and Specfun project-teams),
and LIP6-CNRS (Paris). The corresponding researcher for this contract is Laurence Rideau.

• TECAP "Analyse de protocoles, Unir les outils existants", starting on October 1st, 2017, for 60
months, with a grant of 89 kEuros. Other partners are Inria teams PESTO (Inria Nancy grand-est),
Ecole Polytechnique, ENS Cachan, IRISA Rennes, and CNRS. The corresponding researcher for
this contract is Benjamin Grégoire.

• SafeTLS "La sécurisation de l’Internet du futur avec TLS 1.3" started on October 1st, 2016, for
60 months, with a grant of 147kEuros. Other partners are Université de Rennes 1, and secrétariat
Général de la Défense et de la Sécurité Nationale. The corresponding researcher for this contract is
Benjamin Grégoire.

• BRUTUS "Chiffrements authentifiés et résistants aux attaques par canaux auxiliaires", started on
October 1st, 2014, for 60 months, with a grant of 41 kEuros for STAMP. Other partners are Université
de Rennes 1, CNRS, secrétariat Général de la défense et de la sécurité nationale, and Université des
Sciences et Technologies de Lille 1. The corresponding researcher for this contract is Benjamin
Grégoire.

• Scrypt "Compilation sécurisée de primitives cryptographiques" started on February 1st, 2019, for
48 months, with a grant of 100 kEuros. Other partners are Inria team Celtique (Inria Rennes
Bretagne Atlantique), Ecole polytechnique, and AMOSSYS SAS. The corresponding researcher for
this contract is Benjamin Grégoire.

7.1.2. FUI
The acronym FUI stands for “fonds unique interministériel” and is aimed at research and development projects
in pre-industrial phase. The STAMP team is part of one such project.

• VERISICC (formal verification for masking techniques for security against side-channel attacks).
This contract concerns 5 partners: CRYPTOEXPERTS a company from the Paris region (Île de
France), ANSSI (Agence Nationale de Sécurité des Systèmes d’Information), Oberthur Technolo-
gies, University of Luxembourg, and STAMP. A sixth company (Ninjalabs) acts as a sub-contractant.
The financial grant for STAMP is 391 kEuros, including 111kEuros that are reserved for the sub-
contractant. This project started in October 2018 for a duration of 4 years. The corresponding re-
searcher for this contract is Benjamin Grégoire.

7.2. European Initiatives
7.2.1. Collaborations in European Programs, Except FP7 & H2020

Program: COST

Project acronym: EUTypes

Project title: The European research network on types for programming and verification (EUTypes)

Coordinator: Prof. Herman Geuvers, Radboud University, The Netherlands

Project-Team STAMP 17

Abstract:This COST Action will give a strong impetus to research on type theory and its many
applications in computer science, by promoting (1) the synergy between theoretical computer
scientists, logicians and mathematicians to develop new foundations for type theory, for example
as based on the recent development of "homotopy type theory”, (2) the joint development of
type theoretic tools as proof assistants and integrated programming environments, (3) the study of
dependent types for programming and its deployment in software development, (4) the study of
dependent types for verification and its deployment in software analysis and verification. The action
will also tie together these different areas and promote cross-fertilisation.

7.2.2. Collaborations with Major European Organizations
Partner 1: MPI Bochum, Gilles Barthe, Germany

Formally verified cryptography

7.3. International Initiatives
7.3.1. Informal International Partners

We have strong collaborations with AIST in Japan. Reynald Affeldt, a researcher from AIST has been
visiting our team since October 1st 2019. The topic of choice is formalization of a variety of topics using
the Mathematical Components library, aiming mostly at formalizing robotics.

7.4. International Research Visitors
7.4.1. Visits of International Scientists

We received the visit of Marc Gourjon (Technische Universität Hamburg) in April and from Manuel Barbosa
(University of Porto) in June and July.

We received the visit of Reynald Affeldt (AIST, Japan) starting on October 1st.

We received the visit of Kazuhiko Sakaguchi (University of Tsukuba), from January 1st to October 31st.

8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific Events: Organisation
8.1.1.1. Member of the Organizing Committees

Yves Bertot and Maxime Dénès organized the Coq User and Developer workshop in Sophia Antipolis, June
3–7, 2019.

8.1.2. Scientific Events: Selection
8.1.2.1. Member of the Conference Program Committees

Enrico Tassi was a member of the PC for PADL and LFMTP. Benjamin Grégoire was a member of the PC for
latincrypt and PriSC. Cyril Cohen was a member of the PC for CICM. Yves Bertot was a member of the PC
for ITP.

8.1.2.2. Reviewer

Benjamin Grégoire: Conference on Computer and Communication Security (CCS), Certified Programs and
Proofs (CPP), Interactive Theorem Proving (ITP). Cyril Cohen: LICS.

18 Activity Report INRIA 2019

8.1.3. Journal
8.1.3.1. Reviewer - Reviewing Activities

Laurent Théry: Journal of Automated Reasoning, Science of Computer Programming, Formal Aspects of
Computing. Cyril Cohen: MSCS (Journal on Mathematical Structures in Computer Science), Journal of
Automated Reasoning, Theoretical Computer Science, Information Processing Letters.

8.1.4. Invited Talks
Enrico Tassi gave talks at the Coq developer Working Group on the migration of the package index from opam
v1 to opam v2 and at the Coq workshop on the improvements to SSReflect in Coq 8.10 (with E. Martin-Dorel
from the University of Toulouse). He also gave a talk in the seminar of the Inria Parsifal project-team on
synthesizing proved equality tests.

Benjamin Grégoire gave an invited talk at PriSC (Principles of Secure Compilation) in January 2019.

Cyril Cohen gave a talk at the Lean Together meeting in 2019, on using unification hints.

8.1.5. Scientific Expertise
Yves Bertot is a member of the steering committee for the Inria-Nomadic Labs collaboration.

Yves Bertot is a member of the steering committee for the ITP series of conferences.

Yves Bertot was a member of the hiring committee for an associate professor at ENSIIE (Ecole Nationale
Supérieure d’Informatique pour l’Industrie et l’Entreprise) in Evry, France.

8.1.6. Research Administration
Benjamin Grégoire is a member of the CUMI committee facilitating communication between IT services,
administrative services, and researchers at Inria.

Yves Bertot was coordinator for the evaluation of the theme “Proof and verification” in March 2019. This work
involved polling 13 heads of Inria project teams for names of international experts, selecting an appropriate
panel, and attributing a small group of experts to each project-team.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Master : Yves Bertot, “Proofs and reliable programming using Coq”, 21hours ETD, Sept-Nov 2019,
Université Nice Côte d’Azur, France.
Doctorat : Benjamin Grégoire, “EasyCrypt and Jasmin”, 14 ETD, summer school on Formal
Techniques, Menlo College, California, USA, 18–25 May 2019.
Doctorat : Benjamin Grégoire, “Formal verification of masked implementations” Summer school on
security of software/Hardware interfaces, 3 ETD, 8–12 July 2019, Inria, France.
Doctorat : Yves Bertot “Coq introductory course”, EUTypes summer school, 6 ETD, Ohrid, Aug.
30–Sep. 4, 2019, North Macedonia.

8.2.2. Supervision
PhD: Damien Rouhling, Formalization Tools for Classical Analysis – A Case Study in Control
Theory, Université Côte d’Azur, September 2019, supervised by Yves Bertot and Cyril Cohen [1].
Yves Bertot and Laurence Rideau supervise the doctoral thesis of Sophie Bernard.
Yves Bertot and Benjamin Grégoire supervise the doctoral thesis of Cécile Baritel-Ruet.
Benjamin Grégoire and Tamara Rezk (Indes) supervise the doctoral thesis of Mohamad El Laz.

8.2.3. Juries
Yves Bertot was a member of the Jury for the Habilitation to direct research of Guillaume Melquiond.

Project-Team STAMP 19

Laurent Théry was a member of the thesis committee for David Braun (University of Strasbourg).

Laurent Théry was an external reviewer for a PhD at ANU (Australia, anonymity rules apply).

Enrico Tassi was a member of the Jury for the PhD defense of Ulysse Gérard (Inria Saclay).

Yves Bertot was a member of the Jury with report duties for the thesis of Florian Faissole (University of
Paris-Saclay).

Yves Bertot was a member of the Jury with report duties for the thesis of Armaël Guéneau (University of Paris
Diderot).

Yves Bertot was a member of the Jury for the thesis of Gaëtan Gilbert (Institut Mines Télécom Atlantique,
Nantes).

8.3. Popularization
8.3.1. Internal action

• Yves Bertot gave a talk on Coq in the Café-In series of seminars for all publics of Inria personnel.

• Yves Bertot gave a general presentation on Coq in the Doctoral seminar of Inria Sophia Antipolis
Méditerranée.

9. Bibliography
Publications of the year

Doctoral Dissertations and Habilitation Theses

[1] D. ROUHLING. Formalisation Tools for Classical Analysis - A Case Study in Control Theory, Université Côte
d’Azur, September 2019, https://hal.inria.fr/tel-02333396

Articles in International Peer-Reviewed Journals

[2] F. GUIDI, C. SACERDOTI COEN, E. TASSI. Implementing Type Theory in Higher Order Constraint Logic
Programming, in "Mathematical Structures in Computer Science", March 2019, vol. 29, no 8, pp. 1125-1150,
https://hal.inria.fr/hal-01410567

International Conferences with Proceedings

[3] J. B. ALMEIDA, M. BARBOSA, G. BARTHE, M. CAMPAGNA, E. COHEN, B. GRÉGOIRE, V. PEREIRA,
B. PORTELA, P.-Y. STRUB, S. TASIRAN. A Machine-Checked Proof of Security for AWS Key Management
Service, in "ACM CCS 2019 - 26th ACM Conference on Computer and Communications Security", London,
United Kingdom, ACM Press, November 2019, vol. 16, pp. 63-78 [DOI : 10.1145/3319535.3354228],
https://hal.archives-ouvertes.fr/hal-02404540

[4] J. B. ALMEIDA, C. BARITEL-RUET, M. BARBOSA, G. BARTHE, F. DUPRESSOIR, B. GRÉGOIRE, V.
LAPORTE, T. OLIVEIRA, A. STOUGHTON, P.-Y. STRUB. Machine-Checked Proofs for Cryptographic
Standards: Indifferentiability of Sponge and Secure High-Assurance Implementations of SHA-3, in "CCS 2019
- 26th ACM Conference on Computer and Communications Security", London, United Kingdom, ACM Press,
November 2019, pp. 1607-1622 [DOI : 10.1145/3319535.3363211], https://hal.archives-ouvertes.fr/hal-
02404581

https://hal.inria.fr/tel-02333396
https://hal.inria.fr/hal-01410567
https://hal.archives-ouvertes.fr/hal-02404540
https://hal.archives-ouvertes.fr/hal-02404581
https://hal.archives-ouvertes.fr/hal-02404581

20 Activity Report INRIA 2019

[5] G. BARTHE, S. BELAÏD, G. CASSIERS, P.-A. FOUQUE, B. GRÉGOIRE, F.-X. STANDAERT. Automated
Verification of Higher-Order Masking in Presence of Physical Defaults, in "ESORICS 2019 - 24th European
Symposium on Research in Computer Security", Luxembourg, Luxembourg, September 2019, pp. 300-318
[DOI : 10.1007/978-3-030-29959-0_15], https://hal.archives-ouvertes.fr/hal-02404662

[6] G. BARTHE, B. GRÉGOIRE, C. JACOMME, S. KREMER, P.-Y. STRUB. Symbolic Methods in Computational
Cryptography Proofs, in "CSF2019 - 32nd IEEE Computer Security Foundations Symposium", Hoboken,
United States, IEEE, June 2019, pp. 136-13615 [DOI : 10.1109/CSF.2019.00017], https://hal.archives-
ouvertes.fr/hal-02404701

[7] S. CAULIGI, G. SOELLER, B. JOHANNESMEYER, F. BROWN, R. S. WAHBY, J. RENNER, B. GRÉGOIRE,
G. BARTHE, R. JHALA, D. STEFAN. FaCT: A DSL for Timing-Sensitive Computation, in "PLDI 2019 -
40th ACM SIGPLAN Conference on Programming Language Design and Implementation", Phoenix, United
States, June 2019 [DOI : 10.1145/3314221.3314605], https://hal.archives-ouvertes.fr/hal-02404755

[8] R. CHEN, C. COHEN, J.-J. LEVY, S. MERZ, L. THÉRY. Formal Proofs of Tarjan’s Strongly Con-
nected Components Algorithm in Why3, Coq and Isabelle, in "ITP 2019 - 10th International Confer-
ence on Interactive Theorem Proving", Portland, United States, J. HARRISON, J. O’LEARY, A. TOL-
MACH (editors), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019, vol. 141, pp. 13:1 - 13:19
[DOI : 10.4230/LIPICS.ITP.2019.13], https://hal.inria.fr/hal-02303987

[9] F. STEINBERG, H. THIES, L. THÉRY. Quantitative continuity and Computable Analysis in Coq, in "ITP
2019 - Tenth International Conference on Interactive Theorem Proving", Portland, United States, 2019, The
version accepted to the conference can be accessed at https://drops.dagstuhl.de/opus/volltexte/2019/11083/
[DOI : 10.4230/LIPICS.ITP.2019.28], https://hal.archives-ouvertes.fr/hal-02426470

[10] E. TASSI. Deriving proved equality tests in Coq-elpi: Stronger induction principles for containers in Coq,
in "ITP 2019 - 10th International Conference on Interactive Theorem Proving", Portland, United States,
September 2019 [DOI : 10.4230/LIPICS.CVIT.2016.23], https://hal.inria.fr/hal-01897468

Conferences without Proceedings

[11] C. DOCZKAL, D. POUS. Completeness of an Axiomatization of Graph Isomorphism via Graph Rewriting in
Coq, in "CPP 2020 - 9th ACM SIGPLAN International Conference on Certified Programs and Proofs", New
Orleans, LA, United States, Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’20), January 2020 [DOI : 10.1145/3372885.3373831], https://hal.archives-
ouvertes.fr/hal-02333553

Other Publications

[12] B. M. KAPRON, F. STEINBERG. Type-two polynomial-time and restricted lookahead, February 2019, https://
arxiv.org/abs/1801.07485 - working paper or preprint, https://hal.inria.fr/hal-02018934

[13] F. STEINBERG, L. THÉRY, H. THIES. Quantitative continuity and computable analysis in Coq, April 2019,
working paper or preprint, https://hal.inria.fr/hal-02088293

References in notes

[14] R. AFFELDT, C. COHEN, D. ROUHLING. Formalization Techniques for Asymptotic Reasoning in Classical
Analysis, in "Journal of Formalized Reasoning", October 2018, https://hal.inria.fr/hal-01719918

https://hal.archives-ouvertes.fr/hal-02404662
https://hal.archives-ouvertes.fr/hal-02404701
https://hal.archives-ouvertes.fr/hal-02404701
https://hal.archives-ouvertes.fr/hal-02404755
https://hal.inria.fr/hal-02303987
https://hal.archives-ouvertes.fr/hal-02426470
https://hal.inria.fr/hal-01897468
https://hal.archives-ouvertes.fr/hal-02333553
https://hal.archives-ouvertes.fr/hal-02333553
https://arxiv.org/abs/1801.07485
https://arxiv.org/abs/1801.07485
https://hal.inria.fr/hal-02018934
https://hal.inria.fr/hal-02088293
https://hal.inria.fr/hal-01719918

Project-Team STAMP 21

[15] C. DOCZKAL, D. POUS. Graph Theory in Coq: Minors, Treewidth, and Isomorphisms, May 2019, working
paper or preprint, https://hal.archives-ouvertes.fr/hal-02127698

[16] M. M. JOLDES, J.-M. MULLER, V. POPESCU. Tight and rigourous error bounds for basic building blocks of
double-word arithmetic, in "ACM Transactions on Mathematical Software", 2017, vol. 44, no 2, pp. 1 - 27
[DOI : 10.1145/3121432], https://hal.archives-ouvertes.fr/hal-01351529

[17] N. TABAREAU, É. TANTER, M. SOZEAU. Equivalences for Free, in "Proceedings of the ACM on Program-
ming Languages", September 2018, vol. 2, no ICFP, pp. 1-29 [DOI : 10.1145/3234615], https://hal.inria.fr/
hal-01559073

https://hal.archives-ouvertes.fr/hal-02127698
https://hal.archives-ouvertes.fr/hal-01351529
https://hal.inria.fr/hal-01559073
https://hal.inria.fr/hal-01559073

